

1

2

Contents

Introduction 7

1 Engines 10

1.1 Introduction 10

1.2 How it started 10

1.3 The engines 11

1.4 Reflections 12

1.5 Usage 13

2 principles 17

2.1 Introduction 17

2.2 Text fonts 17

2.3 Math fonts 18

2.4 Rules 20

2.5 Paragraphs 21

2.6 Pages 21

2.7 Alignments 21

2.8 Adjusts 21

2.9 Marks 22

2.10 Inserts 22

2.11 Boxes 22

2.12 Language 22

2.13 Math 22

2.14 Programming 23

2.15 Protection 23

2.16 Optimization 23

2.17 Input 23

2.18 Nesting 23

2.19 Conditions 24

2.20 Macros 24

2.21 Keywords 24

2.22 Directions 25

2.23 Hooks 26

2.24 Expressions 26

2.25 Units 26

2.26 Local control 27

2.27 Overload protection 27

2.28 Tracing 29

3 Constructions 32

3.1 Introduction 32

3.2 Boxes 32

3.3 Math style variants 34

3.4 Math scripts 34

3.5 Skewed fractions 37

3.6 Math fractions 38

3.7 Math radicals 38

3

3.8 Math accents 39

3.9 Math fences 39

4 Assumptions 41

4.1 Introduction 41

4.2 Virtual fonts 41

5 Internals 44

5.1 Introduction 44

5.2 A few basics 44

5.3 Memory words 47

5.4 Tokens 48

5.5 Nodes 50

5.6 The hash table 51

5.7 Save stack 53

5.8 Data types 53

5.9 Time flies 54

5.10 Keywords 57

5.11 Sparse arrays 58

6 Primitives 61

6.1 Introduction 61

6.2 Rationale 72

6.3 Primitives 74

6.4 Syntax 256

6.5 To be checked primitives (new) 291

6.6 To be checked primitives (math) 292

6.7 To be checked primitives (old) 294

6.8 Indexed primitives 295

7 Callbacks 308

7.1 Introduction 308

7.2 Files 309

7.3 Running 310

7.4 Fonts 315

7.5 Typesetting 316

7.6 Tracing 325

7.7 Math 332

8 Fonts 337

8.1 Introduction 337

8.2 Primitives 337

8.3 Nodes 342

8.4 Loading 343

8.5 Helpers 348

8.6 Virtual fonts 351

8.7 Callbacks 352

8.8 Protrusion 352

8.9 Spaces 353

4

9 Languages 356

9.1 Introduction 356

9.2 Evolution 356

9.3 Characters, glyphs and discretionaries 357

9.4 Controlling hyphenation 362

9.5 The main control loop 363

9.6 Loading patterns and exceptions 364

9.7 Applying hyphenation 366

9.8 Applying ligatures and kerning 368

9.9 Breaking paragraphs into lines 368

9.10 The language library 369

9.11 Math 371

9.12 Tracing 372

10 Lua 375

10.1 Introduction 375

10.2 Initialization 375

10.3 Lua behaviour 377

10.4 Lua modules 378

10.5 Files 378

10.6 Testing 379

10.7 Helpers 379

11 Metapost 384

11.1 Introduction 384

11.2 Instances 384

11.3 Processing 390

11.4 Internals 392

11.5 Information 394

11.6 Methods 395

11.7 Scanners 395

11.8 Injectors 398

12 TEX 401

12.1 Introduction 401

12.2 Status information 401

12.3 Everything TEX 412

12.4 The configuration 443

12.5 Input and output 444

13 Math 448

13.1 Introduction 448

13.2 Traditional alongside OpenType 448

13.3 Intermezzo 449

13.4 Unicode math characters 452

13.5 Math classes 453

13.6 Setting up the engine 453

13.7 Math styles 454

13.8 Math parameters 458

13.9 Math spacing 466

13.10Fonts 469

5

13.11Scripts 470

14 PDF 475

14.1 Introduction 475

14.2 Lua interfaces 475

15 Nodes 484

15.1 Introduction 484

15.2 Lua node representation 484

15.3 Main text nodes 485

15.4 Math nodes 507

15.5 Helpers 520

16 Tokens 555

16.1 Introduction 555

16.2 Lua token representation 555

16.3 Helpers 555

17 Libraries 590

17.1 Introduction 590

17.2 Third party 590

17.3 Core 590

17.4 Auxiliary 590

17.5 Optional 615

6

7

Introduction

The LuaMetaTEX manual that is a variant of the LuaTEX manual provides an overview similar to its

parent. Instead of adding more and more to that one, an alternative take is provided. Here we start

less form a historic perspective and treat the engine as independent development. The main reason

for this is that we want to focus on ConTEXt, if only because that is the macro package that uses it and

also drives the development.

In LuaMetaTEX we go further than in LuaTEX. We extend the language, refactor most subsystems and

assume that the macro package adapts to that. Of course we are compatible as much as possible with

predecessors but we also take the freedom to tune some default behavior. For instance, moving on

with math rendering means that we can make assumptions with respect to fonts and because the math

fonts have issues that never will be solved we assume that the macro package is not only to feed the

engine with tweaked fonts that can use the engine to its maximum extend. The same is true for more

mechanism, like for instance the par builder, present in other engines. Although extensions like these

are not discussed here we do have to describe the underlying mechanisms and interfaces and thereby

assume usage as in ConTEXt.

A manual like this evolves over time and will take years to complete. These are volunteer efforts unless

some project makes it possible to spend more time on it. In practice most work on TEX development

is unpaid for and therefore mostly driven by the joy of playing with typesetting and coming up with

solutions for problems that users present us. Keep that in mind when reading and wondering why the

focus is not on what you expect or what is best for marketing.

This manual replaces the older LuaMetaTEX manual. It has some less and some more than its prede

cessor which was derived from the LuaTEX manual. It will take some time to ‘complete’. Eventually I

might add a few registers but it makes only sense when the manual is more stable and I have to be in

the mood to spend time on it.

Disclaimer. We don't use ‘articial intelligence’ tools for development and have no plans to do that either. If we can't manage

without, we should not go on with developments anyway. We don't want to use tools that rip-off code (and basically abuse

whatever people put on the internet for others to enjoy), pretty much aim at control and advertising (its all about money),

infringe copyright, depend on other peoples originality and efforts, and frankly spoken, bring very little to the table, while

consuming extreme amount of energy. We've nothing against expert systems applied wisely but that's a different story than

today's big tech, commerce and dominance driven AI fashion. We also don't jump on every new language bandwagon because

in the end there is little to gain, and all these software religious claims don't impress in the end. It's a waste of time and energy.

Typesetting is very much also a human thing: look and feel, perception, joy and human interaction. We like to see what users

come up with, in results and demands; that is what drives us.

Author Hans Hagen & friends

ConTEXt 2025.06.03 11:30

LuaMetaTEX 2.11.07 (dev id: 20250528)

Support contextgarden.net & tug.org

8

9

10

1 Engines

1.1 Introduction

There are good reasons why we started the LuaTEX and later LuaMetaTEX projects. Here I will go into

some of them. It is just short wrap up of how it started, how other engines influenced the process

and how we see usage. There are plenty of documents out there that go into more detail. The main

objective of this section is to put documentation into perspective.

1.2 How it started

When we started with ConTEXt, hardware was rather limited compared to what we have today. A per

sonal computer had some 640kB memory, possibly bumped to 1MB with help from a memory extender.

This put some restrictions to how macro packages could be defined, also because that memory had

to be shared with the baseline operating system. However, over time memory and runtime became

less of an issue and the TEX engine could be configured to use whatever was available. Extending the

program other than increasing the available memory became more feasible.

As with any program, there is always something to wish for which is why the 𝜀-TEX variant came into

view. Before those extensions could be used, pdfTEX showed up. That variant simplified the ‘TEX plus

separate backend driver’ model to a one-step process. Eventually 𝜀-TEX was merged into pdfTEX, and

that became the de facto standard engine. There was never a follow up on 𝜀-TEX, and more drastic

deviations like Omega were never ready for production. At some point XƎTEX came around but that was

mostly a font specific extension. We were kind of stuck with a wish-list that never would be fulfilled

but we occasionally pondered a follow up. We drafted an extended 𝜀-TEX proposal, played with some

features related to pdf, improved a few things but that was it.

Having some experiences with Lua as extension language in SciTE, I wondered what something like

that would bring to TEX and after discussing this with Hartmut he made variant of pdfTEX that has

some basic interfaces: we could access properties of registers and print something to TEX as if it came

from file. As is common with some variant, a new name was coined and LuaTEX came into existence.

We're talking 2005.

Because Idris wanted to typeset high quality scholar manuscripts mixing Arabic and Latin we dis

cussed how to do that in ConTEXt and his experiences with Omega were such that alternatives had to

be considered: the Oriental TEX project was started and LuaTEX was the starting point. Taco merged

some parts of Aleph (a somewhat stable variant of Omega) into the code base and stepwise some

primitives were added. It was overall a rather large and serious project that took a lot of our time. It

was not commercially driven, mostly for ConTEXt users and therefore also a lot of fun to do. As often

with such projects, early adapters keep things going.

It took a while before LuaTEX was stable in the sense that nothing more was added. Because the

engine was developed alongside what is called ConTEXt MkIV, we could easily adapt both to each other.

Even better: users could use both in production. However, in order for other macro packages to use

LuaTEX (per request) it had to be frozen, and that happened around 2015, some 10 years after we

started. However, we were not done yet and in order not to violate this stability principle the follow

up was called LuaMetaTEX. Because it was a more drastic extension project, and also a somewhat

drastic separation of the code base from the complex LuaTEX one, the related ConTEXt code was also

separated, this time tagged MkXL, or LMTX when we talk about the combination. The project started

11

around 2019 and soon again entered a state of combined development and use in production and most

users switched to this variant.

There are more complete wrap ups of these developments and we systematically reported on them in

various documents that are available in the distribution and/or published in user group journals.

1.3 The engines

Of course all starts with original TEX. We want to be compatible so we keep that functionality. However,

for practical reasons LuaMetaTEX omits two core components. Font loading is not present in the

frontend and there is no backend. Both are supposed to be provided via Lua plugins. This makes

sense because in the meantime font technologies have changed and keep changing and backend also

are a moving target. In ConTEXt we already did all that in Lua, so there was no need to keep that font

and pdf generation code around in the engine. There are a few more deviations, like dropping some

system specific features (terminal related) and in former times practical features like outer and long

macros that no longer made sense and complicated integrating new features unnecessarily.

As mentioned in the introduction pdfTEX is the basis for LuaTEX and LuaTEX is where we started with

LuaMetaTEX. If we compare pdfTEX with traditional TEX the main additions are:

• There is an integrated pdf backend that also supports for instance hyperlinks and various annota

tions.

• Expansion of glyphs (aka hz) has been added to the engine and integrated in the par builder. The

same is true for character protrusion (in the margin).

• There is, to some extend, support for inter-character kerning.

• There are some handy helpers, for instance for calculating hashes, randomization, etc.

• There is an extension to injection between lines (adjust).

• We have few more conditionals (like testing for a csname and absolute values).

• A few helpers like \quitvmode (that we liked to have in ConTEXt) were added.

Because pdfTEX was actively developed and maintained over many years, extensions showed up step

wise, also depending on usage and needs. That is also why the 𝜀-TEX extensions were included:

• More that 256 registers, including marks.

• Access to discarded material in the vertical splitting code.

• Protection against expansion of macros (the \protected prefix).

• A simple right to left typesetting mechanism.

• Access to some states, a limited set of last nodes, etc.

• There are some additional tracing features.

• One can reprocess tokens and produce detokenized lists.

In LuaTEX we also looked at what Omega could bring:

• More that 256 registers.

• Multi-directional typesetting.

• Local boxes (in lines).

• Input processing.

If we combine these lists, we see font expansion and protrusion coming back in LuaMetaTEX. However,

already in LuaTEX expansion and protrusion were dealt with a bit differently and even more so in Lua-

MetaTEX, while protection in LuaMetaTEX is implemented differently. We also kept injection of vertical

12

material but in LuaMetaTEX that done quite differently. Most if 𝜀-TEX is there but not right to left

typesetting and the register approach. Of course we kept the additional conditionals but implemented

them a bit different.

In LuaTEX we took the Omega enlarged register approach and directional typesetting although that

has been stripped down and redone to right to left only. Local boxes are there but redone in LuaMeta-

TEX. There was no need for input processing because we have Lua. In the end there is little that we

kept from the other engines which also means that one cannot take the manuals that come with these

engines and simply assume that it is there.

We should of course mention MetaPost. That graphical subsystem was integrated in LuaTEX and on the

one hand stripped down (less backend) and extended (remove bottlenecks and add some functionality)

in LuaMetaTEX. With respect to Lua we moved to more recent versions and dropped support for just

in time compilation.

There is of course a lot in LuaTEX that can be found also in LuaMetaTEX but the later one goes way

beyond its predecessor. It actually provides what we always wanted (as ConTEXt developers) but never

showed up. And this brings us to a next topic.

1.4 Reflections

The previous section, derived from the LuaTEX manual, might suggest that LuaTEX and therefore Lua-

MetaTEX provides most of what pdfTEX, 𝜀-TEX, XƎTEX and Omega provide but here I must disappoint

the reader. So in addition to or variation on the above here are some reflections.

We were quite involved in the early days of pdfTEX development, so some features of that program

we kept in LuaTEX, like expansion, protrusion, basic pdf features like annotations, destinations, out

lines and literals, transformations, image inclusion, plus a few handy extensions like \vadjust pre,

\insertht and \quitvmode that were introduced for ConTEXt, as well as positioning that when brought

into pdfTEX made that we no longer needed the indirect method using specials that we used (first with

a post processing script filtering specials and providing positional information, later that became a

the dvipos program). Experimental features (at that time introduced for ConTEXt) like snapping lines

could make sense but were easier to handle in Lua so even those were dropped. We never used the

features that were introduced for other macro packages, like color stacks and (un)escaping because

we already did that otherwise. We also didn't want to burden the evolving LuaTEX engine with the

other kerning features because they lacked control anyway.

As we started in 2005 (with a first release in 2006) the pdfTEX of that time is of course not the same

as of today. I'm not sure what the last version is that ConTEXt MkII is targeting at because the version

numbering changed a bit (at some point versions like 14e became 140.XX, so it might be around140.17

or so). It might even be that recent versions break MkII without us noticing. For LuaTEX we basically

only took what we needed for ConTEXt at that time and assumed that Lua could fill in the gaps. Because

ConTEXt didn't really use much of the LuaTEX backend in the end what we kept from pdfTEX in Lua-

MetaTEX was a follow up on expansion and protrusion, for which that engine set the standard. If it

wasn't for pdfTEX the TEX community would not be where it was now.

For as much as they make sense 𝜀-TEX extensions are mostly there but that project was basically

stopped after the first major release. In fact because pdfTEX has these extensions, we never implicitly

had to include 𝜀-TEX. When we started with LuaTEX we actually kept in mind the ideas we had at that

time because before we started with LuaTEX we already had plans for extensions (flagged eetex) but

those never came to fruit, just as we had some ideas about extending dvi which were superseded by

13

the arrival of pdf. The token prepend and append primitives actually were examples of that. The 𝜀-TEX

project demonstrated that extending TEX was an option.

Then there is XƎTEX. It is supported by MkII but only the font mechanism was extended to handle

OpenType fonts. For a while LuaTEX has some compatible math character definition primitives but

none of its features. We can assume that its internals are quite different when it comes to fonts

from LuaTEX because LuaTEX basically provides support for traditional fonts and delegates everything

OpenType to Lua. In LuaTEX we used font loader code from FontForge and some backend code from

dvipdfmx, although ConTEXt eventually did all loading in Lua.But anyway this program demonstrated

that a Unicode engine supporting publicly available (fancy) fonts was possible by adapting TEX so

XƎTEX introduced TEXies to the at that point still evolving world of OpenType.

In Omega there were input translation mechanisms that some ConTEXt users used but that I never

looked into myself. These are of course not present in LuaTEX because we can use Lua for input

processing. In the end a bit of the directionality is all that we kept, most noticeably the initial parnode

and dirnode but we made them first class nodes instead of whatsits and in LuaMetaTEX the first one

serves different purposes. It got us started with directions.

Over the last decades other engines showed up, most noticeably those for e.g. Japanese but I never

looked into these. I'm not sure if LuaTEX can do the same with help from Lua, but LuaMetaTEX has

some more features so maybe it can. These engines serve a specific (language and script audience)

but if Japanese ConTEXt user need something more than we provide they can ask.

In the end the extensions in LuaMetaTEX come from our own demands combined with trying to be

complete but of course I might have missed something. It also means that flaws in the design are

just mine (or ours in the case of LuaTEX). Of course quite some are common sense additions, often

based what we need and what makes macro programming easier, but if users depend on some feature

present in the other engines that cannot be handled by Lua, they might ask for something similar

but then we need details and examples and not some reference to a manual or macros that we are

unaware of, have never seen, never used or haven't catched up with.

Of course LuaMetaTEX has plenty of what LuaTEX has and the core of LuaTEX is pretty much original

TEX. However, in LuaMetaTEX nearly all mechanism have been extended, optimized, and in the process

made a bit more C-ish. The original documentation describes what happens, the principles behind

TEX, so to say. More details will be added but can also found in numerous documents in the ConTEXt

distribution, articles and presentations. In the end we owe most to Don Knuth, who gave is the (very

original) original that we can build upon.

1.5 Usage

Why is it that there has been little fundamental development around TEX engines? One of the reasons

is that macro packages have to be stable. New features can be added but if they are only available

in one engine (and there are a few more around now, like XƎTEX and the cjk specific ones) a macro

package has to provide ways around them when they are not available. Risking some criticism I dare

to say that in order to use LuaTEX to its full potential, macro package has to be set up such that this is

possible and ConTEXt does just that. When we talk backends it's relatively easy, and when we talk fonts

it's doable. But if you are not willing to adapt the core of your code dramatically (and conceptually)

all you get from LuaTEX is a built-in scripting language and some occasional messing around with

node lists. In ConTEXt we could transition rather well because the user interfaces permitted to do so

without users noticing. Of course there were changes, for instance because encodings matter less,

14

which is also true for e.g. XƎTEX, and font technologies changed. But for macro packages other than

ConTEXt just the availability of Lua might be enough reasons to use that engine. That also means that

documentation of the more intricate features is less important: one can just learn by example and

ConTEXt is that example.

With LuaMetaTEX we go further because here one really has to make some fundamental choices. Again

this could be done within the existing user interfaces, but here we are not only talking of fundamen

tal improvements, like rendering math or breaking paragraphs into lines, but also of more flexible

handling of alignments, inserts, adjusts, marks, par and page building, etc. Basically all mechanism

got extended and opened up. In order to profit from this you have to be able to throw away existing

solution and use these extensions to come up with better ones. If one can put sentiments aside, this

also takes quite some time.

A very important aspect (at least for me) is that I want the macro code to look nice and in that respect

stick to the TEX syntax as much as possible. That means that we have more programming related

primitives, enhanced macro argument parsing, more (flexible) conditionals, additional registers, extra

expansion related features and so on. Instead of some intermediate layer (like the helpers in ConTEXt)

we can stick closer to the language itself. Of course this is not something that most users will notice.

What users might notice, is that on the average ConTEXt with LuaMetaTEX performs better than with

LuaTEX or even LuaMetaTEX. Even with more performance critical components delegated to Lua (like

the backend pdf generation) we gain and often can compete performance wise well with the faster

eight bit pdfTEX engine.

The fact that one has to make (and cannot make) drastic choices has a consequence for documentation.

Most of what is new and interesting is discussed in articles and low level manuals. However, it is often

discussed in the perspective of ConTEXt. Although we do discuss and show generic solutions it makes

little sense to go into details there simply because in the end only ConTEXt will use them as intended.

It's just a waste of time to implement variants that are more generic because they will never be used

elsewhere, especially in situations where the solutions are considered ‘standard’ and will not change.

In ConTEXt we always followed the principle that if we can do better, we will do better, and interfaces

are such that this can be done.

Of course that brings up the question “How do you know that these are the best solutions” and the

answer is that we don't. However, we're not talking of quick and dirty solutions. For instance it

took years to enhance math support: experiments, discussion, reconsideration, documenting, writing

articles, looking at usage, fonts, etc. A wider discussion would not have brought better solutions, if

at all. If that were the case, there would already have been successors. The same is true for most

extensions: there was little need for them outside the ConTEXt community. So in the end that's what

those interested should look at: how is LuaMetaTEX used in ConTEXt. It is the combined development

together with acceptance by users that makes this possible,

15

16

17

2 principles

2.1 Introduction

This is a bit odd manual but needed anyway. In the process of adding features to LuaMetaTEX and

adapting ConTEXt accordingly some decisions were made. On the one hand generic flexibility is a

criterion used when the extending engine, on the other hand practical usability in ConTEXt is used

to decide where to draw a line or make some choices. It makes no sense to complicate the already

complex engine even more, or cripple ConTEXt when cleaner (low level) solutions are possible.

Here I will collect some of the considerations and mention the choices made. These are mostly mine

but some result from discussions and experiments. This overview is not complete, new primitives are

discussed elsewhere and the ConTEXt low level manuals explain how to use these. Consider this to be

a teaser.

This summary is work in progress.

2.2 Text fonts

Plenty has been written about fonts in TEX, so here I will only mention a few aspects. Traditionally

the TEX engines works with copies of fonts at given sizes. For large fonts that is kind of inefficient.

This is why in LuaMetaTEX we can scale a font on-the-fly using \glyphscale, \glyphxscale and \gly

physcale. This feature is also used to implement a more efficient (although not 100% metric compat

ible) compact font mode. It works okay in text as well as math although it comes at a price: many

more calculations are needed at the engine end.

One way to get an expanded, squeezed, emboldened or slanted font in ConTEXt is to use the effects

mechanism. It is quite flexible but again comes at a price because the backend has to do more work

which is measurable, especially because effects can apply to the font or individual glyphs. However,

the advantages out-weight the disadvantages. At the cost of yet a bit more performance a more native

variant is also available using \glyphslant and \glyphweight.

a a a a a a
x x x x x x
p p p p p p

18

g g g g g g
- - - - - -
Extending, as seen in the second renderings, scales the shapes horizontally, while squeezing, in the

third renderings, does it in the vertical direction. In both cases the dimensions have to be adapted.

This is not the case when we slant. The last two samples in a row have an increased weight, and these

are the more tricky cases because here one can argue how to scale and reposition a shape. When a

shape is above the baseline we increase the height, and when it goes below we increase the depth.

The engine is capable to increase the width, height and depth and shift the shape a little. It only makes

sense to adapt the height and depth when they are non-zero. It will never be perfect, but this feature

is not perfect anyway.

The way fonts are set up in a TEX macro package often originates in the past, if only because it came

with fonts. The Computer Modern fonts are among the few that have multiple design sizes. However,

the collection is pretty much based on a ten point design. For math there are seven and five point

variants for the script sizes, for footnotes an eight point makes sense and section heads can use the

larger twelve point plus the few larger sizes. Setting up a twelve point body font environment, as we

have in ConTEXt, is quite doable with the fonts but for an eleven point body font more compromised

have to be made.

One can wonder why in ConTEXt the ten point math setup of 10/7/5 became 12/9/7 instead if 12/8.4/6

and the reason is just that when there were still bitmap fonts one didn't want too many (intermediate)

sizes. Anyway, we're sort of stuck with this default setup now, but nothing prevents users to redefine

a body font environment.

Another speciality of TEX (fonts) is that they have italic correction, something that lacks in OpenType

fonts (apart from math btu there it serves a different purpose). We can however emulate it, and in

ConTEXt that is an option. Given that we have to make choices it is clear that the engine can only be

supportive here, especially when we use the \glyphslant method.

A curious case is the following: in Computer Modern we find italic correction in the upright fonts, for

instance between an ‘f’ and ‘h’. Dealing with this automatically is impossible because italic correction

is not to be applied between glyph runs of the same font.

2.3 Math fonts

Support for math in an Unicode aware engine is also driven by the repertoire of characters and their

organization in Unicode, as well as by OpenType math as cooked up by Microsoft with a bit of input

from TEX folk.

The engine is agnostic when it comes to Unicode: there are no character codes interpreted in special

ways. There are math alphabets but these are not special: in a traditional eight bit engine we have

families to deal with them, in a Unicode aware engine there are several solutions. The most important

character property that has some consequence is the math class but for dealing with that we're on our

19

own anyway. Everything Unicode related is up to ConTEXt to deal with, and it is the macro package that

drives the engine, using the constructs that are available, like atoms with specific classes, fractions,

accents, delimiters, fences, radicals, operators etc.

When it comes to fonts it is more complex. The OpenType math standard is driven by the fact that

MS Word provides a math editor and therefore needs a font. That font is Cambria and it is (at the

time of writing this) the only font that comes from the origin. It has not been extended, nor fixed so

basically what is in there kind of has become the standard. The other OpenType math fonts are a

curious mix of old and new technology and again not much has happened there.

Now, when it comes to choices here, a few can be made based on conclusions drawn during decades

of dealing with these fonts and the assumed technology.

• There has be no real developments so we can just assume that what we got is what we will have

forever. Cambria is and remains the standard, quite some fonts shipped with TEX have issues that

will stay, and new fonts, especially when developed outside TEX's scope likely also have issues,

because, after all, what is used for testing them?

• Only a few renders support the new technology. It is unlikely that MS Word will change and

basically XƎTEX and LuaTEX are also frozen. On the web old school fonts are used, at least till 2023.

Plenty of time went by since the beginning of the century and nothing improved.

• The most important font properties that play a role are parameters, italic correction, variants and

extensibles, anchors for accents, stylistic alternates, script alternates and staircase kerns. There

are some rules of how to apply italic correction, but many fonts make them unapplicable. The same

is true for anchors and kerns. There are only top kerns.

• Italic correction is a flawed concept and we decided to just ignore them: when specified we add it

to the width and discard them afterwards. The value is translated into a bottom right corner kern.

For large operators we translate them to top and bottom accents.

• Top accents can be flawed so in many cases we can just ignore them. They only make sense for

italic shapes anyway.

• Staircase kerns are a nice idea but make no sense. First of all they concern two characters, nucleus

and script, but we can also have accents, fraction, fenced stuff and other constructs in scripts

so instead we prefer a system of corner kerns. Also, we noticed that staircase kerns are often

implemented partially and even then not that well, probably because there was no way to test

them. Even worse is that when they are inconsistent formulas can look rather inconsistent. So,

we translate staircase kerns into corner kerns and add and/ overload them by corner kerns. These

kerns can then be applied for any reasonable combination.

• Extensible are mixed breed. Rules should be extensibles but aren't. Some snippets have Unicode

points so they can be used to construct missing glyphs but the repertoire is inconsistent. Because

we don't expect Unicode to adapt we therefore provide alternative solutions.

• The repertoire of math parameters is on the one hand incomplete and on the other hand less de

pendent on the font and more on intended usage. So, apart from a few, we end up with adapting

to our needs. It is part of the more granular control that we wish.

• Gaps in alphabet vectors are a pain but the engine is agnostic of them. For some reason the TEX

community let itself down on this so it has to cope at the macro level. It is by now an old problem.

20

So, to summarize the font part, an alternative standard could discard the concept of italic correction

and go for proper widths, a simplified corner kern model, provide top and bottom accents, prescribe

a repertoire of extensibles and snippets and at least fill the gaps in alphabets instead of relying on

shared glyphs. It won't happen any time soon, but still we do follow that approach and have the engine

ready for it. Because we adapt the fonts runtime to this, we can eventually remove all the code related

to italic correction and staircase kerns, simply because it is not used.

2.4 Rules

The original TEX engine actually has only two graphical elements: glyphs and rules. These have a

width, height and depth and when decisions are made, for instance when deciding where to break a

line, or when boxes are constructed these dimensions have to be known. Actually, TEX doesn't really

care what these elements are, it's the dimensions that matter most. Graphics for instance can be

abstract objects, traditionally injected via so called specials wrapped into a box of given dimensions.

The pdfTEX and later engines added a native representation but basically it acted like a box (or rule

if you like). It's the backend that turns glyphs, rules and these special boxes into something that one

can see and print.

Rules have the three dimensions we mentioned. There are horizontal and vertical rules, but only at

the primives level. Once you specified an \hrule or \vrule it became a generic rule with the main

difference being the default dimensions. A rule initializes with so called running dimensions, think of

signals that the final dimension comes from the encapsulating box.

Here we have a vertical rule: with width 3cm, height 5mm and depth 2mm. If we

don't specify a width we get the default thickness of 0.4pt, as in and when we prefix it with \leaders

and let it follow by a \hfill we get this: .

When we put on an \hrule on an empty line the running width kicks in:

which is a feature that one can use in for instance tables. However the fact that we only talk rectangles

means that there is only a limited repertoire of applications. In order to frame some text you need four

(disconnected) rules, For a background fill you can use a single rule. There is also an application for

rules that have height and depth but no width: these so called struts that can enforce vertical spacing

and dimensions.

So what does LuaMetaTEX bring to the rules? Because the engine itself is only interested in dimensions

it's more about passing information to the backend. For this we have a few more fields in the rule

nodes that can be set from Lua. This permits for instance to hook in MetaPost graphics that adapt like

rules. There are a few more primitives, one for making struts: they can take their dimensions from

a character. In math mode they're invisible and don't influence inter-atom spacing but still take their

role in determining dimensions. Then there are the virtual rules that have dimensions (to be used in

the backend) but don't contribute in the frontend. The \novrule and \nohrule do contribute but are

ignores in the backend so they are cheap alternatives for empty boxes with specific dimensions set.

Some rule subtypes are set by the engine, for instance the math engine marks over, under, fraction

and radical rules. In Lua one can mark outline, user, box and image rules so that node list processors

can take their properties into accounT when needed, the frontend is only interested in the dimensions

and sees them as normal rules.

21

Here we have the following call:

\hrule height \strutht depth \strutdp on 0.04tw off 0.01tw \relax

The on and off are among the new keys and they do nothing at the TEX end. It is the backend that will

create the dash pattern. You can achieve the same effect with leaders but while here we have a single

rule, for a leader the engine will make as many rules as are needed for this dash pattern. This is a good

example of adding little to the fontend in order to make the backend do the job. In a similar fashion

outlines are delegated. Other tricks involve offsets and there is room for some additional features but

for now they are on the “Only when I need it.” list, after all we need something to wish for.

2.5 Paragraphs

A lot can be said about paragraphs but we keep it short here. Much more can be found in for instance

the articles that we wrote on the subject. When you enter (or generate) text it will be added to a list

(of nodes). That list can become a horizontal box, vertical box, or end up in the main vertical list.

When we go vertical the list will be split in lines and the process is called line breaking. Between

the lines we can get penalties that tell the machinery how a paragraph of lines can be split over page

boundaries.

When breaking the engine can use up to three passes: a first pass that uses \pretolerance as crite

rion, a tolerant pass with hyphenation enabled using \tolerance and an emergency pass that kicks

in \emergencystretch when set. In LuaMetaTEX we can have additional passes that come online

depending on criteria and/or thresholds; search for \parpasses to learn more about this.

The par builder in LuaMetaTEX has more features that users can control and also normalized the

resulting lines so that later on from the Lua end they can be manipulated easier. There are also ways

to let embedded inserts, marks and (v)adjusts migrate to the outer level. All this takes more runtime

than in original TEX but in practice one won't really notice this because we gain in other places.

Most or what is new is available as features in ConTEXt, most noticeably in extra keys to \setupalign.

It is also good to know that we have ways to hook specific features in what is called ‘wrapping up para

graph’. Also, contrary to traditional TEX we configured ConTEXt to use the mechanism that freezes

paragraph specific parameters with the current paragraph so that there is no (or at least less) inter

ference with grouping.

2.6 Pages

todo

2.7 Alignments

todo

2.8 Adjusts

You can put stuff before and after lines using \vadjust and at the edges using \localleftbox and

alike. Both are seen in the par builder, where the boxes contribute to the dimensions and the adjusted

22

material is inserted when the paragraph is wrapped up and contributed to the current list. In Lua-

MetaTEX these mechanism have been extended so that we can actually uses them in am meaningful

way.

2.9 Marks

These signals in the text are used for managing (for instance) running headers and a few extra features

have been added, like migration to an outer level and resets. In MkIV we handled marks in Lua but

with LuaMetaTEX it makes sense to use the engine.

2.10 Inserts

Inserts are signals that end up in lines and migrate to the outer level, that is the main vertical list. An

example of usage is footnotes. In the main vertical list they are bound to the line they relate to so that

the page builder can make sure that they end up on the same page. In LuaMetaTEX they can bubble

up from deeply nested boxes. Contrary to the traditional binding of an insert class to various registers

in LuaMetaTEX they can be managed independently which means that they have more properties.

2.11 Boxes

todo

2.12 Language

todo

2.13 Math

Plenty has been written about the multi-year project of opening up and extending the math engine.

Opening up and providing full control is part of supporting and experimenting with OpenType math

fonts but we already discussed this in a previous section. Another aspect of opening up is making

hard coded properties configureable, even if that feature will hardly be used, simply because the

built-in defaults make sense. Then there is all kind of control over rendering that can be controlled by

keywords to the math specific elements like atoms, fractions, operators, accents, radicals and fences.

Because traditional fonts are phased out in favour of (often flawed) OpenType variants much of what

is new is also controlled by fonts, be it that we have our own extensions. In ConTEXt mathfonts are

tweaked to fit our model. Inter atom spacing, penalties, discretionaries, continuation scripts (think

multiscripts, pre and post), additional classes, dictionaries, linebreaks, carrying properties over math

groups, are all features that make it possible to renderer more precise math without the need for

manual intervention. It often looks, for instance from posts on support platforms, that the more or

less standard math has to come with tweaking your source; it has become an accepted practice. In

ConTEXt we always had structure and we added some more of that and because the math engine

carries more information around we could eventually simplify some code otherwise done in Lua.

By looking at what ConTEXt actually needs, we could decide to strip down the math engine (old as well

as new features). We can also decide to eventually just assume wide fonts to be used and drop old font

23

support. After all, because one has to load the fonts with Lua, it's not hard to map traditional fonts to

(extended) OpenType alternatives, which is actually what we do anyway with for instance Antykwa.

2.14 Programming

todo

2.15 Protection

The idea behind TEX is that users define macros. However, when they do so in the perspective of a

macro package there is the danger that core functionality can be overwritten. Now, one can of course

make all primitives less accessible, for instance by some prefix. But that makes no real sense for

features that belong to the language. When users use CamelCase for their names they're unlikely to

run into issues, so while internal macros are actually prefixed, we don't do that with the primitives,

so you can write code that looks TEX.

Over time ConTEXt has been ridiculed by non users for prefixing with \do or \dodo but that's by folk

who love long (cryptic) names with many underscores and other inaccessible characters. The way

we protect users from accidental overloading is by using the LuaMetaTEX overload protection system.

Macros (and primitives) can be tagged in way so that the engine can issue warning or even error in

case of an undesirable definition.

There is of course some overhead involved in for instance every \def or \let but it is little and the

engine is fast anyway.

2.16 Optimization

There are many places where the engine could be optimized without getting obscure. One reason

is that the memory layout is somewhat different because we snap to 8, 16, 32 or 64 bits and the

engine being a Unicode capable one already has more memory available in some places than what

was needed. Also, knowing usage patterns, it was possible to identify possible bottlenecks and widen

the necks.

Furthermore, it was possible to improve input handling, logging, save stack usage, keyword parsing,

expressions, and much more. On the other hand nodes became larger so there we loose some. The

LuaMetaTEX engine is faster than LuaTEX, although some of the gain is lost on the fact that one needs

to use Lua backend.

2.17 Input

The input can come from files, token lists, macros and Lua which means many places. When it comes

from Lua it can be tokens, nodes, string, and each has its special way of handling and the engine has

to keep track of this when it accumulated the input that pops up after a Lua call. This is done as

efficient as possible without sacrificing performance. The fact that we have utf should not have too

much impact.

2.18 Nesting

When you enter a group a stack boundary is set and when some value changes the original value is

pushed on the stack. After leaving the group values are restored. The engine tries to avoid redundant

actions which improves memory usage and runtime.

24

Every macro expansion, opened file, expanded token list, etc. pushes the input stack and that comes

with overhead. Again we have tried to minimize the impact and thereby gain a bit over LuaTEX.

Other stacks like those used by math, alignment, conditionals, expressions etc. have also been im

proved some. On the other hand, by unweaving some shared code there can be a price to pay, but as

with everything usage patterns indicate no penalty here.

2.19 Conditions

We already had more conditionals in LuaTEX but again the repertoire of conditionals has been ex

tended. This permits us to remove some middle-layer helpers and stay closer to the core language. It

also helps to improve performance.

Another important addition has been \orelse than permits us to write test in a way similar to what

other language provide with for instance elseif or else if.

2.20 Macros

Expanding macros happens a lot especially in a more complex macro package. This means that adding

features in that area can have a large impact on runtime. Nevertheless the argument parser now

provides a few handfuls of variants in picking up arguments with out noticeable degradation, especially

because these new features can gain performance.

At the same time there have been some optimizations in storing macro related states, checking and

accessing parameters. There are additional (internal) classes of macros that make for a more natural

implementation; for instance \protected macros are now first class commands.

2.21 Keywords

Some primitives accept one or more keywords and LuaMetaTEX adds some more. In order to deal

with this efficiently the keyword scanner has been optimized, where even the context was taken into

account. As a result the scanner was quite a bit faster. This kind of optimization was a graduate

process the eventually ended up in what we have now. In traditional TEX (and also LuaTEX) the order

of keywords is sometimes mixed and sometimes prescribed. In most cases only one occurrence is

permitted. So, for instance, this is valid in LuaTEX:

\hbox attr 123 456 attr 123 456 spread 10cm { }

\hrule width 10cm depth 3mm

\hskip 3pt plus 2pt minus 1pt

The attr comes before the spread, rules can have multiple mixed dimension specifiers, and in glue

the optional minus part always comes last. The last two commands are famous for look ahead side

effects which is why macro packages will end them with something not keyword, like \relax, when

needed.

In LuaMetaTEX the following is okay. Watch the few more keywords in box and rule specifications.

\hbox reverse to 10cm attr 123 456 orientation 4 xoffset 10pt spread 10cm { }

\hrule xoffset 10pt width 10cm depth 3mm

\hskip 3pt minus 1pt plus 2pt

25

Here the order is not prescribed and, as demonstrated with the box specifier, for instance dimensions

(specified by to or spread can be overloaded by later settings. In case you wonder if that breaks

compatibility: in some way it does but bad or sloppy keyword usage breaks a run anyway. For instance

minuscule results in minus with no dimension being seen. So, in the end the user should not noticed

it and when a user does, the macro package already had an issue that had to be fixed.

2.22 Directions

The directional model in LuaMetaTEX is a simplified version the the model used in LuaTEX. In fact, not

much is happening at all: we only register a change in direction. The approach is that we try to make

node lists balanced but also try to avoid some side effects. What happens is quite intuitive if we forget

about spaces (turned into glue) but even there what happens makes sense if you look at it in detail.

However that logic makes in-group switching kind of useless when no properly nested grouping is

used: switching from right to left several times nested, results in spacing ending up after each other

due to nested mirroring. Of course a sane macro package will manage this for the user but here we

are discussing the low level injection of directional information.

This is what happens:

\textdirection 1 nur {\textdirection 0 run \textdirection 1 NUR} nur

This becomes stepwise:

injected: [push 1]nur {[push 0]run [push 1]NUR} nur

balanced: [push 1]nur {[push 0]run [pop 0][push 1]NUR[pop 1]} nur[pop 0]

result : run {RUNrun } run

And this:

\textdirection 1 nur {nur \textdirection 0 run \textdirection 1 NUR} nur

becomes:

injected: [+TRT]nur {nur [+TLT]run [+TRT]NUR} nur

balanced: [+TRT]nur {nur [+TLT]run [-TLT][+TRT]NUR[-TRT]} nur[-TRT]

result : run {run RUNrun } run

Now, in the following examples watch where we put the braces:

\textdirection 1 nur {{\textdirection 0 run} {\textdirection 1 NUR}} nur

This becomes:

nur run NUR nur

Compare this to:

\textdirection 1 nur {{\textdirection 0 run }{\textdirection 1 NUR}} nur

Which renders as:

nur run NUR nur

So how do we deal with the next?

26

\def\ltr{\textdirection 0\relax}

\def\rtl{\textdirection 1\relax}

run {\rtl nur {\ltr run \rtl NUR \ltr run \rtl NUR} nur}

run {\ltr run {\rtl nur \ltr RUN \rtl nur \ltr RUN} run}

It gets typeset as:

run nur run NUR run NUR nur

run run nur RUN nur RUN run

We could define the two helpers to look back, pick up a skip, remove it and inject it after the dir node.

But that way we loose the subtype information that for some applications can be handy to be kept

as-is. This is why we now have a variant of \textdirection which injects the balanced node before

the skip. Instead of the previous definition we can use:

\def\ltr{\linedirection 0\relax}

\def\rtl{\linedirection 1\relax}

and this time:

run {\rtl nur {\ltr run \rtl NUR \ltr run \rtl NUR} nur}

run {\ltr run {\rtl nur \ltr RUN \rtl nur \ltr RUN} run}

comes out as a properly spaced:

run nur run NUR run NUR nur

run run nur RUN nur RUN run

Anything more complex that this, like combination of skips and penalties, or kerns, should be handled

in the input or macro package because there is no way we can predict the expected behavior. In fact,

the \linedirection is just a convenience extra which could also have been implemented using node

list parsing.

Directions are complicated by the fact that they often need to work over groups so a separate grouping

related stack is used. A side effect is that there can be paragraphs with only a local par node followed

by direction synchronization nodes. Paragraphs like that are seen as empty paragraphs and there

fore ignored. Because \noindent doesn't inject anything but a \indent injects an box, paragraphs

with only an indent and directions are handles and paragraphs with content. When indentation is

normalized a paragraph with an indentation skip is seen as content.

2.23 Hooks

todo

2.24 Expressions

todo

2.25 Units

The familiar TEX units like pt and cm are supported but since the 2021 ConTEXt meeting we also

support the Knuthian Potrzebie, cf. en.wikipedia.org/wiki/Potrzebie. The two character acronym

is dk. One dk is 6.43985pt. This unit is particularly suited for offsets in framed examples.

27

In 2023 we added the Edith (es) and Tove (ts) as metric replacements for the inch (in). As with the

dk more background information can be found in documents that come with ConTEXt and user group

journals. The eu unit starts out as one es but can be scaled with \eufactor.

\localcontrolledloop -5 55 5 {

\eufactor=\currentloopiterator

\dontleavehmode\strut

\vrule height .1es depth .25ts width 1dk\relax\quad

\vrule height .1es depth .25ts width 1eu\relax\quad

\the\currentloopiterator

\par

}

This example code shows all four new units. Watch how \eufactor is clipped to a value in the range

1 − 50. The default factor of 10 makes the European Unit equivalent to ten Toves or one Edith.

-5

0

5

10

15

20

25

30

35

40

45

50

55

In addition to these there can be user units but because these are macro package dependent they are

not discussed here.

2.26 Local control

There are a few new primitives that permit what we call local controlled expansion. This permits

for instance expanding non expandable macros and even typesetting inside an expansion context like

\edef. Regular TEXhas a main loop to where it returns after every primitive action, but local control

let the engine go into a nested main loop.

2.27 Overload protection

Protection is achieved via prefixes. Depending on the value of the \overloadmode variable warnings or

errors will be triggered. Examples of usage can be found in some documents that come with ConTEXt,

so here we just stick to the basics.

\mutable \def\foo{...}

\immutable\def\foo{...}

\permanent\def\foo{...}

\frozen \def\foo{...}

28

\aliased \def\foo{...}

A \mutable macro can always be changed contrary to an \immutable one. For instance a macro that

acts as a variable is normally \mutable, while a constant can best be immutable. It makes sense to

define a public core macro as \permanent. Primitives start out a \permanent ones but with a primitive

property instead.

\let\relaxone \relax 1: \meaningfull\relaxone

\aliased \let\relaxtwo \relax 2: \meaningfull\relaxtwo

\permanent\let\relaxthree\relax 3: \meaningfull\relaxthree

The \meaningfull primitive is like \meaning but report the properties too. The \meaningless com

panion reports the body of a macro. Anyway, this typesets:

1: \relax

2: primitive \relax

3: permanent \relax

So, the \aliased prefix copies the properties. Keep in mind that a macro package can redefine prim

itives, but \relax is an unlikely candidate.

There is an extra prefix \noaligned that flags a macro as being valid for \noalign compatible usage

(which means that the body must contain that one. The idea is that we then can do this:

\permanent\protected\noaligned\def\foo{\noalign{...}} % \foo is unexpandable

that is: we can have protected macros that don't trigger an error in the parser where there is a look

ahead for \noalign which is why normally protection doesn't work well. So: we have macro flagged

as permanent (overload protection), being protected (that is, not expandable by default) and a valid

equivalent of the noalign primitive. Of course we can also apply the \global and \tolerant prefixes

here. The complete repertoire of extra prefixes is:

frozen a macro that has to be redefined in a managed way

permanent a macro that had better not be redefined

primitive a primitive that normally will not be adapted

immutable a macro or quantity that cannot be changed, it is a constant

mutable a macro that can be changed no matter how well protected it is

instance a macro marked as (for instance) be generated by an interface

noaligned the macro becomes acceptable as \noalign alias

overloaded when permitted the flags will be adapted

enforced all is permitted (but only in zero mode or ini mode)

aliased the macro gets the same flags as the original

untraced the macro gets a different treatment in tracing

The not yet discussed \instance is just a flag with no special meaning which can be used as classifier.

The \frozen also protects against overload which brings amount of blockers to four.

To what extent the engine will complain when a property is changed in a way that violates the flags

depends on the parameter \overloadmode. When this parameter is set to zero no checking takes

place. More interesting are values larger than zero. If that is the case, when a control sequence is

flagged as mutable, it is always permitted to change. When it is set to immutable one can never change

29

it. The other flags determine the kind of checking done. Currently the following overload values are

used:

immutable permanent primitive frozen instance

1 warning ⋆ ⋆ ⋆
2 error ⋆ ⋆ ⋆
3 warning ⋆ ⋆ ⋆ ⋆
4 error ⋆ ⋆ ⋆ ⋆
5 warning ⋆ ⋆ ⋆ ⋆ ⋆
6 error ⋆ ⋆ ⋆ ⋆ ⋆

The even values (except zero) will abort the run. A value of 255 will freeze this parameter. At level

five and above the \instance flag is also checked but no drastic action takes place. We use this to

signal to the user that a specific instance is redefined (of course the definition macros can check for

that too).

The \overloaded prefix can be used to overload a frozen macro. The \enforced is more powerful and

forces an overload but that prefix is only effective in ini mode or when it's embedded in the body of a

macro or token list at ini time unless of course at runtime the mode is zero.

So far for a short explanation. More details can be found in the ConTEXt documentation where we

can discuss it in a more relevant perspective. It must be noted that this feature only makes sense a

controlled situation, that is: user modules or macros of unpredictable origin will probably suffer from

warnings and errors when de mode is set to non zero. In ConTEXt we're okay unless of course users

redefine instances but there a warning or error is kind of welcome.

