R package for Maximal Information-Based Nonparametric Exploration computation
install.packages("minerva")devtools::install_github('filosi/minerva')mine.library(minerva)
x <- 0:200 / 200
y <- sin(10 * pi * x) + x
mine(x,y, n.cores=1)mine_stat.
x <- 0:200 / 200
y <- sin(10 * pi * x) + x
mine_stat(x, y, measure="mic")mic-r2 measure use the cor
R function:x <- 0:200 / 200
y <- sin(10 * pi * x) + x
r2 <- cor(x, y)
mm <- mine_stat(x, y, measure="mic")
mm - r2**2
## mine(x, y, n.cores=1)[[5]]mine_compute_pstat).mine_compute_cstat).
x <- matrix(rnorm(1000), ncol=10, nrow=10)
y <- as.matrix(rnorm(1000), ncol=10, nrow=20)
## Compare feature of the same matrix
pstats(x)
## Compare features of matrix x with feature in matrix y
cstats(x, y)This is inspired to the original implementation by Albanese et al. available in python here: https://github.com/minepy/mictools.
datasaurus <- read.table("https://raw.githubusercontent.com/minepy/mictools/master/examples/datasaurus.txt",
header=TRUE, row.names=1, as.is=TRUE, stringsAsFactors=FALSE)
datasaurus.m <- t(datasaurus)tic_eAutomatically compute:
tic_e null distribution based on permutations.tic_e for each pair of variable in
datasaurus.tic_e.ticnull <- mictools(datasaurus.m, nperm=10000, seed=1234)
## Get the names of the named list
names(ticnull)
##[1] "tic" "nulldist" "obstic" "obsdist" "pval"
ticnull$nulldist| BinStart | BinEnd | NullCount | NullCumSum |
|---|---|---|---|
| 0e+00 | 1e-04 | 0 | 1e+05 |
| 1e-04 | 2e-04 | 0 | 1e+05 |
| 2e-04 | 3e-04 | 0 | 1e+05 |
| 3e-04 | 4e-04 | 0 | 1e+05 |
| 4e-04 | 5e-04 | 0 | 1e+05 |
| 5e-04 | 6e-04 | 0 | 1e+05 |
| … | … | …. | …. |
ticnull$obsdist| BinStart | BinEnd | Count | CountCum |
|---|---|---|---|
| 0e+00 | 1e-04 | 0 | 325 |
| 1e-04 | 2e-04 | 0 | 325 |
| 2e-04 | 3e-04 | 0 | 325 |
| 3e-04 | 4e-04 | 0 | 325 |
| 4e-04 | 5e-04 | 0 | 325 |
| 5e-04 | 6e-04 | 0 | 325 |
| … | … | …. | …. |
Plot tic_e and pvalue distribution.
hist(ticnull$tic)
hist(ticenull$pval, breaks=50, freq=FALSE)Use p.adjust.method to use a different pvalue correction
method, or use the qvalue package to use Storey’s
qvalue.
## Correct pvalues using qvalue
qobj <- qvalue(ticnull$pval$pval)
## Add column in the pval data.frame
ticnull$pval$qvalue <- qobj$qvalue
ticnull$pvalSame table as above with the qvalue column added at the end.
| pval | I1 | I2 | Var1 | Var2 | adj.P.Val | qvalue |
|---|---|---|---|---|---|---|
| 0.5202 | 1 | 2 | away_x | bullseye_x | 0.95 | 1 |
| 0.9533 | 1 | 3 | away_x | circle_x | 0.99 | 1 |
| 0.0442 | 1 | 4 | away_x | dino_x | 0.52 | 0 |
| 0.6219 | 1 | 5 | away_x | dots_x | 0.95 | 1 |
| 0.8922 | 1 | 6 | away_x | h_lines_x | 0.98 | 1 |
| 0.3972 | 1 | 7 | away_x | high_lines_x | 0.91 | 1 |
| … | … | … | … | … | … | …. |
## Use columns of indexes and FDR adjusted pvalue
micres <- mic_strength(datasaurus.m, ticnull$pval, pval.col=c(6, 2, 3))| TicePval | MIC | I1 | I2 |
|---|---|---|---|
| 0.0457 | 0.42 | 2 | 15 |
| 0.0000 | 0.63 | 3 | 16 |
| 0.0196 | 0.50 | 5 | 18 |
| 0.0162 | 0.36 | 9 | 22 |
| 0.0000 | 0.63 | 10 | 23 |
| 0.0000 | 0.57 | 13 | 26 |
| … | … | … | … |
Association strength computed based on the qvalue
adjusted pvalue
## Use qvalue adjusted pvalue
micresq <- mic_strength(datasaurus.m, ticnull$pval, pval.col=c("qvalue", "Var1", "Var2"))| TicePval | MIC | I1 | I2 |
|---|---|---|---|
| 0.0401 | 0.42 | bullseye_x | bullseye_y |
| 0.0000 | 0.63 | circle_x | circle_y |
| 0.0172 | 0.50 | dots_x | dots_y |
| 0.0143 | 0.36 | slant_up_x | slant_up_y |
| 0.0000 | 0.63 | star_x | star_y |
| 0.0000 | 0.57 | x_shape_x | x_shape_y |
| … | … | … | … |
| minepy2013 | Davide Albanese, Michele Filosi, Roberto Visintainer, Samantha Riccadonna, Giuseppe Jurman and Cesare Furlanello. minerva and minepy:a C engine for the MINE suite and its R, Python and MATLAB wrappers. Bioinformatics (2013) 29(3): 407-408 first published online December 14, 2012 |
| mictools2018 | Davide Albanese, Samantha Riccadonna, Claudio Donati, Pietro Franceschi. A practical tool for maximal information coefficient analysis. GigaScience (2018) |