KernelKnn: Kernel k Nearest Neighbors

Extends the simple k-nearest neighbors algorithm by incorporating numerous kernel functions and a variety of distance metrics. The package takes advantage of 'RcppArmadillo' to speed up the calculation of distances between observations.

Version: 1.1.0
Depends: R (≥ 2.10.0)
Imports: Rcpp (≥ 0.12.5)
LinkingTo: Rcpp, RcppArmadillo
Suggests: testthat, covr, knitr, rmarkdown
Published: 2019-11-29
Author: Lampros Mouselimis
Maintainer: Lampros Mouselimis <mouselimislampros at gmail.com>
BugReports: https://github.com/mlampros/KernelKnn/issues
License: MIT + file LICENSE
URL: https://github.com/mlampros/KernelKnn
NeedsCompilation: yes
SystemRequirements: libarmadillo: apt-get install -y libarmadillo-dev (deb), libblas: apt-get install -y libblas-dev (deb), liblapack: apt-get install -y liblapack-dev (deb), libarpack++2: apt-get install -y libarpack++2-dev (deb), gfortran: apt-get install -y gfortran (deb)
Materials: README NEWS
CRAN checks: KernelKnn results

Downloads:

Reference manual: KernelKnn.pdf
Vignettes: binary classification using the ionosphere data
Image classification of the MNIST and CIFAR-10 data using KernelKnn and HOG (histogram of oriented gradients)
Regression using the Housing data
Package source: KernelKnn_1.1.0.tar.gz
Windows binaries: r-devel: KernelKnn_1.0.9.zip, r-devel-gcc8: KernelKnn_1.1.0.zip, r-release: KernelKnn_1.1.0.zip, r-oldrel: KernelKnn_1.1.0.zip
OS X binaries: r-release: KernelKnn_1.1.0.tgz, r-oldrel: KernelKnn_1.1.0.tgz
Old sources: KernelKnn archive

Reverse dependencies:

Reverse depends: elmNNRcpp
Reverse imports: imbalance, nmslibR
Reverse suggests: SuperLearner

Linking:

Please use the canonical form https://CRAN.R-project.org/package=KernelKnn to link to this page.