There is an extra prefix \untraced that will suppress the meaning when tracing so that the macro

looks more like a primitive. It is still somewhat experimental so what gets displayed might change.

The \letfrozen, \unletfrozen, \letprotected and \unletprotected primitives do as their names

advertise. Of course the \overloadmode must be set so that it is permitted.

2.28 Tracing

There is are more tracing options, like in math, alignments and inserts, and tracing can be more

detailed. This is partly a aide effect of the need for exploring new features. Tracing is not always

compatible, if only because there are more possibilities, for instance in the way macros are defined

and can handle arguments.

30

31

32

3 Constructions

3.1 Introduction

This is more a discussion of the way some constructs in for instance math work. It will never be

exhausting and mostly is for our own usage. We don't discuss all the options bit many are interfaced

in higher level macros in ConTEXt. This chapter will gradually grow, depending on time and mood.

3.2 Boxes

Boxes are very important in TEX. We have horizontal boxes and vertical boxes. When you look at a

page of text, the page itself is a vertical box, and among other things it packs lines that are themselves

horizontal boxes. The lines that make a paragraph are the result of breaking a long horizontal box in

smaller pieces.

This is a vertical box. It has a few linesL__

of text that started out as one long lineL__

but has been broken in pieces. DoingL__

this as good as possible is one of TEH__
X'sL__

virtues.L__

There is a low level manual on boxes so here we can limit the discussion to basics. A box is in TEX

speak a node. In traditional TEX it has a width, height, depth and shift.

Here we see a box and the gray line is called the baseline, the height goes up and the depth goes down.

Normally the height and depth are determined by what goes in the box but they can be changed as

we like.

\setbox\scratchboxone\ruledhpack{SHIFT 1}

\setbox\scratchboxtwo\ruledhpack{SHIFT 2}

\boxshift\scratchboxtwo 1ex \dontleavehmode \box\scratchboxone\box\scratchboxtwo

\setbox\scratchboxone\ruledvpack{SHIFT 3}

\setbox\scratchboxtwo\ruledvpack{SHIFT 4}

\boxshift\scratchboxtwo 1ex \box\scratchboxone\box\scratchboxtwo

In this example you'll notice that the shift depends on the box being horizontal or vertical. The primi

tives \raise, \lower, \moveleft and \moveright can be used to shift a box.

SHIFT 1
SHIFT 2

SHIFT 3

SHIFT 4

The reason why we have the shift property is that it is more efficient than wrapping a box in another box

and shifting with kerns. In that case we also have to go via a box register so that we can manipulate the

33

final dimensions. Another advantage is that the engine can use shifts to position for instance elements

in a math formula and even the par builder used shifts to deal with positioning the lines according to

shape and margin. In LuaMetaTEX the later is no longer the case.

Inside a box there can be mark (think running headers), insert (think footnotes) and adjust (think

injecting something before or after the current line) nodes. The par builder will move this from inside

the box to between the lines but when boxes are nested too deeply this won't happen and they get lost.

In LuaMetaTEX these objects do bubble up because we make them box properties. So, in addition to

the dimensions and shift a box also has migration fields.

In the low level manuals you can find examples of accessing various properties of boxes so here we

stick to a short description. The reason for mentioning them is that it gives you an idea of what goes

on in the engine.

field usage

width the (used) width

height the (used) height

depth the (used) depth

shift_amount the shift (right or down)

list pointer to the content

glue_order the calculated order of glue stretch of shrink

glue_sign the determined sign of glue stretch of shrink

glue_set the calculated multiplier for glue stretch or shrink

geometry a bit set registering manipulations

orientation positional manipulations

w_offset used in horizontal movement calculations

h_offset used in vertical movement calculations

d_offset used in vertical movement calculations

x_offset a horizontal shift independent of dimensions

y_offset a vertical shift independent of dimensions

axis the math axis

dir the direction the box goes to (l2r or r2l)

package_state a bitset indicating how the box came to be as it is

index a (system dependent) identifier

pre_migrated content bound to the box that eventually will be injected

post_migrated idem

pre_adjusted idem

post_adjusted idem

source_anchor an identifier bound to the box

target_anchor idem

anchor a bitset indicating where and how to anchor

except carried information about additional virtual depth

exdepth additional virtual depth taken into account in the page builder

We have the usual dimension but also extra ones that relate to \boxxoffset and \boxyoffset (these

are virtual) as well as \boxxmove and \boxymove (these influence dimensions). The \boxorientation

also gets registered. The state fields carry information that is used in various places, the pre and post

fields relate to the mentioned embedded content. Anchors are just there so that a macro package can

34

play with this and excepts refer to an additional dimensions that is looked at in the page builder, for

instance in order to prevent a page break at an unlucky spot. It all gives an indication of what we are

dealing with.

3.3 Math style variants

The LuaMetaTEX math engine is a follow up on the one in LuaTEX. That one gradually became more

configurable in order to deal with both traditional fonts and OpenType fonts. In LuaMetaTEX much

has been redone, opened up and extended. New mechanisms and constructs have been added. In

the process hard coded heuristics with regards to math styles inside constructions were made config

urable, a feature that is probably not used much, apart from experimenting. A side effect is that we

can show how the engine is set up, so we do that when applicable.

construct value preset name

\Umathoverlinevariant 0x11335577 cramped

\Umathunderlinevariant 0x01234567 normal

\Umathoverdelimitervariant 0x45456767 small

\Umathunderdelimitervariant 0x45456767 small

\Umathdelimiterovervariant 0x01234567 normal

\Umathdelimiterundervariant 0x01234567 normal

\Umathhextensiblevariant 0x01234567 normal

\Umathvextensiblevariant 0x01234567 normal

\Umathfractionvariant 0x11335577 cramped

\Umathradicalvariant 0x11335577 cramped

\Umathaccentvariant 0x11335577 cramped

\Umathdegreevariant 0x67676767 doublesuperscript

\Umathtopaccentvariant 0x11335577 cramped

\Umathbottomaccentvariant 0x11335577 cramped

\Umathoverlayaccentvariant 0x11335577 cramped

\Umathnumeratorvariant 0x23456767 numerator

\Umathdenominatorvariant 0x33557777 denominator

\Umathsuperscriptvariant 0x45456767 small

\Umathsubscriptvariant 0x55557777 subscript

\Umathprimevariant 0x45456767 small

\Umathstackvariant 0x23456767 numerator

3.4 Math scripts

The basic components in a math formula are characters, accents, fractions, radicals and fences. They

are represented in the to be processed node list as noads and eventually are converted in glyph, kern,

glue and list nodes. Each noad carries similar but also specific information about its purpose and

intended rendering. In LuaMetaTEX that is quite a bit more than in traditional TEX.

These noads are often called atoms. The center piece in a noad is called the nucleus. The fact that

these noads also can have scripts attached makes them more like molecules. Scripts can be attached

to the left and right, high or low. That makes fours of them: pre/post super/sub scripts. In LuaMeta-

TEX we also have a prime script, which comes on its own, above a post subscript or after the post

superscript, if given.

35

Here the raised rectangle represents the prime. The large center piece is the nucleus. Four scripts

are attached to the nucleus. The two smaller center pieces indicate follow up atoms. They make it

possible to have multiple pre- and postscripts. For single scripts we get combinations like these:

𝑋𝚌 𝚊
𝚍 𝚋 𝑋𝚍 𝚋 𝑋𝚌 𝚊

𝑋𝚌 𝚊
𝚍 𝚋

′ 𝑋′
𝚍 𝚋 𝑋𝚌 𝚊′

And for multiple (there can be more that two) we get this assembly:

𝙲
𝙳 𝑋𝚌 𝚊
𝚍 𝚋

𝙰
𝙱 𝙳 𝑋𝚍 𝚋𝙱

𝙲 𝑋𝚌 𝚊𝙰

𝙲
𝙳 𝑋𝚌 𝚊
𝚍 𝚋

′𝙰
𝙱 𝙳 𝑋′

𝚍 𝚋𝙱
𝙲 𝑋𝚌 𝚊′𝙰

It will be clear that there is quite a bit of code involved in dealing with this because these scripts are

not only to be anchored relative to the nucleus but also to each other. The dimensions of the scripts

determine for instance how close a combined super and subscript are positioned.

𝑋𝚙 𝑋𝚙
𝚙 𝑋𝚙

The rendering of scripts involves several parameters, of which some relate to font parameters. In

LuaMetaTEX we have a few more variables and we also overload font parameters, if only because only

a few make sense and it looks like font designers just copy values from the first available fonts so in

the end we can as well use our own preferred values.

The following parameters play a role in rendering the shown assembly, The traditional TEX engine

expects a math font to set quite some parameters for positioning the scripts but has no concept of

prescripts and neither has OpenType. This is why we have extra parameters (and for completeness

we also have them for the post scripts). One can wonder of font parameters make sense here because

in the end we can decide for a better visual result with different ones. After all, assembling scripts is

not really what fonts are about.

engine parameter target open type font tex font

subscriptshiftdrop post SubscriptBaselineDropMin subdrop

subscriptshiftdown post SubscriptShiftDown sub1

subscriptsuperscriptshiftdown post SubscriptShiftDown[WithSuperscript] sub2

36

subscriptsuperscriptvgap post SubSuperscriptGapMin 4 rulethickness

subscripttopmax post SubscriptTopMax 4/5 xheight

superscriptshiftdrop post SuperscriptBaselineDropMax supdrop

superscriptbottommin post SuperscriptBottomMin 1/4 xheight

superscriptshiftup post SuperscriptShiftUp[Cramped] sup1 sup2 sup3

superscriptsubscriptbottommax post SuperscriptBottomMaxWithSubscript 4/5 xheight

⋆ primeraise prime PrimeRaisePercent

⋆ primeraisecomposed prime PrimeRaiseComposedPercent

⋆ primeshiftup prime PrimeShiftUp[Cramped]

⋆ primeshiftdrop prime PrimeBaselineDropMax

⋆ primespaceafter prime PrimeSpaceAfter

spaceafterscript post SpaceAfterScript \scriptspace

⋆ spacebeforescript post SpaceBeforeScript

⋆ spacebetweenscript multi SpaceBetweenScript

⋆ extrasuperscriptshift pre

⋆ extrasuperprescriptshift pre

⋆ extrasubscriptshift pre

⋆ extrasubprescriptshift pre

⋆ extrasuperscriptspace post

⋆ extrasubscriptspace post

⋆ extrasuperprescriptspace pre

⋆ extrasubprescriptspace pre

The parameters marked by a ⋆ are LuaMetaTEX specific. Some have an associated font parameter but

that is not official OpenType. For a very long time we had only a few math fonts but even today most

of these fonts seem to use values that are similar to the ones TEX uses. In that respect one can as well

turn them into rendering specific ones. After all, changes are slim that a formula rendered by TEX

or e.g. MS Word are metric compatible and with the advanced spacing options in LuaMetaTEX we're

even further off. Also keep in mind that the TEX font parameters could be overloaded at the TEX end.

The spacing after a (combination of) postscript(s) is determined by ‘space after script’ and the spacing

before a (combination of) prescript(s) by ‘space before script’. If we have multi-scripts the ‘space

between script’ kicks in and the space after the script is subtracted from it. The given space between

is scaled with the \scriptspacebetweenfactor parameter.

The default style mapping that we use are the same as those (hard coded) in regular TEX and those

for prime scripts are the same as for superscripts.

subscriptvariant

current style mapping used style

display 0x55557777 crampedscript

crampeddisplay 0x55557777 crampedscript

text 0x55557777 crampedscript

crampedtext 0x55557777 crampedscript

script 0x55557777 crampedscriptscript

crampedscript 0x55557777 crampedscriptscript

scriptscript 0x55557777 crampedscriptscript

crampedscriptscript 0x55557777 crampedscriptscript

37

superscriptvariant

current style mapping used style

display 0x45456767 script

crampeddisplay 0x45456767 crampedscript

text 0x45456767 script

crampedtext 0x45456767 crampedscript

script 0x45456767 scriptscript

crampedscript 0x45456767 crampedscriptscript

scriptscript 0x45456767 scriptscript

crampedscriptscript 0x45456767 crampedscriptscript

primevariant

current style mapping used style

display 0x45456767 script

crampeddisplay 0x45456767 crampedscript

text 0x45456767 script

crampedtext 0x45456767 crampedscript

script 0x45456767 scriptscript

crampedscript 0x45456767 crampedscriptscript

scriptscript 0x45456767 scriptscript

crampedscriptscript 0x45456767 crampedscriptscript

3.5 Skewed fractions

Skewed fractions are native in LuaMetaTEX. Such a fraction is a horizontal construct with the numer

ator and denominator shifted up and down a bit. It looks like this:

The rendering is driven by some parameters that determine the horizontal and vertically shifts but

we found that the ones given by the font make no sense (and are not that well defined in the standard

either). The horizontal shift relates to the width (and angle) of the slash and the vertical relates to the

math axis. We don't listen to ‘skewed fraction hgap’ nor to ‘skewed fraction vgap’ but use the width

of the middle character, normally a slash, that can grow on demand and multiply that with a hfactor

that can be passed with the fraction command. A vfactor is used a multiplier for the vertical shift

over the axis. Examples of (more)) control can be found in the ConTEXt math manual. Here we just

show a few examples that use \vfrac with its default values.

1/2 𝑎/𝑏 𝑏/𝑎
𝑥2/𝑥3 (𝑥+1)/(𝑥+2) 𝑥+1/𝑥+2

38

The quality of the slashes differs per font, some lack granularity in sizes, others have inconsistent

angles between the base character and larger variants.

The following commands are used:

\Uskewed

\Uskewedwithdelims

There are some parameter involved:

\Umathskeweddelimitertolerance

\Umathskewedfractionhgap

\Umathskewedfractionvgap

3.6 Math fractions

Fractions in TEX come in variants: with or without rule in the middle and with or without fences. The

reason for the fenced ones is that they are not spaced like open and close class symbols. So, instead

of open, fraction, close being three things, we have one thing. In LuaMetaTEX we can also use an

extensible instead of the rule.

Because the rule is optional, we can have the following, which represents a so called binom construct.

3.7 Math radicals

Radicals indeed look like roots. But the radical mechanism basically is a wrapping construct: there's

something at the left that in traditional TEX gets a rule appended. The left piece is an extensible,

so it first grow with variant glyphs and when we run out if these we get an upward extensible with

a repeated upward rule like symbol that then connect with the horizontal rule. In LuaMetaTEX the

horizontal rule can be an extensible (repeated symbol) and we can also have a symbol at the right,

which indeed can be a vertical extensible too.

Here are some aspects to take care of when rendering a radical like this:

39

• The radical symbol goes below the baseline of what it contains.

• There is some distance between the left symbol and the body.

• There is some distance between the top symbol and the body.

• There is some distance between the right symbol and the body.

• The degree has to be anchored properly and possibly can stick out left.

• The (upto) three elements have to overlap a little to avoid artifacts.

• Multiple radicals might have to be made consistent with respect to heights and depths.

Involved commands:

\Uradical

\Uroot

\Urooted

Relevant parameters:

\Umathradicaldegreeafter

\Umathradicaldegreebefore

\Umathradicaldegreeraise

\Umathradicalextensibleafter

\Umathradicalextensiblebefore

\Umathradicalkern

\Umathradicalrule

\Umathradicalvariant

\Umathradicalvgap

3.8 Math accents

todo

3.9 Math fences

todo

40

41

4 Assumptions

4.1 Introduction

Because the engine provides no backend there is also no need to document it. However, in ConTEXt

we assume some features to be supported by its own backend. These will be collected here. This

chapter is rather ConTEXt specific, for instance we have extended what can be done with characters

and that is pretty much up to a macro package to decide.

4.2 Virtual fonts

Virtual fonts are a nice extension to traditional TEX fonts that originally was independent from the

engine, which only needs dimensions from a tfm file. In LuaTEX, because it has a backend built in,

virtual fonts are handled by the engine but here we also can construct such fonts at runtime. The

original set of commands is:

char + chr sx sy

right + amount

down + amount

push +

pop +

font + index

nop +

special ‒ str

rule + v h

The pdfTEX engine added two more but these are not supported in ConTEXt:

pdf ‒ str

pdfmode ‒ n

The LuaTEX engine also added some but these are never found in loaded fonts, only in those con

structed at runtime. Two are not supported in ConTEXt.

lua + code f(font,char,posh,posv,sx,sy)

image ‒ n

node + n

scale ‒ sx sy

The LuaMetaTEX engine has nothing on board and doesn't even carry the virtual commands around.

The backend can just fetch them from the Lua end. An advantage is that we can easily extend the

repertoire of commands:

slot + index chr csx csy

use + index chr ... chr

left + amount

up + amount

offset + h v chr [csx [csy]]

stay + chr (push/pop)

compose + h v chr

42

frame + wd jt dp line outline advance baseline color

line + wd ht dp color

inspect +

trace +

<plugin>+ f(posh,posv,packet)

There are some manipulations that don't need the virtual mechanism. In addition to the character

properties like width, height and depth we also have:

advance the width used in the backend

scale an additional scale factor

xoffset horizontal shift

yoffset vertical shift

effect slant factor used for tilting

extend horizontal scale

squeeze vertical scale

mode special effects like outline

weight pen stroke width

43

44

5 Internals

5.1 Introduction

If you look at TEX as a programming language and are familiar with other languages, a natural question

to ask is what data types there are and how is all managed. Here I will give a general overview of

some concepts. The explanation below is not entirely accurate because it tries to avoid the sometimes

messy details. More can be found in the other low level manuals. I assume that one knows at least

how to process a simple document with a few commands.

It is not natural to start an explanation with how memory is laid out but by doing this it is easier to

introduce the concepts. I will focus on what is called hash table, the stack, node memory and token

memory. We leave fonts, languages, character properties, math, etc. out of the picture. There are

details that we skip because it's the general picture that matters here.

I might add some more to this manual, depending on questions by users at meetings or on the mailing

list. Some details might change over time but the principles remain the same.

5.2 A few basics

This is a reference manual and not a tutorial. This means that we discuss changes relative to traditional

TEX and also present new (or extended) functionality. As a consequence we will refer to concepts that

we assume to be known or that might be explained later. Because the LuaTEX and LuaMetaTEX engines

open up TEX there's suddenly quite some more to explain, especially about the way a (to be) typeset

stream moves through the machinery. However, discussing all that in detail makes not much sense,

because deep knowledge is only relevant for those who write code not possible with regular TEX and

who are already familiar with these internals (or willing to spend time on figuring it out).

So, the average user doesn't need to know much about what is in this manual. For instance fonts and

languages are normally dealt with in the macro package that you use. Messing around with node lists

is also often not really needed at the user level. If you do mess around, you'd better know what you're

dealing with. Reading “The TEX Book” by Donald Knuth is a good investment of time then also because

it's good to know where it all started. A more summarizing overview is given by “TEX by Topic” by

Victor Eijkhout. You might want to peek in “The 𝜀-TEX manual” too.

But . . . if you're here because of Lua, then all you need to know is that you can call it from within a

run. If you want to learn the language, just read the well written Lua book. The macro package that

you use probably will provide a few wrapper mechanisms but the basic \directlua command that

does the job is:

\directlua{tex.print("Hi there")}

You can put code between curly braces but if it's a lot you can also put it in a file and load that file

with the usual Lua commands. If you don't know what this means, you definitely need to have a look

at the Lua book first.

If you still decide to read on, then it's good to know what nodes are, so we do a quick introduction

here. If you input this text:

Hi There ...

45

eventually we will get a linked lists of nodes, which in ascii art looks like:

H <=> i <=> [glue] <=> T <=> h <=> e <=> r <=> e ...

When we have a paragraph, we actually get something like this, where a par node stores some meta

data and is followed by a hlist flagged as indent box:

[par] <=> [hlist] <=> H <=> i <=> [glue] <=> T <=> h <=> e <=> r <=> e ...

Each character becomes a so called glyph node, a record with properties like the current font, the

character code and the current language. Spaces become glue nodes. There are many node types and

nodes can have many properties but that will be discussed later. Each node points back to a previous

node or next node, given that these exist. Sometimes multiple characters are represented by one

glyph (shape), so one can also get:

[par] <=> [hlist] <=> H <=> i <=> [glue] <=> Th <=> e <=> r <=> e ...

And maybe some characters get positioned relative to each other, so we might see:

[par] <=> [hlist] <=> H <=> [kern] <=> i <=> [glue] <=> Th <=> e <=> r <=> e ...

Actually, the above representation is one view, because in LuaMetaTEX we can choose for this:

[par] <=> [glue] <=> H <=> [kern] <=> i <=> [glue] <=> Th <=> e <=> r <=> e ...

where glue (currently fixed) is used instead of an empty hlist (think of a \hbox). Options like this are

available because want a certain view on these lists from the Lua end and the result being predicable

is part of that.

It's also good to know beforehand that TEX is basically centered around creating paragraphs and pages.

The par builder takes a list and breaks it into lines. At some point horizontal blobs are wrapped into

vertical ones. Lines are so called boxes and can be separated by glue, penalties and more. The page

builder accumulates lines and when feasible triggers an output routine that will take the list so far.

Constructing the actual page is not part of TEX but done using primitives that permit manipulation of

boxes. The result is handled back to TEX and flushed to a (often pdf) file.

\setbox\scratchbox\vbox\bgroup

line 1\par line 2

\egroup

\showbox\scratchbox

The above code produces the next log lines that reveal how the engines sees a paragraph (wrapped

in a \vbox):

1:4: > \box257=

1:4: \vbox[normal][16=1,17=1,47=1], width 483.69687, height 27.58083, depth 0.1416, direction l2r

1:4: .\list

1:4: ..\hbox[line][16=1,17=1,47=1], width 483.69687, height 7.59766, depth 0.1416, glue 455.40097fil, direction l2r

1:4: ...\list

1:4:\glue[left hang][16=1,17=1,47=1] 0.0pt

1:4:\glue[left][16=1,17=1,47=1] 0.0pt

1:4:\glue[parfillleft][16=1,17=1,47=1] 0.0pt

1:4:\par[newgraf][16=1,17=1,47=1], hangafter 1, hsize 483.69687, pretolerance 100, tolerance 3000, adjdemerits 10000, linepenalty 10

, doublehyphendemerits 10000, finalhyphendemerits 5000, clubpenalty 2000, widowpenalty 2000, brokenpenalty 100, emergencystretch 12.0,

parfillskip 0.0pt plus 1.0fil, hyphenationmode 499519

1:4:\glue[indent][16=1,17=1,47=1] 0.0pt

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30: DejaVuSerif @ 10.0pt>, glyph U

+00006C l

46

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30: DejaVuSerif @ 10.0pt>, glyph U

+000069 i

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30: DejaVuSerif @ 10.0pt>, glyph U

+00006E n

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30: DejaVuSerif @ 10.0pt>, glyph U

+000065 e

1:4:\glue[space][16=1,17=1,47=1] 3.17871pt plus 1.58936pt minus 1.05957pt, font 30

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30: DejaVuSerif @ 10.0pt>, glyph U

+000031 1

1:4:\penalty[line][16=1,17=1,47=1] 10000

1:4:\glue[parfill][16=1,17=1,47=1] 0.0pt plus 1.0fil

1:4:\glue[right][16=1,17=1,47=1] 0.0pt

1:4:\glue[right hang][16=1,17=1,47=1] 0.0pt

1:4: ..\glue[par][16=1,17=1,47=1] 5.44995pt plus 1.81665pt minus 1.81665pt

1:4: ..\glue[baseline][16=1,17=1,47=1] 6.79396pt

1:4: ..\hbox[line][16=1,17=1,47=1], width 483.69687, height 7.59766, depth 0.1416, glue 455.40097fil, direction l2r

1:4: ...\list

1:4:\glue[left hang][16=1,17=1,47=1] 0.0pt

1:4:\glue[left][16=1,17=1,47=1] 0.0pt

1:4:\glue[parfillleft][16=1,17=1,47=1] 0.0pt

1:4:\par[newgraf][16=1,17=1,47=1], hangafter 1, hsize 483.69687, pretolerance 100, tolerance 3000, adjdemerits 10000, linepenalty 10

, doublehyphendemerits 10000, finalhyphendemerits 5000, clubpenalty 2000, widowpenalty 2000, brokenpenalty 100, emergencystretch 12.0,

parfillskip 0.0pt plus 1.0fil, hyphenationmode 499519

1:4:\glue[indent][16=1,17=1,47=1] 0.0pt

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30: DejaVuSerif @ 10.0pt>, glyph U

+00006C l

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30: DejaVuSerif @ 10.0pt>, glyph U

+000069 i

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30: DejaVuSerif @ 10.0pt>, glyph U

+00006E n

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30: DejaVuSerif @ 10.0pt>, glyph U

+000065 e

1:4:\glue[space][16=1,17=1,47=1] 3.17871pt plus 1.58936pt minus 1.05957pt, font 30

1:4:\glyph[32768][16=1,17=1,47=1], language (n=1,l=2,r=3), hyphenationmode 499519, options 128 , font <30: DejaVuSerif @ 10.0pt>, glyph U

+000032 2

1:4:\penalty[line][16=1,17=1,47=1] 10000

1:4:\glue[parfill][16=1,17=1,47=1] 0.0pt plus 1.0fil

1:4:\glue[right][16=1,17=1,47=1] 0.0pt

1:4:\glue[right hang][16=1,17=1,47=1] 0.0pt

The LuaMetaTEX engine provides hooks for Lua code at nearly every reasonable point in the process:

collecting content, hyphenating, applying font features, breaking into lines, etc. This means that you

can overload TEX's natural behavior, which still is the benchmark. When we refer to ‘callbacks’ we

means these hooks. The TEX engine itself is pretty well optimized but when you kick in much Lua

code, you will notices that performance drops. Don't blame and bother the authors with performance

issues. In ConTEXt over 50% of the time can be spent in Lua, but so far we didn't get many complaints

about efficiency. Adding more callbacks makes no sense, also because at some point the performance

hit gets too large. There are plenty of ways to achieve goals. For that reason: take remarks about

LuaMetaTEX, features, potential, performance etc. with a natural grain of salt.

Where plain TEX is basically a basic framework for writing a specific style, macro packages like Con-

TEXt and LATEX provide the user a whole lot of additional tools to make documents look good. They

hide the dirty details of font management, language support, turning structure into typeset results,

wrapping pages, including images, and so on. You should be aware of the fact that when you hook

in your own code to manipulate lists, this can interfere with the macro package that you use. Each

successive step expects a certain result and if you mess around to much, the engine eventually might

bark and quit. It can even crash, because testing everywhere for what users can do wrong is no real

option.

When you read about nodes in the following chapters it's good to keep in mind what commands relate

to them. Here are a few:

command node explanation

\hbox hlist horizontal box

47

\vbox vlist vertical box with the baseline at the bottom

\vtop vlist vertical box with the baseline at the top

\hskip glue horizontal skip with optional stretch and shrink

\vskip glue vertical skip with optional stretch and shrink

\kern kern horizontal or vertical fixed skip

\discretionary disc hyphenation point (pre, post, replace)

\char glyph a character

\hrule rule a horizontal rule

\vrule rule a vertical rule

\textdirection dir a change in text direction

Whatever we feed into TEX at some point becomes a token which is either interpreted directly or stored

in a linked list. A token is just a number that encodes a specific command (operator) and some value

(operand) that further specifies what that command is supposed to do. In addition to an interface to

nodes, there is an interface to tokens, as later chapters will demonstrate.

Text (interspersed with macros) comes from an input medium. This can be a file, token list, macro body

cq. arguments, some internal quantity (like a number), Lua, etc. Macros get expanded. In the process

TEX can enter a group. Inside the group, changes to registers get saved on a stack, and restored

after leaving the group. When conditionals are encountered, another kind of nesting happens, and

again there is a stack involved. Tokens, expansion, stacks, input levels are all terms used in the next

chapters. Don't worry, they loose their magic once you use TEX a lot. You have access to most of the

internals and when not, at least it is possible to query some state we're in or level we're at.

When we talk about pack(ag)ing it can mean two things. When TEX has consumed some tokens that

represent text they are added to the current list. When the text is put into a so called \hbox (for

instance a line in a paragraph) it (normally) first gets hyphenated, next ligatures are build, and finally

kerns are added. Each of these stages can be overloaded using Lua code. When these three stages

are finished, the dimension of the content is calculated and the box gets its width, height and depth.

What happens with the box depends on what macros do with it.

The other thing that can happen is that the text starts a new paragraph. In that case some information

is stored in a leading par node. Then indentation is appended and the paragraph ends with some glue.

Again the three stages are applied but this time afterwards, the long line is broken into lines and the

result is either added to the content of a box or to the main vertical list (the running text so to say).

This is called par building. At some point TEX decides that enough is enough and it will trigger the

page builder. So, building is another concept we will encounter. Another example of a builder is the

one that turns an intermediate math list into something typeset.

Wrapping something in a box is called packing. Adding something to a list is described in terms

of contributing. The more complicated processes are wrapped into builders. For now this should be

enough to enable you to understand the next chapters. The text is not as enlightening and entertaining

as Don Knuths books, sorry.

5.3 Memory words

Before we come to know that TEX manages most of it memory itself. It allocates arrays of (pairs of)

32 bit integers because that is what TEX uses all over the place: integers. They store integer numbers

of various ranges values, fixed point floats, pointers (indices in arrays), states, commands, and often

groups of them travel around the system.

48

integer : mostly 8, 16, 24, 32 but we have odd packing too

fixed point float : 16.16 used to represent dimensions

boolean : simple state variables

enumerations : a choice from a set, like operators and operands

strings : an index in a string pool (character array)

The main memory areas in TEX are therefore arrays integers or pairs of integers as we want to handle

linked lists where in an element one integer has some data and the other points to another element.

Keep in mind that when TEX showed up efficient memory management was best done by the appli

cation, especially when it had to be portable. This might seem odd now but is actually not that bad

performance wise. One just has to get accustomed to the way TEX handles data.

1 1 1 1

2 2

4

Depending on usage we use four, two or one byte. Often a pair is used:

1 1 1 1

2 2

4

1 1 1 1

2 2

4

Such a pair is called a (memory) word and each component is a halfword that itself can have two

quarterwords and four singlewords. In LuaMetaTEX we also can combine them:

1 1 1 1

2 2

4

1 1 1 1

2 2

4

8

The eight byte field is used for pointers (to more dynamic structures) and double floats but that can only

happen when multiple words are used as a combined data structure (as in a so called node, explained

below). Quite often the second field is used as pointer to another pair. We could have changed that

model in LuaTEX and LuaMetaTEX but there is little gain in that and we want to stay close to the well

documented original as much as possible. It also has the side effect of simplifying the code and retain

performance.1

5.4 Tokens

A token is a halfword, so a 32 bit integer as mentioned before. Here we use a one plus three model, not

mentioned in the previous section. Sometimes we just look at the whole number, but quite often we

1 In the source this is reflected in the names used: vinfo and vlink in these pairs but in LuaMetaTEX we often use more symbolic

names.

49

look at the two smaller ones. The single byte is the so called command identifier (cmd), the second one

traditionally is called character (chr), but what we're really talking about is an operator and operand

kind of model. In a TEX engine source you can find variable names like cur_cmd, cur_chr and cur_tok

were the third one combines the first two.

1 3

4

Tokens travel through the system as integers and when some action is required the command part

is consulted which then triggers some action further defined by the character part. The combination

can either directly trigger some action but often that action has to look ahead in order to get some

more details.

Consider the following input:

\starttext

Hi there!

This is a \hbox{box}.

\stoptext

Every character falls in a category, and there are 16 of them. The H is a ‘letter’, the empty line a

newline. The backslash is an ‘escape’ that tells the parser to scan for a command where the name is

from letters. That command is then looked up and a token is created: in this case a ‘call’ command

with as operand the memory address (an index in the to be discussed hash) where the start of a list

of stored tokens can be found.

The characters in the text also become tokens and here we get two ‘letter’ commands (with the Uni-

code slots as operand), one ‘space’ command, five more letter commands and an ‘other’ command,

and so on.

Here every token is fed into the interpreter. The \starttext and \stoptext are macros (control

sequences) so they get expanded and the stored tokens get interpreted. The letters become (to be

discussed) nodes in a linked list of content. In this case the tokens are not stored and discarded as we

read on.

The \hbox is also a control sequence but a built in primitive. The operator is make_box and the operand

is hbox. It will trigger making a box of the given kind by reading an optional specification, the left

curly brace (begin group) collects content, and when the right curly brace (end group) is seen wraps

up by packaging the result. Al that is hard coded, contrary to a macro, but one can of course define

\hbox as macro, which normally is a bad idea.

As a side note: quite often TEX reads a token, and then puts if back into the input. For instance, when it

expects a number or keyword it keeps reading till it is satisfied and when it ends up in the unexpected

it has to wrap up and go one step back. However, when we read from file we can't go back, which is

why TEX has a model of ‘input levels’. Pushing back boils down to creating a token list with this one

token and then starts reading from that list. It is beyond this explanation to go into details but all

you need to know is that TEX has various input sources, for instance files, token lists, arguments to

commands (also token lists) and Lua output, but in the end all provide tokens.2

2 We could use a double linked list in which case we would have a three integer element which is odd for TEX and has no real

benefits as it would change the model completely.

50

1 info link

n info link

So to wrap up tokens, we have either singular ones (just 32 bit integers encoding a command and

value aka operator and operand) or a pair where the second one is a link. A token list starts at some

index and the link is zero (end of list) or another index. Token memory is huge array of memory words

like these. When token lists are constructed we take from this pool so there is an index indicating the

first available token. When a list is discarded it gets appended to a list of free tokens. So in practice

we first try to get a free token from this pool. In LuaMetaTEX it the token array will grow on demand

with a configurable chunk size.

5.5 Nodes

We already mentioned nodes. These are slices from an array that hold some values that belong to

gether. So again we have a large array of memory words but where a token is one pair a node is

multiple. Nodes have different size. The first node starts at index 1 and when it needs four memory

words the second node starts at index 5.

A character in the input that is typeset will become a glyph node of 112 bytes and a paragraph starts

with a par node of 280 bytes. A space becomes a glue node of 64 bytes and every box that you (or

TEX) make is 136 bytes. Most nodes are way larger in LuaMetaTEX than in traditional TEX but we don't

have the memory constraints of those times.

Here it is worth noticing that where TEX has a dedicated subsystem for glue which make sharing space

related glue efficient: the so called glue specifications are reference counted. In LuaTEX we made

these normal nodes which is slightly less efficient but fits better in the opened up (Lua) interface and

also has some other advantages (we leave it to reader to guess what).

For instance, a kern node at the time of this writing needs three memory words (as with other nodes

we might add some more fields, like options).

3128 type subtype next

3129 previous attribute

3130 amount expansion

So here we take a slice of three memory words from the node array starting at index 3128. We mention

this detail because sometimes (when tracing) you see these numbers. This doesn't mean that at that

point we had 3128 nodes, because the next node taken from this pool will have number 3131. The

numbers are indices!

In the source code we access thes enumber like this:

define kern_amount(a) vlink(a,2)

define kern_expansion(a) vinfo(a,2)

So when 𝑎 = 3128 the amount is found in the link field 𝑎 = 3128 + 2 = 3130. The name link is

somewhat weird here but that's the way these fields are called: vlink and vinfo. It could as well be

51

first and second but by using macros we get away by abstraction. So now you can figure out what

these references do:3

define node_type(a) vinfo0(a,0)

define node_subtype(a) vinfo1(a,0)

define node_next(a) vlink(a,0)

define node_prev(a) vlink(a,1)

define node_attr(a) vinfo(a,1)

Not all nodes end up in a list that results in output, like paragraphs and pages. For instance \parshape

and \widowpenalties also use nodes as storage container. Their common node is a specification node

of 32 but with a pointer to a dynamically memory array.

Because the sizes differ one cannot simply have a list of free nodes (as with tokens) without some

lookup mechanism that combines nodes when needed (they need to be next to each other) or split

larger ones when we run out of nodes. In LuaTEX and LuaMetaTEX we keep a list of free nodes per

size which in practice is more efficient and one seldom runs out of nodes because on the average a

page has a similar distribution and when a page is flushed (or any box for that matter) nodes get freed.

For instance right at this moment, we have 965 nodes in use and 3327 glyphs in stock.4

5.6 The hash table

The engine has a lot of built-in commands and users can define additional ones. An example is macros,

like the mentioned \starttext and \stoptext that refer to a token list that starts the typesetting

process. When reading the input from file these commands and macros are looked up in a hash table.

There are also built-in commands that generate a hash entry. For instance when you define a counter

or a font, the given name becomes a hash entry that points to a memory location (again an index).

Here it gets more complex. A hash table is used to lookup primitive commands like \hbox and \font

as well as \starttext and \stoptext. The string is converted into an integer within a specific range.

That integer is then an index into a table like we saw before, with two halfwords per slot.

1 next string

n next string

The hash value (integer calculated from string) point to a slot and the string is compared with the

stored string. When the string is different, the next field points to a different slot (outside the hash

range in the same table) and again the string is checked. When there is no next value set (zero), the

index is used to determine what to do.

3 In what order these two fields end up in memory depends on the cpu being little or big endian.
4 And a while later (that is: here) these numbers are 1041 and 3251. These numbers can handly be called dramatic as a page

can only have so many glyph nodes: 1145 and 3147 were the numbers after the colon.

52

1 type flags level value

n type flags level value

This table is called the table of equivalents. In LuaMetaTEX this is implemented a bit different than in

the other engines because we combine tables. The fields that you see here keep track of the type (so

that we can optimize some bits and pieces), flags (so that we can implement overload protection), a

level (so that we can restore values after the group ends and of course a value.

That value can be a a pointer to (index of) a token list, or a pointer to (index of) a node. It can also be

just some value, like a dimension, character reference or register entry.

Although there are similarities, the memory mapping in LuaMetaTEX differs from LuaTEX and that one

differs from pdfTEX which again differs from original TEX.

In original TEX table of equivalents is organized in six regions.

1. active characters

2. hash table

font identifiers

3. glue

muglue

4. token lists

boxes

font names

math codes

category codes

lowercase codes

uppercase codes

space factors

5. integers

delimiter codes

6. dimensions

The internal dimension, integer, skip, muskip, token and box registers are part of this and for users

there are 256 registers of each category. There are 256 active characters, and the mentioned codes

and factors also have 256 entries.

In LuaMetaTEX (like in LuaTEX) we use Unicode, so there it makes no sense to store values in the table

of equivalents. We use dedicates hashes instead. So there we have different regions. In LuaTEX we

roughly have this:

1. hash table

2. frozen control sequences

3. font identifiers

4. glue

5. muglue

6. tokens

7. boxes

8. integers

9. attributes

10. dimensions

As we moved forward, LuaMetaTEX has some more:

1. hash table

2. frozen control sequences

3. glue

4. muglue

5. tokens

6. boxes

7. integers

8. attributes

9. dimensions

10. posits

11. units

12. specifications

In case one wonders, on top of built-in units users can define their own. Specifications are for instance

53

shape and penalty arrays. Fonts are not in here because we manage them in Lua.

In traditional TEX a delimiter code needs two integers so there it uses both fields in a memory word

and saves the state in a parallel array with quarterwords. We don't need this in LuaMetaTEX because

we store delimiters in a separate hash table (and actually don't need them at all, because we use

OpenType fonts).

We need to keep some save/restore related state in the table but for integers and delimiter codes we

need all four bytes of the value. Therefore original TEX has a separate parallel table for this, which as

side effect spoils some memory. In LuaTEX we have way more registers so there the waste is larger.

In LuaMetaTEX we got rid of this. We could also use less space for the type and store some extra data.

A side effect is that we keep the type information which is handy for tracing, sparse dumping, and

optimizing save and restore. This is why with more functionality we don't need less more memory

than one would expect.

The hash table in original TEX is a bit too small for larger macro packages which is why in practice

engines took more than the default couple of thousands slots. But going too large makes no sense

because one ends up with many misses and unused hash and equivalent space. That is why soon after

TEX showed up support for extra hash space was introduced. That space is allocated at the end of

normal hash space and can be configured when the format file is made. This means that the hash

table also grows to the size of the equivalents table:

hash table

hash entries

equivalents

hash data

other data

hash table

hash entries

extra entries

equivalents

hash data

other data

extra data

Too much extra hash space also means too much equivalent space as these arrays run in parallel. In

LuaMetaTEX we can let hash memory grow on demand so there the penalty is less.

It makes sense to move the ‘other data’ to the beginning so that we can use a smaller hash but. That

could potentially save 4MB memory, but when we decide to limit the maximum number of registers

to 8K (instead of 64K) we are at 512KB so that might be easier as it avoids using offsets. And who

knows how we can use the yet unused space later. Compared to LuaTEX we already save much memory

elsewhere.

5.7 Save stack

I only mention this here because it relates to the table of equivalents. Whenever a quantity (register,

parameter, macro, you name it) changes the engine registers the old value on the save stack when the

assignment is local. The equivalent is replaced and when found in the save stack restored afterwards.

In order to let the save stack not grow too much we try to only save a state when there is a real change.

We can do that because we have a bit more information available and otherwise do a bit more testing.

This is specific for LuaMetaTEX.

5.8 Data types

The long winding explanation explanation in the previous section shows that we have a curious mix of

data to manage. We already saw tokens and nodes but here we also saw registers. However, integers,

54

dimensions and attributes are all basically just 32 bit numbers. Even a posit (float) fits into that space.

So if you enter 10pt internally it becomes a so called scaled (dimension). The skip registers point to a

glue node and the token and box registers to a node list and those pointers are also numbers. So, what

the user sees as a data type internally is just a number and its type (the command field in a token)

tells what to do with it.

When tracing is turned on there can be mentioning of save stack, input levels, fonts, languages, hy

phenation, various character related properties and so on. Here we have specialized data structures

that have their own memory layout and management. Where terms like token, node, integer (count),

dimension and glue indicate something that the user should grasp, the entries in a save stack are

never presented other than in an message.

Manipulating data types is explained in various low level manuals, some relate to programming, and

some to typesetting. It makes no sense to repeat that here. Take for instance macros: then come

in variants (think of \protected and/or \tolerant ones) can take arguments (which effectively are

token lists) and the flags in the mentioned table of equivalents control take care of that.

One aspect of token lists is worth mentioning: they start with a so called head token. So a list of length

one actually has two tokens. The head keeps track of the fact that a list is a copy. Because a macro

is also a token list, in LuaMetaTEX the head also has some information that permits a more efficient

code path. Because token lists are used all over the place in the engine, sharing makes sense.

Attributes attached to a node are node lists themselves and these are also shared which not only

saves memory but also is more performing. There are many places where LuaMetaTEX differs from

its predecessors: there are more primitives, there is more data moved around but it got compensated

by optimizing mechanisms. But as much as possible we stayed within the same paradigms.

5.9 Time flies

For those curious about how different the engines are when it comes to memory usage, here is a quote

from TEX the program:

Since we are assuming 32-bit integers, a halfword must contain at least 16 bits, and a quar

terword must contain at least 8 bits. But it doesn't hurt to have more bits; for example, with

enough 36-bit words you might be able to have mem_max as large as 262142, which is eight times

as much memory as anybody had during the first four years of TEX's existence.

N.B.: Valuable memory space will be dreadfully wasted unless TEX is compiled by a Pascal that

packs all of the memory_word variants into the space of a single integer. This means, for example,

that glue_ratio words should be short_real instead of real on some computers. Some Pascal

compilers will pack an integer whose subrange is 0 .. 255 into an eight-bit field, but others

insist on allocating space for an additional sign bit; on such systems you can get 256 values into

a quarterword only if the subrange is 128 .. 127.

The present implementation tries to accommodate as many variations as possible, so it makes

few assumptions. If integers having the subrange min_quarterword .. max_quarterword can

be packed into a quarterword, and if integers having the subrange min_halfword .. max_half

word can be packed into a halfword, everything should work satisfactorily.

It is usually most efficient to have min_quarterword = min_halfword = 0, so one should try to

achieve this unless it causes a severe problem. The values defined here are recommended for

most 32-bit computers.

55

This still applies to pdfTEX although there a memory word is two 32 bit integer, so each halfword in

there spans 32 bits, and a quarterword 16 bits. So what does that mean for nodes? Here is what the

original code says about char nodes.

A char_node, which represents a single character, is the most important kind of node because

it accounts for the vast majority of all boxes. Special precautions are therefore taken to ensure

that a char_node does not take up much memory space. Every such node is one word long, and

in fact it is identifiable by this property, since other kinds of nodes have at least two words, and

they appear in mem locations less than hi_mem_min. This makes it possible to omit the type field

in a char_node, leaving us room for two bytes that identify a font and a character within that

font.

Note that the format of a char_node allows for up to 256 different fonts and up to 256 characters

per font; but most implementations will probably limit the total number of fonts to fewer than

75 per job, and most fonts will stick to characters whose codes are less than 128 (since higher

codes are more difficult to access on most keyboards).

So, in order to save space these single size nodes use little memory. Even more interesting is the

follow up on that explanation:

Extensions of TEX intended for oriental languages will need even more than 256 × 256 possible

characters, when we consider different sizes and styles of type. It is suggested that Chinese

and Japanese fonts be handled by representing such characters in two consecutive char_node

entries: The first of these has font = font_base, and its link points to the second; the second

identifies the font and the character dimensions. The saving feature about oriental characters

is that most of them have the same box dimensions. The character field of the first char_node

is a charext that distinguishes between graphic symbols whose dimensions are identical for

typesetting purposes. (See the MetaFont manual.) Such an extension of TEX would not be

difficult; further details are left to the reader.

In order to make sure that the character code fits in a quarterword, TEX adds the quantity

min_quarterword to the actual code.

What if that had been implemented right from the start? What if utf8 had been around at that time?

Of course when 32 bit integers are used we can use these extra bit for a larger code range anyway.

When we flash forward to LuaTEX we don't see that optimization and there are reasons for it. First of

all content related nodes have an attribute list pointer as well as a prev field; lists are double linked.

That means we don't reuse the type and subtype fields. The macros that define a glyph are:

define glyph_node_size 7

define character(a) vinfo((a)+2)

define font(a) vlink((a)+2)

define lang_data(a) vinfo((a)+3)

define lig_ptr(a) vlink((a)+3)

define x_displace(a) vinfo((a)+4)

define y_displace(a) vlink((a)+4)

define ex_glyph(a) vinfo((a)+5) /* expansion factor (hz) */

define glyph_node_data(a) vlink((a)+5)

define synctex_tag_glyph(a) vinfo((a)+6)

define synctex_line_glyph(a) vlink((a)+6)

56

Instead of one memory word we use seven, and given the amount of characters on a page that adds

quite a bit compared to the original. Of course it is irrelevant on todays machines. So how about

LuaMetaTEX as of late 2024?

define glyph_node_size 14

define glyph_character(a) vinfo(a,2)

define glyph_font(a) vlink(a,2) /*tex can be quarterword */

define glyph_data(a) vinfo(a,3) /*tex handy in context */

define glyph_state(a) vlink(a,3) /*tex handy in context */

define glyph_language(a) vinfo0(a,4)

define glyph_script(a) vinfo1(a,4)

define glyph_control(a) vlink0(a,4) /*tex we store 0xXXXX in the |\cccode| */

define glyph_reserved(a) vlink1(a,4)

define glyph_options(a) vinfo(a,5)

define glyph_hyphenate(a) vlink(a,5)

define glyph_protected(a) vinfo00(a,6)

define glyph_lhmin(a) vinfo01(a,6)

define glyph_rhmin(a) vinfo02(a,6)

define glyph_discpart(a) vinfo03(a,6)

define glyph_expansion(a) vlink(a,6)

define glyph_x_scale(a) vinfo(a,7)

define glyph_y_scale(a) vlink(a,7)

define glyph_scale(a) vinfo(a,8)

define glyph_raise(a) vlink(a,8)

define glyph_left(a) vinfo(a,9)

define glyph_right(a) vlink(a,9)

define glyph_x_offset(a) vinfo(a,10)

define glyph_y_offset(a) vlink(a,10)

define glyph_weight(a) vinfo(a,11)

define glyph_slant(a) vlink(a,11)

define glyph_properties(a) vinfo0(a,12) /*tex for math */

define glyph_group(a) vinfo1(a,12) /*tex for math */

define glyph_index(a) vlink(a,12) /*tex for math */

define glyph_input_file(a) vinfo(a,13)

define glyph_input_line(a) vlink(a,13)

We carry scaled, offsets, status information and various data around and consume twice what LuaTEX

needs. In both cases there are the common fields:

define node_type(a) vinfo0(a,0)

define node_subtype(a) vinfo1(a,0)

define node_next(a) vlink(a,0)

define node_prev(a) vlink(a,1)

define node_attr(a) vinfo(a,1)

As you see, we still use the original TEX vinfo and vlink identifications but in LuaMetaTEX we have

node specific verbose accessors because we no longer use the same slots for (for instance) width,

height and depth. This of course has impact on the code base because now width(n) becomes a

different accessor per node it applies to. We get less compact code but gain readability and we often

need to distinguish anyway. Where LuaTEX and predecessors we see:

57

w += width(n)

that covers boxes, glue and kerns. For glyphs we need to get the width from the font using the font

and char fields. Actually, in TEX82 that can be done directly because we know that these values are

okay. In LuaTEX however these values can be set in Lua and therefore we do need to check if they

reference a loaded font and valid character slot. So in LuaTEX we do need a dedicated function to get

the glyph width.

In LuaMetaTEX we have to be more granular and deal with each node type that has width indepen

dently:

switch (subtype(n) {

case glyph_node:

w += tex_glyph_width(s);

break;

case hlist_node:

case vlist_node:

w += box_width(n);

break;

case rule_node:

w += rule_width(n);

break;

case glue_node:

w += glue_amount(n);

break;

case kern_node:

w += kern_amount(s);

break;

case math_node:

if (tex_math_glue_is_zero(s)) {

w += math_surround(s);

} else {

w -= math_amount(s);

}

break;

}

Because a glyph can have scaled set and similar features exist for glue we need to distinguish need

to distinguish anyway. Watch the math node: we have to deal with either kern or glue.

5.10 Keywords

The 𝜀-TEX extension added primitives, pdfTEX did the same, as did Omega and therefore also LuaTEX,

which took from its ancestors and added more. The LuaMetaTEX engine again extends the repertoire.

However, in order to control some primitive (functional) behavior instead of using extra primitive

parameters, we use keywords. For instance \hbox accepts multiple attr, direction, (LuaTEX) but

also xoffset, yoffset, orientation and more. This has no impact on compatibility because scanning

keywords stops at the left brace (or its equivalent). The \hrule like primitives also accept more

keywords but here scanning stops at an unknown keyword, which can give interesting side effects

58

when it's last in macro followed by text that itself starts with a valid keyword (say height) but not by

a dimensions.

1 \def\foo{\hrule width 10pt} \foo height or depth, what about it.

2 \def\foo{\hrule width 10pt\relax} \foo height or depth, what about it.

3 \def\foo{\hrule width 10pt} \foo what about it.

4 \hbox to 20pt{x}

5 \hbox attr 999 1 to 20pt{x}

6 \hbox to 20pt attr 999 1 {x}

The first line gives an error, the second uses \relax to end the scanning. The last line is wrong in

LuaTEX where order matters while it's okay in LuaMetaTEX. The third line is okay in LuaTEX where

the what is pushed back but wrong in LuaMetaTEX where it expect w to start a valid keyword. The

last is actually an incompatibility but one should keep in mind that using \relax is the way to go here

anyway. The same is true for scanning glue specifications.

The fact that what gets pushed back (in LuaTEX) into the input add extra overhead. But in this case

it's little. However, think of this in LuaTEX:

if (scan_keyword("width")) {

scan_normal_dimen();

width(q) = cur_val;

goto RESWITCH;

}

if (scan_keyword("height")) {

scan_normal_dimen();

height(q) = cur_val;

goto RESWITCH;

}

if (scan_keyword("depth")) {

scan_normal_dimen();

depth(q) = cur_val;

goto RESWITCH;

}

Here we push back two times when we only specify the depth. This is still not that bad but imagine

many more keywords. This is why in LuaMetaTEX we cascade: we check for the first character and

act on that and if needed do the same with later characters (box specifications take adapt, attr,

anchor and axis so here a second character differentiates. In par passes we have adjustspacingstep,

adjustspacingshrink, adjustspacingstretch so there is no need to push back the adjustspacings

and if you look carefully tep and tretch also cascade. Of course the code looks a bit more messy but

we do gain here due to less push back and therefore input level bumping. In some cases we also need

less further tracing because we already know what is coming. Of course given TEX's already good

scanning performance it all depends on usage what we gain in practice.

5.11 Sparse arrays

Because original TEX supports 256 characters it can use data structures and ranges in the main equiv

alent repertoire without too much overhead but with LuaTEX we went Unicode so dedicated sparse

arrays were used instead for \catcode, \lccode, \uccode and \sfcode. The new \hjcode, math char

acters, delimiters and font character arrays also use this mechanism and in LuaMetaTEX we use them

59

even more. Although in principle we can use the regular save stack for pushing and popping values

each sparse array comes with its own stack.

In LuaMetaTEX this mechanism has been optimized. Depending on the kind of data we use nibbles,

bytes, shorts, integers or integer pairs. There is also more aggressive optimization of storing the set

values in the format file. Stack management is more efficient too, which mostly has benefits for math

where we use sparse arrays for math parameters of which we have plenty.

The sparse array mechanism is also interfaced to Lua, and we might actually use that feature in Con-

TEXt some day.

60

61

6 Primitives

6.1 Introduction

Here I will discuss some of the new primitives in LuaTEX and LuaMetaTEX, the later being a successor

that permits the ConTEXt folks to experiment with new features. The order is arbitrary. When you

compare LuaTEX with pdfTEX, there are actually quite some differences. Some primitives that pdfTEX

introduced have been dropped in LuaTEX because they can be done better in Lua. Others have been

promoted to core primitives that no longer have a pdf prefix. Then there are lots of new primitives,

some introduce new concepts, some are a side effect of for instance new math font technologies, and

then there are those that are handy extensions to the macro language. The LuaMetaTEX engine drops

quite some primitives, like those related to pdfTEX specific f(r)ont or backend features. It also adds

some new primitives, mostly concerning the macro language.

We also discuss the primitives that fit into the macro programming scope that are present in traditional

TEX and 𝜀-TEX but there are for sure better of explanations out there already. Primitives that relate to

typesetting, like those controlling math, fonts, boxes, attributes, directions, catcodes, Lua (functions)

etc are not discussed or discussed in less detail here.

There are for instance primitives to create aliases to low level registers like counters and dimensions,

as well as other (semi-numeric) quantities like characters, but normally these are wrapped into high

level macros so that definitions can't clash too much. Numbers, dimensions etc can be advanced,

multiplied and divided and there is a simple expression mechanism to deal with them. We don't go

into these details here: it's mostly an overview of what the engine provides. If you are new to TEX,

you need to play a while with its mixed bag of typesetting and programming features in order to

understand the difference between this macro language and other languages you might be familiar

with.

6.3.1 \<space> . 74

6.3.2 \- . 74

6.3.3 \/ . 74

6.3.4 \Umathxscale 74

6.3.5 \Umathyscale 75

6.3.6 \above . 75

6.3.7 \abovedisplayshortskip 75

6.3.8 \abovedisplayskip 75

6.3.9 \abovewithdelims 75

6.3.10 \accent . 75

6.3.11 \additionalpageskip 75

6.3.12 \adjacentdemerits 75

6.3.13 \adjdemerits 75

6.3.14 \adjustspacing 76

6.3.15 \adjustspacingshrink 76

6.3.16 \adjustspacingstep 76

6.3.17 \adjustspacingstretch 76

6.3.18 \advance . 76

6.3.19 \advanceby . 76

6.3.20 \afterassigned 76

6.3.21 \afterassignment 77

6.3.22 \aftergroup . 77

6.3.23 \aftergrouped 77

6.3.24 \aliased . 78

6.3.25 \aligncontent 79

6.3.26 \alignmark . 79

6.3.27 \alignmentcellsource 79

6.3.28 \alignmentwrapsource 79

6.3.29 \aligntab . 79

6.3.30 \allcrampedstyles 79

6.3.31 \alldisplaystyles 79

6.3.32 \allmainstyles 79

6.3.33 \allmathstyles 79

6.3.34 \allscriptscriptstyles 79

6.3.35 \allscriptstyles 80

6.3.36 \allsplitstyles 80

6.3.37 \alltextstyles 80

6.3.38 \alluncrampedstyles 80

6.3.39 \allunsplitstyles 80

6.3.40 \amcode . 80

62

6.3.41 \associateunit 80

6.3.42 \atendoffile 81

6.3.43 \atendoffiled 81

6.3.44 \atendofgroup 81

6.3.45 \atendofgrouped 82

6.3.46 \atop . 82

6.3.47 \atopwithdelims 82

6.3.48 \attribute . 82

6.3.49 \attributedef 82

6.3.50 \automaticdiscretionary 82

6.3.51 \automatichyphenpenalty 82

6.3.52 \automigrationmode 82

6.3.53 \autoparagraphmode 83

6.3.54 \badness . 83

6.3.55 \balanceadjdemerits 83

6.3.56 \balancebottomskip 83

6.3.57 \balanceboundary 83

6.3.58 \balancebreakpasses 83

6.3.59 \balancechecks 83

6.3.60 \balanceemergencyshrink 83

6.3.61 \balanceemergencystretch 84

6.3.62 \balancelineheight 84

6.3.63 \balancelooseness 84

6.3.64 \balancepasses 84

6.3.65 \balancepenalty 84

6.3.66 \balancefinalpenalties 84

6.3.67 \balanceshape 84

6.3.68 \balanceshapebottomspace 84

6.3.69 \balanceshapetopspace 84

6.3.70 \balanceshapevsize 85

6.3.71 \balancetolerance 85

6.3.72 \balancetopskip 85

6.3.73 \balancevsize 85

6.3.74 \baselineskip 85

6.3.75 \batchmode . 85

6.3.76 \begincsname 85

6.3.77 \begingroup . 86

6.3.78 \beginlocalcontrol 86

6.3.79 \beginmathgroup 87

6.3.80 \beginmvl . 87

6.3.81 \beginsimplegroup 87

6.3.82 \belowdisplayshortskip 88

6.3.83 \belowdisplayskip 88

6.3.84 \binoppenalty 88

6.3.85 \botmark . 88

6.3.86 \botmarks . 88

6.3.87 \bottomskip . 88

6.3.88 \boundary . 88

6.3.89 \box . 88

6.3.90 \boxadapt . 89

6.3.91 \boxanchor . 89

6.3.92 \boxanchors . 89

6.3.93 \boxattribute 89

6.3.94 \boxdirection 90

6.3.95 \boxfinalize 90

6.3.96 \boxfreeze . 90

6.3.97 \boxgeometry 91

6.3.98 \boxinserts . 91

6.3.99 \boxlimit . 91

6.3.100 \boxlimitate 91

6.3.101 \boxlimitmode 91

6.3.102 \boxmaxdepth 91

6.3.103 \boxmigrate . 91

6.3.104 \boxorientation 92

6.3.105 \boxrepack . 92

6.3.106 \boxshift . 92

6.3.107 \boxshrink . 92

6.3.108 \boxsource . 92

6.3.109 \boxstretch . 93

6.3.110 \boxsubtype . 93

6.3.111 \boxtarget . 93

6.3.112 \boxtotal . 93

6.3.113 \boxvadjust . 93

6.3.114 \boxxmove . 94

6.3.115 \boxxoffset . 94

6.3.116 \boxymove . 94

6.3.117 \boxyoffset . 94

6.3.118 \brokenpenalties 94

6.3.119 \brokenpenalty 94

6.3.120 \catcode . 94

6.3.121 \catcodetable 95

6.3.122 \cccode . 95

6.3.123 \cdef . 95

6.3.124 \cdefcsname . 95

6.3.125 \cfcode . 95

6.3.126 \char . 95

6.3.127 \chardef . 95

6.3.128 \cleaders . 96

6.3.129 \clearmarks . 96

6.3.130 \clubpenalties 96

6.3.131 \clubpenalty 96

6.3.132 \constant . 96

6.3.133 \constrained 96

6.3.134 \copy . 96

6.3.135 \copymathatomrule 96

6.3.136 \copymathparent 96

6.3.137 \copymathspacing 97

6.3.138 \copysplitdiscards 97

63

6.3.139 \count . 97

6.3.140 \countdef . 97

6.3.141 \cr . 97

6.3.142 \crampeddisplaystyle 98

6.3.143 \crampedscriptscriptstyle . . . 98

6.3.144 \crampedscriptstyle 98

6.3.145 \crampedtextstyle 98

6.3.146 \crcr . 98

6.3.147 \csactive . 98

6.3.148 \csname . 98

6.3.149 \csnamestring 98

6.3.150 \csstring . 98

6.3.151 \currentgrouplevel 99

6.3.152 \currentgrouptype 99

6.3.153 \currentifbranch 99

6.3.154 \currentiflevel 100

6.3.155 \currentiftype 100

6.3.156 \currentloopiterator 101

6.3.157 \currentloopnesting 101

6.3.158 \currentlysetmathstyle 102

6.3.159 \currentmarks 102

6.3.160 \currentstacksize 102

6.3.161 \day . 103

6.3.162 \dbox . 103

6.3.163 \deadcycles 103

6.3.164 \def . 103

6.3.165 \defaulthyphenchar 104

6.3.166 \defaultskewchar 104

6.3.167 \defcsname 104

6.3.168 \deferred . 104

6.3.169 \delcode . 105

6.3.170 \delimiter 105

6.3.171 \delimiterfactor 105

6.3.172 \delimitershortfall 105

6.3.173 \detokened 105

6.3.174 \detokenize 106

6.3.175 \detokenized 106

6.3.176 \dimen . 106

6.3.177 \dimendef . 106

6.3.178 \dimensiondef 106

6.3.179 \dimexpr . 107

6.3.180 \dimexpression 107

6.3.181 \directlua 107

6.3.182 \discretionary 107

6.3.183 \discretionaryoptions 108

6.3.184 \displayindent 108

6.3.185 \displaylimits 108

6.3.186 \displaystyle 108

6.3.187 \displaywidowpenalties 108

6.3.188 \displaywidowpenalty 108

6.3.189 \displaywidth 109

6.3.190 \divide . 109

6.3.191 \divideby . 109

6.3.192 \doublehyphendemerits 109

6.3.193 \doublepenaltymode 109

6.3.194 \dp . 109

6.3.195 \dpack . 109

6.3.196 \dsplit . 109

6.3.197 \dump . 109

6.3.198 \edef . 110

6.3.199 \edefcsname 110

6.3.200 \edivide . 110

6.3.201 \edivideby 110

6.3.202 \efcode . 111

6.3.203 \else . 111

6.3.204 \emergencyextrastretch 111

6.3.205 \emergencyleftskip 111

6.3.206 \emergencyrightskip 111

6.3.207 \emergencystretch 111

6.3.208 \end . 111

6.3.209 \endcsname 111

6.3.210 \endgroup . 111

6.3.211 \endinput . 112

6.3.212 \endlinechar 112

6.3.213 \endlocalcontrol 112

6.3.214 \endmathgroup 113

6.3.215 \endmvl . 113

6.3.216 \endsimplegroup 113

6.3.217 \enforced . 113

6.3.218 \eofinput . 113

6.3.219 \eqno . 113

6.3.220 \errhelp . 113

6.3.221 \errmessage 113

6.3.222 \errorcontextlines 114

6.3.223 \errorstopmode 114

6.3.224 \escapechar 114

6.3.225 \etexexprmode 114

6.3.226 \etoks . 114

6.3.227 \etoksapp . 114

6.3.228 \etokspre . 114

6.3.229 \eufactor . 114

6.3.230 \everybeforepar 115

6.3.231 \everycr . 115

6.3.232 \everydisplay 115

6.3.233 \everyeof . 115

6.3.234 \everyhbox 115

6.3.235 \everyjob . 115

6.3.236 \everymath 115

64

6.3.237 \everymathatom 116

6.3.238 \everypar . 116

6.3.239 \everytab . 116

6.3.240 \everyvbox 116

6.3.241 \exceptionpenalty 116

6.3.242 \exhyphenchar 116

6.3.243 \exhyphenpenalty 117

6.3.244 \expand . 117

6.3.245 \expandactive 117

6.3.246 \expandafter 117

6.3.247 \expandafterpars 117

6.3.248 \expandafterspaces 118

6.3.249 \expandcstoken 118

6.3.250 \expanded . 119

6.3.251 \expandedafter 119

6.3.252 \expandeddetokenize 119

6.3.253 \expandedendless 120

6.3.254 \expandedloop 120

6.3.255 \expandedrepeat 120

6.3.256 \expandparameter 120

6.3.257 \expandtoken 121

6.3.258 \expandtoks 122

6.3.259 \explicitdiscretionary 122

6.3.260 \explicithyphenpenalty 122

6.3.261 \explicititaliccorrection . 122

6.3.262 \explicitspace 122

6.3.263 \fam . 122

6.3.264 \fi . 122

6.3.265 \finalhyphendemerits 123

6.3.266 \firstmark 123

6.3.267 \firstmarks 123

6.3.268 \firstvalidlanguage 123

6.3.269 \fitnessclasses 123

6.3.270 \float . 123

6.3.271 \floatdef . 124

6.3.272 \floatexpr 124

6.3.273 \floatingpenalty 125

6.3.274 \flushmarks 125

6.3.275 \flushmvl . 125

6.3.276 \font . 125

6.3.277 \fontcharba 125

6.3.278 \fontchardp 125

6.3.279 \fontcharht 125

6.3.280 \fontcharic 126

6.3.281 \fontcharta 126

6.3.282 \fontcharwd 126

6.3.283 \fontdimen 126

6.3.284 \fontid . 126

6.3.285 \fontidentifier 127

6.3.286 \fontmathcontrol 127

6.3.287 \fontname . 127

6.3.288 \fontspecdef 127

6.3.289 \fontspecid 128

6.3.290 \fontspecifiedname 128

6.3.291 \fontspecifiedsize 128

6.3.292 \fontspecscale 129

6.3.293 \fontspecslant 129

6.3.294 \fontspecweight 129

6.3.295 \fontspecxscale 129

6.3.296 \fontspecyscale 129

6.3.297 \fonttextcontrol 129

6.3.298 \forcedleftcorrection 129

6.3.299 \forcedrightcorrection 130

6.3.300 \formatname 130

6.3.301 \frozen . 130

6.3.302 \futurecsname 130

6.3.303 \futuredef 130

6.3.304 \futureexpand 131

6.3.305 \futureexpandis 131

6.3.306 \futureexpandisap 132

6.3.307 \futurelet 132

6.3.308 \gdef . 132

6.3.309 \gdefcsname 132

6.3.310 \givenmathstyle 132

6.3.311 \gleaders . 132

6.3.312 \glet . 133

6.3.313 \gletcsname 133

6.3.314 \glettonothing 133

6.3.315 \global . 133

6.3.316 \globaldefs 134

6.3.317 \glueexpr . 134

6.3.318 \glueshrink 134

6.3.319 \glueshrinkorder 134

6.3.320 \gluespecdef 134

6.3.321 \gluestretch 134

6.3.322 \gluestretchorder 134

6.3.323 \gluetomu . 134

6.3.324 \glyph . 134

6.3.325 \glyphdatafield 135

6.3.326 \glyphoptions 135

6.3.327 \glyphscale 135

6.3.328 \glyphscriptfield 135

6.3.329 \glyphscriptscale 136

6.3.330 \glyphscriptscriptscale 136

6.3.331 \glyphslant 136

6.3.332 \glyphstatefield 136

6.3.333 \glyphtextscale 136

6.3.334 \glyphweight 136

65

6.3.335 \glyphxoffset 136

6.3.336 \glyphxscale 136

6.3.337 \glyphxscaled 136

6.3.338 \glyphyoffset 136

6.3.339 \glyphyscale 137

6.3.340 \glyphyscaled 137

6.3.341 \gtoksapp . 137

6.3.342 \gtokspre . 137

6.3.343 \halign . 137

6.3.344 \hangafter 138

6.3.345 \hangindent 138

6.3.346 \hbadness . 138

6.3.347 \hbadnessmode 138

6.3.348 \hbox . 138

6.3.349 \hccode . 138

6.3.350 \hfil . 139

6.3.351 \hfill . 139

6.3.352 \hfilneg . 139

6.3.353 \hfuzz . 139

6.3.354 \hjcode . 139

6.3.355 \hkern . 139

6.3.356 \hmcode . 139

6.3.357 \holdinginserts 140

6.3.358 \holdingmigrations 140

6.3.359 \hpack . 140

6.3.360 \hpenalty . 140

6.3.361 \hrule . 140

6.3.362 \hsize . 141

6.3.363 \hskip . 141

6.3.364 \hss . 141

6.3.365 \ht . 142

6.3.366 \hyphenation 142

6.3.367 \hyphenationmin 142

6.3.368 \hyphenationmode 142

6.3.369 \hyphenchar 142

6.3.370 \hyphenpenalty 142

6.3.371 \if . 142

6.3.372 \ifabsdim . 143

6.3.373 \ifabsfloat 143

6.3.374 \ifabsnum . 143

6.3.375 \ifarguments 144

6.3.376 \ifboolean 144

6.3.377 \ifcase . 144

6.3.378 \ifcat . 144

6.3.379 \ifchkdim . 144

6.3.380 \ifchkdimension 145

6.3.381 \ifchkdimexpr 145

6.3.382 \ifchknum . 145

6.3.383 \ifchknumber 145

6.3.384 \ifchknumexpr 146

6.3.385 \ifcmpdim . 146

6.3.386 \ifcmpnum . 146

6.3.387 \ifcondition 146

6.3.388 \ifcramped 147

6.3.389 \ifcsname . 147

6.3.390 \ifcstok . 147

6.3.391 \ifdefined 148

6.3.392 \ifdim . 148

6.3.393 \ifdimexpression 148

6.3.394 \ifdimval . 148

6.3.395 \ifempty . 149

6.3.396 \iffalse . 149

6.3.397 \ifflags . 149

6.3.398 \iffloat . 149

6.3.399 \iffontchar 150

6.3.400 \ifhaschar 150

6.3.401 \ifhastok . 150

6.3.402 \ifhastoks 150

6.3.403 \ifhasxtoks 150

6.3.404 \ifhbox . 151

6.3.405 \ifhmode . 151

6.3.406 \ifinalignment 151

6.3.407 \ifincsname 151

6.3.408 \ifinner . 152

6.3.409 \ifinsert . 152

6.3.410 \ifintervaldim 152

6.3.411 \ifintervalfloat 152

6.3.412 \ifintervalnum 152

6.3.413 \iflastnamedcs 152

6.3.414 \iflist . 153

6.3.415 \ifmathparameter 153

6.3.416 \ifmathstyle 153

6.3.417 \ifmmode . 153

6.3.418 \ifnum . 153

6.3.419 \ifnumexpression 154

6.3.420 \ifnumval . 154

6.3.421 \ifodd . 154

6.3.422 \ifparameter 155

6.3.423 \ifparameters 155

6.3.424 \ifrelax . 155

6.3.425 \iftok . 155

6.3.426 \iftrue . 156

6.3.427 \ifvbox . 156

6.3.428 \ifvmode . 156

6.3.429 \ifvoid . 156

6.3.430 \ifx . 156

6.3.431 \ifzerodim 156

6.3.432 \ifzerofloat 157

66

6.3.433 \ifzeronum 157

6.3.434 \ignorearguments 157

6.3.435 \ignoredepthcriterion 157

6.3.436 \ignorenestedupto 157

6.3.437 \ignorepars 158

6.3.438 \ignorerest 158

6.3.439 \ignorespaces 158

6.3.440 \ignoreupto 159

6.3.441 \immediate 159

6.3.442 \immutable 159

6.3.443 \indent . 159

6.3.444 \indexedsubprescript 159

6.3.445 \indexedsubscript 159

6.3.446 \indexedsuperprescript 160

6.3.447 \indexedsuperscript 160

6.3.448 \indexofcharacter 160

6.3.449 \indexofregister 161

6.3.450 \inherited 161

6.3.451 \initcatcodetable 161

6.3.452 \initialpageskip 161

6.3.453 \initialtopskip 161

6.3.454 \input . 161

6.3.455 \inputlineno 161

6.3.456 \insert . 162

6.3.457 \insertbox 162

6.3.458 \insertcopy 162

6.3.459 \insertdepth 162

6.3.460 \insertdistance 162

6.3.461 \insertheight 162

6.3.462 \insertheights 162

6.3.463 \insertlimit 162

6.3.464 \insertlinedepth 162

6.3.465 \insertlineheight 162

6.3.466 \insertmaxdepth 163

6.3.467 \insertmode 163

6.3.468 \insertmultiplier 163

6.3.469 \insertpenalties 163

6.3.470 \insertpenalty 163

6.3.471 \insertprogress 163

6.3.472 \insertshrink 163

6.3.473 \insertstorage 163

6.3.474 \insertstoring 163

6.3.475 \insertstretch 163

6.3.476 \insertunbox 164

6.3.477 \insertuncopy 164

6.3.478 \insertwidth 164

6.3.479 \instance . 164

6.3.480 \integerdef 164

6.3.481 \interactionmode 164

6.3.482 \interlinepenalties 165

6.3.483 \interlinepenalty 165

6.3.484 \jobname . 165

6.3.485 \kern . 165

6.3.486 \language . 165

6.3.487 \lastarguments 165

6.3.488 \lastatomclass 166

6.3.489 \lastboundary 166

6.3.490 \lastbox . 166

6.3.491 \lastchkdimension 166

6.3.492 \lastchknumber 166

6.3.493 \lastkern . 166

6.3.494 \lastleftclass 166

6.3.495 \lastlinefit 166

6.3.496 \lastloopiterator 166

6.3.497 \lastnamedcs 167

6.3.498 \lastnodesubtype 167

6.3.499 \lastnodetype 167

6.3.500 \lastpageextra 167

6.3.501 \lastparcontext 167

6.3.502 \lastpartrigger 167

6.3.503 \lastpenalty 168

6.3.504 \lastrightclass 168

6.3.505 \lastskip . 168

6.3.506 \lccode . 168

6.3.507 \leaders . 168

6.3.508 \left . 168

6.3.509 \lefthyphenmin 168

6.3.510 \leftmarginkern 168

6.3.511 \leftskip . 168

6.3.512 \lefttwindemerits 168

6.3.513 \leqno . 169

6.3.514 \let . 169

6.3.515 \letcharcode 169

6.3.516 \letcsname 169

6.3.517 \letfrozen 169

6.3.518 \letmathatomrule 170

6.3.519 \letmathparent 170

6.3.520 \letmathspacing 170

6.3.521 \letprotected 170

6.3.522 \lettolastnamedcs 170

6.3.523 \lettonothing 171

6.3.524 \limits . 171

6.3.525 \linebreakchecks 171

6.3.526 \linebreakoptional 171

6.3.527 \linebreakpasses 171

6.3.528 \linedirection 172

6.3.529 \linepenalty 172

6.3.530 \lineskip . 172

67

6.3.531 \lineskiplimit 172

6.3.532 \localbreakpar 172

6.3.533 \localbrokenpenalty 172

6.3.534 \localcontrol 172

6.3.535 \localcontrolled 173

6.3.536 \localcontrolledendless 173

6.3.537 \localcontrolledloop 173

6.3.538 \localcontrolledrepeat 174

6.3.539 \localinterlinepenalty 174

6.3.540 \localleftbox 174

6.3.541 \localleftboxbox 174

6.3.542 \localmiddlebox 174

6.3.543 \localmiddleboxbox 174

6.3.544 \localpretolerance 175

6.3.545 \localrightbox 175

6.3.546 \localrightboxbox 175

6.3.547 \localtolerance 175

6.3.548 \long . 175

6.3.549 \looseness 175

6.3.550 \lower . 175

6.3.551 \lowercase 175

6.3.552 \lpcode . 176

6.3.553 \luaboundary 176

6.3.554 \luabytecode 176

6.3.555 \luabytecodecall 176

6.3.556 \luacopyinputnodes 176

6.3.557 \luadef . 176

6.3.558 \luaescapestring 177

6.3.559 \luafunction 177

6.3.560 \luafunctioncall 177

6.3.561 \luatexbanner 177

6.3.562 \luametatexmajorversion 177

6.3.563 \luametatexminorversion 178

6.3.564 \luametatexrelease 178

6.3.565 \luatexrevision 178

6.3.566 \luatexversion 178

6.3.567 \mark . 178

6.3.568 \marks . 178

6.3.569 \mathaccent 178

6.3.570 \mathatom . 178

6.3.571 \mathatomglue 179

6.3.572 \mathatomskip 179

6.3.573 \mathbackwardpenalties 179

6.3.574 \mathbeginclass 179

6.3.575 \mathbin . 179

6.3.576 \mathboundary 179

6.3.577 \mathchar . 180

6.3.578 \mathcharclass 180

6.3.579 \mathchardef 180

6.3.580 \mathcharfam 180

6.3.581 \mathcharslot 180

6.3.582 \mathcheckfencesmode 180

6.3.583 \mathchoice 180

6.3.584 \mathclass 180

6.3.585 \mathclose 181

6.3.586 \mathcode . 181

6.3.587 \mathdictgroup 181

6.3.588 \mathdictionary 182

6.3.589 \mathdictproperties 182

6.3.590 \mathdirection 182

6.3.591 \mathdiscretionary 182

6.3.592 \mathdisplaymode 182

6.3.593 \mathdisplaypenaltyfactor . 182

6.3.594 \mathdisplayskipmode 183

6.3.595 \mathdoublescriptmode 183

6.3.596 \mathendclass 183

6.3.597 \matheqnogapstep 183

6.3.598 \mathfontcontrol 183

6.3.599 \mathforwardpenalties 184

6.3.600 \mathgluemode 185

6.3.601 \mathgroupingmode 185

6.3.602 \mathinlinepenaltyfactor . . . 185

6.3.603 \mathinner 185

6.3.604 \mathleftclass 185

6.3.605 \mathlimitsmode 185

6.3.606 \mathmainstyle 186

6.3.607 \mathnolimitsmode 187

6.3.608 \mathop . 187

6.3.609 \mathopen . 187

6.3.610 \mathord . 187

6.3.611 \mathparentstyle 187

6.3.612 \mathpenaltiesmode 188

6.3.613 \mathpretolerance 188

6.3.614 \mathpunct 188

6.3.615 \mathrel . 188

6.3.616 \mathrightclass 188

6.3.617 \mathrulesfam 188

6.3.618 \mathrulesmode 188

6.3.619 \mathscale 188

6.3.620 \mathscriptsmode 189

6.3.621 \mathslackmode 189

6.3.622 \mathspacingmode 189

6.3.623 \mathstack 189

6.3.624 \mathstackstyle 190

6.3.625 \mathstyle 190

6.3.626 \mathstylefontid 190

6.3.627 \mathsurround 190

6.3.628 \mathsurroundmode 190

68

6.3.629 \mathsurroundskip 190

6.3.630 \maththreshold 190

6.3.631 \mathtolerance 191

6.3.632 \maxdeadcycles 191

6.3.633 \maxdepth . 191

6.3.634 \meaning . 191

6.3.635 \meaningasis 191

6.3.636 \meaningful 191

6.3.637 \meaningfull 191

6.3.638 \meaningles 192

6.3.639 \meaningless 192

6.3.640 \medmuskip 192

6.3.641 \message . 192

6.3.642 \middle . 192

6.3.643 \mkern . 192

6.3.644 \month . 192

6.3.645 \moveleft . 192

6.3.646 \moveright 192

6.3.647 \mskip . 193

6.3.648 \muexpr . 193

6.3.649 \mugluespecdef 193

6.3.650 \multiply . 193

6.3.651 \multiplyby 193

6.3.652 \muskip . 193

6.3.653 \muskipdef 193

6.3.654 \mutable . 193

6.3.655 \mutoglue . 193

6.3.656 \mvlcurrentlyactive 193

6.3.657 \nestedloopiterator 194

6.3.658 \newlinechar 194

6.3.659 \noalign . 194

6.3.660 \noaligned 194

6.3.661 \noatomruling 194

6.3.662 \noboundary 194

6.3.663 \noexpand . 195

6.3.664 \nohrule . 195

6.3.665 \noindent . 195

6.3.666 \nolimits . 195

6.3.667 \nomathchar 195

6.3.668 \nonscript 195

6.3.669 \nonstopmode 195

6.3.670 \nooutputboxerror 195

6.3.671 \norelax . 196

6.3.672 \normalizelinemode 196

6.3.673 \normalizeparmode 197

6.3.674 \noscript . 197

6.3.675 \nospaces . 197

6.3.676 \nosubprescript 197

6.3.677 \nosubscript 197

6.3.678 \nosuperprescript 197

6.3.679 \nosuperscript 197

6.3.680 \novrule . 198

6.3.681 \nulldelimiterspace 198

6.3.682 \nullfont . 198

6.3.683 \number . 198

6.3.684 \numericscale 198

6.3.685 \numericscaled 198

6.3.686 \numexpr . 199

6.3.687 \numexpression 199

6.3.688 \omit . 200

6.3.689 \optionalboundary 200

6.3.690 \or . 200

6.3.691 \orelse . 200

6.3.692 \orphanlinefactors 202

6.3.693 \orphanpenalties 202

6.3.694 \orunless . 202

6.3.695 \outer . 203

6.3.696 \output . 203

6.3.697 \outputbox 203

6.3.698 \outputpenalty 203

6.3.699 \over . 203

6.3.700 \overfullrule 203

6.3.701 \overline . 203

6.3.702 \overloaded 204

6.3.703 \overloadmode 204

6.3.704 \overshoot 204

6.3.705 \overwithdelims 205

6.3.706 \pageboundary 205

6.3.707 \pagedepth 205

6.3.708 \pagediscards 205

6.3.709 \pageexcess 206

6.3.710 \pageextragoal 206

6.3.711 \pagefilllstretch 206

6.3.712 \pagefillstretch 206

6.3.713 \pagefilstretch 206

6.3.714 \pagefistretch 206

6.3.715 \pagegoal . 206

6.3.716 \pagelastdepth 206

6.3.717 \pagelastfilllstretch 206

6.3.718 \pagelastfillstretch 206

6.3.719 \pagelastfilstretch 206

6.3.720 \pagelastfistretch 207

6.3.721 \pagelastheight 207

6.3.722 \pagelastshrink 207

6.3.723 \pagelaststretch 207

6.3.724 \pageshrink 207

6.3.725 \pagestretch 207

6.3.726 \pagetotal 207

69

6.3.727 \pagevsize 207

6.3.728 \par . 207

6.3.729 \parametercount 207

6.3.730 \parameterdef 207

6.3.731 \parameterindex 208

6.3.732 \parametermark 208

6.3.733 \parametermode 208

6.3.734 \parattribute 208

6.3.735 \pardirection 208

6.3.736 \parfillleftskip 208

6.3.737 \parfillrightskip 209

6.3.738 \parfillskip 209

6.3.739 \parindent 209

6.3.740 \parinitleftskip 209

6.3.741 \parinitrightskip 209

6.3.742 \paroptions 209

6.3.743 \parpasses 209

6.3.744 \parpassesexception 209

6.3.745 \parshape . 209

6.3.746 \parshapedimen 209

6.3.747 \parshapeindent 209

6.3.748 \parshapelength 210

6.3.749 \parshapewidth 210

6.3.750 \parskip . 210

6.3.751 \patterns . 210

6.3.752 \pausing . 210

6.3.753 \penalty . 210

6.3.754 \permanent 210

6.3.755 \pettymuskip 210

6.3.756 \positdef . 210

6.3.757 \postdisplaypenalty 211

6.3.758 \postexhyphenchar 211

6.3.759 \posthyphenchar 211

6.3.760 \postinlinepenalty 211

6.3.761 \postshortinlinepenalty 211

6.3.762 \prebinoppenalty 211

6.3.763 \predisplaydirection 211

6.3.764 \predisplaygapfactor 212

6.3.765 \predisplaypenalty 212

6.3.766 \predisplaysize 212

6.3.767 \preexhyphenchar 212

6.3.768 \prehyphenchar 212

6.3.769 \preinlinepenalty 212

6.3.770 \prerelpenalty 212

6.3.771 \preshortinlinepenalty 212

6.3.772 \pretolerance 212

6.3.773 \prevdepth 212

6.3.774 \prevgraf . 213

6.3.775 \previousloopiterator 213

6.3.776 \primescript 213

6.3.777 \protected 213

6.3.778 \protecteddetokenize 213

6.3.779 \protectedexpandeddeto

kenize . 213

6.3.780 \protrudechars 214

6.3.781 \protrusionboundary 214

6.3.782 \pxdimen . 214

6.3.783 \quitloop . 214

6.3.784 \quitloopnow 214

6.3.785 \quitvmode 214

6.3.786 \radical . 214

6.3.787 \raise . 214

6.3.788 \rdivide . 214

6.3.789 \rdivideby 215

6.3.790 \realign . 215

6.3.791 \relax . 215

6.3.792 \relpenalty 216

6.3.793 \resetlocalboxes 216

6.3.794 \resetmathspacing 216

6.3.795 \restorecatcodetable 216

6.3.796 \retained . 218

6.3.797 \retokenized 219

6.3.798 \right . 220

6.3.799 \righthyphenmin 220

6.3.800 \rightmarginkern 220

6.3.801 \rightskip 220

6.3.802 \righttwindemerits 220

6.3.803 \romannumeral 220

6.3.804 \rpcode . 220

6.3.805 \savecatcodetable 220

6.3.806 \savinghyphcodes 220

6.3.807 \savingvdiscards 220

6.3.808 \scaledemwidth 221

6.3.809 \scaledexheight 221

6.3.810 \scaledextraspace 221

6.3.811 \scaledfontcharba 221

6.3.812 \scaledfontchardp 221

6.3.813 \scaledfontcharht 221

6.3.814 \scaledfontcharic 221

6.3.815 \scaledfontcharta 221

6.3.816 \scaledfontcharwd 221

6.3.817 \scaledfontdimen 221

6.3.818 \scaledinterwordshrink 222

6.3.819 \scaledinterwordspace 222

6.3.820 \scaledinterwordstretch 222

6.3.821 \scaledmathaxis 222

6.3.822 \scaledmathemwidth 222

6.3.823 \scaledmathexheight 222

70

6.3.824 \scaledmathstyle 222

6.3.825 \scaledslantperpoint 222

6.3.826 \scantextokens 222

6.3.827 \scantokens 223

6.3.828 \scriptfont 223

6.3.829 \scriptscriptfont 223

6.3.830 \scriptscriptstyle 223

6.3.831 \scriptspace 223

6.3.832 \scriptspaceafterfactor 223

6.3.833 \scriptspacebeforefactor . . . 223

6.3.834 \scriptspacebetweenfactor . 223

6.3.835 \scriptstyle 224

6.3.836 \scrollmode 224

6.3.837 \semiexpand 224

6.3.838 \semiexpanded 224

6.3.839 \semiprotected 224

6.3.840 \setbox . 224

6.3.841 \setdefaultmathcodes 225

6.3.842 \setfontid 225

6.3.843 \setlanguage 225

6.3.844 \setmathatomrule 225

6.3.845 \setmathdisplaypostpenalty 226

6.3.846 \setmathdisplayprepenalty . 226

6.3.847 \setmathignore 226

6.3.848 \setmathoptions 226

6.3.849 \setmathpostpenalty 226

6.3.850 \setmathprepenalty 227

6.3.851 \setmathspacing 227

6.3.852 \sfcode . 227

6.3.853 \shapingpenaltiesmode 227

6.3.854 \shapingpenalty 227

6.3.855 \shipout . 228

6.3.856 \shortinlinemaththreshold . 228

6.3.857 \shortinlineorphanpenalty . 228

6.3.858 \show . 228

6.3.859 \showbox . 228

6.3.860 \showboxbreadth 228

6.3.861 \showboxdepth 228

6.3.862 \showcodestack 228

6.3.863 \showgroups 228

6.3.864 \showifs . 229

6.3.865 \showlists 229

6.3.866 \shownodedetails 229

6.3.867 \showstack 229

6.3.868 \showthe . 230

6.3.869 \showtokens 230

6.3.870 \singlelinepenalty 230

6.3.871 \skewchar . 230

6.3.872 \skip . 230

6.3.873 \skipdef . 230

6.3.874 \snapshotpar 230

6.3.875 \spacechar 231

6.3.876 \spacefactor 231

6.3.877 \spacefactormode 232

6.3.878 \spacefactoroverload 232

6.3.879 \spacefactorshrinklimit 232

6.3.880 \spacefactorstretchlimit . . . 232

6.3.881 \spaceskip 232

6.3.882 \span . 232

6.3.883 \specificationdef 233

6.3.884 \splitbotmark 233

6.3.885 \splitbotmarks 233

6.3.886 \splitdiscards 233

6.3.887 \splitextraheight 233

6.3.888 \splitfirstmark 233

6.3.889 \splitfirstmarks 233

6.3.890 \splitlastdepth 233

6.3.891 \splitlastheight 234

6.3.892 \splitlastshrink 234

6.3.893 \splitlaststretch 234

6.3.894 \splitmaxdepth 234

6.3.895 \splittopskip 234

6.3.896 \srule . 234

6.3.897 \string . 234

6.3.898 \subprescript 234

6.3.899 \subscript 234

6.3.900 \superprescript 234

6.3.901 \superscript 235

6.3.902 \supmarkmode 235

6.3.903 \swapcsvalues 235

6.3.904 \tabsize . 236

6.3.905 \tabskip . 236

6.3.906 \textdirection 236

6.3.907 \textfont . 236

6.3.908 \textstyle 237

6.3.909 \the . 237

6.3.910 \thewithoutunit 237

6.3.911 \thickmuskip 237

6.3.912 \thinmuskip 237

6.3.913 \time . 237

6.3.914 \tinymuskip 237

6.3.915 \tocharacter 237

6.3.916 \toddlerpenalties 237

6.3.917 \todimension 238

6.3.918 \tohexadecimal 238

6.3.919 \tointeger 238

6.3.920 \tokenized 238

6.3.921 \toks . 238

71

6.3.922 \toksapp . 239

6.3.923 \toksdef . 239

6.3.924 \tokspre . 239

6.3.925 \tolerance 239

6.3.926 \tolerant . 239

6.3.927 \tomathstyle 240

6.3.928 \topmark . 240

6.3.929 \topmarks . 240

6.3.930 \topskip . 240

6.3.931 \toscaled . 240

6.3.932 \tosparsedimension 240

6.3.933 \tosparsescaled 241

6.3.934 \tpack . 241

6.3.935 \tracingadjusts 241

6.3.936 \tracingalignments 241

6.3.937 \tracingassigns 241

6.3.938 \tracingbalancing 241

6.3.939 \tracingcommands 241

6.3.940 \tracingexpressions 241

6.3.941 \tracingfitness 241

6.3.942 \tracingfullboxes 241

6.3.943 \tracinggroups 242

6.3.944 \tracinghyphenation 242

6.3.945 \tracingifs 242

6.3.946 \tracinginserts 242

6.3.947 \tracinglevels 242

6.3.948 \tracinglists 242

6.3.949 \tracingloners 242

6.3.950 \tracinglooseness 242

6.3.951 \tracinglostchars 242

6.3.952 \tracingmacros 242

6.3.953 \tracingmarks 243

6.3.954 \tracingmath 243

6.3.955 \tracingmvl 243

6.3.956 \tracingnesting 243

6.3.957 \tracingnodes 243

6.3.958 \tracingonline 243

6.3.959 \tracingorphans 243

6.3.960 \tracingoutput 243

6.3.961 \tracingpages 243

6.3.962 \tracingparagraphs 244

6.3.963 \tracingpasses 244

6.3.964 \tracingpenalties 244

6.3.965 \tracingrestores 244

6.3.966 \tracingstats 244

6.3.967 \tracingtoddlers 244

6.3.968 \tsplit . 244

6.3.969 \uccode . 244

6.3.970 \uchyph . 244

6.3.971 \uleaders . 244

6.3.972 \unboundary 246

6.3.973 \undent . 246

6.3.974 \underline 247

6.3.975 \unexpanded 247

6.3.976 \unexpandedendless 247

6.3.977 \unexpandedloop 247

6.3.978 \unexpandedrepeat 248

6.3.979 \unhbox . 248

6.3.980 \unhcopy . 248

6.3.981 \unhpack . 248

6.3.982 \unkern . 248

6.3.983 \unless . 248

6.3.984 \unletfrozen 249

6.3.985 \unletprotected 249

6.3.986 \unpenalty 249

6.3.987 \unskip . 249

6.3.988 \untraced . 249

6.3.989 \unvbox . 250

6.3.990 \unvcopy . 250

6.3.991 \unvpack . 250

6.3.992 \uppercase 250

6.3.993 \vadjust . 250

6.3.994 \valign . 250

6.3.995 \variablefam 250

6.3.996 \vbadness . 250

6.3.997 \vbadnessmode 251

6.3.998 \vbalance . 251

6.3.999 \vbalancedbox 251

6.3.1000 \vbalanceddeinsert 252

6.3.1001 \vbalanceddiscard 252

6.3.1002 \vbalancedinsert 252

6.3.1003 \vbalancedreinsert 252

6.3.1004 \vbalancedtop 252

6.3.1005 \vbox . 252

6.3.1006 \vcenter . 252

6.3.1007 \vfil . 253

6.3.1008 \vfill . 253

6.3.1009 \vfilneg . 253

6.3.1010 \vfuzz . 253

6.3.1011 \virtualhrule 253

6.3.1012 \virtualvrule 253

6.3.1013 \vkern . 253

6.3.1014 \vpack . 253

6.3.1015 \vpenalty . 253

6.3.1016 \vrule . 253

6.3.1017 \vsize . 253

6.3.1018 \vskip . 254

6.3.1019 \vsplit . 254

72

6.3.1020 \vsplitchecks 254

6.3.1021 \vss . 254

6.3.1022 \vtop . 254

6.3.1023 \wd . 254

6.3.1024 \widowpenalties 254

6.3.1025 \widowpenalty 254

6.3.1026 \wordboundary 254

6.3.1027 \wrapuppar 254

6.3.1028 \xdef . 255

6.3.1029 \xdefcsname 255

6.3.1030 \xleaders . 255

6.3.1031 \xspaceskip 255

6.3.1032 \xtoks . 255

6.3.1033 \xtoksapp . 255

6.3.1034 \xtokspre . 255

6.3.1035 \year . 255

In this document the section titles that discuss the original TEX and 𝜀-TEX primitives have a different

color those explaining the LuaTEX and LuaMetaTEX primitives.

Primitives that extend typesetting related functionality, provide control over subsystems (like math),

allocate additional data types and resources, deal with fonts and languages, manipulate boxes and

glyphs, etc. are hardly discussed here, only mentioned. Math for instance is a topic of its own. In this

document we concentrate on the programming aspects.

Most of the new primitives are discussed in specific manuals and often also original primitives are

covered there but the best explanations of the traditional primitives can be found in The TEXbook by

Donald Knuth and TEX by Topic from Victor Eijkhout. I see no need to try to improve on those.

6.2 Rationale

Some words about the why and how it came. One of the early adopters of ConTEXt was Taco Hoekwater

and we spent numerous trips to TEX meetings all over the globe. He was also the only one I knew who

had read the TEX sources. Because ConTEXt has always been on the edge of what is possible and at

that time we both used it for rather advanced rendering, we also ran into the limitations. I'm not

talking of TEX features here. Naturally old school TEX is not really geared for dealing with images of

all kind, colors in all kind of color spaces, highly interactive documents, input methods like xml, etc.

The nice thing is that it offers some escapes, like specials and writes and later execution of programs

that opened up lots of possibilities, so in practice there were no real limitations to what one could do.

But coming up with a consistent and extensible (multi lingual) user interface was non trivial, because

it had an impact in memory usage and performance. A lot could be done given some programming,

as ConTEXt MkII proves, but it was not always pretty under the hood. The move to LuaTEX and MkIV

transferred some action to Lua, and because LuaTEX effectively was a ConTEXt related project, we

could easily keep them in sync.

Our traveling together, meeting several times per year, and eventually email and intense LuaTEX de

velopments (lots of Skype sessions) for a couple of years, gave us enough opportunity to discuss all

kind of nice features not present in the engine. The previous century we discussed lots of them, re

jected some, stayed with others, and I admit that forgot about most of the arguments already. Some

that we did was already explored in eetex, some of those ended up in LuaTEX, and eventually what we

have in LuaMetaTEX can been seen as the result of years of programming in TEX, improving macros,

getting more performance and efficiency out of existing ConTEXt code and inspiration that we got out

of the ConTEXt community, a demanding lot, always willing to experiment with us.

Once I decided to work on LuaMetaTEX and bind its source to the ConTEXt distribution so that we can

be sure that it won't get messed up and might interfere with the ConTEXt expectations, some more

primitives saw their way into it. It is very easy to come up with all kind of bells and whistles but it is

equally easy to hurt performance of an engine and what might go unnoticed in simple tests can really

73

affect a macro package that depends on stability. So, what I did was mostly looking at the ConTEXt

code and wondering how to make some of the low level macros look more natural, also because I know

that there are users who look into these sources. We spend a lot of time making them look consistent

and nice and the nicer the better. Getting a better performance was seldom an argument because

much is already as fast as can be so there is not that much to gain, but less clutter in tracing was an

argument for some new primitives. Also, the fact that we soon might need to fall back on our phones to

use TEX a smaller memory footprint and less byte shuffling also was a consideration. The LuaMetaTEX

memory footprint is somewhat smaller than the LuaTEX footprint. By binding LuaMetaTEX to ConTEXt

we can also guarantee that the combinations works as expected.

I'm aware of the fact that ConTEXt is in a somewhat unique position. First of all it has always been

kind of cutting edge so its users are willing to experiment. There are users who immediately update

and run tests, so bugs can and will be fixed fast. Already for a long time the community has an conve

nient infrastructure for updating and the build farm for generating binaries (also for other engines)

is running smoothly.

Then there is the ConTEXt user interface that is quite consistent and permits extensions with staying

backward compatible. Sometimes users run into old manuals or examples and then complain that

ConTEXt is not compatible but that then involves obsolete technology: we no longer need font and

input encodings and font definitions are different for OpenType fonts. We always had an abstract

backend model, but nowadays pdf is kind of dominant and drives a lot of expectations. So, some of

the MkII commands are gone and MkIV has some more. Also, as MetaPost evolved that department

in ConTEXt also evolved. Think of it like cars: soon all are electric so one cannot expect a hole to poor

in some fluid but gets a (often incompatible) plug instead. And buttons became touch panels. There

is no need to use much force to steer or brake. Navigation is different, as are many controls. And do

we need to steer ourselves a decade from now?

So, just look at TEX and ConTEXt in the same way. A system from the nineties in the previous century

differs from one three decades later. Demands differ, input differs, resources change, editing and

processing moves on, and so on. Manuals, although still being written are seldom read from cover

to cover because online searching replaced them. And who buys books about programming? So Lua-

MetaTEX, while still being TEX also moves on, as do the way we do our low level coding. This makes

sense because the original TEX ecosystem was not made with a huge and complex macro package

in mind, that just happened. An author was supposed to make a style for each document. An often

used argument for using another macro package over ConTEXt was that the later evolved and other

macro packages would work the same forever and not change from the perspective of the user. In

retrospect those arguments were somewhat strange because the world, computers, users etc. do

change. Standards come and go, as do software politics and preferences. In many aspects the TEX

community is not different from other large software projects, operating system wars, library devotees,

programming language addicts, paradigm shifts. But, don't worry, if you don't like LuaMetaTEX and

its new primitives, just forget about them. The other engines will be there forever and are a safe bet,

although LuaTEX already stirred up the pot I guess. But keep in mind that new features in the latest

greatest ConTEXt version will more and more rely on LuaMetaTEX being used; after all that is where

it's made for. And this manual might help understand its users why, where and how the low level code

differs between MkII, MkIV and LMTX.

Can we expect more new primitives than the ones introduced here? Given the amount of time I spent

on experimenting and considering what made sense and what not, the answer probably is “no”, or at

least “not that much”. As in the past no user ever requested the kind of primitives that were added, I

don't expect users to come up with requests in the future either. Of course, those more closely related

74

to ConTEXt development look at it from the other end. Because it's there where the low level action

really is, demands might still evolve.

Basically there are wo areas where the engine can evolve: the programming part and the rendering.

In this manual we focus on the programming and writing the manual sort of influences how details get

filled in. Rendering in more complex because there heuristics and usage plays a more dominant role.

Good examples are the math, par and page builder. They were extended and features were added

over time but improved rendering came later. Not all extensions are critical, some are there (and

got added) in order to write more readable code but there is only so much one can do in that area.

Occasionally a feature pops up that is a side effect of a challenge. No matter what gets added it might

not affect complexity too much and definitely not impact performance significantly!

6.3 Primitives

1 \<space>

This original TEX primitive is equivalent to the more verbose \explicitspace.

2 \-

This original TEX primitive is equivalent to the more verbose \explicitdiscretionary.

3 \/

This original TEX primitive is equivalent to the more verbose \explicititaliccorrection.

4 \Umathxscale

The \Umathxscale and \Umathyscale factors are applied to the horizontal and vertical parameters.

They are set by style. There is no combined scaling primitive.

$\Umathxscale\textstyle 800 a + b + x + d + e = f $\par

$\Umathxscale\textstyle 1000 a + b + x + d + e = f $\par

$\Umathxscale\textstyle 1200 a + b + x + d + e = f $\blank

$\Umathyscale\textstyle 800 \sqrt[2]{x+1}$\quad

$\Umathyscale\textstyle 1000 \sqrt[2]{x+1}$\quad

$\Umathyscale\textstyle 1200 \sqrt[2]{x+1}$\blank

Normally only small deviations from 1000 make sense but here we want to show the effect and use a

20% scaling:

𝑎+𝑏+𝑥+𝑑+𝑒=𝑓

𝑎+ 𝑏+ 𝑥+𝑑+ 𝑒 = 𝑓

𝑎 + 𝑏 + 𝑥 + 𝑑 + 𝑒 = 𝑓

2√

𝑥+ 1 2√

𝑥+ 1 2√

𝑥+ 1

75

5 \Umathyscale

See \Umathxscale]

6 \above

This is a variant of \over that doesn't put a rule in between.

7 \abovedisplayshortskip

The glue injected before a display formula when the line above it is not overlapping with the formula.

Watch out for interference with \baselineskip. It can be controlled by \displayskipmode.

8 \abovedisplayskip

The glue injected before a display formula. Watch out for interference with \baselineskip. It can be

controlled by \displayskipmode.

9 \abovewithdelims

This is a variant of \atop but with delimiters. It has a more advanced upgrade in \Uabovewithdelims.

10 \accent

This primitive is kind of obsolete in wide engines and takes two arguments: the indexes of an accent

and a base character.

11 \additionalpageskip

This quantity will be added to the current page goal, stretch and shrink after which it will be set to

zero.

12 \adjacentdemerits

This is a more granular variant of \adjdemerits and mostly meant for multipass par building, for

instance:

\adjacentdemerits 8 0 2500 5000 7500 10000 12500 15000 20000

More details can be found in the ‘beyond paragraphs’ chapter of the ‘beyond’ progress report. One can

also discriminate between loose and tight deltas. In these examples we also assume a more granular

fitness classes setup.

\adjacentdemerits 8 double

0 2500 5000 7500 10000 12500 15000 20000

20000 15000 125000 10000 7500 5000 2500 0

13 \adjdemerits

When TEX considers to lines to be incompatible it will add this penalty to its verdict when considering

this breakpoint.

76

14 \adjustspacing

This parameter controls expansion (hz). A value 2 expands glyphs and font kerns and a value of 3

only glyphs. Expansion of kerns can have side effects when they are used for positioning by OpenType

features.

15 \adjustspacingshrink

When set to a non zero value this overloads the shrink maximum in a font when expansion is applied.

This is then the case for all fonts.

16 \adjustspacingstep

When set to a non zero value this overloads the expansion step in a font when expansion is applied.

This is then the case for all fonts.

17 \adjustspacingstretch

When set to a non zero value this overloads the stretch maximum in a font when expansion is applied.

This is then the case for all fonts.

18 \advance

Advances the given register by an also given value:

\advance\scratchdimen 10pt

\advance\scratchdimen by 3pt

\advance\scratchcounterone \zerocount

\advance\scratchcounterone \scratchcountertwo

The by keyword is optional.

19 \advanceby

This is slightly more efficient variant of \advance that doesn't look for by and therefore, if one is

missing, doesn't need to push back the last seen token. Using \advance with by is nearly as efficient

but takes more tokens.

20 \afterassigned

The \afterassignment primitive stores a token to be injected (and thereby expanded) after an as

signment has happened. Unlike \aftergroup, multiple calls are not accumulated, and changing that

would be too incompatible. This is why we have \afterassigned, which can be used to inject a bunch

of tokens. But in order to be consistent this one is also not accumulative.

\afterassigned{done}%

\afterassigned{{\bf done}}%

\scratchcounter=123

results in: done being typeset.

77

21 \afterassignment

The token following \afterassignment, a traditional TEX primitive, is saved and gets injected (and

then expanded) after a following assignment took place.

\afterassignment !\def\MyMacro {}\quad

\afterassignment !\let\MyMacro ?\quad

\afterassignment !\scratchcounter 123\quad

\afterassignment !%

\afterassignment ?\advance\scratchcounter by 1

The \afterassignments are not accumulated, the last one wins:

! ! ! ?

22 \aftergroup

The traditional TEX \aftergroup primitive stores the next token and expands that after the group has

been closed.

Multiple \aftergroups are combined:

before{ ! \aftergroup a\aftergroup f\aftergroup t\aftergroup e\aftergroup r}

before ! after

23 \aftergrouped

The in itself powerful \aftergroup primitives works quite well, even if you need to do more than one

thing: you can either use it multiple times, or you can define a macro that does multiple things and

apply that after the group. However, you can avoid that by using this primitive which takes a list of

tokens.

regular

\bgroup

\aftergrouped{regular}%

\bf bold

\egroup

Because it happens after the group, we're no longer typesetting in bold.

regular bold regular

You can mix \aftergroup and \aftergrouped. Which one is more efficient depends on how many

tokens are delayed. Picking up one token is faster than scanning a list.

{

\aftergroup A \aftergroup B \aftergroup C

test 1 : }

{

\aftergrouped{What comes next 1}

\aftergrouped{What comes next 2}

78

\aftergrouped{What comes next 3}

test 2 : }

{

\aftergroup A \aftergrouped{What comes next 1}

\aftergroup B \aftergrouped{What comes next 2}

\aftergroup C \aftergrouped{What comes next 3}

test 3 : }

{

\aftergrouped{What comes next 1} \aftergroup A

\aftergrouped{What comes next 2} \aftergroup B

\aftergrouped{What comes next 3} \aftergroup C

test 4 : }

This gives:

test 1 : ABC

test 2 : What comes next 1What comes next 2What comes next 3

test 3 : AWhat comes next 1BWhat comes next 2CWhat comes next 3

test 4 : What comes next 1AWhat comes next 2BWhat comes next 3C

24 \aliased

This primitive is part of the overload protection subsystem where control sequences can be tagged.

\permanent\def\foo{FOO}

\let\ofo\foo

\aliased \let\oof\foo

\meaningasis\foo

\meaningasis\ofo

\meaningasis\oof

gives:

\permanent \def \foo {FOO}

\def \ofo {FOO}

\permanent \def \oof {FOO}

When a something is \let the ‘permanent’, ‘primitive’ and ‘immutable’ flags are removed but the

\aliased prefix retains them.

\let\relaxed\relax

\meaningasis\relax

\meaningasis\relaxed

So in this example the \relaxed alias is not flagged as primitive:

\global \primitive \relax

\relax

79

25 \aligncontent

This is equivalent to a hash in an alignment preamble. Contrary to \alignmark there is no need to

duplicate inside a macro definition.

26 \alignmark

When you have the # not set up as macro parameter character cq. align mark, you can use this primitive

instead. The same rules apply with respect to multiple such tokens in (nested) macros and alignments.

27 \alignmentcellsource

This sets the source id (a box property) of the current alignment cell.

28 \alignmentwrapsource

This sets the source id (a box property) of the current alignment row (in a \halign) or column (in a

\valign).

29 \aligntab

When you have the & not set up as align tab, you can use this primitive instead. The same rules apply

with respect to multiple such tokens in (nested) macros and alignments.

30 \allcrampedstyles

A symbolic representation of \crampeddisplaystyle, \crampedtextstyle, \crampedscriptstyle

and \crampedscriptscriptstyle; integer representation: 17.

31 \alldisplaystyles

A symbolic representation of \displaystyle and \crampeddisplaystyle; integer representation: 8.

32 \allmainstyles

A symbolic representation of \displaystyle, \crampeddisplaystyle, \textstyle and \cramped

textstyle; integer representation: 13.

33 \allmathstyles

A symbolic representation of \displaystyle, \crampeddisplaystyle, \textstyle, \cramped

textstyle, \scriptstyle, \crampedscriptstyle, \scriptscriptstyle and \crampedscriptscript

style; integer representation: 12.

34 \allscriptscriptstyles

A symbolic representation of \scriptscriptstyle and \crampedscriptscriptstyle; integer repre

sentation: 11.

80

35 \allscriptstyles

A symbolic representation of \scriptstyle and \crampedscriptstyle; integer representation: 10.

36 \allsplitstyles

A symbolic representation of \displaystyle and \textstyle but not \scriptstyle and

\scriptscriptstyle: set versus reset; integer representation: 14.

37 \alltextstyles

A symbolic representation of \textstyle and \crampedtextstyle; integer representation: 9.

38 \alluncrampedstyles

A symbolic representation of \displaystyle, \textstyle, \scriptstyle and \scriptscriptstyle;

integer representation: 16.

39 \allunsplitstyles

A symbolic representation of \scriptstyle and \scriptscriptstyle; integer representation: 15.

40 \amcode

41 \associateunit

The TEX engine comes with some build in units, like pt (fixed) and em (adaptive). On top of that a

macro package can add additional units, which is what we do in ConTEXt. In figure 6.1 we show the

current repertoire.

a b c d e f g h i j k l m n o p q r s t u v w x y z

b be bh bp bw

c cc cd ch cm cw cx

d dd dk

e em es eu ex

f fa fc fd fh fi fo fs ft fw

h hs

i in

l lc lh lr lw

m ma mm mq mu mx

p pc ph pi pt pw px

s sd sh sp st

t th ts tw

u uu

v vs

tex pdftex luametatex context

Figure 6.1 Available units

When this primitive is used in a context where a number is expected it returns the origin of the unit

(in the color legend running from 1 upto 4). A new unit is defined as:

\newdimen\MyDimenZA \MyDimenZA=10pt

81

\protected\def\MyDimenAB{\dimexpr\hsize/2\relax}

\associateunit za \MyDimenZA

\associateunit zb \MyMacroZB

Possible associations are: macros that expand to a dimension, internal dimension registers, register

dimensions (\dimendef, direct dimensions (\dimensiondef) and Lua functions that return a dimen

sion.

One can run into scanning ahead issues where TEX expects a unit and a user unit gets expanded. This

is why for instance in ConTEXt we define the ma unit as:

\protected\def\mathaxisunit{\scaledmathaxis\mathstyle\norelax}

\associateunit ma \mathaxisunit % or \newuserunit \mathaxisunit ma

So that it can be used in rule specifications that themselves look ahead for keywords and therefore

are normally terminated by a \relax. Adding the extra \norelax will make the scanner see one that

doesn't get fed back into the input. Of course a macro package has to manage extra units in order to

avoid conflicts.

42 \atendoffile

The \everyeof primitive is kind of useless because you don't know if a file (which can be a tokenlist

processed as pseudo file) itself includes a file, which then results in nested application of this token

register. One way around this is:

\atendoffile\SomeCommand

This acts on files the same way as \atendofgroup does. Multiple calls will be accumulated and are

bound to the current file.

43 \atendoffiled

This is the multi token variant of \atendoffile. Multiple invocations are accumulated and by default

prepended to the existing list. As with grouping this permits proper nesting. You can force an append

by the optional keyword reverse.

44 \atendofgroup

The token provided will be injected just before the group ends. Because these tokens are collected,

you need to be aware of possible interference between them. However, normally this is managed by

the macro package.

\bgroup

\atendofgroup\unskip

\atendofgroup)%

(but it works okay

\egroup

Of course these effects can also be achieved by combining (extra) grouping with \aftergroup calls,

so this is more a convenience primitives than a real necessity: (but it works okay), as proven here.

82

45 \atendofgrouped

This is the multi token variant of \atendofgroup. Of course the next example is somewhat naive when

it comes to spacing and so, but it shows the purpose.

\bgroup

\atendofgrouped{\bf QED}%

\atendofgrouped{ (indeed)}%

This sometimes looks nicer.

\egroup

Multiple invocations are accumulated: This sometimes looks nicer. QED (indeed).

46 \atop

This one stack two math elements on top of each other, like a fraction but with no rule. It has a more

advanced upgrade in \Uatop.

47 \atopwithdelims

This is a variant of \atop but with delimiters. It has a more advanced upgrade in \Uatopwithdelims.

48 \attribute

The following sets an attribute(register) value:

\attribute 999 = 123

An attribute is unset by assigning -2147483647 to it. A user needs to be aware of attributes being used

now and in the future of a macro package and setting them this way is very likely going to interfere.

49 \attributedef

This primitive can be used to relate a control sequence to an attribute register and can be used to

implement a mechanism for defining unique ones that won't interfere. As with other registers: leave

management to the macro package in order to avoid unwanted side effects!

50 \automaticdiscretionary

This is an alias for the automatic hyphen trigger -.

51 \automatichyphenpenalty

The penalty injected after an automatic discretionary -, when \hyphenationmode enables this.

52 \automigrationmode

This bitset determines what will bubble up to an outer level:

83

0x01 mark

0x02 insert

0x04 adjust

0x08 pre

0x10 post

The current value is 0xFFFF.

53 \autoparagraphmode

A paragraph can be triggered by an empty line, a \par token or an equivalent of it. This parameter

controls how \par is interpreted in different scenarios:

0x01 text

0x02 macro

0x04 continue

The current value is 0x1 and setting it to a non-zero value can have consequences for mechanisms

that expect otherwise. The text option uses the same code as an empty line. The macro option checks

a token in a macro preamble against the frozen \par token. The last option ignores the par token.

54 \badness

This one returns the last encountered badness value.

55 \balanceadjdemerits

These are added to the accumulated demerits depending on the fitness of neighbouring slots in bal

ancing act.

56 \balancebottomskip

The counterpart of \balancetopskip and ensures that the last depth honors this criterium.

57 \balanceboundary

This boundary is triggering a callback that can itself trigger a try break call. It's up to the macro

package to come up with a usage scenario.

58 \balancebreakpasses

See (upcoming) ConTEXt documentation for an explanation.

59 \balancechecks

The balance tracer callback gets this paremeter passed.

60 \balanceemergencyshrink

This is a reserved parameter.

84

61 \balanceemergencystretch

When set this will make the balancer more tolerant. It's comparable to \emergencystretch in the par

builder.

62 \balancelineheight

This is a reserved parameter.

63 \balancelooseness

When set the balancer tries to produce nore or less slots. As with the par builder the result of looseness

is kind of unpredictable. One needs plenty of glue and normally that is not present in a vertical list.

64 \balancepasses

Specifies one or more recipes for additional second balance passes. Examples can be found in the

ConTEXt distribution (in due time).

65 \balancepenalty

This is the penalty applied between slots, prety much like \linepenalty.

66 \balancefinalpenalties

This is a penalty array which values will be applied to the end of the to be balanced list, starting at

the end. Widow, club and other encountered penalties will be overloaded.

\balancefinalpenalties 4

10000 9000 8000 7000

\relax

The last one is not repetitive so here at most four penalties will be injected between lines (that is:

hlists with the line subtype).

67 \balanceshape

68 \balanceshapebottomspace

This gives the (fixed) amount of space added at the bottom of the given shape slot.

\the\balanceshapebottomspace 1 \space

\the\balanceshapebottomspace 3

We get: 21.0pt 23.0pt.

69 \balanceshapetopspace

This provides (fixed) amount of space added at the top of the given shape slot.

85

\the\balanceshapetopspace 1 \space

\the\balanceshapetopspace 3

This results in: 11.0pt 13.0pt.

70 \balanceshapevsize

This returns the the target height of the given shape slot.

\the\balanceshapevsize 1 \space

\the\balanceshapevsize 3

This results in: 91.0pt 93.0pt.

71 \balancetolerance

This parameter sets the criterium for a slot being bad (pretty much like in the linebreak for a line).

Although the code is able to have a pre balance pass it has no meaning here so we don't have a

\balancepretolerance.5

72 \balancetopskip

This glue ensures the height of the first content (box or rule) in a slot. It can be compared to \topskip

and \splittopskip.

73 \balancevsize

This sets the target height of a balance slot unless \balanceshape is used.

74 \baselineskip

This is the maximum glue put between lines. The depth of the previous and height of the next line are

substracted.

75 \batchmode

This command disables (error) messages which can safe some runtime in situations where TEX's char

acter-by-character log output impacts runtime. It only makes sense in automated workflows where

one doesn't look at the log anyway.

76 \begincsname

The next code creates a control sequence token from the given serialized tokens:

\csname mymacro\endcsname

5 We might find usage for it some day.

86

When \mymacro is not defined a control sequence will be created with the meaning \relax. A side

effect is that a test for its existence might fail because it now exists. The next sequence will not create

an controil sequence:

\begincsname mymacro\endcsname

This actually is kind of equivalent to:

\ifcsname mymacro\endcsname

\csname mymacro\endcsname

\fi

77 \begingroup

This primitive starts a group and has to be ended with \endgroup. See \beginsimplegroup for more

info.

78 \beginlocalcontrol

Once TEX is initialized it will enter the main loop. In there certain commands trigger a function that

itself can trigger further scanning and functions. In LuaMetaTEX we can have local main loops and

we can either enter it from the Lua end (which we don't discuss here) or at the TEX end using this

primitive.

\scratchcounter100

\edef\whatever{

a

\beginlocalcontrol

\advance\scratchcounter 10

b

\endlocalcontrol

\beginlocalcontrol

c

\endlocalcontrol

d

\advance\scratchcounter 10

}

\the\scratchcounter

\whatever

\the\scratchcounter

A bit of close reading probably gives an impression of what happens here:

b c

110 a d 120

The local loop can actually result in material being injected in the current node list. However, where

normally assignments are not taking place in an \edef, here they are applied just fine. Basically we

have a local TEX job, be it that it shares all variables with the parent loop.

87

79 \beginmathgroup

In math mode grouping with \begingroup and \endgroup in some cases works as expected, but be

cause the math input is converted in a list that gets processed later some settings can become persis

tent, like changes in style or family. The engine therefore provides the alternatives \beginmathgroup

and \endmathgroup that restore some properties.

80 \beginmvl

This initiates intercepting the main vertical list (the page). There has to be a matching \endmvl. For

example:

\beginmvl 1 the main vertical list, one \endmvl

\beginmvl 2 the main vertical list, two \endmvl

The streams can be flushed out of order:

\setbox\scratchboxone\flushmvl 2

\setbox\scratchboxtwo\flushmvl 1

One can be more specific:

\beginmvl

index 1

options 5 % ignore prevdepth (1) and discard top (4)

\relax

....

\endmvl

More details can be found in the ConTEXt low level manuals that describe this feature in combination

with balancing.

81 \beginsimplegroup

The original TEX engine distinguishes two kind of grouping that at the user end show up as:

\begingroup \endgroup

\bgroup \egroup { }

where the last two pairs are equivalent unless the scanner explicitly wants to see a left and/or right

brace and not an equivalent. For the sake of simplify we use the aliases here. It is not possible to mix

these pairs, so:

\bgroup xxx\endgroup

\begingroup xxx\egroup

will in both cases issue an error. This can make it somewhat hard to write generic grouping macros

without somewhat dirty trickery. The way out is to use the generic group opener \beginsimplegroup.

Internally LuaMetaTEX is aware of what group it currently is dealing with and there we distinguish:

simple group \bgroup \egroup

semi simple group \begingroup \endgroup \endsimplegroup

88

also simple group \beginsimplegroup \egroup \endgroup \endsimplegroup

math simple group \beginmathgroup \endmathgroup

This means that you can say:

\beginsimplegroup xxx\endsimplegroup

\beginsimplegroup xxx\endgroup

\beginsimplegroup xxx\egroup

So a group started with \beginsimplegroup can be finished in three ways which means that the

user (or calling macro) doesn't have take into account what kind of grouping was used to start with.

Normally usage of this primitive is hidden in macros and not something the user has to be aware of.

82 \belowdisplayshortskip

The glue injected aftter a display formula when the line above it is not overlapping with the formula

(TEX can't look ahead). Watch out for interference with \baselineskip. It can be controlled by \dis

playskipmode.

83 \belowdisplayskip

The glue injected after a display formula. Watch out for interference with \baselineskip. It can be

controlled by \displayskipmode.

84 \binoppenalty

This internal quantity is a compatibility feature because normally we will use the inter atom spacing

variables.

85 \botmark

This is a reference to the last mark on the current page, it gives back tokens.

86 \botmarks

This is a reference to the last mark with the given id (a number) on the current page, it gives back

tokens.

87 \bottomskip

This is a reserved parameter.

88 \boundary

Boundaries are signals added to he current list. This primitive injects a user boundary with the given

(integer) value. Such a boundary can be consulted at the Lua end or with \lastboundary.

89 \box

This is the box register accessor. While other registers have one property a box has many, like \wd,

\ht and \dp. This primitive returns the box and resets the register.

89

90 \boxadapt

Adapting will recalculate the dimensions with a scale factor for the glue:

\setbox 0 \hbox {test test test}

\setbox 2 \hbox {\red test test test} \boxadapt 0 200

\setbox 4 \hbox {\blue test test test} \boxadapt 0 -200

\ruledhbox{\box0} \vskip-\lineheight

\ruledhbox{\box0} \vskip-\lineheight

\ruledhbox{\box0}

Like \boxfreeze and \boxrepack this primitive has been introduced for experimental usage, although

we do use some in production code.

test test test

91 \boxanchor

This feature is part of an (experimental) mechanism that relates boxes. The engine just tags a box and

it is up to the macro package to deal with it.

\setbox0\hbox anchor "01010202 {test}\tohexadecimal\boxanchor0

This gives: 1010202. Of course this feature is very macro specific and should not be used across

macro packages without coordination. An anchor has two parts each not exceeding 0x0FFF.

92 \boxanchors

This feature is part of an (experimental) mechanism that relates boxes. The engine just tags a box and

it is up to the macro package to deal with it.

\setbox0\hbox anchors "0101 "0202 {test}\tohexadecimal\boxanchors0

This gives: 1010202. Of course this feature is very macro specific and should not be used across

macro packages without coordination. An anchor has two parts each not exceeding 0x0FFF.

93 \boxattribute

Every node, and therefore also every box gets the attributes set that are active at the moment of

creation. Additional attributes can be set too:

\darkred

\setbox0\hbox attr 9999 1 {whatever}

\the\boxattribute 0 \colorattribute

\the\boxattribute 0 9998

\the\boxattribute 0 9999

A macro package should make provide a way define attributes that don't clash the ones it needs itself,

like, in ConTEXt, the ones that can set a color

4

-2147483647

1

90

The number -2147483647 (-7FFFFFFF) indicates an unset attribute.

94 \boxdirection

The direction of a box defaults to l2r but can be explicitly set:

\setbox0\hbox direction 1 {this is a test}\textdirection1

\setbox2\hbox direction 0 {this is a test}\textdirection0

\the\boxdirection0: \box0

\the\boxdirection2: \box2

The \textdirection does not influence the box direction:

1: this is a test

0: this is a test

95 \boxfinalize

This is special version of \boxfreeze which we demonstrate with an example:

\boxlimitate 0 0 % don't recurse

\boxfreeze 2 0 % don't recurse

\boxfinalize 4 500 % scale glue multiplier by .50

\boxfinalize 6 250 % scale glue multiplier by .25

\boxfinalize 8 100 % scale glue multiplier by .10

\hpack\bgroup

\copy0\quad\copy2\quad\copy4\quad\copy6\quad\copy8

\egroup

where the boxes are populated with:

\setbox0\ruledvbox to 3cm{\hsize 2cm test\vskip10pt plus 10pt test}

\setbox2\copy0\setbox4\copy0\setbox6\copy0\setbox8\copy0

test

test

test

test

test

test

test

test

test

test

96 \boxfreeze

Glue in a box has a fixed component that will always be used and stretch and shrink that kicks in

when needed. The effective value (width) of the glue is driven by some box parameters that are set

by the packaging routine. This is why we can unbox: the original value is kept. It is the backend that

calculates the effective value. Te \boxfreeze primitive can do the same: turn the flexible glue into a

fixed one.

\setbox 0 \hbox to 6cm {\hss frost}

91

\setbox 2 \hbox to 6cm {\hss frost}

\boxfreeze 2 0

\ruledhbox{\unhbox 0}

\ruledhbox{\unhbox 2}

The second parameter to \boxfreeze determines recursion. We don't recurse here so just freeze the

outer level:

frost

frost

97 \boxgeometry

A box can have an orientation, offsets and/or anchors. These are stored independently but for effi

ciency reasons we register if one or more of these properties is set. This primitive accesses this state;

it is a bitset:

0x01 offset

0x02 orientation

0x04 anchor

98 \boxinserts

A non zero value return indicates that there are inserts in this box. This primitive is meant to be used

with the balancer.

99 \boxlimit

This primitive will freeze the glue in a box but only when there is glue marked with the limit option.

100 \boxlimitate

This primitive will freeze the glue in a box. It takes two arguments, a box number and an number that

when set to non-zero will recurse into nested lists.

101 \boxlimitmode

This variable controls if boxes with glue marked ‘limit’ will be checked and frozen.

102 \boxmaxdepth

You can limit the depth of boxes being constructed. It's one of these parameters that should be used

with care because when that box is filled nested boxes can be influenced.

103 \boxmigrate

When the given box has pre migration material the value will have 0x08 set. When there is post

material the 0x10 bit is set. Of course both can be set.

92

104 \boxorientation

The orientation field can take quite some values and is discussed in one of the low level ConTEXt

manuals. Some properties are dealt with in the TEX engine because they influence dimensions but in

the end it is the backend that does the work.

105 \boxrepack

When a box of to wide or tight we can tweak it a bit with this primitive. The primitive expects a box

register and a dimension, where a positive number adds and a negatie subtracts from the current box

with.

\setbox 0 \hbox {test test test}

\setbox 2 \hbox {\red test test test} \boxrepack0 +.2em

\setbox 4 \hbox {\green test test test} \boxrepack0 -.2em

\ruledhbox{\box0} \vskip-\lineheight

\ruledhbox{\box0} \vskip-\lineheight

\ruledhbox{\box0}

test test test

We can also use this primitive to check the natural dimensions of a box:

\setbox 0 \hbox spread 10pt {test test test}

\ruledhbox{\box0} (\the\boxrepack0,\the\wd0)

In this context only one argument is expected.

test test test

(0.0pt,0.0pt)

106 \boxshift

Returns or sets how much the box is shifted: up or down in horizontally mode, left or right in vertical

mode.

107 \boxshrink

Returns the amount of shrink found (applied) in a box:

\setbox0\hbox to 4em {m m m m}

\the\boxshrink0

gives: 3.17871pt

108 \boxsource

This feature is part of an (experimental) mechanism that relates boxes. The engine just tags a box and

it is up to the macro package to deal with it.

\setbox0\hbox source 123 {m m m m}

93

\the\boxsource0

This gives: 123. Of course this feature is very macro specific and should not be used across macro

packages without coordination.

109 \boxstretch

Returns the amount of stretch found (applied) in a box:

\setbox0\hbox to 6em {m m m m}

\the\boxstretch0

gives: 4.76807pt

110 \boxsubtype

Returns the subtype of the given box.

\setbox0\hbox {test}[\the\boxsubtype0]

\setbox2\hbox container {test}[\the\boxsubtype2]

gives: [2] [4]. Beware that the numbers can change so best use the symbolic values that can be

queried via Lua.

111 \boxtarget

This feature is part of an (experimental) mechanism that relates boxes. The engine just tags a box and

it is up to the macro package to deal with it.

\setbox0\hbox source 123 {m m m m}

\the\boxsource0

This gives: 123. Of course this feature is very macro specific and should not be used across macro

packages without coordination.

112 \boxtotal

Returns the total of height and depth of the given box.

113 \boxvadjust

When used as query this returns a bitset indicating the associated adjust and migration (marks and

inserts) data:

0x1 pre adjusted

0x2 post adjusted

0x4 pre migrated

0x8 post migrated

94

When used as a setter it directly adds adjust data to the box and it accepts the same keywords as

\vadjust.

114 \boxxmove

This will set the vertical offset and adapt the dimensions accordingly.

115 \boxxoffset

Returns or sets the horizontal offset of the given box.

116 \boxymove

This will set the vertical offset and adapt the dimensions accordingly.

117 \boxyoffset

Returns or sets the vertical offset of the given box.

118 \brokenpenalties

Together with \widowpenalties and \clubpenalties this one permits discriminating left- and right

page (doublesided) penalties. For this one needs to also specify \options 4 and provide penalty pairs.

Where the others accept multiple pairs, this primitives expects a count value one.

119 \brokenpenalty

This penalty is added after a line that ends with a hyphen; it can help to discourage a page break (or

split in a box).

120 \catcode

Every character can be put in a category, but this is typically something that the macro package

manages because changes can affect behavior. Also, once passed as an argument, the catcode of a

character is frozen. There are 16 different values:

\escapecatcode 0 \begingroupcatcode 1

\endgroupcatcode 2 \mathshiftcatcode 3

\alignmentcatcode 4 \endoflinecatcode 5

\parametercatcode 6 \superscriptcatcode 7

\subscriptcatcode 8 \ignorecatcode 9

\spacecatcode 10 \lettercatcode 11

\othercatcode 12 \activecatcode 13

\commentcatcode 14 \invalidcatcode 15

The first column shows the constant that ConTEXt provides and the name indicates the purpose. Here

are two examples:

\catcode123=\begingroupcatcode

95

\catcode125=\endgroupcatcode

121 \catcodetable

The catcode table with the given index will become active.

122 \cccode

This is an experimental feature that can set some processing options. The character specific code is

stored in the glyph node and consulted later. An example of such option is ‘ignore twin’, bit one, which

we set for a few punctuation characters.

123 \cdef

This primitive is like \edef but in some usage scenarios is slightly more efficient because (delayed)

expansion is ignored which in turn saves building a temporary token list.

\edef\FooA{this is foo} \meaningfull\FooA\crlf

\cdef\FooB{this is foo} \meaningfull\FooB\par

macro:this is foo

constant macro:this is foo

124 \cdefcsname

This primitive is like \edefcsame but in some usage scenarios is slightly more efficient because (de

layed) expansion is ignored which in turn saves building a temporary token list.

\edefcsname FooA\endcsname{this is foo} \meaningasis\FooA\crlf

\cdefcsname FooB\endcsname{this is foo} \meaningasis\FooB\par

\def \FooA {this is foo}

\constant \def \FooB {this is foo}

125 \cfcode

This primitive is a companion to \efcode and sets the compression factor. It takes three values: font,

character code, and factor.

126 \char

This appends a character with the given index in the current font.

127 \chardef

The following definition relates a control sequence to a specific character:

\chardef\copyrightsign"A9

96

However, because in a context where a number is expected, such a \chardef is seen as valid number,

there was a time when this primitive was used to define constants without overflowing the by then

limited pool of count registers. In 𝜀-TEX aware engines this was less needed, and in LuaMetaTEX we

have \integerdef as a more natural candidate.

128 \cleaders

See \gleaders for an explanation.

129 \clearmarks

This primitive is an addition to the multiple marks mechanism that originates in 𝜀-TEX and reset the

mark registers of the given category (a number).

130 \clubpenalties

This is an array of penalty put before the first lines in a paragraph. High values discourage (or even

prevent) a lone line at the end of a page. This command expects a count value indicating the number

of entries that will follow. The first entry is ends up after the first line.

131 \clubpenalty

This is the penalty put before a club line in a paragraph. High values discourage (or even prevent) a

lone line at the end of a next page.

132 \constant

This prefix tags a macro (without arguments) as being constant. The main consequence is that in some

cases expansion gets delayed which gives a little performance boost and less (temporary) memory

usage, for instance in \csname like scenarios.

133 \constrained

See previous section about \retained.

134 \copy

This is the box register accessor that returns a copy of the box.

135 \copymathatomrule

This copies the rule bitset from the parent class (second argument) to the target class (first argument).

The bitset controls the features that apply to atoms.

136 \copymathparent

This binds the given class (first argument) to another class (second argument) so that one doesn't

need to define all properties.

97

137 \copymathspacing

This copies an class spacing specification to another one, so in

\copymathspacing 34 2

class 34 (a user one) get the spacing from class 2 (binary).

138 \copysplitdiscards

This is a variant of \splitdiscards that keep the original.

139 \count

This accesses a count register by index. This is kind of ‘not done’ unless you do it local and make sure

that it doesn't influence macros that you call.

\count4023=10

In standard TEX the first 10 counters are special because they get reported to the console, and \count0

is then assumed to be the page counter.

140 \countdef

This primitive relates a control sequence to a count register. Compare this to the example in the

previous section.

\countdef\MyCounter4023

\MyCounter=10

However, this is also ‘not done’. Instead one should use the allocator that the macro package provides.

\newcount\MyCounter

\MyCounter=10

In LuaMetaTEX we also have integers that don't rely on registers. These are assigned by the primitive

\integerdef:

\integerdef\MyCounterA 10

Or better \newinteger.

\newinteger\MyCounterB

\MyCounterN10

There is a lowlevel manual on registers.

141 \cr

This ends a row in an alignment. It also ends an alignment preamble.

98

142 \crampeddisplaystyle

A less spacy alternative of \displaystyle; integer representation: 4.

143 \crampedscriptscriptstyle

A less spacy alternative of \scriptscriptstyle; integer representation: 6.

144 \crampedscriptstyle

A less spacy alternative of \scriptstyle; integer representation: 4.

145 \crampedtextstyle

A less spacy alternative of \textstyle; integer representation: 2.

146 \crcr

This ends a row in an alignment when it hasn't ended yet.

147 \csactive

Because LuaTEX (and LuaMetaTEX) are Unicode engines active characters are implemented a bit dif

ferently. They don't occupy a eight bit range of characters but are stored as control sequence with a

special prefix U+FFFF which never shows up in documents. The \csstring primitive injects the name

of a control sequence without leading escape character, the \csactive injects the internal name of

the following (either of not active) character. As we cannot display the prefix: \csactive~ will inject

the utf sequences for U+FFFF and U+007E, so here we get the bytes EFBFBF7E. Basically the next token

is preceded by \string, so when you don't provide a character you are in for a surprise.

148 \csname

This original TEX primitive starts the construction of a control sequence reference. It does a lookup

and when no sequence with than name is found, it will create a hash entry and defaults its meaning

to \relax.

\csname letters and other characters\endcsname

149 \csnamestring

This is a companion of \lastnamedcs that injects the name of the found control sequence. When used

inside a csname constructor it is more efficient than repeating a token list, compare:

\csname\ifcsname whatever\endcsname\csnamestring\endcsname % referenced

\csname\ifcsname whatever\endcsname whatever\endcsname % scanned

150 \csstring

This primitive returns the name of the control sequence given without the leading escape character

(normally a backslash). Of course you could strip that character with a simple helper but this is more

natural.

99

\csstring\mymacro

We get the name, not the meaning: mymacro.

151 \currentgrouplevel

The next example gives: [1] [2] [3] [2] [1].

[\the\currentgrouplevel] \bgroup

[\the\currentgrouplevel] \bgroup

[\the\currentgrouplevel]

\egroup [\the\currentgrouplevel]

\egroup [\the\currentgrouplevel]

152 \currentgrouptype

The next example gives: [22] [1] [22] [1] [1] [23] [1] [1].

[\the\currentgrouptype] \bgroup

[\the\currentgrouptype] \begingroup

[\the\currentgrouptype]

\endgroup [\the\currentgrouptype]

[\the\currentgrouptype] \beginmathgroup

[\the\currentgrouptype]

\endmathgroup [\the\currentgrouptype]

[\the\currentgrouptype] \egroup

The possible values depend in the engine and for LuaMetaTEX they are:

0 bottomlevel 9 output 18 mathoperator 27 mathnumber

1 simple 10 mathsubformula 19 mathradical 28 localbox

2 hbox 11 mathstack 20 mathchoice 29 splitoff

3 adjustedhbox 12 mathcomponent 21 alsosimple 30 splitkeep

4 vbox 13 discretionary 22 semisimple 31 preamble

5 vtop 14 insert 23 mathsimple 32 alignset

6 dbox 15 vadjust 24 mathfence 33 finishrow

7 align 16 vcenter 25 mathinline 34 lua

8 noalign 17 mathfraction 26 mathdisplay

153 \currentifbranch

The next example gives: [0] [1] [-1] [1] [0].

[\the\currentifbranch] \iftrue

[\the\currentifbranch] \iffalse

[\the\currentifbranch]

\else

[\the\currentifbranch]

\fi [\the\currentifbranch]

\fi [\the\currentifbranch]

100

So when in the ‘then’ branch we get plus one and when in the ‘else’ branch we end up with a minus

one.

154 \currentiflevel

The next example gives: [0] [1][2] [3] [2] [1] [0].

[\the\currentiflevel] \iftrue

[\the\currentiflevel]\iftrue

[\the\currentiflevel] \iftrue

[\the\currentiflevel]

\fi [\the\currentiflevel]

\fi [\the\currentiflevel]

\fi [\the\currentiflevel]

155 \currentiftype

The next example gives: [-1] [25][25] [25] [25] [25] [-1].

[\the\currentiftype] \iftrue

[\the\currentiftype]\iftrue

[\the\currentiftype] \iftrue

[\the\currentiftype]

\fi [\the\currentiftype]

\fi [\the\currentiftype]

\fi [\the\currentiftype]

The values are engine dependent:

0 char

1 cat

2 num

3 absnum

4 zeronum

5 intervalnum

6 float

7 absfloat

8 zerofloat

9 intervalfloat

10 dim

11 absdim

12 zerodim

13 intervaldim

14 odd

15 vmode

16 hmode

17 mmode

18 inner

19 void

20 hbox

101

21 vbox

22 tok

23 cstoken

24 x

25 true

26 false

27 chknum

28 chknumber

29 chknumexpr

30 numval

31 cmpnum

32 chkdim

33 chkdimension

34 chkdimexpr

156 \currentloopiterator

Here we show the different expanded loop variants:

\edef\testA{\expandedloop 1 10 1{!}}

\edef\testB{\expandedrepeat 10 {!}}

\edef\testC{\expandedendless {\ifnum\currentloopiterator>10 \quitloop\else !\fi}}

\edef\testD{\expandedendless {\ifnum#I>10 \quitloop\else !\fi}}

All these give the same result:

\def \testA {!!!!!!!!!!}

\def \testB {!!!!!!!!!!}

\def \testC {!!!!!!!!!!}

\def \testD {!!!!!!!!!!}

The #I is a shortcut to the current loop iterator; other shortcuts are #P for the parent iterator value

and #G for the grand parent.

157 \currentloopnesting

This integer reports how many nested loops are currently active. Of course in practice the value only

has meaning when you know at what outer level your nested loop started.

\expandedloop 1 10 1 {%

\ifodd\currentloopiterator\else

[\expandedloop 1 \currentloopiterator 1 {%

\the\currentloopnesting

}]

\fi

}

Here we use the two numeric state primitives \currentloopiterator and \currentloopnesting.

This results in:

[22] [2222] [222222] [22222222] [2222222222]

102

158 \currentlysetmathstyle

TODO

159 \currentmarks

Marks only get updated when a page is split off or part of a box using \vsplit gets wrapped up. This

primitive gives access to the current value of a mark and takes the number of a mark class.

160 \currentstacksize

This is more diagnostic feature than a useful one but we show it anyway. There is some basic overhead

when we enter a group:

\bgroup [\the\currentstacksize]

\bgroup [\the\currentstacksize]

\bgroup [\the\currentstacksize]

[\the\currentstacksize] \egroup

[\the\currentstacksize] \egroup

[\the\currentstacksize] \egroup

[186] [187] [188] [188] [187] [186]

As soon as we define something or change a value, the stack gets populated by information needed

for recovery after the group ends.

\bgroup [\the\currentstacksize]

\scratchcounter 1

\bgroup [\the\currentstacksize]

\scratchdimen 1pt

\scratchdimen 2pt

\bgroup [\the\currentstacksize]

\scratchcounter 2

\scratchcounter 3

[\the\currentstacksize] \egroup

[\the\currentstacksize] \egroup

[\the\currentstacksize] \egroup

[186] [188] [190] [191] [189] [187]

The stack also keeps some state information, for instance when a box is being built. In LuaMetaTEX

that is is quite a bit more than in other engines but it is compensated by more efficient save stack

handling elsewhere.

\hbox \bgroup [\the\currentstacksize]

\hbox \bgroup [\the\currentstacksize]

\hbox \bgroup [\the\currentstacksize]

[\the\currentstacksize] \egroup

[\the\currentstacksize] \egroup

[\the\currentstacksize] \egroup

[195] [205] [215] [215] [205] [195]

103

161 \day

This internal number starts out with the day that the job started.

162 \dbox

A \dbox is just a \vbox (baseline at the bottom) but it has the property ‘dual baseline’ which means

that is some cases it will behave like a \vtop (baseline at the top) too. Like:

dbox

dbox

dbox

vbox

vbox

vbox vtop

vtop

vtop

vcenter

vcenter

vcenter

A \dbox behaves like a \vtop when it's appended to a vertical list which means that the height of the

first box or rule determines the (base)line correction that gets applied.

xxxxxxxxxxxxxxxx
The Earth, as a habitat for animal life, is in old age

and has a fatal illness. Several, in fact. It would

be happening whether humans had ever evolved or

not. But our presence is like the effect of an old-age

patient who smokes many packs of cigarettes per

day—and we humans are the cigarettes.

xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxx

The Earth, as a habitat for animal life, is in old age

and has a fatal illness. Several, in fact. It would

be happening whether humans had ever evolved or

not. But our presence is like the effect of an old-age

patient who smokes many packs of cigarettes per

day—and we humans are the cigarettes.
xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxx

The Earth, as a habitat for animal life, is in old age

and has a fatal illness. Several, in fact. It would

be happening whether humans had ever evolved or

not. But our presence is like the effect of an old-age

patient who smokes many packs of cigarettes per

day—and we humans are the cigarettes.

xxxxxxxxxxxxxxxx

\vbox \vtop \dbox

163 \deadcycles

This counter is incremented every time the output routine is entered. When \maxdeadcycles is

reached TEX will issue an error message, so you'd better reset its value when a page is done.

164 \def

This is the main definition command, as in:

\def\foo{l me}

with companions like \gdef, \edef, \xdef, etc. and variants like:

\def\foo#1{... #1...}

where the hash is used in the preamble and for referencing. More about that can be found in the low

level manual about macros.

In the ConTEXt distribution you can find explanations about how LuaMetaTEX extends the argument

parser. When defining a macro you can do this:

\def\foo(#1)#2{...}

Here the first argument between parentheses is mandate. But the magic prefix \tolerant makes that

limitation go away:

104

\tolerant\def\foo(#1)#2{...}

A variant is this:

\tolerant\def\foo(#1)#*(#2){...}

Here we have two optional arguments, possibly be separated by spaces. There are more parsing

options, that we just mention:

+ keep the braces

- discard and don't count the argument

/ remove leading an trailing spaces and pars

= braces are mandate

_ braces are mandate and kept

^ keep leading spaces

1-9 an argument

0 discard but count the argument

* ignore spaces

. ignore pars and spaces

, push back space when no match

: pick up scanning here

; quit scanning

165 \defaulthyphenchar

When a font is loaded its hyphen character is set to this value. It can be changed afterwards. However,

in LuaMetaTEX font loading is under Lua control so these properties can be set otherwise.

166 \defaultskewchar

When a font is loaded its skew character is set to this value. It can be changed afterwards. However,

in LuaMetaTEX font loading is under Lua control so these properties can be set otherwise. Also,

OpenType math fonts have top anchor instead.

167 \defcsname

We now get a series of log clutter avoidance primitives. It's fine if you argue that they are not really

needed, just don't use them.

\expandafter\def\csname MyMacro:1\endcsname{...}

\defcsname MyMacro:1\endcsname{...}

The fact that TEX has three (expanded and global) companions can be seen as a signal that less ver

bosity makes sense. It's just that macro packages use plenty of \csname's.

168 \deferred

This is mostly a compatibility prefix and it can be checked at the Lua end when there is a Lua based

assignment going on. It is the counterpart of \immediate. In the traditional engines a \write is

105

normally deferred (turned into a node) and can be handled \immediate, while a \special does the

opposite.

169 \delcode

This assigns delimiter properties to an eight bit character so it has little use in an OpenType math

setup. WHen the assigned value is hex encoded, the first byte denotes the small family, then we have

two bytes for the small index, followed by three similar bytes for the large variant.

170 \delimiter

This command inserts a delimiter with the given specification. In OpenType math we use a different

command so it is unlikely that this primitive is used in LuaMetaTEX. It takes a number that can best

be coded hexadecimal: one byte for the class, one for the small family, two for the small index, one for

the large family and two for the large index. This demonstrates that it can't handle wide fonts. Also,

in OpenType math fonts the larger sizes and extensible come from the same font as the small symbol.

On top of that, in LuaMetaTEX we have more classes than fit in a byte.

171 \delimiterfactor

This is one of the parameters that determines the size of a delimiter: at least this factor times the

formula height divided by 1000. In OpenType math different properties and strategies are used.

172 \delimitershortfall

This is one of the parameters that determines the size of a delimiter: at least the formula height minus

this parameter. In OpenType math different properties and strategies are used.

173 \detokened

The following token will be serialized into characters with category ‘other’.

\toks0{123}

\def\foo{let's be \relax'd}

\def\oof#1{let's see #1}

\detokened\toks0

\detokened\foo

\detokened\oof

\detokened\setbox

\detokened X

Gives:

123

let's be \relax 'd

\oof

\setbox

X

Macros with arguments are not shown.

106

174 \detokenize

This 𝜀-TEX primitive turns the content of the provides list will become characters, kind of verbatim.

\expandafter\let\expandafter\temp\detokenize{1} \meaning\temp

\expandafter\let\expandafter\temp\detokenize{A} \meaning\temp

the character U+0031 1

the character U+0041 A

175 \detokenized

The following (single) token will be serialized into characters with category ‘other’.

\toks0{123}

\def\foo{let's be \relax'd}

\def\oof#1{let's see #1}

\detokenized\toks0

\detokenized\foo

\detokenized\oof

\detokenized\setbox

\detokenized X

Gives:

\toks 0

\foo

\oof

\setbox

X

It is one of these new primitives that complement others like \detokened and such, and they are often

mostly useful in experiments of some low level magic, which made them stay.

176 \dimen

Like \count this is a register accessor which is described in more detail in a low level manual.

\dimen0=10pt

While TEX has some assumptions with respect to the first ten count registers (as well as the one that

holds the output, normally 255), all dimension registers are treated equal. However, you need to be

aware of clashes with other usage. Therefore you can best use the predefined scratch registers or

define dedicate ones with the \newdimen macro.

177 \dimendef

This primitive is used by the \newdimen macro when it relates a control sequence with a specific

register. Only use it when you know what you're doing.

178 \dimensiondef

A variant of \integerdef is:

107

\dimensiondef\MyDimen = 1234pt

The properties are comparable to the ones described in the section \integerdef.

179 \dimexpr

This primitive is similar to of \numexpr but operates on dimensions instead. Integer quantities are

interpreted as dimensions in scaled points.

\the\dimexpr (1pt + 2pt - 5pt) * 10 / 2 \relax

gives: -10.0pt. You can mix in symbolic integers and dimensions. This doesn't work:

because the engine scans for a dimension and only for an integer (or equivalent) after a * or /.

180 \dimexpression

This command is like \numexpression but results in a dimension instead of an integer. Where \dim

expr doesn't like 2 * 10pt this expression primitive is quite happy with it.

You can get an idea what the engines sees by setting \tracingexpressions to a value larger than

zero. It shows the expression in rpn form.

\dimexpression 4pt * 2 + 6pt \relax

\dimexpression 2 * 4pt + 6pt \relax

\dimexpression 4pt * 2.5 + 6pt \relax

\dimexpression 2.5 * 4pt + 6pt \relax

\numexpression 2 * 4 + 6 \relax

\numexpression (1 + 2) * (3 + 4) \relax

The \relax is mandate simply because there are keywords involved so the parser needs to know where

to stop scanning. It made no sense to be more clever and introduce fuzziness (so there is no room for

exposing in-depth TEX insight and expertise here). In case you wonder: the difference in performance

between the 𝜀-TEX expression mechanism and the more extended variant will normally not be noticed,

probably because they both use a different approach and because the 𝜀-TEX variant also has been

optimized.

181 \directlua

This is the low level interface to Lua:

Gives: “Greetings from the lua end!” as expected. In Lua we have access to all kind of internals

of the engine. In LuaMetaTEX the interfaces have been polished and extended compared to Lua-

TEX. Although many primitives and mechanisms were added to the TEX frontend, the main extension

interface remains Lua. More information can be found in documents that come with ConTEXt, in

presentations and in articles.

182 \discretionary

The three snippets given with this command determine the pre, post and replace component of the

injected discretionary node. The penalty keyword permits setting a penalty with this node. The

108

postword keyword indicates that this discretionary starts a word, and preword ends it. With break

the line break algorithm will prefer a pre or post component over a replace, and with nobreak replace

will win over pre. With class you can set a math class that will determine spacing and such for

discretionaries used in math mode.

183 \discretionaryoptions

Processing of discretionaries is controlled by this bitset:

0x00000000 normalword

0x00000001 preword

0x00000002 postword

0x00000010 preferbreak

0x00000020 prefernobreak

0x00000040 noitaliccorrection

0x00000080 nozeroitaliccorrection

0x00000100 standalone

0x00010000 userfirst

0x40000000 userlast

These can also be set on \discretionary using the options key.

184 \displayindent

The \displaywidth, \displayindent and \predisplaysize parameters are set by the line break

routine (but can be adapted by the user), so that mid-par display formula can adapt itself to hanging

indentation and par shapes. I order to calculate thee values and adapt the line break state afterwards

such a display formula is assumed to occupy three lines, so basically a rather compact formula.

185 \displaylimits

By default in math display mode limits are place on top while in inline mode they are placed like

scripts, after the operator. Placement can be forced with the \limits and \nolimits modifiers (after

the operator). Because there can be multiple of these in a row there is \displaylimits that forces

the default placement, so effectively it acts here as a reset modifier.

186 \displaystyle

One of the main math styles; integer representation: 0.

187 \displaywidowpenalties

This is a math specific variant of \widowpenalties.

188 \displaywidowpenalty

This is a math specific variant of \widowpenalty.

109

189 \displaywidth

This parameter determines the width of the formula and normally defaults to the \hsize unless we

are in the middle of a paragraph in which case it is compensated for hanging indentation or the par

shape.

190 \divide

The \divide operation can be applied to integers, dimensions, float, attribute and glue quantities.

There are subtle rounding differences between the divisions in expressions and \divide:

\scratchcounter 1049 \numexpr\scratchcounter / 10\relax : 105

\scratchcounter 1049 \numexpr\scratchcounter : 10\relax : 104

\scratchcounter 1049 \divide\scratchcounter by 10 : 104

The : divider in \dimexpr is something that we introduced in LuaTEX.

191 \divideby

This is slightly more efficient variant of \divide that doesn't look for by. See previous section.

192 \doublehyphendemerits

This penalty will be added to the penalty assigned to a breakpoint that results in two lines ending with

a hyphen.

193 \doublepenaltymode

When set to one this parameter signals the backend to use the alternative (left side) penalties of the

pairs set on \widowpenalties, \clubpenalties and \brokenpenalties. For more information on this

you can consult manuals (and articles) that come with ConTEXt.

194 \dp

Returns the depth of the given box.

195 \dpack

This does what \dbox does but without callback overhead.

196 \dsplit

This is the dual baseline variant of \vsplit (see \dbox for what that means).

197 \dump

This finishes an (ini) run and dumps a format (basically the current state of the engine).

110

198 \edef

This is the expanded version of \def.

\def \foo{foo} \meaning\foo

\def \ofo{\foo\foo} \meaning\ofo

\edef\oof{\foo\foo} \meaning\oof

Because \foo is unprotected it will expand inside the body definition:

macro:foo

macro:\foo \foo

macro:foofoo

199 \edefcsname

This is the companion of \edef:

\expandafter\edef\csname MyMacro:1\endcsname{...}

\edefcsname MyMacro:1\endcsname{...}

200 \edivide

When expressions were introduced the decision was made to round the divisions which is incompatible

with the way \divide works. The expression scanners in LuaMetaTEX compensates that by providing

a : for integer division. The \edivide does the opposite: it rounds the way expressions do.

\the\dimexpr .4999pt : 2 \relax =.24994pt

\the\dimexpr .4999pt / 2 \relax =.24995pt

\scratchdimen.4999pt \divide \scratchdimen 2 \the\scratchdimen=.24994pt

\scratchdimen.4999pt \edivide\scratchdimen 2 \the\scratchdimen=.24995pt

\the\numexpr 1001 : 2 \relax =500

\the\numexpr 1001 / 2 \relax =501

\scratchcounter1001 \divide \scratchcounter 2 \the\scratchcounter=500

\scratchcounter1001 \edivide\scratchcounter 2 \the\scratchcounter=501

Keep in mind that with dimensions we have a fractional part so we actually rounding applies to the

fraction. For that reason we also provide \rdivide.

0.24994pt=.24994pt

0.24995pt=.24995pt

0.24994pt=.24994pt

0.24995pt=.24995pt

500=500

501=501

500=500

501=501

201 \edivideby

This the by-less variant of \edivide.

111

202 \efcode

This primitive originates in pdfTEX and can be used to set the expansion factor of a glyph (characters).

This primitive is obsolete because the values can be set in the font specification that gets passed via

Lua to TEX. Keep in mind that setting font properties at the TEX end is a global operation and can

therefore influence related fonts. In LuaMetaTEX the \cf code can be used to specify the compression

factor independent from the expansion factor. The primitive takes three values: font, character code,

and factor.

203 \else

This traditional primitive is part of the condition testing mechanism. When a condition matches, TEX

will continue till it sees an \else or \or or \orelse (to be discussed later). It will then do a fast

skipping pass till it sees an \fi.

204 \emergencyextrastretch

This is one of the extended parbuilder parameters. You can you it so temporary increase the permitted

stretch without knowing or messing with the normal value.

205 \emergencyleftskip

This is one of the extended parbuilder parameters (playground). It permits going ragged left in case

of a too bad result.

206 \emergencyrightskip

This is one of the extended parbuilder parameters (playground). It permits going ragged right in case

of a too bad result.

207 \emergencystretch

When set the par builder will run a third pass in order to fit the set criteria.

208 \end

This ends a TEX run, unless of course this primitive is redefined.

209 \endcsname

This primitive is used in combination with \csname, \ifcsname and \begincsname where its end the

scanning for the to be constructed control sequence token.

210 \endgroup

This is the companion of the \begingroup primitive that opens a group. See \beginsimplegroup for

more info.

112

211 \endinput

The engine can be in different input modes: reading from file, reading from a token list, expanding a

macro, processing something that comes back from Lua, etc. This primitive quits reading from file:

this is seen

\endinput

here we're already quit

There is a catch. This is what the above gives:

this is seen

but how about this:

this is seen

before \endinput after

here we're already quit

Here we get:

this is seen before after

Because a token list is one line, the following works okay:

\def\quitrun{\ifsomething \endinput \fi}

but in a file you'd have to do this when you quit in a conditional:

\ifsomething

\expandafter \endinput

\fi

While the one-liner works as expected:

\ifsomething \endinput \fi

212 \endlinechar

This is an internal integer register. When set to positive value the character with that code point will

be appended to the line. The current value is 13. Here is an example:

\endlinechar\hyphenasciicode

line 1

line 2

line 1-line 2-

If the character is active, the property is honored and the command kicks in. The maximum value is

127 (the maximum character code a single byte utf character can carry.)

213 \endlocalcontrol

See \beginlocalcontrol.

113

214 \endmathgroup

This primitive is the counterpart of \beginmathgroup.

215 \endmvl

This ends \beginmvl.

216 \endsimplegroup

This one ends a simple group, see \beginsimplegroup for an explanation about grouping primitives.

217 \enforced

The engine can be set up to prevent overloading of primitives and macros defined as \permanent or

\immutable. However, a macro package might want to get around this in controlled situations, which

is why we have a \enforced prefix. This prefix in interpreted differently in so called ‘ini’ mode when

macro definitions can be dumped in the format. Internally they get an always flag as indicator that in

these places an overload is possible.

\permanent\def\foo{original}

\def\oof {\def\foo{fails}}

\def\oof{\enforced\def\foo{succeeds}}

Of course this only has an effect when overload protection is enabled.

218 \eofinput

This is a variant on \input that takes a token list as first argument. That list is expanded when the file

ends. It has companion primitives \atendoffile (single token) and \atendoffiled (multiple tokens).

219 \eqno

This primitive stores the (typeset) content (presumably a number) and when the display formula is

wrapped that number will end up right of the formula.

220 \errhelp

This is additional help information to \errmessage that triggers an error and shows a message.

221 \errmessage

This primitive expects a token list and shows its expansion on the console and/or in the log file, de

pending on how TEX is configured. After that it will enter the error state and either goes on or waits

for input, again depending on how TEX is configured. For the record: we don't use this primitive in

ConTEXt.

114

222 \errorcontextlines

This parameter determines the number on lines shown when an error is triggered.

223 \errorstopmode

This directive stops at every opportunity to interact. In ConTEXt we overload the actions in a callback

and quit the run because we can assume that a successful outcome is unlikely.

224 \escapechar

This internal integer has the code point of the character that get prepended to a control sequence

when it is serialized (for instance in tracing or messages).

225 \etexexprmode

When set to a positive value the : and ; operators are not interpreted. In ConTEXt we keep this value

zero! This flag was added in 2024 for LATEX where in places ; is used as signal to end an expression

instead of \relax). Because one never knows what users expect this flag disables both.

226 \etoks

This assigns an expanded token list to a token register:

\def\temp{less stuff}

\etoks\scratchtoks{a bit \temp}

The orginal value of the register is lost.

227 \etoksapp

A variant of \toksapp is the following: it expands the to be appended content.

\def\temp{more stuff}

\etoksapp\scratchtoks{some \temp}

228 \etokspre

A variant of \tokspre is the following: it expands the to be prepended content.

\def\temp{less stuff}

\etokspre\scratchtoks{a bit \temp}

229 \eufactor

When we introduced the es (2.5cm) and ts (2.5mm) units as metric variants of the in we also added

the eu factor. One eu equals one tenth of a es times the \eufactor. The ts is a convenient offset in

test files, the es a convenient ones for layouts and image dimensions and the eu permits definitions

that scale nicely without the need for dimensions. They also were a prelude to what later became

possible with \associateunit.

115

230 \everybeforepar

This token register is expanded before a paragraph is triggered. The reason for triggering is available

in \lastpartrigger.

231 \everycr

This token list gets expanded when a row ends in an alignment. Normally it will use \noalign as

wrapper

{\everycr{\noalign{H}} \halign{#\cr test\cr test\cr}}

{\everycr{\noalign{V}} \hsize 4cm \valign{#\cr test\cr test\cr}}

Watch how the \cr ending the preamble also get this treatment:

H

test

H

test

H

Vtest Vtest V

232 \everydisplay

This token list gets expanded every time we enter display mode. It is a companion of \everymath.

233 \everyeof

The content of this token list is injected when a file ends but it can only be used reliably when one

is really sure that no other file is loaded in the process. So in the end it is of no real use in a more

complex macro package.

234 \everyhbox

This token list behaves similar to \everyvbox so look there for an explanation.

235 \everyjob

This token list register is injected at the start of a job, or more precisely, just before the main control

loop starts.

236 \everymath

Often math needs to be set up independent from the running text and this token list can be used to do

that. There is also \everydisplay.

116

237 \everymathatom

When a math atom is seen this tokenlist is expanded before content is processed inside the atom

body. It is basically a math companion for \everyhbox and friends and it is therefore probably just as

useless. The next example shows how it works:

\everymathatom

{\begingroup

\scratchcounter\lastatomclass

\everymathatom{}%

\mathghost{\hbox to 0pt yoffset -1ex{\smallinfofont \setstrut\strut \the

\scratchcounter\hss}}%

\endgroup}

$ a = \mathatom class 4 {b} + \mathatom class 5 {c} $

We get a formula with open- and close atom spacing applied to 𝑏 and 𝑐:

𝑎 =
4

𝑏+
5

𝑐

This example shows bit of all: we want the number to be invisible to the math machinery so we

ghost it. So, we need to make sure we don't get recursion due to nested injection and expansion of

\everymathatom and of course we need to store the number. The \lastatomclass state variable is

only meaningful inside an explicit atom wrapper like \mathatom and \mathatom.

238 \everypar

When a paragraph starts this tokenlist is expanded before content is processed.

239 \everytab

This token list gets expanded every time we start a table cell in \halign or \valign.

240 \everyvbox

This token list gets expanded every time we start a vertical box. Like \everyhbox this is not that useful

unless you are certain that there are no nested boxes that don't need this treatment. Of course you

can wipe this register in this expansion, like:

\everyvbox{\kern10pt\everyvbox{}}

241 \exceptionpenalty

In exceptions we can indicate a penalty by [digit] in which case a penalty is injected set by this

primitive, multiplied by the digit.

242 \exhyphenchar

The character that is used as pre component of the related discretionary.

117

243 \exhyphenpenalty

The penalty injected after - or \- unless \hyphenationmode is set to force the dedisated penalties.

244 \expand

Beware, this is not a prefix but a directive to ignore the protected characters of the following macro.

\protected \def \testa{\the\scratchcounter}

\edef\testb{\testa}

\edef\testc{\expand\testa}

The meaning of the three macros is:

protected macro:\the \scratchcounter

macro:\testa

macro:123

245 \expandactive

This a bit of an outlier and mostly there for completeness.

\meaningasis~

\edef\foo{~} \meaningasis\foo

\edef\foo{\expandactive~} \meaningasis\foo

There seems to be no difference but the real meaning of the first \foo is ‘active character 126’ while

the second \foo ‘protected call ’ is.

\global \protected \def ~ {\nobreakspace }

\def \foo {~}

\def \foo {~}

Of course the definition of the active tilde is ConTEXt specific and situation dependent.

246 \expandafter

This original TEX primitive stores the next token, does a one level expansion of what follows it, which

actually can be an not expandable token, and reinjects the stored token in the input. Like:

\expandafter\let\csname my weird macro name\endcsname{m w m n}

Without \expandafter the \csname primitive would have been let to the left brace (effectively then

a begin group). Actually in this particular case the control sequence with the weird name is injected

and when it didn't yet exist it will get the meaning \relax so we sort of have two assignments in a

row then.

247 \expandafterpars

Here is another gobbler: the next token is reinjected after following spaces and par tokens have been

read. So:

118

[\expandafterpars 1 2]

[\expandafterpars 3

4]

[\expandafterpars 5

6]

gives us: [12] [34] [56], because empty lines are like \par and therefore ignored.

248 \expandafterspaces

This is a gobbler: the next token is reinjected after following spaces have been read. Here is a simple

example:

[\expandafterspaces 1 2]

[\expandafterspaces 3

4]

[\expandafterspaces 5

6]

We get this typeset: [12] [34] [5

6], because a newline normally is configured to be a space (and leading spaces in a line are normally

being ingored anyway).

249 \expandcstoken

The rationale behind this primitive is that when we \let a single token like a character it is hard to

compare that with something similar, stored in a macro. This primitive pushes back a single token

alias created by \let into the input.

\let\tempA + \meaning\tempA

\let\tempB X \meaning\tempB \crlf

\let\tempC $ \meaning\tempC \par

\edef\temp {\tempA} \doifelse{\temp}{+}{Y}{N} \meaning\temp \crlf

\edef\temp {\tempB} \doifelse{\temp}{X}{Y}{N} \meaning\temp \crlf

\edef\temp {\tempC} \doifelse{\temp}{X}{Y}{N} \meaning\temp \par

\edef\temp{\expandcstoken\tempA} \doifelse{\temp}{+}{Y}{N} \meaning\temp \crlf

\edef\temp{\expandcstoken\tempB} \doifelse{\temp}{X}{Y}{N} \meaning\temp \crlf

\edef\temp{\expandcstoken\tempC} \doifelse{\temp}{$}{Y}{N} \meaning\temp \par

\doifelse{\expandcstoken\tempA}{+}{Y}{N}

\doifelse{\expandcstoken\tempB}{X}{Y}{N}

\doifelse{\expandcstoken\tempC}{$}{Y}{N} \par

The meaning of the \let macros shows that we have a shortcut to a character with (in this case)

catcode letter, other (here ‘other character’ gets abbreviated to ‘character’), math shift etc.

the character U+002B 'plus sign'

119

the letter U+0058 X

math shift character U+0024 'dollar sign'

N macro:\tempA

N macro:\tempB

N macro:\tempC

Y macro:+

Y macro:X

Y macro:$

Y Y Y

Here we use the ConTEXt macro \doifelse which can be implemented in different ways, but the only

property relevant to the user is that the expanded content of the two arguments is compared.

250 \expanded

This primitive complements the two expansion related primitives mentioned in the previous two sec

tions. This time the content will be expanded and then pushed back into the input. Protected macros

will not be expanded, so you can use this primitive to expand the arguments in a call. In ConTEXt

you need to use \normalexpanded because we already had a macro with that name. We give some

examples:

\def\A{!}

\def\B#1{\string#1} \B{\A}

\def\B#1{\string#1} \normalexpanded{\noexpand\B{\A}}

\protected\def\B#1{\string#1} \B{\A}

\A

!

\A

251 \expandedafter

The following two lines are equivalent:

\def\foo{123}

\expandafter[\expandafter[\expandafter\secondofthreearguments\foo]]

\expandedafter{[[\secondofthreearguments}\foo]]

In ConTEXt MkIV the number of times that one has multiple \expandafters is much larger than in

ConTEXt LMTX thanks to some of the new features in LuaMetaTEX, and this primitive is not really

used yet in the core code.

[[2]]

[[2]]

252 \expandeddetokenize

This is a companion to \detokenize that expands its argument:

120

\def\foo{12#H3}

\def\oof{\foo}

\detokenize {\foo} \detokenize {\oof}

\expandeddetokenize{\foo} \expandeddetokenize{\oof}

\edef\ofo{\expandeddetokenize{\foo}} \meaningless\ofo

\edef\ofo{\expandeddetokenize{\oof}} \meaningless\ofo

This is a bit more convenient than

\detokenize \expandafter {\normalexpanded {\foo}}

kind of solutions. We get:

\foo \oof

12#3 12#3

12#3

12#3

253 \expandedendless

This one loops forever but because the loop counter is not set you need to find a way to quit it.

254 \expandedloop

This variant of the previously introduced \localcontrolledloop doesn't enter a local branch but

immediately does its work. This means that it can be used inside an expansion context like \edef.

\edef\whatever

{\expandedloop 1 10 1

{\scratchcounter=\the\currentloopiterator\relax}}

\meaningasis\whatever

\def \whatever {\scratchcounter =1\relax \scratchcounter =2\relax \scratchcounter =3\relax \scratchcounter

=4\relax \scratchcounter =5\relax \scratchcounter =6\relax \scratchcounter =7\relax \scratchcounter =8\relax

\scratchcounter =9\relax \scratchcounter =10\relax }

255 \expandedrepeat

This one takes one instead of three arguments which is sometimes more convenient.

256 \expandparameter

This primitive is a predecessor of \parameterdef so we stick to a simple example.

\def\foo#1#2%

{\integerdef\MyIndexOne\parameterindex\plusone % 1

\integerdef\MyIndexTwo\parameterindex\plustwo % 2

\oof{P}\oof{Q}\oof{R}\norelax}

\def\oof#1%

121

{<1:\expandparameter\MyIndexOne><1:\expandparameter\MyIndexOne>%

#1%

<2:\expandparameter\MyIndexTwo><2:\expandparameter\MyIndexTwo>}

\foo{A}{B}

In principle the whole parameter stack can be accessed but often one never knows if a specific macro

is called nested. The original idea behind this primitive was tracing but it can also be used to avoid

passing parameters along a chain of calls.

<1:A><1:A>P<2:B><2:B><1:A><1:A>Q<2:B><2:B><1:A><1:A>R<2:B><2:B>

257 \expandtoken

This primitive creates a token with a specific combination of catcode and character code. Because it

assumes some knowledge of TEX we can show it using some \expandafter magic:

\expandafter\let\expandafter\temp\expandtoken 11 `X \meaning\temp

\expandafter\let\expandafter\temp\expandtoken 12 `X \meaning\temp

The meanings are:

the letter U+0058 X

the character U+0058 X

Using other catcodes is possible but the results of injecting them into the input directly (or here by

injecting \temp) can be unexpected because of what TEX expects. You can get messages you normally

won't get, for instance about unexpected alignment interference, which is a side effect of TEX using

some catcode/character combinations as signals and there is no reason to change those internals.

That said:

\xdef\tempA{\expandtoken 9 `X} \meaning\tempA

\xdef\tempB{\expandtoken 10 `X} \meaning\tempB

\xdef\tempC{\expandtoken 11 `X} \meaning\tempC

\xdef\tempD{\expandtoken 12 `X} \meaning\tempD

are all valid and from the meaning you cannot really deduce what's in there:

macro:X

macro:X

macro:X

macro:X

But you can be assured that:

[AB: \ifx\tempA\tempB Y\else N\fi]

[AC: \ifx\tempA\tempC Y\else N\fi]

[AD: \ifx\tempA\tempD Y\else N\fi]

[BC: \ifx\tempB\tempC Y\else N\fi]

[BD: \ifx\tempB\tempD Y\else N\fi]

[CD: \ifx\tempC\tempD Y\else N\fi]

makes clear that they're different: [AB: N] [AC: N] [AD: N] [BC: N] [BD: N] [CD: N], and in case you

wonder, the characters with catcode 10 are spaces, while those with code 9 are ignored.

122

258 \expandtoks

This is a more efficient equivalent of \the applied to a token register, so:

\scratchtoks{just some tokens}

\edef\TestA{[\the \scratchtoks]}

\edef\TestB{[\expandtoks\scratchtoks]}

[\the \scratchtoks] [\TestA] \meaning\TestA

[\expandtoks\scratchtoks] [\TestB] \meaning\TestB

does the expected:

[just some tokens] [[just some tokens]] macro:[just some tokens]

[just some tokens] [[just some tokens]] macro:[just some tokens]

The \expandtoken primitive avoid a copy into the input when there is no need for it.

259 \explicitdiscretionary

This is the verbose alias for one of TEX's single character control sequences: \-.

260 \explicithyphenpenalty

The penalty injected after an automatic discretionary \-, when \hyphenationmode enables this.

261 \explicititaliccorrection

This is the verbose alias for one of TEX's single character control sequences: \/. Italic correction is a

character property specific to TEX and the concept is not present in modern font technologies. There

is a callback that hooks into this command so that a macro package can provide its own solution to

this (or alternatively it can assign values to the italic correction field.

262 \explicitspace

This is the verbose alias for one of TEX's single character control sequences: \. A space is inserted

with properties according the space related variables. There is look-back involved in order to deal

with space factors.

When \nospaces is set to 1 no spaces are inserted, when its value is 2 a zero space is inserted.

263 \fam

In a numeric context it returns the current family number, otherwise it sets the given family. The

number of families in a traditional engine is 16, in LuaTEX it is 256 and in LuaMetaTEX we have at

most 64 families. A future version can lower that number when we need more classes.

264 \fi

This traditional primitive is part of the condition testing mechanism and ends a test. So, we have:

123

\ifsomething ... \else ... \fi

\ifsomething ... \or ... \or ... \else ... \fi

\ifsomething ... \orelse \ifsometing ... \else ... \fi

\ifsomething ... \or ... \orelse \ifsometing ... \else ... \fi

The \orelse is new in LuaMetaTEX and a continuation like we find in other programming languages

(see later section).

265 \finalhyphendemerits

This penalty will be added to the penalty assigned to a breakpoint when that break results in a pre-last

line ending with a hyphen.

266 \firstmark

This is a reference to the first mark on the (split off) page, it gives back tokens.

267 \firstmarks

This is a reference to the first mark with the given id (a number) on the (split off) page, it gives back

tokens.

268 \firstvalidlanguage

Language id's start at zero, which makes it the first valid language. You can set this parameter to

indicate the first language id that is actually a language. The current value is 1, so lower values will

not trigger hyphenation.

269 \fitnessclasses

We can have more fitness classes than traditional TEX that has ‘very loose’, ‘loose’, ‘decent’ and ‘tight’.

In ConTEXt we have ‘veryloose’, ‘loose’, ‘almostloose’, ‘barelyloose’, ‘decent’, ‘barelytight’, ‘almost

tight’, ‘tight’ and ‘verytight’. Although we can go up to 31 this is already more than enough. The

default is the same as in regular TEX.

The \fitnessclasses can be used to set the criteria and like other specification primitives (like \par

shape and \widowpenalties, it expects a count. With \adjacentdemerits one can set the demerits

that are added depending on the distance between classes (in traditional TEX that is adjdemerits for

all distances larger than one. With the double option the demerits come in pairs because we can go

up or down in the list of fitness classes.

270 \float

In addition to integers and dimensions, which are fixed 16.16 integer floats we also have ‘native’ floats,

based on 32 bit posit unums.

\float0 = 123.456 \the\float0

\float2 = 123.456 \the\float0

\advance \float0 by 123.456 \the\float0

124

\advance \float0 by \float2 \the\float0

\divideby\float0 3 \the\float0

They come with the same kind of support as the other numeric data types:

123.45600032806396484

123.45600032806396484

246.91200065612792969

370.36800384521484375

123.45600128173828125

We leave the subtle differences between floats and dimensions to the user to investigate:

\dimen00 = 123.456pt \the\dimen0

\dimen02 = 123.456pt \the\dimen0

\advance \dimen0 by 123.456pt \the\dimen0

\advance \dimen0 by \dimen2 \the\dimen0

\divideby\dimen0 3 \the\dimen0

The nature of posits is that they are more accurate around zero (or smaller numbers in general).

123.456pt

123.456pt

246.91199pt

370.36798pt

123.456pt

This also works:

\float0=123.456e4

\float2=123.456 \multiply\float2 by 10000

\the\float0

\the\float2

The values are (as expected) the same:

1234560

1234560

271 \floatdef

This primitive defines a symbolic (macro) alias to a float register, just like \countdef and friends do.

272 \floatexpr

This is the companion of \numexpr, \dimexpr etc.

\scratchcounter 200

\the \floatexpr 123.456/456.123 \relax

\the \floatexpr 1.2*\scratchcounter \relax

\the \floatexpr \scratchcounter/3 \relax

\number\floatexpr \scratchcounter/3 \relax

125

Watch the difference between \the and \number:

0.27066383324563503265

240

66.666666984558105469

67

273 \floatingpenalty

When an insertion is split (across pages) this one is added to to accumulated \insertpenalties. In

LuaMetaTEX this penalty can be stored per insertion class.

274 \flushmarks

This primitive is an addition to the multiple marks mechanism that originates in 𝜀-TEX and inserts a

reset signal for the mark given category that will perform a clear operation (like \clearmarks which

operates immediately).

275 \flushmvl

This returns a vertical box with the content of the accumulated mvl list (see \beginmvl).

276 \font

This primitive is either a symbolic reference to the current font or in the perspective of an assignment

is used to trigger a font definitions with a given name (cs) and specification. In LuaMetaTEX the

assignment will trigger a callback that then handles the definition; in addition to the filename an

optional size specifier is checked (at or scaled).

In LuaMetaTEX all font loading is delegated to Lua, and there is no loading code built in the engine.

Also, instead of \font in ConTEXt one uses dedicated and more advanced font definition commands.

277 \fontcharba

Fetches the bottom anchor of a character in the given font, so:

results in: 1.8275pt. However, this anchor is only available when it is set and it is not part of OpenType;

it is something that ConTEXt provides for math fonts.

278 \fontchardp

Fetches the depth of a character in the given font, so:

results in: 2.22168pt.

279 \fontcharht

Fetches the width of a character in the given font, so:

results in: 5.33203pt.

126

280 \fontcharic

Fetches the italic correction of a character in the given font, but because it is not an OpenType property

it is unlikely to return something useful. Although math fonts have such a property in ConTEXt we deal

with it differently.

281 \fontcharta

Fetches the top anchor of a character in the given font, so:

results in: 1.8275pt. This is a specific property of math characters because in text mark anchoring is

driven by a feature.

282 \fontcharwd

Fetches the width of a character in the given font, so:

results in: 6.40137pt.

283 \fontdimen

A traditional TEX font has a couple of font specific dimensions, we only mention the seven that come

with text fonts:

1. The slant (slope) is an indication that we have an italic shape. The value divided by 65.536 is

a fraction that can be compared with for instance the slanted operator in MetaPost. It is used

for positioning accents, so actually not limited to oblique fonts (just like italic correction can be a

property of any character). It is not relevant in the perspective of OpenType fonts where we have

glyph specific top and bottom anchors.

2. Unless is it overloaded by \spaceskip this determines the space between words (or actually any

thing separated by a space).

3. This is the stretch component of \fontdimen 2(space).

4. This is the shrink component of \fontdimen 2(space).

5. The so called ex-height is normally the height of the ‘x’ and is also accessible as em unit.

6. The so called em-width or in TEX speak quad width is about the with of an ‘M’ but in many fonts

just matches the font size. It is also accessible as em unit.

7. This is a very TEX specific property also known as extra space. It gets added to the regular space

after punctuation when \spacefactor is 2000 or more. It can be overloaded by \xspaceskip.

This primitive expects a a number and a font identifier. Setting a font dimension is a global operation

as it directly pushes the value in the font resource.

284 \fontid

Returns the (internal) number associated with the given font:

{\bf \xdef\MyFontA{\the\fontid\font}}

{\sl \xdef\MyFontB{\setfontid\the\fontid\font}}

with:

127

test {\setfontid\MyFontA test} test {\MyFontB test} test

gives: test test test test test.

285 \fontidentifier

This one is just there for completeness: it reports the string used to identify a font when logging.

Compare:

\fontname\font DejaVuSerif at 10.0pt

\fontidentifier\font <1: DejaVuSerif @ 10.0pt>

\the\fontid\font 1

286 \fontmathcontrol

The \mathfontcontrol parameter controls how the engine deals with specific font related properties

and possibilities. It is set at the TEX end. It makes it possible to fine tune behavior in this mixed

traditional and not perfect OpenType math font arena. One can also set this bitset when initializing

(loading) the font (at the Lua end) and the value set there is available in \fontmathcontrol. The bits

set in the font win over those in \mathfontcontrol. There are a few cases where we set these options

in the (so called) goodie files. For instance we ignore font kerns in Libertinus, Antykwa and some

more.

modern 0x0

pagella 0x0

antykwa 0x37EF3FF

libertinus 0x37EF3FF

287 \fontname

Depending on how the font subsystem is implemented this gives some information about the used

font:

{\tf \fontname\font}

{\bf \fontname\font}

{\sl \fontname\font}

DejaVuSerif at 10.0pt

DejaVuSerif-Bold at 10.0pt

DejaVuSerif-Italic at 10.0pt

288 \fontspecdef

This primitive creates a reference to a specification that when triggered will change multiple parame

ters in one go.

\fontspecdef\MyFontSpec

\fontid\font

scale 1200

xscale 1100

128

yscale 800

weight 200

slant 500

\relax

is equivalent to:

\fontspecdef\MyFontSpec

\fontid\font

all 1200 1100 800 200 500

\relax

while

\fontspecdef\MyFontSpec

\fontid\font

all \glyphscale \glyphxscale \glyphyscale \glyphslant \glyphweight

\relax

is the same as

\fontspecdef\MyFontSpec

\fontid\font

\relax

The engine adapts itself to these glyph parameters but when you access certain quantities you have to

make sure that you use the scaled ones. The same is true at the Lua end. This is somewhat fundamental

in the sense that when one uses these sort of dynamic features one also need to keep an eye on code

that uses font specific dimensions.

289 \fontspecid

Internally a font reference is a number and this primitive returns the number of the font bound to the

specification.

290 \fontspecifiedname

Depending on how the font subsystem is implemented this gives some information about the (original)

definition of the used font:

{\tf \fontspecifiedname\font}

{\bf \fontspecifiedname\font}

{\sl \fontspecifiedname\font}

Serif sa 1

SerifBold sa 1

SerifSlanted sa 1

291 \fontspecifiedsize

Depending on how the font subsystem is implemented this gives some information about the (original)

size of the used font:

129

{\tf \the\fontspecifiedsize\font : \the\glyphscale}

{\bfa \the\fontspecifiedsize\font : \the\glyphscale}

{\slx \the\fontspecifiedsize\font : \the\glyphscale}

Depending on how the font system is setup, this is not the real value that is used in the text because

we can use for instance \glyphscale. So the next lines depend on what font mode this document is

typeset.

10.0pt: 1000

10.0pt: 1200
10.0pt: 800

292 \fontspecscale

This returns the scale factor of a fontspec where as usual 1000 means scaling by 1.

293 \fontspecslant

This returns the slant factor of a font specification, usually between zero and 1000 with 1000 being

maximum slant.

294 \fontspecweight

This returns the weight of the font specification. Reasonable values are between zero and 500.

295 \fontspecxscale

This returns the scale factor of a font specification where as usual 1000 means scaling by 1.

296 \fontspecyscale

This returns the scale factor of a font specification where as usual 1000 means scaling by 1.

297 \fonttextcontrol

This returns the text control flags that are set on the given font, here 0x208. Bits that can be set are:

0x01 collapsehyphens

0x02 baseligaturing

0x04 basekerning

0x08 noneprotected

0x10 hasitalics

0x20 autoitalics

0x40 replaceapostrophe

298 \forcedleftcorrection

This is a callback driven left correction signal similar to italic corrections.

130

299 \forcedrightcorrection

This is a callback driven right correction signal similar to italic corrections.

300 \formatname

It is in the name: cont-en, but we cheat here by only showing the filename and not the full path, which

in a ConTEXt setup can span more than a line in this paragraph.

301 \frozen

You can define a macro as being frozen:

\frozen\def\MyMacro{...}

When you redefine this macro you get an error:

! You can't redefine a frozen macro.

This is a prefix like \global and it can be combined with other prefixes.6

302 \futurecsname

In order to make the repertoire of def, let and futurelet primitives complete we also have:

\futurecsname MyMacro:1\endcsname\MyAction

303 \futuredef

We elaborate on the example of using \futurelet in the previous section. Compare that one with the

next:

\def\MySpecialToken{[}

\def\DoWhatever{\ifx\NextToken\MySpecialToken YES\else NOP\fi : }

\futurelet\NextToken\DoWhatever [A]\crlf

\futurelet\NextToken\DoWhatever (A)\par

This time we get:

NOP: [A]

NOP: (A)

It is for that reason that we now also have \futuredef:

\def\MySpecialToken{[}

\def\DoWhatever{\ifx\NextToken\MySpecialToken YES\else NOP\fi : }

\futuredef\NextToken\DoWhatever [A]\crlf

\futuredef\NextToken\DoWhatever (A)\par

So we're back to what we want:

6 The \outer and \long prefixes are no-ops in LuaMetaTEX and LuaTEX can be configured to ignore them.

131

YES: [A]

NOP: (A)

304 \futureexpand

This primitive can be used as an alternative to a \futurelet approach, which is where the name

comes from.7

\def\variantone<#1>{(#1)}

\def\varianttwo#1{[#1]}

\futureexpand<\variantone\varianttwo<one>

\futureexpand<\variantone\varianttwo{two}

So, the next token determines which of the two variants is taken:

(one) [two]

Because we look ahead there is some magic involved: spaces are ignored but when we have no match

they are pushed back into the input. The next variant demonstrates this:

\def\variantone<#1>{(#1)}

\def\varianttwo{}

\def\temp{\futureexpand<\variantone\varianttwo}

[\temp <one>]

[\temp {two}]

[\expandafter\temp\space <one>]

[\expandafter\temp\space {two}]

This gives us:

[(one)] [two] [(one)] [two]

305 \futureexpandis

We assume that the previous section is read. This variant will not push back spaces, which permits a

consistent approach i.e. the user can assume that macro always gobbles the spaces.

\def\variantone<#1>{(#1)}

\def\varianttwo{}

\def\temp{\futureexpandis<\variantone\varianttwo}

[\temp <one>]

[\temp {two}]

[\expandafter\temp\space <one>]

[\expandafter\temp\space {two}]

So, here no spaces are pushed back. This is in the name of this primitive means ‘ignore spaces’, but

having that added to the name would have made the primitive even more verbose (after all, we also

don't have \expandeddef but \edef and no \globalexpandeddef but \xdef.

[(one)] [two] [(one)] [two]

7 In the engine primitives that have similar behavior are grouped in commands that are then dealt with together, code wise.

132

306 \futureexpandisap

This primitive is like the one in the previous section but also ignores par tokens, so isap means ‘ignore

spaces and paragraphs’.

307 \futurelet

The original TEX primitive \futurelet can be used to create an alias to a next token, push it back into

the input and then expand a given token.

\let\MySpecialTokenL[

\let\MySpecialTokenR] % nicer for checker

\def\DoWhatever{\ifx\NextToken\MySpecialTokenL YES\else NOP\fi : }

\futurelet\NextToken\DoWhatever [A]\crlf

\futurelet\NextToken\DoWhatever (A)\par

This is typically the kind of primitive that most users will never use because it expects a sane follow

up handler (here \DoWhatever) and therefore is related to user interfacing.

YES: [A]

NOP: (A)

308 \gdef

The is the global companion of \def.

309 \gdefcsname

As with standard TEX we also define global ones:

\expandafter\gdef\csname MyMacro:1\endcsname{...}

\gdefcsname MyMacro:1\endcsname{...}

310 \givenmathstyle

This primitive expects a math style and returns it when valid or otherwise issues an error.

311 \gleaders

Leaders are glue with special property: a box, rule of (in LuaMetaTEX) glyph, like:

x MMx

xx MM xx

xMMMx

xx MMM xx

xMMMx

xxMMMxx

xMMMx

133

xx MMM xx

Leaders fill the available space. The \leaders command starts at the left edge and stops when there

is no more space. The blobs get centered when we use \cleaders: excess space is distributed before

and after a blob while \xleaders also puts space between the blobs.

When a rule is given the advance (width or height and depth) is ignored, so these are equivalent.

x\leaders \hrule \hfill x

x\leaders \hrule width 1cm \hfill x

When a box is used one will normally have some alignment in that box.

x\leaders \hbox {\hss.\hss} \hfill x

x\leaders \hbox {\hss.\hss} \hskip 6cm \relax x

The reference point is the left edge of the current (outer) box and the effective glue (when it has

stretch or shrink) depends on that box. The \gleaders variant takes the page as reference. That

makes it possible to ‘align’ across boxes.

312 \glet

This is the global companion of \let. The fact that it is not an original primitive is probably due to

the expectation for it not it not being used (as) often (as in ConTEXt).

313 \gletcsname

Naturally LuaMetaTEX also provides a global variant:

\expandafter\global\expandafter\let\csname MyMacro:1\endcsname\relax

\expandafter \glet\csname MyMacro:1\endcsname\relax

\gletcsname MyMacro:1\endcsname\relax

So, here we save even more.

314 \glettonothing

This is the global companion of \lettonothing.

315 \global

This is one of the original prefixes that can be used when we define a macro of change some register.

\bgroup

\def\MyMacroA{a}

\global\def\MyMacroB{a}

\gdef\MyMacroC{a}

\egroup

The macro defined in the first line is forgotten when the groups is left. The second and third definition

are both global and these definitions are retained.

134

316 \globaldefs

When set to a positive value, this internal integer will force all definitions to be global, and in a complex

macro package that is not something a user will do unless it is very controlled.

317 \glueexpr

This is a more extensive variant of \dimexpr that also handles the optional stretch and shrink compo

nents.

318 \glueshrink

This returns the shrink component of a glue quantity. The result is a dimension so you need to apply

\the when applicable.

319 \glueshrinkorder

This returns the shrink order of a glue quantity. The result is a integer so you need to apply \the when

applicable.

320 \gluespecdef

A variant of \integerdef and \dimensiondef is:

\gluespecdef\MyGlue = 3pt plus 2pt minus 1pt

The properties are comparable to the ones described in the previous sections.

321 \gluestretch

This returns the stretch component of a glue quantity. The result is a dimension so you need to apply

\the when applicable.

322 \gluestretchorder

This returns the stretch order of a glue quantity. The result is a integer so you need to apply \the

when applicable.

323 \gluetomu

The sequence \the\gluetomu 20pt plus 10pt minus 5pt gives 20.0mu plus 10.0mu minus 5.0mu.

324 \glyph

This is a more extensive variant of \char that permits setting some properties if the injected character

node.

\ruledhbox{\glyph

scale 2000 xscale 9000 yscale 1200

135

slant 700 weight 200

xoffset 10pt yoffset -5pt left 10pt right 20pt

123}

\quad

\ruledhbox{\glyph

scale 2000 xscale 9000 yscale 1200

slant 700 weight 200

125}

In addition one can specify font (symbol), id (valid font id number), an options (bit set) and raise.

{}
When no parameters are set, the current ones are used. More details and examples of usage can be

found in the ConTEXt distribution.

325 \glyphdatafield

The value of this parameter is assigned to data field in glyph nodes that get injected. It has no meaning

in itself but can be used at the Lua end.

326 \glyphoptions

The value of this parameter is assigned to the options field in glyph nodes that get injected.

0x00000000 normal 0x00000800 mathsitalicstoo

0x00000001 noleftligature 0x00001000 mathartifact

0x00000002 norightligature 0x00002000 weightless

0x00000004 noleftkern 0x00004000 spacefactoroverload

0x00000008 norightkern 0x00008000 checktoddler

0x00000010 noexpansion 0x00010000 checktwin

0x00000020 noprotrusion 0x00020000 istoddler

0x00000040 noitaliccorrection 0x00040000 iscontinuation

0x00000080 nozeroitaliccorrection 0x00080000 keepspacing

0x00000100 applyxoffset 0x01000000 userfirst

0x00000200 applyyoffset 0x40000000 userlast

0x00000400 mathdiscretionary

327 \glyphscale

An integer parameter defining the current glyph scale, assigned to glyphs (characters) inserted into

the current list.

328 \glyphscriptfield

The value of this parameter is assigned to script field in glyph nodes that get injected. It has no

meaning in itself but can be used at the Lua end.

136

329 \glyphscriptscale

This multiplier is applied to text font and glyph dimension properties when script style is used.

330 \glyphscriptscriptscale

This multiplier is applied to text font and glyph dimension properties when script script style is used.

331 \glyphslant

An integer parameter defining the current glyph slant, assigned to glyphs (characters) inserted into

the current list.

332 \glyphstatefield

The value of this parameter is assigned to script state in glyph nodes that get injected. It has no

meaning in itself but can be used at the Lua end.

333 \glyphtextscale

This multiplier is applied to text font and glyph dimension properties when text style is used.

334 \glyphweight

An integer parameter defining the current glyph weight, assigned to glyphs (characters) inserted into

the current list.

335 \glyphxoffset

An integer parameter defining the current glyph x offset, assigned to glyphs (characters) inserted into

the current list. Normally this will only be set when one explicitly works with glyphs and defines a

specific sequence.

336 \glyphxscale

An integer parameter defining the current glyph x scale, assigned to glyphs (characters) inserted into

the current list.

337 \glyphxscaled

This primitive returns the given dimension scaled by the \glyphscale and \glyphxscale.

338 \glyphyoffset

An integer parameter defining the current glyph x offset, assigned to glyphs (characters) inserted into

the current list. Normally this will only be set when one explicitly works with glyphs and defines a

specific sequence.

137

339 \glyphyscale

An integer parameter defining the current glyph y scale, assigned to glyphs (characters) inserted into

the current list.

340 \glyphyscaled

This primitive returns the given dimension scaled by the \glyphscale and \glyphyscale.

341 \gtoksapp

This is the global variant of \toksapp.

342 \gtokspre

This is the global variant of \tokspre.

343 \halign

This command starts horizontally aligned material. Macro packages use this command in table mech

anisms and math alignments. It starts with a preamble followed by entries (rows and columns). There

are some related primitives, for instance \alignmark duplicates the functionality of # inside alignment

preambles, while \aligntab duplicates the functionality of &. The \aligncontent primitive directly

refers to an entry so that one does not get repeated.

Alignments can be traced with \tracingalignments. When set to 1 basics usage is shown, for instance

of \noalign but more interesting is 2 or more: you then get the preambles reported.

The \halign (tested) and \valign (yet untested) primitives accept a few keywords in addition to to

and spread:

keyword explanation

attr set the given attribute to the given value

callback trigger the alignment callback

discard discard zero \tabskip's

noskips don't even process zero \tabskip's

reverse reverse the final rows

In the preamble the \tabsize primitive can be used to set the width of a column. By doing so one can

avoid using a box in the preamble which, combined with the sparse tabskip features, is a bit easier on

memory when you produce tables that span hundreds of pages and have a dozen columns.

The \everytab complements the \everycr token register but is sort of experimental as it might be

come more selective and powerful some day.

The two primitives \alignmentcellsource and \alignmentwrapsource that associate a source id (in

teger) to the current cell and row (line). Sources and targets are experimental and are being explored

in ConTEXt so we'll see where that ends up in.

138

344 \hangafter

This parameter tells the par builder when indentation specified with \hangindent starts. A negative

value does the opposite and starts indenting immediately. So, a value of −2 will make the first two

lines indent.

345 \hangindent

This parameter relates to \hangafter and sets the amount of indentation. When larger than zero

indentation happens left, otherwise it starts at the right edge.

346 \hbadness

This sets the threshold for reporting a horizontal badness value, its current value is 0.

347 \hbadnessmode

This parameter determines what gets reported when the (in the horizontal packer) badness exceeds

some limit. The current value of this bitset is "F.

0x01 underfull 0x02 loose 0x04 tight 0x08 overfull

348 \hbox

This constructs a horizontal box. There are a lot of optional parameters so more details can be found

in dedicated manuals. When the content is packed a callback can kick in that can be used to apply for

instance font features.

349 \hccode

The TEX engine is good at hyphenating but traditionally that has been limited to hyphens. Some

languages however use different characters. You can set up a different \hyphenchar as well as pre

and post characters, but there's also a dedicated code for controlling this.

\hccode"2013 "2013

\hsize 50mm test\char"2013test\par

\hsize 1mm test\char"2013test\par

\hccode"2013 `!

\hsize 50mm test\char"2013test\par

\hsize 1mm test\char"2013test\par

This example shows that we can mark a character as hyphen-like but also can remap it to something

else:

test–test

test–

test

test–test

139

test!

test

350 \hfil

This is a shortcut for \hskip plus 1 fil (first order filler).

351 \hfill

This is a shortcut for \hskip plus 1 fill (second order filler).

352 \hfilneg

This is a shortcut for \hskip plus - 1 fil so it can compensate \hfil.

353 \hfuzz

This dimension sets the threshold for reporting horizontal boxes that are under- or overfull. The

current value is 0.1pt.

354 \hjcode

The so called lowercase code determines if a character is part of a to-be-hyphenated word. In LuaTEX

we introduced the ‘hyphenation justification’ code as replacement. When a language is saved and no

\hjcode is set the \lccode is used instead. This code serves a second purpose. When the assigned

value is greater than 0 but less than 32 it indicated the to be used length when checking for left- and

righthyphenmin. For instance it make sense to set the code to 2 for characters like œ.

355 \hkern

This primitive is like \kern but will force the engine into horizontal mode if it isn't yet.

356 \hmcode

The hm stands for ‘hyphenation math’. When bit 1 is set the characters will be repeated on the next

line after a break. The second bit concerns italic correction but is of little relevance now that we

moved to a different model in ConTEXt. Here are some examples, we also show an example of \math

discretionary because that is what this code triggers:

test $ \dorecurse {50} {

a \discretionary class 2 {$\darkred +$}{$\darkgreen +$}{$\darkblue +$}

} b$

test $ a \mathdiscretionary class 1 {-}{-}{-} b$

\bgroup

\hmcode"002B=1 % +

\hmcode"002D=1 % -

\hmcode"2212=1 % -

140

test $ \dorecurse{50}{a + b - } c$

\egroup

test 𝑎 +
+ 𝑎+ 𝑏

test 𝑎−𝑏

test 𝑎 + 𝑏− 𝑎+ 𝑏− 𝑎+ 𝑏− 𝑎+ 𝑏− 𝑎+ 𝑏− 𝑎+ 𝑏− 𝑎+ 𝑏− 𝑎+ 𝑏− 𝑎+ 𝑏− 𝑎+ 𝑏− 𝑎+ 𝑏− 𝑎+ 𝑏− 𝑎+ 𝑏−
−𝑎+𝑏−𝑎+𝑏−𝑎+𝑏−𝑎+𝑏−𝑎+𝑏−𝑎+𝑏−𝑎+𝑏−𝑎+𝑏−𝑎+𝑏−𝑎+𝑏−𝑎+𝑏−𝑎+𝑏−𝑎+𝑏−𝑎+
+𝑏−𝑎+𝑏−𝑎+𝑏−𝑎+𝑏−𝑎+𝑏−𝑎+𝑏−𝑎+𝑏−𝑎+𝑏−𝑎+𝑏−𝑎+𝑏−𝑎+𝑏−𝑎+𝑏−𝑎+𝑏−𝑎+𝑏−
− 𝑎+ 𝑏− 𝑎+ 𝑏− 𝑎+ 𝑏− 𝑎+ 𝑏− 𝑎+ 𝑏− 𝑎+ 𝑏− 𝑎+ 𝑏− 𝑎+ 𝑏− 𝑎+ 𝑏− 𝑎+ 𝑏− 𝑐

357 \holdinginserts

When set to a positive value inserts will be kept in the stream and not moved to the insert registers.

358 \holdingmigrations

When set to a positive value marks (and adjusts) will be kept in the stream and not moved to the outer

level or related registers.

359 \hpack

This primitive is like \hbox but without the callback overhead.

360 \hpenalty

This primitive is like \penalty but will force the engine into horizontal mode if it isn't yet.

361 \hrule

This creates a horizontal rule. Unless the width is set it will stretch to fix the available width. In

addition to the traditional width, height and depth specifiers some more are accepted. These are

discussed in other manuals. To give an idea:

h\hrule width 10mm height 2mm depth 1mm \relax rule

h\hrule width 10mm height 2mm depth 1mm xoffset 30mm yoffset -10mm \relax rule

v\vrule width 10mm height 2mm depth 1mm \relax rule

v\vrule width 10mm height 2mm depth 1mm xoffset 30mm yoffset 10mm \relax rule

The \relax stops scanning and because we have more keywords we get a different error report than

in traditional TEX when a lookahead confuses the engine. On separate lines we get the following.

h

rule

h

rule

v rule

v rule

141

362 \hsize

This sets (or gets) the current horizontal size.

\hsize 40pt \setbox0\vbox{x} hsize: \the\wd0

\setbox0\vbox{\hsize 40pt x} hsize: \the\wd0

In both cases we get the same size reported but the first one will also influence the current paragraph

when used ungrouped.

hsize:

40.0pt

hsize:

40.0pt

363 \hskip

The given glue is injected in the horizontal list. If possible horizontal mode is entered.

364 \hss

In traditional TEX glue specifiers are shared. This makes a lot of sense when memory has to be saved.

For instance spaces in a paragraph of text are often the same and a glue specification has at least an

amount, stretch, shrink, stretch order and shrink order field plus a leader pointer; in LuaMetaTEX we

have even more fields. In LuaTEX these shared (and therefore referenced) glue spec nodes became

just copies.

x\hbox to 0pt{\hskip 0pt plus 1 fil minus 1 fil\relax test}x

x\hbox to 0pt{\hss test}x

x\hbox to 0pt{test\hskip 0pt plus 1 fil minus 1 fil\relax}x

x\hbox to 0pt{test\hss}x

The \hss primitives injects a glue node with one order stretch and one order shrink. In traditional

TEX this is a reference to a shared specification, and in LuaTEX just a copy of a predefined specifier.

The only gain is now in tokens because one could just be explicit or use a glue register with that value

because we have plenty glue registers.

xtestx

xtestx

xtestx

xtestx

We could have this:

\permanent\protected\untraced\def\hss

{\hskip0pt plus 1 fil minus 1 fil\relax}

or this:

\gluespecdef\hssglue 0pt plus 1 fil minus 1 fil

\permanent\protected\untraced\def\hss

142

{\hskip\hssglue}

but we just keep the originals around.

365 \ht

Returns the height of the given box.

366 \hyphenation

The list passed to this primitive contains hyphenation exceptions that get bound to the current lan

guage. In LuaMetaTEX this can be managed at the Lua end. Exceptions are not stored in the format

file.

367 \hyphenationmin

This property (that also gets bond to the current language) sets the minimum length of a word that

gets hyphenated.

368 \hyphenationmode

TODO

369 \hyphenchar

This is one of the font related primitives: it returns the number of the hyphen set in the given font.

370 \hyphenpenalty

Discretionary nodes have a related default penalty. The \hyphenpenalty is injected after a regular dis

cretionary, and \exhyphenpenalty after \- or -. The later case is called an automatic discretionary. In

LuaMetaTEX we have two extra penalties: \explicithyphenpenalty and \automatichyphenpenalty

and these are used when the related bits are set in \hyphenationmode.

371 \if

This traditional TEX conditional checks if two character codes are the same. In order to understand

unexpanded results it is good to know that internally TEX groups primitives in a way that serves the

implementation. Each primitive has a command code and a character code, but only for real characters

the name character code makes sense. This condition only really tests for character codes when we

have a character, in all other cases, the result is true.

\def\A{A}\def\B{B} \chardef\C=`C \chardef\D=`D \def\AA{AA}

[\if AA YES \else NOP \fi] [\if AB YES \else NOP \fi]

[\if \A\B YES \else NOP \fi] [\if \A\A YES \else NOP \fi]

[\if \C\D YES \else NOP \fi] [\if \C\C YES \else NOP \fi]

[\if \count\dimen YES \else NOP \fi] [\if \AA\A YES \else NOP \fi]

143

The last example demonstrates that the tokens get expanded, which is why we get the extra A:

[YES] [NOP] [NOP] [YES] [YES] [YES] [YES] [AYES]

372 \ifabsdim

This test will negate negative dimensions before comparison, as in:

\def\TestA#1{\ifdim #1<2pt too small\orelse\ifdim #1>4pt too large\else okay\fi}

\def\TestB#1{\ifabsdim#1<2pt too small\orelse\ifabsdim#1>4pt too large\else okay\fi}

\TestA {1pt}\quad\TestA {3pt}\quad\TestA {5pt}\crlf

\TestB {1pt}\quad\TestB {3pt}\quad\TestB {5pt}\crlf

\TestB{-1pt}\quad\TestB{-3pt}\quad\TestB{-5pt}\par

So we get this:

too small okay too large

too small okay too large

too small okay too large

373 \ifabsfloat

This test will negate negative floats before comparison, as in:

\def\TestA#1{\iffloat #1<2.46 small\orelse\iffloat #1>4.68 large\else medium\fi}

\def\TestB#1{\ifabsfloat#1<2.46 small\orelse\ifabsfloat#1>4.68 large\else medium\fi}

\TestA {1.23}\quad\TestA {3.45}\quad\TestA {5.67}\crlf

\TestB {1.23}\quad\TestB {3.45}\quad\TestB {5.67}\crlf

\TestB{-1.23}\quad\TestB{-3.45}\quad\TestB{-5.67}\par

So we get this:

small medium large

small medium large

small medium large

374 \ifabsnum

This test will negate negative numbers before comparison, as in:

\def\TestA#1{\ifnum #1<100 too small\orelse\ifnum #1>200 too large\else okay\fi}

\def\TestB#1{\ifabsnum#1<100 too small\orelse\ifabsnum#1>200 too large\else okay\fi}

\TestA {10}\quad\TestA {150}\quad\TestA {210}\crlf

\TestB {10}\quad\TestB {150}\quad\TestB {210}\crlf

\TestB{-10}\quad\TestB{-150}\quad\TestB{-210}\par

Here we get the same result each time:

too small okay too large

too small okay too large

too small okay too large

144

375 \ifarguments

This is a variant of \ifcase were the selector is the number of arguments picked up. For example:

\def\MyMacro#1#2#3{\ifarguments\0\or1\or2\or3\else ?\fi} \MyMacro{A}{B}{C}

\def\MyMacro#1#0#3{\ifarguments\0\or1\or2\or3\else ?\fi} \MyMacro{A}{B}{C}

\def\MyMacro#1#-#2{\ifarguments\0\or1\or2\or3\else ?\fi} \MyMacro{A}{B}{C}\par

Watch the non counted, ignored, argument in the last case. Normally this test will be used in combi

nation with \ignorearguments.

3 3 2

376 \ifboolean

This tests a number (register or equivalent) and any nonzero value represents true, which is nicer

than using an \unless\ifcase.

377 \ifcase

This numeric TEX conditional takes a counter (literal, register, shortcut to a character, internal quan

tity) and goes to the branch that matches.

\ifcase 3 zero\or one\or two\or three\or four\else five or more\fi

Indeed: three equals three. In later sections we will see some LuaMetaTEX primitives that behave like

an \ifcase.

378 \ifcat

Another traditional TEX primitive: what happens with what gets read in depends on the catcode of a

character, think of characters marked to start math mode, or alphabetic characters (letters) versus

other characters (like punctuation).

\def\A{A}\def\B{,} \chardef\C=`C \chardef\D=`, \def\AA{AA}

[\ifcat $! YES \else NOP \fi] [\ifcat () YES \else NOP \fi]

[\ifcat AA YES \else NOP \fi] [\ifcat AB YES \else NOP \fi]

[\ifcat \A\B YES \else NOP \fi] [\ifcat \A\A YES \else NOP \fi]

[\ifcat \C\D YES \else NOP \fi] [\ifcat \C\C YES \else NOP \fi]

[\ifcat \count\dimen YES \else NOP \fi] [\ifcat \AA\A YES \else NOP \fi]

Close reading is needed here:

[NOP] [YES] [YES] [YES] [NOP] [YES] [YES] [YES] [YES] [AYES]

This traditional TEX condition as a well as the one in the previous section are hardly used in ConTEXt,

if only because they expand what follows and we seldom need to compare characters.

379 \ifchkdim

A variant on the checker in the previous section is a dimension checker:

145

\ifchkdim oeps \or okay\else error\fi\quad

\ifchkdim 12 \or okay\else error\fi\quad

\ifchkdim 12pt \or okay\else error\fi\quad

\ifchkdim 12pt or more\or okay\else error\fi

We get:

error error okay okay

380 \ifchkdimension

COntrary to \ifchkdim this test doesn't accept trailing crap:

\ifchkdimension oeps \or okay\else error\fi\quad

\ifchkdimension 12 \or okay\else error\fi\quad

\ifchkdimension 12pt \or okay\else error\fi\quad

\ifchkdimension 12pt or more\or okay\else error\fi

reports:

error error okay error

381 \ifchkdimexpr

This primitive is like \ifchkdim but handles an expression.

382 \ifchknum

In ConTEXt there are quite some cases where a variable can have a number or a keyword indicating

a symbolic name of a number or maybe even some special treatment. Checking if a valid number is

given is possible to some extend, but a native checker makes much sense too. So here is one:

\ifchknum oeps \or okay\else error\fi\quad

\ifchknum 12 \or okay\else error\fi\quad

\ifchknum 12pt \or okay\else error\fi\quad

\ifchknum 12pt or more\or okay\else error\fi

The result is as expected:

error okay okay okay

383 \ifchknumber

This check is more restrictive than \ifchknum discussed in the previous section:

\ifchknumber oeps \or okay\else error\fi\quad

\ifchknumber 12 \or okay\else error\fi\quad

\ifchknumber 12pt \or okay\else error\fi\quad

\ifchknumber 12pt or more\or okay\else error\fi

Here we get:

146

error okay error error

384 \ifchknumexpr

This primitive is like \ifchknum but handles an expression.

385 \ifcmpdim

This is a less strict veriant of \ifchkdimension that doesn't bark on trailing tokens.

386 \ifcmpnum

This is a less strict veriant of \ifchknumber that doesn't bark on trailing tokens.

387 \ifcondition

The conditionals in TEX are hard coded as primitives and although it might look like \newif creates

one, it actually just defined three macros.

\newif\ifMyTest

\meaning\MyTesttrue \crlf

\meaning\MyTestfalse \crlf

\meaning\ifMyTest \crlf \MyTesttrue

\meaning\ifMyTest \par

protected macro:\always \let \ifMyTest \iftrue

protected macro:\always \let \ifMyTest \iffalse

\iffalse

\iftrue

This means that when you say:

\ifMytest ... \else ... \fi

You actually have one of:

\iftrue ... \else ... \fi

\iffalse ... \else ... \fi

and because these are proper conditions nesting them like:

\ifnum\scratchcounter > 0 \ifMyTest A\else B\fi \fi

will work out well too. This is not true for macros, so for instance:

\scratchcounter = 1

\unexpanded\def\ifMyTest{\iftrue}

\ifnum\scratchcounter > 0 \ifMyTest A\else B\fi \fi

will make a run fail with an error (or simply loop forever, depending on your code). This is where

\ifcondition enters the picture:

147

\def\MyTest{\iftrue} \scratchcounter0

\ifnum\scratchcounter > 0

\ifcondition\MyTest A\else B\fi

\else

x

\fi

This primitive is seen as a proper condition when TEX is in “fast skipping unused branches” mode but

when it is expanding a branch, it checks if the next expanded token is a proper tests and if so, it deals

with that test, otherwise it fails. The main condition here is that the \MyTest macro expands to a

proper true or false test, so, a definition like:

\def\MyTest{\ifnum\scratchcounter<10 }

is also okay. Now, is that neat or not?

388 \ifcramped

Depending on the given math style this returns true of false:

\ifcramped\mathstyle no \fi

\ifcramped\crampedtextstyle yes \fi

\ifcramped\textstyle no \fi

\ifcramped\displaystyle yes \fi

gives: yes.

389 \ifcsname

This is an 𝜀-TEX conditional that complements the one on the previous section:

\expandafter\ifx\csname MyMacro\endcsname\relax ... \else ... \fi

\ifcsname MyMacro\endcsname ... \else ... \fi

Here the first one has the side effect of defining the macro and defaulting it to \relax, while the

second one doesn't do that. Just think of checking a few million different names: the first one will

deplete the hash table and probably string space too.

In LuaMetaTEX the construction stops when there is no letter or other character seen (TEX expands on

the go so expandable macros are dealt with). Instead of an error message, the match is simply false

and all tokens till the \endcsname are gobbled.

390 \ifcstok

A variant on the primitive mentioned in the previous section is one that operates on lists and macros:

\def\a{a} \def\b{b} \def\c{a}

This:

\ifcstok\a\b Y\else N\fi\space

\ifcstok\a\c Y\else N\fi\space

148

\ifcstok{\a}\c Y\else N\fi\space

\ifcstok{a}\c Y\else N\fi

will give us: N Y Y Y.

391 \ifdefined

In traditional TEX checking for a macro to exist was a bit tricky and therefore 𝜀-TEX introduced a

convenient conditional. We can do this:

\ifx\MyMacro\undefined ... \else ... \fi

but that assumes that \undefined is indeed undefined. Another test often seen was this:

\expandafter\ifx\csname MyMacro\endcsname\relax ... \else ... \fi

Instead of comparing with \undefined we need to check with \relax because the control sequence

is defined when not yet present and defaults to \relax. This is not pretty.

392 \ifdim

Dimensions can be compared with this traditional TEX primitive.

\scratchdimen=1pt \scratchcounter=65536

\ifdim\scratchdimen=\scratchcounter sp YES \else NOP\fi

\ifdim\scratchdimen=1 pt YES \else NOP\fi

The units are mandate:

YES YES

393 \ifdimexpression

The companion of the previous primitive is:

This matches when the result is non zero, and you can mix calculations and tests as with normal

expressions. Contrary to the number variant units can be used and precision kicks in.

394 \ifdimval

This conditional is a variant on \ifchkdim and provides some more detailed information about the

value:

[-12pt : \ifdimval-12pt\or negative\or zero\or positive\else error\fi]\quad

[0pt : \ifdimval 0pt\or negative\or zero\or positive\else error\fi]\quad

[12pt : \ifdimval 12pt\or negative\or zero\or positive\else error\fi]\quad

[oeps : \ifdimval oeps\or negative\or zero\or positive\else error\fi]

This gives:

[-12pt : negative] [0pt : zero] [12pt : positive] [oeps : error]

149

395 \ifempty

This conditional checks if a control sequence is empty:

is \ifempty\MyMacro \else not \fi empty

It is basically a shortcut of:

is \ifx\MyMacro\empty \else not \fi empty

with:

\def\empty{}

Of course this is not empty at all:

\def\notempty#1{}

396 \iffalse

Here we have a traditional TEX conditional that is always false (therefore the same is true for any

macro that is \let to this primitive).

397 \ifflags

This test primitive relates to the various flags that one can set on a control sequence in the perspective

of overload protection and classification.

\protected\untraced\tolerant\def\foo[#1]{...#1...}

\permanent\constant \def\oof{okay}

flag \foo \oof flag \foo \oof

frozen N N permanent N Y

immutable N N mutable N N

noaligned N N instance N N

untraced Y N global N N

tolerant Y N constant N Y

protected Y N semiprotected N N

Instead of checking against a prefix you can test against a bitset made from:

0x1 frozen 0x2 permanent 0x4 immutable 0x8 primitive

0x10 mutable 0x20 noaligned 0x40 instance 0x80 untraced

0x100 global 0x200 tolerant 0x400 protected 0x800 overloaded

0x1000 aliased 0x2000 immediate 0x4000 conditional 0x8000 value

0x10000 semiprotected 0x20000 inherited 0x40000 constant 0x80000 deferred

398 \iffloat

This test does for floats what \ifnum, \ifdim do for numbers and dimensions: comparing two of them.

150

399 \iffontchar

This is an 𝜀-TEX conditional. It takes a font identifier and a character number. In modern fonts simply

checking could not be enough because complex font features can swap in other ones and their index

can be anything. Also, a font mechanism can provide fallback fonts and characters, so don't rely on

this one too much. It just reports true when the font passed to the frontend has a slot filled.

400 \ifhaschar

This one is a simplified variant of the above:

\ifhaschar !{this ! works} yes \else no \fi

and indeed we get: yes! Of course the spaces in this this example code are normally not present in

such a test.

401 \ifhastok

This conditional looks for occurrences in token lists where each argument has to be a proper list.

\def\scratchtoks{x}

\ifhastoks{yz} {xyz} Y\else N\fi\quad

\ifhastoks\scratchtoks {xyz} Y\else N\fi

We get:

Y Y

402 \ifhastoks

This test compares two token lists. When a macro is passed it's meaning gets used.

\def\x {x}

\def\xyz{xyz}

(\ifhastoks {x} {xyz}Y\else N\fi)\quad

(\ifhastoks {\x} {xyz}Y\else N\fi)\quad

(\ifhastoks \x {xyz}Y\else N\fi)\quad

(\ifhastoks {y} {xyz}Y\else N\fi)\quad

(\ifhastoks {yz} {xyz}Y\else N\fi)\quad

(\ifhastoks {yz} {\xyz}Y\else N\fi)

(Y) (N) (Y) (Y) (Y) (N)

403 \ifhasxtoks

This primitive is like the one in the previous section but this time the given lists are expanded.

\def\x {x}

\def\xyz{\x yz}

151

(\ifhasxtoks {x} {xyz}Y\else N\fi)\quad

(\ifhasxtoks {\x} {xyz}Y\else N\fi)\quad

(\ifhastoks \x {xyz}Y\else N\fi)\quad

(\ifhasxtoks {y} {xyz}Y\else N\fi)\quad

(\ifhasxtoks {yz} {xyz}Y\else N\fi)\quad

(\ifhasxtoks {yz} {\xyz}Y\else N\fi)

(Y) (Y) (Y) (Y) (Y) (Y)

This primitive has some special properties.

\edef\+{\expandtoken 9 `+}

\ifhasxtoks {xy} {xyz}Y\else N\fi\quad

\ifhasxtoks {x\+y} {xyz}Y\else N\fi

Here the first argument has a token that has category code ‘ignore’ which means that such a character

will be skipped when seen. So the result is:

Y Y

This permits checks like these:

\edef\,{\expandtoken 9 `,}

\ifhasxtoks{\,x\,} {,x,y,z,}Y\else N\fi\quad

\ifhasxtoks{\,y\,} {,x,y,z,}Y\else N\fi\quad

\ifhasxtoks{\,z\,} {,x,y,z,}Y\else N\fi\quad

\ifhasxtoks{\,x\,} {,xy,z,}Y\else N\fi

I admit that it needs a bit of a twisted mind to come up with this, but it works ok:

Y Y Y N

404 \ifhbox

This traditional conditional checks if a given box register or internal box variable represents a hori

zontal box,

405 \ifhmode

This traditional conditional checks we are in (restricted) horizontal mode.

406 \ifinalignment

As the name indicates, this primitive tests for being in an alignment. Roughly spoken, the engine is

either in a state of align, handling text or dealing with math.

407 \ifincsname

This conditional is sort of obsolete and can be used to check if we're inside a \csname or \ifcsname

construction. It's not used in ConTEXt.

152

408 \ifinner

This traditional one can be confusing. It is true when we are in restricted horizontal mode (a box),

internal vertical mode (a box), or inline math mode.

test \ifhmode \ifinner INNER\fi HMODE\fi\crlf

\hbox{test \ifhmode \ifinner INNER \fi HMODE\fi} \par

\ifvmode \ifinner INNER\fi VMODE \fi\crlf

\vbox{\ifvmode \ifinner INNER \fi VMODE\fi} \crlf

\vbox{\ifinner INNER \ifvmode VMODE \fi \fi} \par

Watch the last line: because we typeset INNER we enter horizontal mode:

test HMODE

test INNER HMODE

VMODE

INNER VMODE

INNER

409 \ifinsert

This is the equivalent of \ifvoid for a given insert class.

410 \ifintervaldim

This conditional is true when the intervals around the values of two dimensions overlap. The first

dimension determines the interval.

[\ifintervaldim1pt 20pt 21pt \else no \fi overlap]

[\ifintervaldim1pt 18pt 20pt \else no \fi overlap]

So here: [overlap] [no overlap]

411 \ifintervalfloat

This one does with floats what we described under \ifintervaldim.

412 \ifintervalnum

This one does with integers what we described under \ifintervaldim.

413 \iflastnamedcs

When a \csname is constructed and succeeds the last one is remembered and can be accessed with

\lastnamedcs. It can however be an undefined one. That state can be checked with this primitive. Of

course it also works with the \ifcsname and \begincsname variants.

153

414 \iflist

The \ifvoid conditional checks is a box is unset, that is, no hlist or vlist node is assigned. The

\iflist conditional also checks is a list is assigned to this node. If there is a node assigned the box

can of course have dimensions, but it's the presence of a list (content) that matters here.

[\setbox0\hbox{!}\iflist0 \else no \fi list, \ifvoid0 \else not \fi void]

[\setbox0\hbox {}\iflist0 \else no \fi list, \ifvoid0 \else not \fi void]

[\box0 \iflist0 \else no \fi list, \ifvoid0 \else not \fi void]

We get: [list, not void] [no list, not void] [no list, void]

415 \ifmathparameter

This is an \ifcase where the value depends on if the given math parameter is zero, (0), set (1), or

unset (2).

\ifmathparameter\Umathpunctclosespacing\displaystyle

zero \or

nonzero \or

unset \fi

416 \ifmathstyle

This is a variant of \ifcase were the number is one of the seven possible styles: display, text, cramped

text, script, cramped script, script script, cramped script script.

\ifmathstyle

display

\or

text

\or

cramped text

\else

normally smaller than text

\fi

417 \ifmmode

This traditional conditional checks we are in (inline or display) math mode mode.

418 \ifnum

This is a frequently used conditional: it compares two numbers where a number is anything that can

be seen as such.

\scratchcounter=65 \chardef\A=65

\ifnum65=`A YES \else NOP\fi

\ifnum\scratchcounter=65 YES \else NOP\fi

\ifnum\scratchcounter=\A YES \else NOP\fi

154

Unless a number is an unexpandable token it ends with a space or \relax, so when you end up in the

true branch, you'd better check if TEX could determine where the number ends.

YES YES YES

On top of these ascii combinations, the engine also accepts some Unicode characters. This brings the

full repertoire to:

character operation

0x003C < less

0x003D = equal

0x003E > more

0x2208 ∈ element of

0x2209 ∉ not element of

0x2260 ≠ != not equal

0x2264 ≤ !> less equal

0x2265 ≥ !< greater equal

0x2270 ≰ not less equal

0x2271 ≱ not greater equal

This also applied to \ifdim although in the case of element we discard the fractional part (read: divide

the numeric representation by 65536).

419 \ifnumexpression

Here is an example of a conditional using expressions:

This matches when the result is non zero, and you can mix calculations and tests as with normal

expressions.

420 \ifnumval

This conditional is a variant on \ifchknum. This time we get some more detail about the value:

[-12 : \ifnumval -12\or negative\or zero\or positive\else error\fi]\quad

[0 : \ifnumval 0\or negative\or zero\or positive\else error\fi]\quad

[12 : \ifnumval 12\or negative\or zero\or positive\else error\fi]\quad

[oeps : \ifnumval oeps\or negative\or zero\or positive\else error\fi]

This gives:

[-12 : negative] [0 : zero] [12 : positive] [oeps : error]

421 \ifodd

One reason for this condition to be around is that in a double sided layout we need test for being on

an odd or even page. It scans for a number the same was as other primitives,

\ifodd65 YES \else NO\fi &

\ifodd`B YES \else NO\fi .

155

So: YES & NO.

422 \ifparameter

In a macro body #1 is a reference to a parameter. You can check if one is set using a dedicated

parameter condition:

\tolerant\def\foo[#1]#*[#2]%

{\ifparameter#1\or one\else no one\fi\enspace

\ifparameter#2\or two\else no two\fi\emspace}

\foo

\foo[1]

\foo[1][2]

We get:

no one no two one no two one two

423 \ifparameters

This is equivalent to an \ifcase with as value the number of parameters passed to the current macro.

424 \ifrelax

This is a convenient shortcut for \ifx\relax and the motivation for adding this one is (as with some

others) to get less tracing.

425 \iftok

When you want to compare two arguments, the usual way to do this is the following:

\edef\tempA{#1}

\edef\tempb{#2}

\ifx\tempA\tempB

the same

\else

different

\fi

This works quite well but the fact that we need to define two macros can be considered a bit of a

nuisance. It also makes macros that use this method to be not so called ‘fully expandable’. The next

one avoids both issues:

\iftok{#1}{#2}

the same

\else

different

\fi

Instead of direct list you can also pass registers, so given:

156

\scratchtoks{a}%

\toks0{a}%

This:

\iftok 0 \scratchtoks Y\else N\fi\space

\iftok{a}\scratchtoks Y\else N\fi\space

\iftok\scratchtoks\scratchtoks Y\else N\fi

gives: Y Y Y.

426 \iftrue

Here we have a traditional TEX conditional that is always true (therefore the same is true for any macro

that is \let to this primitive).

427 \ifvbox

This traditional conditional checks if a given box register or internal box variable represents a vertical

box,

428 \ifvmode

This traditional conditional checks we are in (internal) vertical mode.

429 \ifvoid

This traditional conditional checks if a given box register or internal box variable has any content.

430 \ifx

We use this traditional TEX conditional a lot in ConTEXt. Contrary to \if the two tokens that are

compared are not expanded. This makes it possible to compare the meaning of two macros. Depending

on the need, these macros can have their content expanded or not. A different number of parameters

results in false.

Control sequences are identical when they have the same command code and character code. Because

a \let macro is just a reference, both let macros are the same and equal to \relax:

\let\one\relax \let\two\relax

The same is true for other definitions that result in the same (primitive) or meaning encoded in the

character field (think of \chardefs and so).

431 \ifzerodim

This tests for a dimen (dimension) being zero so we have:

\ifdim<dimension>=0pt

\ifzerodim<dimension>

157

\ifcase<dimension register>

432 \ifzerofloat

As the name indicated, this tests for a zero float value.

[\scratchfloat\zerofloat \ifzerofloat\scratchfloat \else not \fi zero]

[\scratchfloat\plusone \ifzerofloat\scratchfloat \else not \fi zero]

[\scratchfloat 0.01 \ifzerofloat\scratchfloat \else not \fi zero]

[\scratchfloat 0.0e0 \ifzerofloat\scratchfloat \else not \fi zero]

[\scratchfloat \zeropoint\ifzerofloat\scratchfloat \else not \fi zero]

So: [zero] [not zero] [not zero] [zero] [zero]

433 \ifzeronum

This tests for a number (integer) being zero so we have these variants now:

\ifnum<integer or equivalent>=0

\ifzeronum<integer or equivalent>

\ifcase<integer or equivalent>

434 \ignorearguments

This primitive will quit argument scanning and start expansion of the body of a macro. The number

of grabbed arguments can be tested as follows:

\def\MyMacro[#1][#2][#3]%

{\ifarguments zero\or one\or two\or three \else hm\fi}

\MyMacro \ignorearguments \quad

\MyMacro [1]\ignorearguments \quad

\MyMacro [1][2]\ignorearguments \quad

\MyMacro [1][2][3]\ignorearguments \par

zero one two three

Todo: explain optional delimiters.

435 \ignoredepthcriterion

When setting the \prevdepth (either by TEX or by the current user) of the current vertical list the

value 1000pt is a signal for special treatment of the skip between ‘lines’. There is an article on that in

the distribution. It also demonstrates that \ignoredepthcriterion can be used to change this special

signal, just in case it is needed.

436 \ignorenestedupto

This primitive gobbles following tokens and can deal with nested ‘environments’, for example:

\def\StartFoo{\ignorenestedupto\StartFoo\StopFoo}

158

(before

\StartFoo

test \StartFoo test \StopFoo

{test \StartFoo test \StopFoo}

\StopFoo

after)

delivers:

(before after)

437 \ignorepars

This is a variant of \ignorespaces: following spaces and \par equivalent tokens are ignored, so for

instance:

one + \ignorepars

two = \ignorepars \par

three

renders as: one + two = three. Traditionally TEX has been sensitive to \par tokens in some of its

building blocks. This has to do with the fact that it could indicate a runaway argument which in the

times of slower machines and terminals was best to catch early. In LuaMetaTEX we no longer have

long macros and the mechanisms that are sensitive can be told to accept \par tokens (and ConTEXt

set them such that this is the case).

438 \ignorerest

An example shows what this primitive does:

\tolerant\def\foo[#1]#*[#2]%

{1234

\ifparameter#1\or\else

\expandafter\ignorerest

\fi

/#1/

\ifparameter#2\or\else

\expandafter\ignorerest

\fi

/#2/ }

\foo test \foo[456] test \foo[456][789] test

As this likely makes most sense in conditionals you need to make sure the current state is properly fin

ished. Because \expandafter bumps the input state, here we actually quit two levels; this is because

so called ‘backed up text’ is intercepted by this primitive.

1234 test 1234 /456/ test 1234 /456/ /789/ test

439 \ignorespaces

This traditional TEX primitive signals the scanner to ignore the following spaces, if any. We mention it

because we show a companion in the next section.

159

440 \ignoreupto

This ignores everything upto the given token, so

\ignoreupto \foo not this but\foo only this

will give: only this.

441 \immediate

This one has no effect unless you intercept it at the Lua end and act upon it. In original TEX immediate

is used in combination with read from and write to file operations. So, this is an old primitive with a

new meaning.

442 \immutable

This prefix flags what follows as being frozen and is usually applied to for instance \integerdef'd con

trol sequences. In that respect is is like \permanent but it makes it possible to distinguish quantities

from macros.

443 \indent

In engines other than LuaMetaTEX a paragraph starts with an indentation box. The width of that

(empty) box is determined by \parindent. In LuaMetaTEX we can use a dedicated indentation skip

instead (as part of paragraph normalization). An indentation can be zero'd with \undent.

444 \indexedsubprescript

This primitive (or ____) puts a flag on the script but renders the same:

$

x \indexedsuperprescript{2} \subprescript {2} +

x \superprescript {2} \indexedsubprescript{2} +

x \superprescript {2} ____ {2} =

x \superprescript {2} \subprescript {2}

$

Gives: 𝑥22 + 𝑥22 + 𝑥22 = 𝑥22 .

445 \indexedsubscript

This primitive (or __) puts a flag on the script but renders the same:

$

x \indexedsuperscript{2} \subscript {2} +

x \superscript {2} \indexedsubscript{2} +

x \superscript {2} __ {2} =

x \superscript {2} \subscript {2}

$

Gives: 𝑥22 + 𝑥22 + 𝑥22 = 𝑥22.

160

446 \indexedsuperprescript

This primitive (or ^^^^) puts a flag on the script but renders the same:

$

x \indexedsuperprescript{2} \subprescript {2} +

x ^^^^ {2} \subprescript {2} +

x \superprescript {2} \indexedsubprescript{2} =

x \superprescript {2} \subprescript {2}

$

Gives: 𝑥22 + 𝑥22 + 𝑥22 = 𝑥22 .

447 \indexedsuperscript

This primitive (or ^^) puts a flag on the script but renders the same:

$

x \indexedsuperscript{2} \subscript {2} +

x ^^ {2} \subscript {2} +

x \superscript {2} \indexedsubscript{2} =

x \superscript {2} \subscript {2}

$

Gives: 𝑥22 + 𝑥22 + 𝑥22 = 𝑥22.

448 \indexofcharacter

This primitive is more versatile variant of the backward quote operator, so instead of:

\number`|

\number`~

\number`\a

\number`\q

you can say:

\the\indexofcharacter |

\the\indexofcharacter ~

\the\indexofcharacter \a

\the\indexofcharacter \q

In both cases active characters and unknown single character control sequences are valid. In addition

this also works:

\chardef \foo 128

\mathchardef\oof 130

\the\indexofcharacter \foo

\the\indexofcharacter \oof

An important difference is that \indexofcharacter returns an integer and not a serialized number. A

negative value indicates no valid character.

161

449 \indexofregister

You can use this instead of \number for determining the index of a register but it also returns a number

when a register value is seen. The result is an integer, not a serialized number.

When you have defined a register with one of the \...def primitives but for some reasons needs to

know the register index you can query that:

\the\indexofregister \scratchcounterone,

\the\indexofregister \scratchcountertwo,

\the\indexofregister \scratchwidth,

\the\indexofregister \scratchheight,

\the\indexofregister \scratchdepth,

\the\indexofregister \scratchbox

We lie a little here because in ConTEXt the box index \scratchbox is actually defined as: \global\per

manent\constant integer 257 but it still is a number so it fits in.

0, 0, 0, 0, 0, 257

450 \inherited

When this prefix is used in a definition using \let the target will inherit all the properties of the source.

451 \initcatcodetable

This initializes the catcode table with the given index.

452 \initialpageskip

When a page starts the value of this register are used to initialize \pagetotal, \pagestretch and

\pageshrink. This make nicer code than using a \topskip with weird values.

453 \initialtopskip

When set this one will be used instead of \topskip. The rationale is that the \topskip is often also

used for side effects and compensation.

454 \input

There are several ways to use this primitive:

\input test

\input {test}

\input "test"

\input 'test'

When no suffix is given, TEX will assume the suffix is .tex. The second one is normally used.

455 \inputlineno

This integer holds the current linenumber but it is not always reliable.

162

456 \insert

This stores content in the insert container with the given index. In LuaMetaTEX inserts bubble up to

outer boxes so we don't have the ‘deeply buried insert issue’.

457 \insertbox

This is the accessor for the box (with results) of an insert with the given index. This is equivalent to

the \box in the traditional method.

458 \insertcopy

This is the accessor for the box (with results) of an insert with the given index. It makes a copy so the

original is kept. This is equivalent to a \copy in the traditional method.

459 \insertdepth

This is the (current) depth of the inserted material with the given index. It is comparable to the \dp

in the traditional method.

460 \insertdistance

This is the space before the inserted material with the given index. This is equivalent to \glue in the

traditional method.

461 \insertheight

This is the (current) depth of the inserted material with the given index. It is comparable to the \ht

in the traditional method.

462 \insertheights

This is the combined height of the inserted material.

463 \insertlimit

This is the maximum height that the inserted material with the given index can get. This is equivalent

to \dimen in the traditional method.

464 \insertlinedepth

This property is used in the balancer where the currently checked insert has no depth. It is experi

mental.

465 \insertlineheight

This is a reserved property.

163

466 \insertmaxdepth

This is the maximum depth that the inserted material with the given index can get.

467 \insertmode

In traditional TEX inserts are controlled by a \box, \dimen, \glue and \count register with the same

index. The allocators have to take this into account. When this primitive is set to one a different model

is followed with its own namespace. There are more abstract accessors to interface to this.8

468 \insertmultiplier

This is the height (contribution) multiplier for the inserted material with the given index. This is

equivalent to \count in the traditional method.

469 \insertpenalties

This dual purpose internal counter holds the sum of penalties for insertions that got split. When we're

the output routine in reports the number of insertions that is kept in store.

470 \insertpenalty

This is the insert penalty associated with the inserted material with the given index.

471 \insertprogress

This returns the current accumulated insert height of the insert with the given index.

472 \insertshrink

When set this will be taken into account. It basically turns ann insert into a kind of glue but without

it being a valid break point.

473 \insertstorage

The value passed will enable (one) or disable (zero) the insert with the given index.

474 \insertstoring

The value passed will enable (one) or disable (zero) inserts.

475 \insertstretch

When set this will be taken into account. It basically turns ann insert into a kind of glue but without

it being a valid break point.

8 The old model might be removed at some point.

164

476 \insertunbox

This is the accessor for the box (with results) of an insert with the given index. It makes a copy so

the original is kept. The content is unpacked and injected. This is equivalent to an \unvbox in the

traditional method.

477 \insertuncopy

This is the accessor for the box (with results) of an insert with the given index. It makes a copy so

the original is kept. The content is unpacked and injected. This is equivalent to the \unvcopy in the

traditional method.

478 \insertwidth

This is the (current) width of the inserted material with the given index. It is comparable to the \wd

in the traditional method.

479 \instance

This prefix flags a macro as an instance which is mostly relevant when a macro package want to

categorize macros.

480 \integerdef

You can alias to a count (integer) register with \countdef:

\countdef\MyCount134

Afterwards the next two are equivalent:

\MyCount = 99

\count1234 = 99

where \MyCount can be a bit more efficient because no index needs to be scanned. However, in terms

of storage the value (here 99) is always in the register so \MyCount has to get there. This indirectness

has the benefit that directly setting the value is reflected in the indirect accessor.

\integerdef\MyCount = 99

This primitive also defines a numeric equivalent but this time the number is stored with the equivalent.

This means that:

\let\MyCopyOfCount = \MyCount

will store the current value of \MyCount in \MyCopyOfCount and changing either of them is not reflected

in the other.

The usual \advance, \multiply and \divide can be used with these integers and they behave like

any number. But compared to registers they are actually more a constant.

481 \interactionmode

This internal integer can be used to set or query the current interaction mode:

165

\batchmode 0 omits all stops and terminal output

\nonstopmode 1 omits all stops

\scrollmode 2 omits error stops

\errorstopmode 3 stops at every opportunity to interact

482 \interlinepenalties

This is a more granular variant of \interlinepenalty: an array of penalties to be put between suc

cessive line from the start of a paragraph. The list starts with the number of penalties that gets

passed.

483 \interlinepenalty

This is the penalty that is put between lines.

484 \jobname

This gives the current job name without suffix: luametatex.

485 \kern

A kern is injected with the given dimension. For variants that switch to a mode we have \hkern and

\vkern.

486 \language

Sets (or returns) the current language, a number. In LuaTEX and LuaMetaTEX the current language

is stored in the glyph nodes.

487 \lastarguments

\def\MyMacro #1{\the\lastarguments (#1) } \MyMacro{1} \crlf

\def\MyMacro #1#2{\the\lastarguments (#1) (#2)} \MyMacro{1}{2} \crlf

\def\MyMacro#1#2#3{\the\lastarguments (#1) (#2) (#3)} \MyMacro{1}{2}{3} \par

\def\MyMacro #1{(#1) \the\lastarguments} \MyMacro{1} \crlf

\def\MyMacro #1#2{(#1) (#2) \the\lastarguments} \MyMacro{1}{2} \crlf

\def\MyMacro#1#2#3{(#1) (#2) (#3) \the\lastarguments} \MyMacro{1}{2}{3} \par

The value of \lastarguments can only be trusted in the expansion until another macro is seen and

expanded. For instance in these examples, as soon as a character (like the left parenthesis) is seen,

horizontal mode is entered and \everypar is expanded which in turn can involve macros. You can see

that in the second block (that is: unless we changed \everypar in the meantime).

1(1)

2(1) (2)

3(1) (2) (3)

(1) 0

(1) (2) 2

(1) (2) (3) 3

166

488 \lastatomclass

This returns the class number of the last atom seen in the math input parser.

489 \lastboundary

This primitive looks back in the list for a user boundary injected with \boundary and when seen it

returns that value or otherwise zero.

490 \lastbox

When issued this primitive will, if possible, pull the last box from the current list.

491 \lastchkdimension

When the last check for a dimension with \ifchkdimension was successful this primitive returns the

value.

492 \lastchknumber

When the last check for an integer with \ifchknumber was successful this primitive returns the value.

493 \lastkern

This returns the last kern seen in the list (if possible).

494 \lastleftclass

This variable registers the first applied math class in a formula.

495 \lastlinefit

The 𝜀-TEX manuals explains this parameter in detail but in practice it is enough to know that when set

to 1000 spaces in the last line might match those in the previous line. Basically it counters the strong

push of a \parfillskip.

496 \lastloopiterator

In addition to \currentloopiterator we have a variant that stores the value in case an unexpanded

loop is used:

\localcontrolledrepeat 8 { [\the\currentloopiterator\eq\the\lastloopiterator] }

\expandedrepeat 8 { [\the\currentloopiterator\eq\the\lastloopiterator] }

\unexpandedrepeat 8 { [\the\currentloopiterator\ne\the\lastloopiterator] }

[1=1] [2=2] [3=3] [4=4] [5=5] [6=6] [7=7] [8=8]

[1=1] [2=2] [3=3] [4=4] [5=5] [6=6] [7=7] [8=8]

[0≠1] [0≠2] [0≠3] [0≠4] [0≠5] [0≠6] [0≠7] [0≠8]

167

497 \lastnamedcs

The example code in the previous section has some redundancy, in the sense that there to be looked

up control sequence name mymacro is assembled twice. This is no big deal in a traditional eight bit TEX

but in a Unicode engine multi-byte sequences demand some more processing (although it is unlikely

that control sequences have many multi-byte utf8 characters).

\ifcsname mymacro\endcsname

\csname mymacro\endcsname

\fi

Instead we can say:

\ifcsname mymacro\endcsname

\lastnamedcs

\fi

Although there can be some performance benefits another advantage is that it uses less tokens and

parsing. It might even look nicer.

498 \lastnodesubtype

When possible this returns the subtype of the last node in the current node list. Possible values can

be queried (for each node type) via Lua helpers.

499 \lastnodetype

When possible this returns the type of the last node in the current node list. Possible values can be

queried via Lua helpers.

500 \lastpageextra

This reports the last applied (permitted) overshoot.

501 \lastparcontext

When a paragraph is wrapped up the reason is reported by this state variable. Possible values are:

0x00 normal 0x04 dbox 0x08 output 0x0C math

0x01 vmode 0x05 vcenter 0x09 align 0x0D lua

0x02 vbox 0x06 vadjust 0x0A noalign 0x0E reset

0x03 vtop 0x07 insert 0x0B span

502 \lastpartrigger

There are several reasons for entering a paragraphs and some are automatic and triggered by other

commands that force TEX into horizontal mode.

0x00 normal 0x02 indent 0x04 mathchar 0x06 boundary

0x01 force 0x03 noindent 0x05 char 0x07 space

168

0x08 math 0x0A hskip 0x0C valign

0x09 kern 0x0B unhbox 0x0D vrule

503 \lastpenalty

This returns the last penalty seen in the list (if possible).

504 \lastrightclass

This variable registers the last applied math class in a formula.

505 \lastskip

This returns the last glue seen in the list (if possible).

506 \lccode

When the \lowercase operation is applied the lowercase code of a character is used for the replace

ment. This primitive is used to set that code, so it expects two character number. The code is also

used to determine what characters make a word suitable for hyphenation, although in LuaTEX we

introduced the \hj code for that.

507 \leaders

See \gleaders for an explanation.

508 \left

Inserts the given delimiter as left fence in a math formula.

509 \lefthyphenmin

This is the minimum number of characters after the last hyphen in a hyphenated word.

510 \leftmarginkern

The dimension returned is the protrusion kern that has been added (if at all) to the left of the content

in the given box.

511 \leftskip

This skip will be inserted at the left of every line.

512 \lefttwindemerits

Additional demerits for a glyph sequence at the left edge when a previous line also has that sequence.

169

513 \leqno

This primitive stores the (typeset) content (presumably a number) and when the display formula is

wrapped that number will end up left of the formula.

514 \let

Where a \def creates a new macro, either or not with argument, a \let creates an alias. You are not

limited to aliasing macros, basically everything can be aliased.

515 \letcharcode

Assigning a meaning to an active character can sometimes be a bit cumbersome; think of using some

documented uppercase magic that one tends to forget as it's used only a few times and then never

looked at again. So we have this:

{\letcharcode 65 1 \catcode 65 13 A : \meaning A}\crlf

{\letcharcode 65 2 \catcode 65 13 A : \meaning A}\par

here we define A as an active charcter with meaning 1 in the first line and 2 in the second.

1 : the character U+0031 1

2 : the character U+0032 2

Normally one will assign a control sequence:

{\letcharcode 66 \bf \catcode 66 13 {B bold}: \meaning B}\crlf

{\letcharcode 73 \it \catcode 73 13 {I italic}: \meaning I}\par

Of course \bf and \it are ConTEXt specific commands:

bold: protected macro:\ifmmode \expandafter \mathbf \else \expandafter \normalbf \fi

italic: protected macro:\ifmmode \expandafter \mathit \else \expandafter \normalit

\fi

516 \letcsname

It is easy to see that we save two tokens when we use this primitive. As with the ..defcs.. variants

it also saves a push back of the composed macro name.

\expandafter\let\csname MyMacro:1\endcsname\relax

\letcsname MyMacro:1\endcsname\relax

517 \letfrozen

You can explicitly freeze an unfrozen macro:

\def\MyMacro{...}

\letfrozen\MyMacro

A redefinition will now give:

170

! You can't redefine a frozen macro.

518 \letmathatomrule

You can change the class for a specific style. This probably only makes sense for user classes. It's one

of those features that we used when experimenting with more control.

\letmathatomrule 4 = 4 4 0 0

\letmathatomrule 5 = 5 5 0 0

This changes the classes 4 and 5 into class 0 in the two script styles and keeps them the same in

display and text. We leave it to the reader to ponder how useful this is.

519 \letmathparent

This primitive takes five arguments: the target class, and four classes that determine the pre penalty

class, post penalty class, options class and a dummy class for future use.

520 \letmathspacing

By default inter-class spacing inherits from the ordinary class but you can remap specific combinations

is you want:

\letmathspacing \mathfunctioncode

\mathordinarycode \mathordinarycode

\mathordinarycode \mathordinarycode

The first value is the target class, and the nest four tell how it behaves in display, text, script and script

script style. Here \mathfunctioncode is a ConTEXt specific class (26), one of the many.

521 \letprotected

Say that you have these definitions:

\def \MyMacroA{alpha}

\protected \def \MyMacroB{beta}

\edef \MyMacroC{\MyMacroA\MyMacroB}

\letprotected \MyMacroA

\edef \MyMacroD{\MyMacroA\MyMacroB}

\meaning \MyMacroC\crlf

\meaning \MyMacroD\par

The typeset meaning in this example is:

macro:alpha\MyMacroB

macro:\MyMacroA \MyMacroB

522 \lettolastnamedcs

The \lastnamedcs primitive is somewhat special as it is a (possible) reference to a control sequence

which is why we have a dedicated variant of \let.

171

\csname relax\endcsname\let \foo\lastnamedcs \meaning\foo

\csname relax\endcsname\expandafter\let\expandafter \oof\lastnamedcs \meaning\oof

\csname relax\endcsname\lettolastnamedcs \ofo \meaning\ofo

These give the following where the first one obviously is not doing what we want and the second one

is kind of cumbersome.

\lastnamedcs

\relax

\relax

523 \lettonothing

This one let's a control sequence to nothing. Assuming that \empty is indeed empty, these two lines

are equivalent.

\let \foo\empty

\lettonothing\oof

524 \limits

This is a modifier: it flags the previous math atom to have its scripts above and below the (summation,

product, integral etc.) symbol. In LuaMetaTEX this can be any atom (that is: any class). In display

mode the location defaults to above and below.

Like any modifier it looks back for a math specific element. This means that the following will work

well:

\sum \limits ^2 _3

\sum ^2 \limits _3

\sum ^2 _3 \limits

\sum ^2 _3 \limits \nolimits \limits

because scripts are bound to these elements so looking back just sees the element.

525 \linebreakchecks

The value of this parameter is passed to the linebreak callback so that one can act on it if needed.

526 \linebreakoptional

This selects the optional text range that is to be used. Optional content is marked with optionalbound

ary nodes.

527 \linebreakpasses

When set to a positive value it will apply additional line break runs defined with \parpasses until the

criteria set in there are met.

172

528 \linedirection

This sets the text direction (1 for r2l) to the given value but keeps preceding glue into the range.

529 \linepenalty

Every line gets this penalty attached, so normally it is a small value, like here: 10.

530 \lineskip

This is the amount of glue that gets added when the distance between lines falls below \line

skiplimit.

531 \lineskiplimit

When the distance between two lines becomes less than \lineskiplimit a \lineskip glue item is

added.

\ruledvbox{

\lineskiplimit 0pt \lineskip3pt \baselineskip0pt

\ruledhbox{line 1}

\ruledhbox{line 2}

\ruledhbox{\tx line 3}

}

Normally the \baselineskip kicks in first but here we've set that to zero, so we get two times a 3pt

glue injected.

line 1
line 2
line 3

532 \localbreakpar

This forces a newline in a paragraph without side effects so that for instance \widowpenalties work

as expected in scenarios where using a \par would have been the solution. This is an experimental

primitive!

533 \localbrokenpenalty

TODO

534 \localcontrol

This primitive takes a single token:

\edef\testa{\scratchcounter123 \the\scratchcounter}

\edef\testc{\testa \the\scratchcounter}

\edef\testd{\localcontrol\testa \the\scratchcounter}

The three meanings are:

173

123

\testa macro:\scratchcounter 123 123

\testc macro:\scratchcounter 123 123123

\testd macro:123

The \localcontrol makes that the following token gets expanded so we don't see the yet to be ex

panded assignment show up in the macro body.

535 \localcontrolled

The previously described local control feature comes with two extra helpers. The \localcontrolled

primitive takes a token list and wraps this into a local control sidetrack. For example:

\edef\testa{\scratchcounter123 \the\scratchcounter}

\edef\testb{\localcontrolled{\scratchcounter123}\the\scratchcounter}

The two meanings are:

\testa macro:\scratchcounter 123 123

\testb macro:123

The assignment is applied immediately in the expanded definition.

536 \localcontrolledendless

As the name indicates this will loop forever. You need to explicitly quit the loop with \quitloop or

\quitloopnow. The first quitter aborts the loop at the start of a next iteration, the second one tries to

exit immediately, but is sensitive for interference with for instance nested conditionals. Of course in

the next case one can just adapt the final iterator value instead. Here we step by 2:

\expandedloop 1 20 2 {%

\ifnum\currentloopiterator>10

\quitloop

\else

[!]

\fi

}

This results in:

[!] [!] [!] [!] [!]

537 \localcontrolledloop

As with more of the primitives discussed here, there is a manual in the ‘lowlevel’ subset that goes into

more detail. So, here a simple example has to do:

\localcontrolledloop 1 100 1 {%

\ifnum\currentloopiterator>6\relax

\quitloop

\else

174

[\number\currentloopnesting:\number\currentloopiterator]

\localcontrolledloop 1 8 1 {%

(\number\currentloopnesting:\number\currentloopiterator)

}\par

\fi

}

Here we see the main loop primitive being used nested. The code shows how we can \quitloop and

have access to the \currentloopiterator as well as the nesting depth \currentloopnesting.

[1:1] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)

[1:2] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)

[1:3] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)

[1:4] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)

[1:5] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)

[1:6] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)

Be aware of the fact that \quitloop will end the loop at the next iteration so any content after it will

show up. Normally this one will be issued in a condition and we want to end that properly. Also keep

in mind that because we use local control (a nested TEX expansion loop) anything you feed back can

be injected out of order.

The three numbers can be separated by an equal sign which is a trick to avoid look ahead issues that

can result from multiple serialized numbers without spaces that indicate the end of sequence of digits.

538 \localcontrolledrepeat

This one takes one instead three arguments which looks a bit better in simple looping.

539 \localinterlinepenalty

TODO

540 \localleftbox

This sets the box that gets injected at the left of every line.

541 \localleftboxbox

This returns the box set with \localleftbox.

542 \localmiddlebox

This sets the box that gets injected at the left of every line but its width is ignored.

543 \localmiddleboxbox

This returns the box set with \localmiddlebox.

175

544 \localpretolerance

TODO

545 \localrightbox

This sets the box that gets injected at the right of every line.

546 \localrightboxbox

This returns the box set with \localrightbox.

547 \localtolerance

TODO

548 \long

This original prefix gave the macro being defined the property that it could not have \par (or the often

equivalent empty lines) in its arguments. It was mostly a protection against a forgotten right curly

brace, resulting in a so called run-away argument. That mattered on a paper terminal or slow system

where such a situation should be catched early. In LuaTEX it was already optional, and in LuaMetaTEX

we dropped this feature completely (so that we could introduce others).

549 \looseness

The number fo lines in the current paragraph will be increased by given number of lines. For this to

succeed there need to be enough stretch in the spacing to make that happen. There is some wishful

thinking involved.

550 \lower

This primitive takes two arguments, a dimension and a box. The box is moved down. The operation

only succeeds in horizontal mode.

551 \lowercase

This token processor converts character tokens to their lowercase counterparts as defined per \lc

code. In order to permit dirty tricks active characters are also processed. We don't really use this

primitive in ConTEXt, but for consistency we let it respond to \expand:9

\edef \foo {\lowercase{tex TeX \TEX}} \meaningless\foo

\lowercase{\edef\foo {tex TeX \TEX}} \meaningless\foo

\edef \foo{\expand\lowercase{tex TeX \TEX}} \meaningless\foo

Watch how \lowercase is not expandable but can be forced to. Of course, as the logo macro is pro

tected the TEX logo remains mixed case.

9 Instead of providing \lowercased and \uppercased primitives that would clash with macros anyway.

176

\lowercase {tex TeX \TEX }

tex tex \TEX

tex tex \TEX

552 \lpcode

This one can be used to set the left protrusion factor of a glyph in a font and takes three arguments:

font, character code and factor. It is kind of obsolete because we can set up vectors at definition time

and tweaking from TEX can have side effects because it globally adapts the font.

553 \luaboundary

This primive inserts a boundary that takes two integer values. Some mechanisms (like math construc

tors) can trigger a callback when preceded by such a boundary. As we go more mechanisms might do

such a check but we don't want a performance hit on ConTEXt as we do so (nor unwanted interference).

554 \luabytecode

This behaves like \luafunction but here the number is a byte code register. These bytecodes are in

the lua.bytecode array.

555 \luabytecodecall

This behaves like \luafunctioncall but here the number is a byte code register. These bytecodes

are in the lua.bytecode array.

556 \luacopyinputnodes

When set to a positive value this will ensure that when nodes are printed from Lua to TEX copies are

used.

557 \luadef

This command relates a (user) command to a Lua function registered in the lua.lualib_get_func

tions_table(), so after:

\luadef\foo123

the \foo command will trigger the function at index 123. Of course a macro package has to make

sure that these definitions are unique.10

This command is accompanied by \luafunctioncall and \luafunction. When we have funciton 123

defined as

function() tex.sprint("!") end

the following:

10 Plain TEX established a norm for allocating registers, like \newdimen but there is no such convention for Lua functions.

177

(\luafunctioncall \foocode ?)

(\normalluafunction\foocode ?)

(\foo ?)

gives three times (!?). But this:

\edef\oof{\foo } \meaning\oof % protected

\edef\oof{\luafunctioncall \foocode} \meaning\oof % protected

\edef\oof{\normalluafunction\foocode} \meaning\oof % expands

returns:

macro:!

macro:\luafunctioncall 1740

macro:!

Because the definition command is like any other

\permanent\protected\luadef\foo123

boils down to:

permanent protected luacall 123

558 \luaescapestring

This command converts the given (token) list into something that is acceptable for Lua. It is inherited

from LuaTEX and not used in ConTEXt.

\directlua { tex.print ("\luaescapestring {{\tt This is a "test".}}") }

Results in: This is a "test". (Watch the grouping.)

559 \luafunction

The integer passed to this primitive is the index in the table returned by lua.lualib_get_func

tions_table(). Of course a macro package has to provide reliable management for this. This is a so

called convert command so it expands in an expansion context (like an \edef).

560 \luafunctioncall

The integer passed to this primitive is the index in the table returned by lua.lualib_get_func

tions_table(). Of course a macro package has to provide reliable management for this. This primi

tive doesn't expand in an expansion context (like an \edef).

561 \luatexbanner

This gives: This is LuaMetaTeX, Version 2.11.07.

562 \luametatexmajorversion

This is the numeric major version number, so it's an integer: 2, which will only change when we have

very drastic changes. The whole repertoire of numbers is:

178

\the\luametatexmajorversion 2

\the\luametatexminorversion 11

\the\luametatexrelease 7

\the\luatexversion 211

\the\luatexrevision 0

The last two are there because they might be tested but the first three are the official ones.

563 \luametatexminorversion

This is a numeric minor version number, so it's an integer: 11. It changes when we add functionality.

Intermediate updates

564 \luametatexrelease

This is a numeric release number, so it's an integer: 7. It changes when we are developing function

ality.

565 \luatexrevision

This is an integer. The current value is: 0.

566 \luatexversion

This is an integer. The current value is: 211.

567 \mark

The given token list is stored in a node in the current list and might become content of \topmark,

\botmark or \firstmark when a page split off, or in the case of a box split in \splitbotmark or

\splitfirstmark. In LuaMetaTEX deeply burried marks bubbly up to an outer box level.

568 \marks

This command is similar to \mark but first expects a number of a mark register. Multiple marks were

introduced in 𝜀-TEX.

569 \mathaccent

This takes a number and a math object to put the accent on. The four byte number has a dummy class

byte, a family byte and two index bytes. It is replaced by \Umathaccent that handles wide fonts.

570 \mathatom

This operation wraps following content in a atom with the given class. It is part of LuaMetaTEX's

extended math support. There are three class related key/values: class, leftclass and rightclass

(or all for all of them). When none is given this command expects a class number before scanning the

content. The options key expects a bitset but there are also direct option keys, like limits, nolimits,

179

unpack, unroll, single, nooverflow, void and phantom. A source id can be set, one or more attr

assigned, and for specific purposes textfont and mathfont directives are accepted. Features like this

are discussed in dedicated manuals.

571 \mathatomglue

This returns the glue that will be inserted between two atoms of a given class for a specific style.

\the\mathatomglue \textstyle 1 1

\the\mathatomglue \textstyle 0 2

\the\mathatomglue \scriptstyle 1 1

\the\mathatomglue \scriptstyle 0 2

1.66667mu

2.22223mu plus 1.11111mu minus 1.11111mu

1.66667mu

0.55556mu minus 0.27777mu

572 \mathatomskip

This injects a glue with the given style and class pair specification: 𝑥𝑥 𝑥 𝑥 𝑥 𝑥 𝑥𝑥 𝑥𝑥.

$x x$

$x \mathatomskip \textstyle 1 1 x$

$x \mathatomskip \textstyle 0 2 x$

$x \mathatomskip \scriptstyle 1 1 x$

$x \mathatomskip \scriptstyle 0 2 x$

573 \mathbackwardpenalties

See \mathforwardpenalties for an explanation.

574 \mathbeginclass

This variable can be set to signal the class that starts the formula (think of an imaginary leading atom).

575 \mathbin

This operation wraps following content in a atom with class ‘binary’.

576 \mathboundary

This primitive is part of an experiment with granular penalties in math. When set nested fences will

use the \mathdisplaypenaltyfactor or \mathinlinepenaltyfactor to increase nested penalties. A

bit more control is possible with \mathboundary:

0 begin factor 1000

1 end factor 1000

2 begin given factor

3 end given factor

180

These will be used when the mentioned factors are zero. The last two variants expect factor to be

given.

577 \mathchar

Replaced by \Umathchar this old one takes a four byte number: one byte for the class, one for the

family an two for the index. The specified character is appended to to the list.

578 \mathcharclass

Returns the slot (in the font) of the given math character.

\the\mathcharclass\Umathchar 4 2 123

The first passed number is the class, so we get: 4.

579 \mathchardef

Replaced by \Umathchardef this primitive relates a control sequence with a four byte number: one

byte for the class, one for the family an two for the index. The defined command will insert that

character.

580 \mathcharfam

Returns the family number of the given math character.

\the\mathcharfam\Umathchar 4 2 123

The second passed number is the family, so we get: 2.

581 \mathcharslot

Returns the slot (or index in the font) of the given math character.

\the\mathcharslot\Umathchar 4 2 123

The third passed number is the slot, so we get: 123.

582 \mathcheckfencesmode

When set to a positive value there will be no warning if a right fence (\right or \Uright) is missing.

583 \mathchoice

This command expects four subformulas, for display, text, script and scriptscript and it will eventually

use one of them depending on circumstances later on. Keep in mind that a formula is first scanned

and when that is finished the analysis and typesetting happens.

584 \mathclass

There are build in classes and user classes. The first possible user class is 20 and the last one is 60.

You can better not touch the special classes ‘all’ (61), ‘begin’ (62) and ‘end’ (63). The basic 8 classes

181

that original TEX provides are of course also present in LuaMetaTEX. In addition we have some that

relate to constructs that the engine builds.

ordinary ord 0 the default

operator op 1 small and large operators

binary bin 2

relation rel 3

open 4

close 5

punctuation punct 6

variable 7 adapts to the current family

active 8 character marked as such becomes active

inner 9 this class is not possible for characters

under 10

over 11

fraction 12

radical 13

middle 14

accent 16

fenced 17

ghost 18

vcenter 19

There is no standard for user classes but ConTEXt users should be aware of quite some additional ones

that are set up. The engine initialized the default properties of classes (spacing, penalties, etc.) the

same as original TEX.

Normally characters have class bound to them but you can (temporarily) overload that one. The

\mathclass primitive expects a class number and a valid character number or math character and

inserts the symbol as if it were of the given class; so the original class is replaced.

\ruledhbox{(x)} and \ruledhbox{$\mathclass 1 `(x\mathclass 1 `)$}

Changing the class is likely to change the spacing, compare (𝑥) and (𝑥).

585 \mathclose

This operation wraps following content in a atom with class ‘close’.

586 \mathcode

This maps a character to one in a family: the assigned value has one byte for the class, one for the

family and two for the index. It has little use in an OpenType math setup.

587 \mathdictgroup

This is an experimental feature that in due time will be explored in ConTEXt. It currently has no

consequences for rendering.

182

588 \mathdictionary

This is an experimental feature that in due time will be explored in ConTEXt. It currently has no

consequences for rendering.

589 \mathdictproperties

This is an experimental feature that in due time will be explored in ConTEXt. It currently has no

consequences for rendering.

590 \mathdirection

When set to 1 this will result in r2l typeset math formulas but of course you then also need to set up

math accordingly (which is the case in ConTEXt).

591 \mathdiscretionary

The usual \discretionary command is supported in math mode but it has the disadvantage that one

needs to make sure that the content triplet does the math right (especially the style). This command

takes an optional class specification.

\mathdiscretionary {+} {+} {+}

\mathdiscretionary class \mathbinarycode {+} {+} {+}

It uses the same logic as \mathchoice but in this case we handle three snippets in the current style.

A fully automatic mechanism kicks in when a character has a \hmcode set:

bit meaning explanation

1 normal a discretionary is created with the same components

2 italic following italic correction is kept with the component

So we can say:

\hmcode `+ 3

When the italic bit is set italic correction is kept at a linebreak.

592 \mathdisplaymode

Display mode is entered with two dollars (other characters can be used but the dollars are a con

vention). Mid paragraph display formulas get a different treatment with respect to the width and

indentation than stand alone. When \mathdisplaymode is larger than zero the double dollars (or

equivalents) will behave as inline formulas starting out in \displaystyle and with \everydisplay

expanded.

593 \mathdisplaypenaltyfactor

This one is simular to \mathinlinepenaltyfactor but is used when we're in display style.

183

594 \mathdisplayskipmode

A display formula is preceded and followed by vertical glue specified by \abovedisplayskip and \be

lowdisplayskip or \abovedisplayshortskip and \belowdisplayshortskip. Spacing ‘above’ is al

ways inserted, even when zero, but the spacing ‘below’ is only inserted when it is non-zero. There's

also \baselineskip involved. The way spacing is handled can be influenced with \mathdisplayskip

mode, which takes the following values:

value meaning

0 does the same as any TEX engine

1 idem

2 only insert spacing when it is not zero

3 never insert spacing

595 \mathdoublescriptmode

When this parameter has a negative value double scripts trigger an error, so with \superscript, \no

superscript, \indexedsuperscript, \superprescript, \nosuperprescript, \indexedsuperpre

script, \subscript, \nosubscript, \indexedsubscript, \subprescript, \nosubprescript, \in

dexedsubprescript and \primescript, as well as their (multiple) _ and ^ aliases.

A value of zero does the normal and inserts a dummy atom (basically a {}) but a positive value is more

interesting. Compare these:

{\mathdoublescriptmode 0 x_x_x}

{\mathdoublescriptmode"000000 x_x_x}

{\mathdoublescriptmode"030303 x_x_x}

{x_x_x}

The three pairs of bytes indicate the main class, left side class and right side class of the inserted

atom, so we get this: 𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥 𝑥 𝑥𝑥𝑥. The last line gives what ConTEXt is configured for.

596 \mathendclass

This variable can be set to signal the class that ends the formula (think of an imaginary trailing atom).

597 \matheqnogapstep

The display formula number placement heuristic puts the number on the same line when there is place

and then separates it by a quad. In LuaTEX we decided to keep that quantity as it can be tight into the

math font metrics but introduce a multiplier \matheqnogapstep that defaults to 1000.

598 \mathfontcontrol

This bitset controls how the math engine deals with fonts, and provides a way around dealing with

inconsistencies in the way they are set up. The \fontmathcontrol makes it possible to bind options

ot a specific math font. In practice, we just set up the general approach which ii possible because we

normalize the math fonts and ‘fix’ issues at runtime.

184

0x00000001 usefontcontrol

0x00000002 overrule

0x00000004 underrule

0x00000008 radicalrule

0x00000010 fractionrule

0x00000020 accentskewhalf

0x00000040 accentskewapply

0x00000080 applyordinarykernpair

0x00000100 applyverticalitalickern

0x00000200 applyordinaryitalickern

0x00000400 applycharitalickern

0x00000800 reboxcharitalickern

0x00001000 applyboxeditalickern

0x00002000 staircasekern

0x00004000 applytextitalickern

0x00008000 checktextitalickern

0x00010000 checkspaceitalickern

0x00020000 applyscriptitalickern

0x00040000 analyzescriptnucleuschar

0x00080000 analyzescriptnucleuslist

0x00100000 analyzescriptnucleusbox

0x00200000 accenttopskewwithoffset

0x00400000 ignorekerndimensions

0x00800000 ignoreflataccents

0x01000000 extendaccents

0x02000000 extenddelimiters

599 \mathforwardpenalties

Inline math can have multiple atoms and constructs and one can configure the penalties between then

bases on classes. In addition it is possible to configure additional penalties starting from the beginning

or end using \mathforwardpenalties and \mathbackwardpenalties. This is one the features that we

added in the perspective of breaking paragraphs heavy on math into lines. It not that easy to come

up with useable values.

These penalties are added to the regular penalties between atoms. Here is an example, as with other

primitives that take more arguments the first number indicates how much follows.

$ a + b + c + d + e + f + g + h = x $\par

\mathforwardpenalties 3 300 200 100

\mathbackwardpenalties 3 250 150 50

$ a + b + c + d + e + f + g + h = x $\par

You'll notice that we apply more severe penalties at the edges:

MP:0
𝑎 +

MP:700
𝑏 +

MP:700
𝑐 +

MP:700
𝑑+

MP:700
𝑒 +

MP:700
𝑓+

MP:700
𝑔+

MP:700
ℎ =

MP:500
𝑥

MP:0
HP:10000

MP:0
𝑎 +

MP>1000
𝑏 +

MP>900
𝑐 +

MP>800
𝑑+

MP:700
𝑒 +

MP:700
𝑓+

MP<750
𝑔+

MP<850
ℎ =

MP<750
𝑥

MP:0
HP:10000

185

600 \mathgluemode

We can influence the way math glue is handled. By default stretch and shrink is applied but this

variable can be used to change that. The limit option ensures that the stretch and shrink doesn't go

beyond their natural values.

0x01 stretch

0x02 shrink

0x04 limit

601 \mathgroupingmode

Normally a {} or \bgroup-\egroup pair in math create a math list. However, users are accustomed

to using it also for grouping and then a list being created might not be what a user wants. As an al

ternative to the more verbose \begingroup-\endgroup or even less sensitive \beginmathgroup-\end

mathgroup you can set the math grouping mode to a non zero value which makes curly braces (and

the aliases) behave as expected.

602 \mathinlinepenaltyfactor

A math formula can have nested (sub)formulas and one might want to discourage a line break inside

those. If this value is non zero it becomes a mulitiplier, so a value of 1000 will make an inter class

penalty of 100 into 200 when at nesting level 2 and 500 when at level 5.

603 \mathinner

This operation wraps following content in a atom with class ‘inner’. In LuaMetaTEX we have more

classes and this general wrapper one is therefore kind of redundant.

604 \mathleftclass

When set this class will be used when a formula starts.

605 \mathlimitsmode

When this parameter is set to a value larger than zero real dimensions are used and longer limits will

not stick out, which is a traditional TEX feature. We could have more advanced control but this will

do.

Compare the zero setting:

∣
!!!!!!!!!!!

∫ ∣ ∣
!!!!!!!!!!

∫ ∣ ∣
!!!!!!!!!

∫ ∣ ∣
!!!!!!!!

∫ ∣ ∣
!!!!!!!

∫ ∣ ∣
!!!!!!

∫ ∣ ∣
!!!!!

∫∣ ∣
!!!!

∫∣ ∣
!!!

∫∣ ∣
!!

∫∣ ∣
!

∫∣
∣ ∫
!!!!!!!!!!! ∣ ∣ ∫

!!!!!!!!!! ∣ ∣ ∫
!!!!!!!!! ∣ ∣ ∫

!!!!!!!! ∣ ∣ ∫
!!!!!!! ∣ ∣ ∫

!!!!!! ∣ ∣∫!!!!! ∣ ∣∫!!!! ∣ ∣∫!!! ∣ ∣∫!! ∣ ∣∫! ∣

∣
!

∫
! ∣ ∣

!

∫
!!!!!!! ∣ ∣

!!!!!!!

∫
! ∣ ∣

!!!!!!!!!!

∫
! ∣ ∣

!!!!!!!!!

∫
!!!!!!! ∣ ∣

!!!!!!!!!!!!!!!

∫
!!!!!!! ∣ ∣

for demanding

∫
integral freaks ∣

186

with the positive variant:

∣
!!!!!!!!!!!

∫ ∣ ∣
!!!!!!!!!!

∫ ∣ ∣
!!!!!!!!!

∫ ∣ ∣
!!!!!!!!

∫ ∣ ∣
!!!!!!!

∫ ∣ ∣
!!!!!!

∫ ∣ ∣
!!!!!

∫ ∣ ∣
!!!!

∫ ∣ ∣
!!!

∫ ∣ ∣
!!

∫ ∣ ∣
!

∫∣
∣ ∫
!!!!!!!!!!!∣ ∣ ∫

!!!!!!!!!!∣ ∣ ∫
!!!!!!!!!∣ ∣ ∫

!!!!!!!!∣ ∣ ∫
!!!!!!! ∣ ∣ ∫

!!!!!! ∣ ∣ ∫
!!!!! ∣ ∣ ∫

!!!! ∣ ∣ ∫
!!! ∣ ∣∫

!! ∣ ∣∫! ∣

∣
!

∫
! ∣ ∣

!

∫
!!!!!!! ∣ ∣

!!!!!!!

∫
! ∣ ∣

!!!!!!!!!!

∫
! ∣ ∣

!!!!!!!!!

∫
!!!!!!! ∣ ∣

!!!!!!!!!!!!!!!

∫
!!!!!!! ∣ ∣

for demanding

∫
integral freaks ∣

Here we switched to Latin Modern because it's font dependent how serious this issue is. In Pagella

all is fine in both modes.

606 \mathmainstyle

This inspector returns the outermost math style (contrary to \mathstyle), as we can see in the next

examples where use these snippets:

\def\foo{(\the\mathmainstyle,\the\mathstyle)}

\def\oof{\sqrt[\foo]{\foo}}

\def\ofo{\frac{\foo}{\foo}}

\def\fof{\mathchoice{\foo}{\foo}{\foo}{\foo}}

When we use the regular math triggers we get this:

$\displaystyle \foo + \oof + \ofo$

$\textstyle \foo + \oof + \ofo$

$\displaystyle \foo + \fof$

$\textstyle \foo + \fof$

$\scriptstyle \foo + \fof$

$\scriptscriptstyle\foo + \fof$

(2, 0) + (2,0)√

(2, 0) + (2,5)
⁄

(2,5)

(2, 2) + (2,2)√

(2, 2) + (2,5)
⁄

(2,5)
(2, 0) + (2, 0)
(2, 2) + (2, 2)
(2,4)+(2,4)

(2,6)+(2,6)

But we can also do this:

\Ustartmathmode \displaystyle \foo + \oof + \ofo \Ustopmathmode

\Ustartmathmode \textstyle \foo + \oof + \ofo \Ustopmathmode

\Ustartmathmode \displaystyle \foo + \fof \Ustopmathmode

\Ustartmathmode \textstyle \foo + \fof \Ustopmathmode

\Ustartmathmode \scriptstyle \foo + \fof \Ustopmathmode

\Ustartmathmode \scriptscriptstyle\foo + \fof \Ustopmathmode

(0, 0) + (0,0)√

(0, 0) + (0,5)
⁄

(0,5)

(2, 2) + (2,2)√

(2, 2) + (2,5)
⁄

(2,5)

187

(0, 0) + (0, 0)
(2, 2) + (2, 2)
(4,4)+(4,4)

(6,6)+(6,6)

607 \mathnolimitsmode

This parameter influences the placement of scripts after an operator. The reason we have this lays in

the fact that traditional TEX uses italic correction and OpenType math does the same but fonts are not

consistent in how they set this up. Actually, in OpenType math it's the only reason that there is italic

correction. Say that we have a shift 𝛿 determined by the italic correction:

mode top bottom

0 0 −𝛿
1 𝛿 × 𝑓𝑡 𝛿 × 𝑓𝑏
2 0 0
3 0 −𝛿/2
4 𝛿/2 −𝛿/2

> 15 0 −𝑛 × 𝛿/1000

Mode 1 uses two font parameters: 𝑓𝑏: \Umathnolimitsubfactor and 𝑓𝑡: \Umathnolimitsupfactor.

608 \mathop

This operation wraps following content in a atom with class ‘operator’.

609 \mathopen

This operation wraps following content in a atom with class ‘open’.

610 \mathord

This operation wraps following content in a atom with class ‘ordinary’.

611 \mathparentstyle

This inspector returns the math style used in a construct, so is is either equivalent to \mathmainstyle

or a nested \mathstyle. For instance in a nested fraction we get this (in ConTEXt) in display formulas:

(0,1,5)
⁄

(0,1,5)
⁄

(0,1,5)
⁄

(0,1,5)

+ (0, 0, 0)

but this in inline formulas:

(2,5,7)
⁄

(2,5,7)
⁄

(2,5,7)
⁄

(2,5,7)
+ (2, 2, 2)

where the first element in a nested fraction.

188

612 \mathpenaltiesmode

Normally the TEX math engine only inserts penalties when in textstyle. You can force penalties in

displaystyle with this parameter. In inline math we always honor penalties, with mode 0 and mode 1

we get this:

MP:0
𝑥+

MP:700
2𝑥 =

MP:500
0

MP:0

MP:0
𝑥+

MP:700
2𝑥 =

MP:500
1

MP:0

However in ConTEXt, where all is done in inline math mode, we set this this parameter to 1, otherwise

we wouldn't get these penalties, as shown next:

𝑥+ 2𝑥 = 0

𝑥+
MP:700
2𝑥 =

MP:500
1

If one uses a callback it is possible to force penalties from there too.

613 \mathpretolerance

This is used instead of \pretolerance when a breakpoint is calculated when a math formula starts.

614 \mathpunct

This operation wraps following content in a atom with class ‘punctuation’.

615 \mathrel

This operation wraps following content in a atom with class ‘relation’.

616 \mathrightclass

When set this class will be used when a formula ends.

617 \mathrulesfam

When set, this family will be used for setting rule properties in fractions, under and over.

618 \mathrulesmode

When set to a non zero value rules (as in fractions and radicals) will be based on the font parameters

in the current family.

619 \mathscale

In LuaMetaTEX we can either have a family of three (text, script and scriptscript) fonts or we can use

one font that we scale and where we also pass information about alternative shapes for the smaller

sizes. When we use this more compact mode this primitive reflects the scale factor used.

189

What gets reported depends on how math is implemented, where in ConTEXt we can have either normal

or compact mode: 1000 700 550 1000 700 550. In compact mode we have the same font three times so

then it doesn't matter which of the three is passed.

620 \mathscriptsmode

There are situations where you don't want TEX to be clever and optimize the position of super- and

subscripts by shifting. This parameter can be used to influence this.

0: 𝑥22 + 𝑦𝑥
𝑥 + 𝑧2 +𝑤21: 𝑥22 + 𝑦𝑥
𝑥 + 𝑧2 +𝑤2 0: 𝑥22 + 𝑦𝑥

𝑥 + 𝑧2 +𝑤22: 𝑥22 + 𝑦𝑥
𝑥 + 𝑧2 +𝑤2 1: 𝑥22 + 𝑦𝑥

𝑥 + 𝑧2 +𝑤22: 𝑥22 + 𝑦𝑥
𝑥 + 𝑧2 +𝑤2

0: 𝑥𝑓𝑓 + 𝑦𝑥
𝑥 + 𝑧𝑓 +𝑤𝑓1: 𝑥𝑓𝑓 + 𝑦𝑥
𝑥 + 𝑧𝑓 +𝑤𝑓 0: 𝑥𝑓𝑓 + 𝑦𝑥

𝑥 + 𝑧𝑓 +𝑤𝑓2: 𝑥𝑓𝑓 + 𝑦𝑥
𝑥 + 𝑧𝑓 +𝑤𝑓 1: 𝑥𝑓𝑓 + 𝑦𝑥

𝑥 + 𝑧𝑓 +𝑤𝑓2: 𝑥𝑓𝑓 + 𝑦𝑥
𝑥 + 𝑧𝑓 +𝑤𝑓

1 over 0 2 over 0 2 over 1

The next table shows what parameters kick in when:

or (1) and (2) otherwise

super sup shift up sup shift up sup shift up, sup bot min

sub sub shift down sub sup shift down sub shift down, sub top max

both sub shift down sub sup shift down sub sup shift down, sub sup vgap, sup sub bot max

621 \mathslackmode

When positive this parameter will make sure that script spacing is discarded when there is no reason

to add it.

𝑥2 + 𝑥2𝑥2 𝑥2 + 𝑥2𝑥2 𝑥2 + 𝑥2𝑥2 + 𝑥2𝑥2𝑥2
disabled (0) enabled (1) enabled over disabled

622 \mathspacingmode

Zero inter-class glue is not injected but setting this parameter to a positive value bypasses that check.

This can be handy when checking (tracing) how (and what) spacing is applied. Keep in mind that glue

in math is special in the sense that it is not a valid breakpoint. Line breaks in (inline) math are driven

by penalties.

623 \mathstack

There are a few commands in TEX that can behave confusing due to the way they are scanned. Compare

these:

$ 1 \over 2 $

$ 1 + x \over 2 + x$

$ {1 + x} \over {2 + x}$

$ {{1 + x} \over {2 + x}}$

A single 1 is an atom as is the curly braced 1 + 𝑥. The two arguments to \over eventually will get

typeset in the style that this fraction constructor uses for the numerator and denominator but on might

actually also like to relate that to the circumstances. It is comparable to using a \mathchoice. In order

190

not to waste runtime on four variants, which itself can have side effects, for instance when counters

are involved, LuaTEX introduced \mathstack, used like:

$\mathstack {1 \over 2}$

This \mathstack command will scan the next brace and opens a new math group with the correct (in

this case numerator) math style. The \mathstackstyle primitive relates to this feature that defaults

to ‘smaller unless already scriptscript’.

624 \mathstackstyle

This returns the (normally) numerator style but the engine can be configured to default to another

style. Although all these in the original TEX engines hard coded style values can be changed in Lua-

MetaTEX it is unlikely to happen. So this primitive will normally return the (current) style ‘smaller

unless already scriptscript’.

625 \mathstyle

This returns the current math style, so $\the\mathstyle$ gives 2.

626 \mathstylefontid

This returns the font id (a number) of a style/family combination. What you get back depends on how

a macro package implements math fonts.

(\the\mathstylefontid\textstyle \fam)

(\the\mathstylefontid\scriptstyle \fam)

(\the\mathstylefontid\scriptscriptstyle\fam)

In ConTEXt gives: (2) (2) (2).

627 \mathsurround

The kern injected before and after an inline math formula. In practice it will be set to zero, if only

because otherwise nested math will also get that space added. We also have \mathsurroundskip

which, when set, takes precedence. Spacing is controlled by \mathsurroundmode.

628 \mathsurroundmode

The possible ways to control spacing around inline math formulas in other manuals and mostly serve

as playground.

629 \mathsurroundskip

When set this one wins over \mathsurround.

630 \maththreshold

This is a glue parameter. The amount determines what happens: when it is non zero and the inline

formula is less than that value it will become a special kind of box that can stretch and/ or shrink

191

within the given specification. The par builder will use these stretch and/ or shrink components but

it is up to one of the Lua callbacks to deal with the content eventually (if at all). As this is somewhat

specialized, more details can be found on ConTEXt documentation.

631 \mathtolerance

This is used instead of \tolerance when a breakpoint is calculated when a math formula starts.

632 \maxdeadcycles

When the output routine is called this many times and no page is shipped out an error will be triggered.

You therefore need to reset its companion counter \deadcycles if needed. Keep in mind that LuaMeta-

TEX has no real \shipout because providing a backend is up to the macro package.

633 \maxdepth

The depth of the page is limited to this value.

634 \meaning

We start with a primitive that will be used in the following sections. The reported meaning can look a

bit different than the one reported by other engines which is a side effect of additional properties and

more extensive argument parsing.

\tolerant\permanent\protected\gdef\foo[#1]#*[#2]{(#1)(#2)} \meaning\foo

tolerant protected macro:[#1]#*[#2]->(#1)(#2)

635 \meaningasis

Although it is not really round trip with the original due to information being lost this primitive tries

to return an equivalent definition.

\tolerant\permanent\protected\gdef\foo[#1]#*[#2]{(#1)(#2)} \meaningasis\foo

\global \permanent \tolerant \protected \def \foo [#1]#*[#2]{(#1)(#2)}

636 \meaningful

This one reports a bit less than \meaningful.

\tolerant\permanent\protected\gdef\foo[#1]#*[#2]{(#1)(#2)} \meaningful\foo

global permanent tolerant protected macro

637 \meaningfull

This one reports a bit more than \meaning.

\tolerant\permanent\protected\gdef\foo[#1]#*[#2]{(#1)(#2)} \meaningfull\foo

192

global permanent tolerant protected macro:[#1]#*[#2]->(#1)(#2)

638 \meaningles

This one reports a bit less than \meaningless.

\tolerant\permanent\protected\gdef\foo[#1]#*[#2]{(#1)(#2)} \meaningles\foo

[#1]#*[#2]

639 \meaningless

This one reports a bit less than \meaning.

\tolerant\permanent\protected\gdef\foo[#1]#*[#2]{(#1)(#2)} \meaningless\foo

[#1]#*[#2]->(#1)(#2)

640 \medmuskip

A predefined mu skip register that can be used in math (inter atom) spacing. The current value is

4.0mu plus 2.0mu minus 2.0mu. In traditional TEX most inter atom spacing is hard coded using the

predefined registers.

641 \message

Prints the serialization of the (tokenized) argument to the log file and/or console.

642 \middle

Inserts the given delimiter as middle fence in a math formula. In LuaMetaTEX it is a full blown fence

and not (as in 𝜀-TEX) variation of \open.

643 \mkern

This one injects a kern node in the current (math) list and expects a value in so called mu units.

644 \month

This internal number starts out with the month that the job started.

645 \moveleft

This primitive takes two arguments, a dimension and a box. The box is moved to the left. The operation

only succeeds in vertical mode.

646 \moveright

This primitive takes two arguments, a dimension and a box. The box is moved to the right. The

operation only succeeds in vertical mode.

193

647 \mskip

The given math glue (in mu units) is injected in the horizontal list. For this to succeed we need to be

in math mode.

648 \muexpr

This is a companion of \glueexpr so it handles the optional stretch and shrink components. Here

math units (mu) are expected.

649 \mugluespecdef

A variant of \gluespecdef that expects mu units is:

\mugluespecdef\MyGlue = 3mu plus 2mu minus 1mu

The properties are comparable to the ones described in the previous sections.

650 \multiply

The given quantity is multiplied by the given integer (that can be preceded by the keyword ‘by’, like:

\scratchdimen=10pt \multiply\scratchdimen by 3

651 \multiplyby

This is slightly more efficient variant of \multiply that doesn't look for by. See previous section.

652 \muskip

This is the accessor for an indexed muskip (muglue) register.

653 \muskipdef

This command associates a control sequence with a muskip (math skip) register (accessed by number).

654 \mutable

This prefix flags what follows can be adapted and is not subjected to overload protection.

655 \mutoglue

The sequence \the\mutoglue 20mu plus 10mu minus 5mu gives 20.0pt plus 10.0pt minus 5.0pt.

656 \mvlcurrentlyactive

This numeric state variable hold the id of the currently active mvl. Unless one is in \beginmlv it's zero

(regular page).

194

657 \nestedloopiterator

This is one of the accessors of loop iterators:

\expandedrepeat 2 {%

\expandedrepeat 3 {%

(n=\the\nestedloopiterator 1,

p=\the\previousloopiterator1,

c=\the\currentloopiterator)

}%

}%

Gives:

(n=1, p=1, c=1) (n=2, p=1, c=2) (n=3, p=1, c=3) (n=1, p=2, c=1) (n=2, p=2, c=2) (n=3, p=2, c=3)

Where a nested iterator starts relative to innermost loop, the previous one is relative to the outer loop

(which is less predictable because we can already be in a loop).

658 \newlinechar

When something is printed to one of the log channels the character with this code will trigger a

linebreak. That also resets some counters that deal with suppressing redundant ones and possible

indentation. Contrary to other engines LuaMetaTEX doesn't bother about the length of lines.

659 \noalign

The token list passed to this primitive signals that we don't enter a table row yet but for instance

in a \halign do something between the lines: some calculation or injecting inter-row material. In

LuaMetaTEX this primitive can be used nested.

Todo: discuss keywords.

660 \noaligned

The alignment mechanism is kind of special when it comes to expansion because it has to look ahead

for a \noalign. This interferes with for instance protected macros, but using this prefix we get around

that. Among the reasons to use protected macros inside an alignment is that they behave better inside

for instance \expanded.

661 \noatomruling

Spacing in math is based on classes and this primitive inserts a signal that there is no ruling in place

here. Basically we have a zero skip glue tagged as non breakable because in math mode glue is not a

valid breakpoint unless we have configured inter-class penalties.

662 \noboundary

This inserts a boundary node with no specific property. It can still serve as boundary but is not inter

preted in special ways, like the others.

195

663 \noexpand

This prefix prevents expansion in a context where expansion happens. Another way to prevent expan

sion is to define a macro as \protected.

\def\foo{foo} \edef\oof{we expanded \foo} \meaning\oof

\def\foo{foo} \edef\oof{we keep \noexpand\foo} \meaning\oof

\protected\def\foo{foo} \edef\oof{we keep \foo} \meaning\oof

macro:we expanded foo

macro:we keep \foo

macro:we keep \foo

664 \nohrule

This is a rule but flagged as empty which means that the dimensions kick in as for a normal rule but

the backend can decide not to show it.

665 \noindent

This starts a paragraph. In LuaTEX (and LuaMetaTEX) a paragraph starts with a so called par node

(see \indent on how control that. After that comes either \parindent glue or a horizontal box. The

\indent makes gives them some width, while \noindent keeps that zero.

666 \nolimits

This is a modifier: it flags the previous math atom to have its scripts after the the atom (contrary

to \limits. In LuaMetaTEX this can be any atom (that is: any class). In display mode the location

defaults to above and below.

667 \nomathchar

This can be used when a math character is expected but not available (or needed).

668 \nonscript

This prevents TEX from adding inter-atom glue at this spot in script or scriptscript mode. It actually

is a special glue itself that serves as signal.

669 \nonstopmode

This directive omits all stops.

670 \nooutputboxerror

Setting this a positive value will silence the error triggered by a still somewhat full output box after

the output routine returns. It is a bitset:

0x1 when firing up

0x2 after output

196

where values larger than two will always silence,

671 \norelax

The rationale for this command can be shown by a few examples:

\dimen0 1pt \dimen2 1pt \dimen4 2pt

\edef\testa{\ifdim\dimen0=\dimen2\norelax N\else Y\fi}

\edef\testb{\ifdim\dimen0=\dimen2\relax N\else Y\fi}

\edef\testc{\ifdim\dimen0=\dimen4\norelax N\else Y\fi}

\edef\testd{\ifdim\dimen0=\dimen4\relax N\else Y\fi}

\edef\teste{\norelax}

The five meanings are:

\testa macro:N

\testb macro:\relax N

\testc macro:Y

\testd macro:Y

\teste macro:

So, the \norelax acts like \relax but is not pushed back as usual (in some cases).

672 \normalizelinemode

The TEX engine was not designed to be opened up, and therefore the result of the linebreak effort can

differ depending on the conditions. For instance not every line gets the left- or rightskip. The first and

last lines have some unique components too. When LuaTEX made it possible too get the (intermediate)

result manipulating the result also involved checking what one encountered, for instance glue and its

origin. In LuaMetaTEX we can normalize lines so that they have for instance balanced skips.

0x0001 normalizeline 0x0040 clipwidth

0x0002 parindentskip 0x0080 flattendiscretionaries

0x0004 swaphangindent 0x0100 discardzerotabskips

0x0008 swapparshape 0x0200 flattenhleaders

0x0010 breakafterdir 0x0400 balanceinlinemath

0x0020 removemarginkerns

The order in which the skips get inserted when we normalize is as follows:

\lefthangskip the hanging indentation (or zero)

\leftskip the value even when zero

\parfillleftskip only on the last line

\parinitleftskip only on the first line

\indentskip the amount of indentation

. . . the (optional) content

\parinitrightskip only on the first line

\parfillrightskip only on the last line

\correctionskip the correction needed to stay within the \hsize

\rightskip the value even when zero

\righthangskip the hanging indentation (or zero)

197

The init and fill skips can both show up when we have a single line. The correction skip replaces the

traditional juggling with the right skip and shift of the boxed line.

For now we leave the other options to your imagination. Some of these can be achieved by callbacks

(as we did in older versions of ConTEXt) but having the engine do the work we get a better performance.

673 \normalizeparmode

For now we just mention the few options available. It is also worth mentioning that LuaMetaTEX tries

to balance the direction nodes.

0x01 normalizepar 0x08 keepinterlinepenalties

0x02 flattenvleaders 0x10 removetrailingspaces

0x04 limitprevgraf

674 \noscript

In math we can have multiple pre- and postscript. These get typeset in pairs and this primitive can be

used to skip one. More about multiple scripts (and indices) can be found in the ConTEXt math manual.

675 \nospaces

When \nospaces is set to 1 no spaces are inserted, when its value is 2 a zero space is inserted.

The default value is 0 which means that spaces become glue with properties depending on the font,

specific parameters and/or space factors determined preceding characters. A value of 3 will inject a

glyph node with code \spacechar.

676 \nosubprescript

This processes the given script in the current style, so:

comes out as: 𝑥2 + 𝑥2 + 𝑥2 .

677 \nosubscript

This processes the given script in the current style, so:

comes out as: 𝑥2 + 𝑥2 + 𝑥2.

678 \nosuperprescript

This processes the given script in the current style, so:

comes out as: 𝑥2 + 𝑥2 + 𝑥2 .

679 \nosuperscript

This processes the given script in the current style, so:

comes out as: 𝑥2 + 𝑥2 + 𝑥2 .

198

680 \novrule

This is a rule but flagged as empty which means that the dimensions kick in as for a normal rule but

the backend can decide not to show it.

681 \nulldelimiterspace

In fenced math delimiters can be invisible in which case this parameter determines the amount of

space (width) that ghost delimiter takes.

682 \nullfont

This a symbolic reference to a font with no glyphs and a minimal set of font dimensions.

683 \number

This TEX primitive serializes the next token into a number, assuming that it is indeed a number, like

\number`A

\number65

\number\scratchcounter

For counters and such the \the primitive does the same, but when you're not sure if what follows is a

verbose number or (for instance) a counter the \number primitive is a safer bet, because \the 65 will

not work.

684 \numericscale

This primitive can best be explained by a few examples:

\the\numericscale 1323

\the\numericscale 1323.0

\the\numericscale 1.323

\the\numericscale 13.23

In several places TEX uses a scale but due to the lack of floats it then uses 1000 as 1.0 replacement.

This primitive can be used for ‘real’ scales:

1323000

1323000

1323

13230

685 \numericscaled

This is a variant if \numericscale:

\scratchcounter 1000

\the\numericscaled 1323 \scratchcounter

\the\numericscaled 1323.0 \scratchcounter

199

\the\numericscaled 1.323 \scratchcounter

\the\numericscaled 13.23 \scratchcounter

The second number gets multiplied by the first fraction:

1323000

1323000

1323

13230

686 \numexpr

This primitive was introduced by 𝜀-TEX and supports a simple expression syntax:

\the\numexpr 10 * (1 + 2 - 5) / 2 \relax

gives: -10. You can mix in symbolic integers and dimensions.

687 \numexpression

The normal \numexpr primitive understands the +, -, * and / operators but in LuaMetaTEX we also

can use : for a non rounded integer division (think of Lua's //). if you want more than that, you can

use the new expression primitive where you can use the following operators.

add +

subtract -

multiply *

divide / :

mod % mod

band & band

bxor ^ bxor

bor | v bor

and && and

or || or

setbit <undecided> bset

resetbit <undecided> breset

left <<

right >>

less <

lessequal <=

equal = ==

moreequal >=

more >

unequal <> != ~=

not ! ~ not

An example of the verbose bitwise operators is:

\scratchcounter = \numexpression

"00000 bor "00001 bor "00020 bor "00400 bor "08000 bor "F0000

\relax

200

In the table you might have notices that some operators have equivalents. This makes the scanner a

bit less sensitive for catcode regimes.

When \tracingexpressions is set to one or higher the intermediate ‘reverse polish notation’ stack

that is used for the calculation is shown, for instance:

4:8: {numexpression rpn: 2 5 > 4 5 > and}

When you want the output on your console, you need to say:

\tracingexpressions 1

\tracingonline 1

Here are some things that \numexpr is not suitable for but \numexpression can handle:

\scratchcounter = \numexpression

"00000 bor "00001 bor "00020 bor "00400 bor "08000 bor "F0000

\relax

\ifcase \numexpression

(\scratchcounterone > 5) && (\scratchcountertwo > 5)

\relax yes\else nop\fi

688 \omit

This primitive cancels the template set for the upcoming cell. Often it is used in combination with

\span.

689 \optionalboundary

This boundary is used to mark optional content. An positive \optionalboundary starts a range and

a zero one ends it. Nesting is not supported. Optional content is considered when an additional

paragraph pass enables it as part of its recipe.

690 \or

This traditional primitive is part of the condition testing mechanism and relates to an \ifcase test (or

a similar test to be introduced in later sections). Depending on the value, TEX will do a fast scanning

till the right \or is seen, then it will continue expanding till it sees a \or or \else or \orelse (to be

discussed later). It will then do a fast skipping pass till it sees an \fi.

691 \orelse

This primitive provides a convenient way to flatten your conditional tests. So instead of

\ifnum\scratchcounter<-10

too small

\else\ifnum\scratchcounter>10

too large

\else

just right

201

\fi\fi

You can say this:

\ifnum\scratchcounter<-10

too small

\orelse\ifnum\scratchcounter>10

too large

\else

just right

\fi

You can mix tests and even the case variants will work in most cases11

\ifcase\scratchcounter zero

\or one

\or two

\orelse\ifnum\scratchcounter<10 less than ten

\else ten or more

\fi

Performance wise there are no real benefits although in principle there is a bit less housekeeping

involved than with nested checks. However you might like this:

\ifnum\scratchcounter<-10

\expandafter\toosmall

\orelse\ifnum\scratchcounter>10

\expandafter\toolarge

\else

\expandafter\justright

\fi

over:

\ifnum\scratchcounter<-10

\expandafter\toosmall

\else\ifnum\scratchcounter>10

\expandafter\expandafter\expandafter\toolarge

\else

\expandafter\expandafter\expandafter\justright

\fi\fi

or the more ConTEXt specific:

\ifnum\scratchcounter<-10

\expandafter\toosmall

\else\ifnum\scratchcounter>10

\doubleexpandafter\toolarge

\else

\doubleexpandafter\justright

11 I just play safe because there are corner cases that might not work yet.

202

\fi\fi

But then, some TEXies like complex and obscure code and throwing away working old code that took

ages to perfect and get working and also showed that one masters TEX might hurt.

There is a nice side effect of this mechanism. When you define:

\def\quitcondition{\orelse\iffalse}

you can do this:

\ifnum\count0<10

less

\orelse\ifnum\count0=10

equal

\quitcondition

indeed

\else

more

\fi

Of course it is only useful at the right level, so you might end up with cases like

\ifnum\count0<10

less

\orelse\ifnum\count0=10

equal

\ifnum\count2=30

\expandafter\quitcondition

\fi

indeed

\else

more

\fi

692 \orphanlinefactors

Normally this (specification) parameter is set in a \parpasses as it supports multiple orphan penalties

with a different weight (starting from the last candidate).

693 \orphanpenalties

This an (single entry) array parameter: first the size is given followed by that amount of penalties.

These penalties are injected before spaces, going backward from the end of a paragraph. When we

see a math node with a penalty set then we take the max and jump over a (preceding) skip.

694 \orunless

This is the negated variant of \orelse (prefixing that one with \unless doesn't work well.

203

695 \outer

An outer macro is one that can only be used at the outer level. This property is no longer supported.

Like \long, the \outer prefix is now an no-op (and we don't expect this to have unfortunate side

effects).

696 \output

This token list register holds the code that will be expanded when TEX enters the output routine. That

code is supposed to do something with the content in the box with number \outputbox. By default

this is box 255 but that can be changed with \outputbox.

697 \outputbox

This is where the split off page contend ends up when the output routine is triggered.

698 \outputpenalty

This is the penalty that triggered the output routine.

699 \over

This math primitive is actually a bit of a spoiler for the parser as it is one of the few that looks back.

The \Uover variant is different and takes two arguments. We leave it to the user to predicts the results

of:

$ {1} \over {x} $

$ 1 \over x $

$ 12 \over x / y $

$ a + 1 \over {x} $

and:

$ \textstyle 1 \over x $

$ {\textstyle 1} \over x $

$ \textstyle {1 \over x} $

It's one of the reasons why macro packages provide \frac.

700 \overfullrule

When an overfull box is encountered a rule can be shown in the margin and this parameter sets its

width. For the record: ConTEXt does it different.

701 \overline

This is a math specific primitive that draws a line over the given content. It is a poor mans replacement

for a delimiter. The thickness is set with \Umathoverbarrule, the distance between content and rule

is set by \Umathoverbarvgap and \Umathoverbarkern is added above the rule. The style used for the

content under the rule can be set with \Umathoverlinevariant.

204

Because ConTEXt set up math in a special way, the following example:

\normaloverline {

\blackrule[color=red, height=1ex,depth=0ex,width=2cm]%

\kern-2cm

\blackrule[color=blue,height=0ex,depth=.5ex,width=2cm]

x + x

}

gives: 𝑥+ 𝑥, while:

\mathfontcontrol\zerocount

\Umathoverbarkern\allmathstyles10pt

\Umathoverbarvgap\allmathstyles5pt

\Umathoverbarrule\allmathstyles2.5pt

\Umathoverlinevariant\textstyle\scriptstyle

gives this: 𝑥+ 𝑥. We have to disable the related \mathfontcontrol bits because otherwise

the thickness is taken from the font. The variant is just there to overload the (in traditional TEX engines)

default.

702 \overloaded

This prefix can be used to overload a frozen macro.

703 \overloadmode

The overload protection mechanism can be used to prevent users from redefining a control sequence.

The mode can have several values, the higher the more strict we are:

immutable permanent primitive frozen instance

1 warning + + +

2 error + + +

3 warning + + + +

4 error + + + +

5 warning + + + + +

6 error + + + + +

When you set a high error value, you can of course temporary lower or even zero the mode. In ConTEXt

all macros and quantities are tagged so there setting the mode to 6 gives a proper protection against

overloading. We need to zero the mode when we load for instance tikz, so when you use that generic

package, you loose some.

704 \overshoot

This primitive is a companion to \badness and reports how much a box overflows.

\setbox0\hbox to 1em {mmm} \the\badness\quad\the\overshoot

\setbox0\hbox {mm} \the\badness\quad\the\overshoot

\setbox0\hbox to 3em {m} \the\badness\quad\the\overshoot

205

This reports:

1000000 18.44727pt

0 0.0pt

10000 0.0pt

And:

\hbox to 2cm {does it fit} \the\overshoot

\hbox to 2cm {does it fit in here} \the\overshoot

\hbox to 2cm {how much does fit in here} \the\overshoot

gives:

does it fit

0.0pt

does it fit in here

25.64333pt

how much does fit in here

69.53004pt

When traditional TEX wraps up the lines in a paragraph it uses a mix of shift (a box property) to

position the content suiting the hanging indentation and/or paragraph shape, and fills up the line

using right skip glue, also in order to silence complaints in packaging. In LuaMetaTEX the lines can

be normalized so that they all have all possible skips to the left and right (even if they're zero). The

\overshoot primitive fits into this picture and is present as a compensation glue. This all fits better

in a situation where the internals are opened up via Lua.

705 \overwithdelims

This is a variant of \over but with delimiters. It has a more advanced upgrade in \Uoverwithdelims.

706 \pageboundary

In order to avoid side effects of triggering the page builder with a specific penalty we can use this

primitive which expects a value that actually gets inserted as zero penalty before triggering the page

builder callback. Think of adding a no-op to the contribution list. We fake a zero penalty so that all

gets processed. The main rationale is that we get a better indication of what we do. Of course a

callback can remove this node so that it is never seen. Triggering from the callback is not doable.

Consider this experimental code (which is actually used in ConTEXt anyway).

707 \pagedepth

This page property holds the depth of the page.

708 \pagediscards

The left-overs after a page is split of the main vertical list when glue and penalties are normally

discarded. The discards can be pushed back in (for instance) trial runs.

206

709 \pageexcess

This page property hold the amount of overflow when a page break occurs.

710 \pageextragoal

This (experimental) dimension will be used when the page overflows but a bit of overshoot is consid

ered okay.

711 \pagefilllstretch

The accumulated amount of third order stretch on the current page.

712 \pagefillstretch

The accumulated amount of second order stretch on the current page.

713 \pagefilstretch

The accumulated amount of first order stretch on the current page.

714 \pagefistretch

The accumulated amount of zero order stretch on the current page.

715 \pagegoal

The target height of a page (the running text). This value will be decreased by the height of inserts

something to keep into mind when messing around with this and other (pseudo) page related parame

ters like \pagetotal.

716 \pagelastdepth

The accumulated depth of the current page.

717 \pagelastfilllstretch

The accumulated amount of third order stretch on the current page. Contrary to \pagefilllstretch

this is the really contributed amount, not the upcoming.

718 \pagelastfillstretch

The accumulated amount of second order stretch on the current page. Contrary to \pagefillstretch

this is the really contributed amount, not the upcoming.

719 \pagelastfilstretch

The accumulated amount of first order stretch on the current page. Contrary to \pagefilstretch this

is the really contributed amount, not the upcoming.

207

720 \pagelastfistretch

The accumulated amount of zero order stretch on the current page. Contrary to \pagefistretch this

is the really contributed amount, not the upcoming.

721 \pagelastheight

The accumulated height of the current page.

722 \pagelastshrink

The accumulated amount of shrink on the current page. Contrary to \pageshrink this is the really

contributed amount, not the upcoming.

723 \pagelaststretch

The accumulated amount of stretch on the current page. Contrary to \pagestretch this is the really

contributed amount, not the upcoming.

724 \pageshrink

The accumulated amount of shrink on the current page.

725 \pagestretch

The accumulated amount of stretch on the current page.

726 \pagetotal

The accumulated page total (height) of the current page.

727 \pagevsize

This parameter, when set, is used as the target page height. This lessens the change of \vsize inter

fering.

728 \par

This is the explicit ‘finish paragraph’ command. Internally we distinguish a par triggered by a new

line, as side effect of another primitive or this \par command.

729 \parametercount

The number of parameters passed to the current macro.

730 \parameterdef

Here is an example of binding a variable to a parameter. The alternative is of course to use an \edef.

208

\def\foo#1#2%

{\parameterdef\MyIndexOne\plusone % 1

\parameterdef\MyIndexTwo\plustwo % 2

\oof{P}\oof{Q}\oof{R}\norelax}

\def\oof#1%

{<1:\MyIndexOne><1:\MyIndexOne>%

#1%

<2:\MyIndexTwo><2:\MyIndexTwo>}

\foo{A}{B}

The outcome is:

<1:A><1:A>P<2:B><2:B><1:A><1:A>Q<2:B><2:B><1:A><1:A>R<2:B><2:B>

731 \parameterindex

This gives the zero based position on the parameter stack. One reason for introducing \parameterdef

is that the position remains abstract so there we don't need to use \parameterindex.

732 \parametermark

The meaning of primitive \parametermark is equivalent to # in a macro definition, just like \alignmark

is in an alignment. It can be used to circumvent catcode issues. The normal “duplicate them when

nesting” rules apply.

\def\foo\parametermark1%

{\def\oof\parametermark\parametermark1%

{[\parametermark1:\parametermark\parametermark1]}}

Here \foo{X}\oof{Y} gives: [X:Y].

733 \parametermode

Setting this internal integer to a positive value (best use 1 because future versions might use bit set)

will enable the usage of # for escaped in the main text and body of macros.

734 \parattribute

This primitive takes an attribute index and value and sets that attribute on the current paragraph.

735 \pardirection

This set the text direction for the whole paragraph which in the case of r2l (1) makes the right edge

the starting point.

736 \parfillleftskip

The glue inserted at the start of the last line.

209

737 \parfillrightskip

The glue inserted at the end of the last line (aka \parfillskip).

738 \parfillskip

The glue inserted at the end of the last line.

739 \parindent

The amount of space inserted at the start of the first line. When bit 2 is set in \normalizelinemode a

glue is inserted, otherwise an empty \hbox with the given width is inserted.

740 \parinitleftskip

The glue inserted at the start of the first line.

741 \parinitrightskip

The glue inserted at the end of the first line.

742 \paroptions

This adds options to already set options in a paragraph. It is used for experiments so for now just

forget about it.

743 \parpasses

Specifies one or more recipes for additional second linebreak passes. Examples can be found in the

ConTEXt distribution.

744 \parpassesexception

Specifies al alternative parpass to use in the upcoming paragraph, for instance one with a specific

looseness that then demands for instance more emergency stretch.

745 \parshape

Stores a shape specification. The first argument is the length of the list, followed by that amount of

indentation-width pairs (two dimensions).

746 \parshapedimen

This oddly named (𝜀-TEX) primitive returns the width component (dimension) of the given entry (an

integer). Obsoleted by \parshapewidth.

747 \parshapeindent

Returns the indentation component (dimension) of the given entry (an integer).

210

748 \parshapelength

Returns the number of entries (an integer).

749 \parshapewidth

Returns the width component (dimension) of the given entry (an integer).

750 \parskip

This is the amount of glue inserted before a new paragraph starts.

751 \patterns

The argument to this primitive contains hyphenation patterns that are bound to the current language.

In LuaTEX and LuaMetaTEX we can also manage this at the Lua end. In LuaMetaTEX we don't store

patterns in te format file

752 \pausing

In LuaMetaTEX this variable is ignored but in other engines it can be used to single step thought the

input file by setting it to a positive value.

753 \penalty

The given penalty (a number) is inserted at the current spot in the horizontal or vertical list. We also

have \vpenalty and \hpenalty that first change modes.

754 \permanent

This is one of the prefixes that is part of the overload protection mechanism. It is normally used to

flag a macro as being at the same level as a primitive: don't touch it. primitives are flagged as such

but that property cannot be set on regular macros. The similar \immutable flag is normally used for

variables.

755 \pettymuskip

A predefined mu skip register that can be used in math (inter atom) spacing. The current value is

1.0mu minus 0.5mu. This one complements \thinmuskip, \medmuskip, \thickmuskip and the new

\tinymuskip.

756 \positdef

The engine uses 32 bit integers for various purposes and has no (real) concept of a floating point

quantity. We get around this by providing a floating point data type based on 32 bit unums (posits).

These have the advantage over native floats of more precision in the lower ranges but at the cost of a

software implementation.

211

The \positdef primitive is the floating point variant of \integerdef and \dimensiondef: an efficient

way to implement named quantities other than registers.

\positdef \MyFloatA 5.678

\positdef \MyFloatB 567.8

[\the\MyFloatA] [\todimension\MyFloatA] [\tointeger\MyFloatA]

[\the\MyFloatB] [\todimension\MyFloatB] [\tointeger\MyFloatB]

For practical reasons we can map posit (or float) onto an integer or dimension:

[5.6780000030994415283] [5.678pt] [6]

[567.8000030517578125] [567.80005pt] [568]

757 \postdisplaypenalty

This is the penalty injected after a display formula.

758 \postexhyphenchar

This primitive expects a language number and a character code. A negative character code is equiva

lent to ignore. In case of an explicit discretionary the character is injected at the beginning of a new

line.

759 \posthyphenchar

This primitive expects a language number and a character code. A negative character code is equiv

alent to ignore. In case of an automatic discretionary the character is injected at the beginning of a

new line.

760 \postinlinepenalty

When set this penalty is inserted after an inline formula unless we have a short formula and \post

shortinlinepenalty is set.

761 \postshortinlinepenalty

When set this penalty is inserted after a short inline formula. The criterium is set by \shortinline

maththreshold but only applied when it is enabled for the class involved.

762 \prebinoppenalty

This internal quantity is a compatibility feature because normally we will use the inter atom spacing

variables.

763 \predisplaydirection

This is the direction that the math sub engine will take into account when dealing with right to left

typesetting.

212

764 \predisplaygapfactor

The heuristics related to determine if the previous line in a formula overlaps with a (display) formula

are hard coded but in LuaTEX to be two times the quad of the current font. This parameter is a

multiplier set to 2000 and permits you to change the overshoot in this heuristic.

765 \predisplaypenalty

This is the penalty injected before a display formula.

766 \predisplaysize

This parameter holds the length of the last line in a paragraph when a display formula is part of it.

767 \preexhyphenchar

This primitive expects a language number and a character code. A negative character code is equiv

alent to ignore. In case of an explicit discretionary the character is injected at the end of the line.

768 \prehyphenchar

This primitive expects a language number and a character code. A negative character code is equiv

alent to ignore. In case of an automatic discretionary the character is injected at the end of the line.

769 \preinlinepenalty

When set this penalty is inserted before an inline formula unless we have a short formula and

\preshortinlinepenalty is set. These are not real penalties but properties of the math begin and

end markers. Just as with spacing as such property, these penalties are not visible as nodes in the list.

770 \prerelpenalty

This internal quantity is a compatibility feature because normally we will use the inter atom spacing

variables.

771 \preshortinlinepenalty

When set this penalty is inserted before a short inline formula. The criterium is set by \shortinline

maththreshold but only applied when it is enabled for the class involved.

772 \pretolerance

When the badness of a line in a paragraph exceeds this value a second linebreak pass will be enabled.

773 \prevdepth

The depth of current list. It can also be set to special (signal) values in order to inhibit line corrections.

It is not an internal dimension but a (current) list property.

213

774 \prevgraf

The number of lines in a previous paragraph.

775 \previousloopiterator

\edef\testA{

\expandedrepeat 2 {%

\expandedrepeat 3 {%

(\the\previousloopiterator1:\the\currentloopiterator)

}%

}%

}

\edef\testB{

\expandedrepeat 2 {%

\expandedrepeat 3 {%

(#P:#I) % #G is two levels up

}%

}%

}

These give the same result:

\def \testA { (1:1) (1:2) (1:3) (2:1) (2:2) (2:3) }

\def \testB { (1:1) (1:2) (1:3) (2:1) (2:2) (2:3) }

The number indicates the number of levels we go up the loop chain.

776 \primescript

This is a math script primitive dedicated to primes (which are somewhat troublesome on math). It

complements the six script primitives (like \subscript and \presuperscript).

777 \protected

A protected macro is one that doesn't get expanded unless it is time to do so. For instance, inside an

\edef it just stays what it is. It often makes sense to pass macros as-is to (multi-pass) file (for tables

of contents).

In ConTEXt we use either \protected or \unexpanded because the later was the command we used to

achieve the same results before 𝜀-TEX introduced this protection primitive. Originally the \protected

macro was also defined but it has been dropped.

778 \protecteddetokenize

This is a variant of \protecteddetokenize that uses some escapes encoded as body parameters, like

#H for a hash.

779 \protectedexpandeddetokenize

This is a variant of \expandeddetokenize that uses some escapes encoded as body parameters, like

#H for a hash.

214

780 \protrudechars

This variable controls protrusion (into the margin). A value 2 is comparable with other engines, while

a value of 3 does a bit more checking when we're doing right-to-left typesetting.

781 \protrusionboundary

This injects a boundary with the given value:

0x00 skipnone

0x01 skipnext

0x02 skipprevious

0x03 skipboth

This signal makes the protrusion checker skip over a node.

782 \pxdimen

The current numeric value of this dimension is 65781, 1.00374pt: one bp. We kept it around because

it was introduced in pdfTEX and made it into LuaTEX, where it relates to the resolution of included

images. In ConTEXt it is not used.

783 \quitloop

There are several loop primitives and they can be quit with \quitloop at the next the next iteration.

An immediate quit is possible with \quitloopnow. An example is given with \localcontrolledloop.

784 \quitloopnow

There are several loop primitives and they can be quit with \quitloopnow at the spot.

785 \quitvmode

This primitive forces horizontal mode but has no side effects when we're already in that mode.

786 \radical

This old school radical constructor is replaced by \Uradical. It takes a number where the first byte

is the small family, the next two index of this symbol from that family, and the next three the family

and index of the first larger variant.

787 \raise

This primitive takes two arguments, a dimension and a box. The box is moved up. The operation only

succeeds in horizontal mode.

788 \rdivide

This is variant of \divide that rounds the result. For integers the result is the same as \edivide.

215

\the\dimexpr .4999pt : 2 \relax =.24994pt

\the\dimexpr .4999pt / 2 \relax =.24995pt

\the\dimexpr .4999pt ; 2 \relax =.00002pt

\scratchdimen.4999pt \divide \scratchdimen 2 \the\scratchdimen =.24994pt

\scratchdimen.4999pt \edivide\scratchdimen 2 \the\scratchdimen =.24995pt

\scratchdimen 4999pt \rdivide\scratchdimen 2 \the\scratchdimen =2500.0pt

\scratchdimen 5000pt \rdivide\scratchdimen 2 \the\scratchdimen =2500.0pt

\the\numexpr 1001 : 2 \relax =500

\the\numexpr 1001 / 2 \relax =501

\the\numexpr 1001 ; 2 \relax =1

\scratchcounter1001 \divide \scratchcounter 2 \the\scratchcounter=500

\scratchcounter1001 \edivide\scratchcounter 2 \the\scratchcounter=501

\scratchcounter1001 \rdivide\scratchcounter 2 \the\scratchcounter=501

0.24994pt=.24994pt

0.24995pt=.24995pt

0.00002pt=.00002pt

0.24994pt=.24994pt

0.24995pt=.24995pt

2500.0pt=2500.0pt

2500.0pt=2500.0pt

500=500

501=501

1=1

500=500

501=501

501=501

The integer division : and modulo ; are an addition to the 𝜀-TEX compatible expressions.

789 \rdivideby

This is the by-less companion to \rdivide.

790 \realign

Where \omit suspends a preamble template, this one overloads is for the current table cell. It expects

two token lists as arguments.

791 \relax

This primitive does nothing and is often used to end a verbose number or dimension in a comparison,

for example:

\ifnum \scratchcounter = 123\relax

which prevents a lookahead. A variant would be:

\ifnum \scratchcounter = 123 %

216

assuming that spaces are not ignored. Another application is finishing an expression like \numexpr or

\dimexpr. I is also used to prevent lookahead in cases like:

\vrule height 3pt depth 2pt width 5pt\relax

\hskip 5pt plus 3pt minus 2pt\relax

Because \relax is not expandable the following:

\edef\foo{\relax} \meaningfull\foo

\edef\oof{\norelax} \meaningfull\oof

gives this:

macro:\relax

macro:

A \norelax disappears here but in the previously mentioned scenarios it has the same function as

\relax. It will not be pushed back either in cases where a lookahead demands that.

792 \relpenalty

This internal quantity is a compatibility feature because normally we will use the inter atom spacing

variables.

793 \resetlocalboxes

Its purpose should be clear from the name.

794 \resetmathspacing

This initializes all parameters to their initial values.

795 \restorecatcodetable

This is an experimental feature that should be used with care. The next example shows usage. It was

added when debugging and exploring a side effect.

\tracingonline1

\bgroup

\catcode`6 = 11 \catcode`7 = 11

\bgroup

\tracingonline1

current: \the\catcodetable

original: \the\catcode`6\quad \the\catcode`7

\catcode`6 = 11 \catcode`7 = 11

217

\showcodestack\catcode

assigned: \the\catcode`6\quad \the\catcode`7

\showcodestack\catcode

\catcodetable\ctxcatcodes switched: \the\catcodetable

stored: \the\catcode`6\quad \the\catcode`7

\showcodestack\catcode

\restorecatcodetable\ctxcatcodes

\showcodestack\catcode

restored: \the\catcode`6\quad \the\catcode`7

\showcodestack\catcode

\egroup

\catcodetable\ctxcatcodes

inner: \the\catcode`6\quad\the\catcode`7

\egroup

outer: \the\catcode`6\quad\the\catcode`7

In ConTEXt this typesets:

current: 9

original: 11 11

assigned: 11 11

switched: 9

stored: 11 11

restored: 12 12

inner: 11 11

outer; 12 12

and on the console we see:

3:3: [codestack 1, size 3]

3:3: [1: level 2, code 54, value 12]

3:3: [2: level 2, code 55, value 12]

3:3: [3: level 3, code 54, value 11]

3:3: [4: level 3, code 55, value 11]

3:3: [codestack 1 bottom]

3:3: [codestack 1, size 3]

3:3: [1: level 2, code 54, value 12]

3:3: [2: level 2, code 55, value 12]

3:3: [3: level 3, code 54, value 11]

3:3: [4: level 3, code 55, value 11]

218

3:3: [codestack 1 bottom]

3:3: [codestack 1, size 3]

3:3: [1: level 2, code 54, value 12]

3:3: [2: level 2, code 55, value 12]

3:3: [3: level 3, code 54, value 11]

3:3: [4: level 3, code 55, value 11]

3:3: [codestack 1 bottom]

3:3: [codestack 1, size 7]

3:3: [1: level 2, code 54, value 12]

3:3: [2: level 2, code 55, value 12]

3:3: [3: level 3, code 54, value 11]

3:3: [4: level 3, code 55, value 11]

3:3: [5: level 3, code 55, value 11]

3:3: [6: level 3, code 54, value 11]

3:3: [7: level 3, code 55, value 11]

3:3: [8: level 3, code 54, value 11]

3:3: [codestack 1 bottom]

3:3: [codestack 1, size 7]

3:3: [1: level 2, code 54, value 12]

3:3: [2: level 2, code 55, value 12]

3:3: [3: level 3, code 54, value 11]

3:3: [4: level 3, code 55, value 11]

3:3: [5: level 3, code 55, value 11]

3:3: [6: level 3, code 54, value 11]

3:3: [7: level 3, code 55, value 11]

3:3: [8: level 3, code 54, value 11]

3:3: [codestack 1 bottom]

So basically \restorecatcodetable brings us (temporarily) back to the global settings.

796 \retained

When a value is assigned inside a group TEX pushes the current value on the save stack in order to

be able to restore the original value after the group has ended. You can reach over a group by using

the \global prefix. A mix between local and global assignments can be achieved with the \retained

primitive.

\MyDim 15pt \bgroup \the\MyDim \space

\bgroup

\bgroup

\bgroup \advance\MyDim10pt \the\MyDim \egroup\space

\bgroup \advance\MyDim10pt \the\MyDim \egroup\space

\egroup

\bgroup

\bgroup \advance\MyDim10pt \the\MyDim \egroup\space

\bgroup \advance\MyDim10pt \the\MyDim \egroup\space

\egroup

\egroup

\egroup \the\MyDim

\MyDim 15pt \bgroup \the\MyDim \space

219

\bgroup

\bgroup

\bgroup \global\advance\MyDim10pt \the\MyDim \egroup\space

\bgroup \global\advance\MyDim10pt \the\MyDim \egroup\space

\egroup

\bgroup

\bgroup \global\advance\MyDim10pt \the\MyDim \egroup\space

\bgroup \global\advance\MyDim10pt \the\MyDim \egroup\space

\egroup

\egroup

\egroup \the\MyDim

\MyDim 15pt \bgroup \the\MyDim \space

\constrained\MyDim\zeropoint

\bgroup

\bgroup \retained\advance\MyDim10pt \the\MyDim \egroup\space

\bgroup \retained\advance\MyDim10pt \the\MyDim \egroup\space

\egroup

\bgroup

\bgroup \retained\advance\MyDim10pt \the\MyDim \egroup\space

\bgroup \retained\advance\MyDim10pt \the\MyDim \egroup\space

\egroup

\egroup \the\MyDim

These lines result in:

15.0pt 25.0pt 25.0pt 25.0pt 25.0pt 15.0pt

15.0pt 25.0pt 35.0pt 45.0pt 55.0pt 55.0pt

15.0pt 10.0pt 20.0pt 30.0pt 40.0pt 15.0pt

Because LuaMetaTEX avoids redundant stack entries and reassignments this mechanism is a bit fragile

but the \constrained prefix makes sure that we do have a stack entry. If it is needed depends on the

usage pattern.

797 \retokenized

This is a companion of \tokenized that accepts a catcode table, so the whole repertoire is:

\tokenized {test x test: current}

\tokenized catcodetable \ctxcatcodes {test x test: context}

\tokenized catcodetable \vrbcatcodes {test x test: verbatim}

\retokenized \ctxcatcodes {test x test: context}

\retokenized \vrbcatcodes {test x test: verbatim}

Here we pass the numbers known to ConTEXt and get:

test 𝑥 test: current

test 𝑥 test: context

test x test: verbatim

test 𝑥 test: context

test x test: verbatim

220

798 \right

Inserts the given delimiter as right fence in a math formula.

799 \righthyphenmin

This is the minimum number of characters before the first hyphen in a hyphenated word.

800 \rightmarginkern

The dimension returned is the protrusion kern that has been added (if at all) to the left of the content

in the given box.

801 \rightskip

This skip will be inserted at the right of every line.

802 \righttwindemerits

Additional demerits for a glyph sequence at the right edge when a previous line also has that sequence.

803 \romannumeral

This converts a number into a sequence of characters representing a roman numeral. Because the

Romans had no zero, a zero will give no output, a fact that is sometimes used for hacks and showing

off ones macro coding capabilities. A large number will for sure result in a long string because after

thousand we start duplicating.

804 \rpcode

This is the companion of \lpcode (see there) and also takes three arguments: font, character code

and factor.

805 \savecatcodetable

This primitive stores the currently set catcodes in the current table.

806 \savinghyphcodes

When set to non-zero, this will trigger the setting of \hjcodes from \lccodes for the current font.

These codes determine what characters are taken into account when hyphenating words.

807 \savingvdiscards

When set to a positive value the page builder will store the discarded items (like glues) so that they

can later be retrieved and pushed back if needed with \pagediscards or \splitdiscards.

221

808 \scaledemwidth

Returns the current (font specific) emwidth scaled according to \glyphscale and \glyphxscale.

809 \scaledexheight

Returns the current (font specific) exheight scaled according to \glyphscale and \glyphyscale.

810 \scaledextraspace

Returns the current (font specific) extra space value scaled according to \glyphscale and \glyphxs

cale.

811 \scaledfontcharba

Returns the bottom accent position of the given font-character pair scaled according to \glyphscale

and \glyphyscale.

812 \scaledfontchardp

Returns the depth of the given font-character pair scaled according to \glyphscale and \gly

physcale.

813 \scaledfontcharht

Returns the height of the given font-character pair scaled according to \glyphscale and \gly

physcale.

814 \scaledfontcharic

Returns the italic correction of the given font-character pair scaled according to \glyphscale and

\glyphxscale. This property is only real for traditional fonts.

815 \scaledfontcharta

Returns the top accent position of the given font-character pair scaled according to \glyphscale and

\glyphxscale.

816 \scaledfontcharwd

Returns width of the given font-character pair scaled according to \glyphscale and \glyphxscale.

817 \scaledfontdimen

Returns value of a (numeric) font dimension of the given font-character pair scaled according to

\glyphscale and \glyphxscale and/or \glyphyscale.

222

818 \scaledinterwordshrink

Returns the current (font specific) shrink of a space value scaled according to \glyphscale and

\glyphxscale.

819 \scaledinterwordspace

Returns the current (font specific) space value scaled according to \glyphscale and \glyphxscale.

820 \scaledinterwordstretch

Returns the current (font specific) stretch of a space value scaled according to \glyphscale and

\glyphxscale.

821 \scaledmathaxis

This primitive returns the math axis of the given math style. It's a dimension.

822 \scaledmathemwidth

Returns the emwidth of the given style scaled according to \glyphscale and \glyphxscale.

823 \scaledmathexheight

Returns the exheight of the given style scaled according to \glyphscale and \glyphyscale.

824 \scaledmathstyle

This command inserts a signal in the math list that tells how to scale the (upcoming) part of the

formula.

$ x + {\scaledmathstyle900 x} + x$

We get: 𝑥 + 𝑥+𝑥. Of course using this properly demands integration in the macro packages font

system.

825 \scaledslantperpoint

This primitive is equivalent to \scaledfontdimen1\font where ‘scaled’ means that we multiply by the

glyph scales.

826 \scantextokens

This primitive scans the input as if it comes from a file. In the next examples the \detokenize primitive

turns tokenized code into verbatim code that is similar to what is read from a file.

\edef\whatever{\detokenize{This is {\bf bold} and this is not.}}

\detokenize {This is {\bf bold} and this is not.}\crlf

\scantextokens{This is {\bf bold} and this is not.}\crlf

223

\scantextokens{\whatever}\crlf

\scantextokens\expandafter{\whatever}\par

This primitive does not have the end-of-file side effects of its precursor \scantokens.

This is {\bf bold} and this is not.

This is bold and this is not.

This is {\bf bold} and this is not.

This is bold and this is not.

827 \scantokens

Just forget about this 𝜀-TEX primitive, just take the one in the next section.

828 \scriptfont

This primitive is like \font but with a family number as (first) argument so it is specific for math. It

is the middle one of the three family members; its relatives are \textfont and \scriptscriptfont.

829 \scriptscriptfont

This primitive is like \font but with a family number as (first) argument so it is specific for math. It

is the smallest of the three family members; its relatives are \textfont and \scriptfont.

830 \scriptscriptstyle

One of the main math styles, normally one size smaller than \scriptstyle: integer representation:

6.

831 \scriptspace

The math engine will add this amount of space after subscripts and superscripts. It can be seen as

compensation for the often too small widths of characters (in the traditional engine italic correction

is used too). It prevents scripts from running into what follows.

832 \scriptspaceafterfactor

This is a (1000 based) multiplier for \Umathspaceafterscript.

833 \scriptspacebeforefactor

This is a (1000 based) multiplier for \Umathspacebeforescript.

834 \scriptspacebetweenfactor

This is a (1000 based) multiplier for \Umathspacebetweenscript.

224

835 \scriptstyle

One of the main math styles, normally one size smaller than \displaystyle and \textstyle; integer

representation: 4.

836 \scrollmode

This directive omits error stops.

837 \semiexpand

This command expands the next macro when it is protected with \semprotected. See that primitive

there for an example.

838 \semiexpanded

This command expands the tokens in the given list including the macros protected by with \sempro

tected. See that primitive there for an example.

839 \semiprotected

The working of this prefix can best be explained with an example. We define a few macros first:

\def\TestA{A}

\semiprotected\def\TestB{B}

\protected\def\TestC{C}

\edef\TestD{\TestA \TestB \TestC}

\edef\TestE{\TestA\semiexpand\TestB\semiexpand\TestC}

\edef\TestF{\TestA\expand \TestB\expand \TestC}

\edef\TestG{\normalexpanded {\TestA\TestB\TestC}}

\edef\TestH{\normalsemiexpanded{\TestA\TestB\TestC}}

The meaning of the macros that are made from the other three are:

Here we use the \normal.. variants because (currently) we still have the macro with the \expanded

in the ConTEXt core.

A\TestB \TestC

AB\TestC

ABC

A\TestB \TestC

AB\TestC

840 \setbox

This important primitive is used to set a box register. It expects a number and a box, like \hbox

or \box. There is no \boxdef primitive (analogue to other registers) because it makes no sense but

numeric registers or equivalents are okay as register value.

225

841 \setdefaultmathcodes

This sets the math codes of upper- and lowercase alphabet and digits and the delimiter code of the

period. It's not so much a useful feature but more just an accessor to the internal initializer.

842 \setfontid

Internally a font instance has a number and this number is what gets assigned to a glyph node. You

can get the number with \fontid an set it with \setfontid.

\setfontid\fontid\font

The code above shows both primitives and effectively does nothing useful but shows the idea.

843 \setlanguage

In LuaTEX and LuaMetaTEX this is equivalent to \language because we carry the language in glyph

nodes instead of putting triggers in the list.

844 \setmathatomrule

The math engine has some built in logic with respect to neighboring atoms that change the class. The

following combinations are intercepted and remapped:

old first old second new first new second

begin binary ordinary ordinary

operator binary operator ordinary

open binary open ordinary

punctuation binary punctuation ordinary

binary end ordinary ordinary

binary binary binary ordinary

binary close ordinary close

binary punctuation ordinary punctuation

binary relation ordinary relation

relation binary relation ordinary

relation close ordinary close

relation punctuation ordinary punctuation

You can change this logic if needed, for instance:

\setmathatomrule 1 2 \allmathstyles 1 1

Keep in mind that the defaults are what users expect. You might set them up for additional classes

that you define but even then you probably clone an existing class and patch its properties. Most extra

classes behave like ordinary anyway.

226

845 \setmathdisplaypostpenalty

This penalty is inserted after an item of a given class but only in inline math when display style is used,

for instance:

\setmathdisplayprepenalty 2 750

846 \setmathdisplayprepenalty

This penalty is inserted before an item of a given class but only in inline math when display style is

used, for instance:

\setmathdisplayprepenalty 2 750

847 \setmathignore

You can flag a math parameter to be ignored, like:

\setmathignore \Umathxscale 2

\setmathignore \Umathyscale 2

\setmathignore \Umathspacebeforescript 1

\setmathignore \Umathspacebetweenscript 1

\setmathignore \Umathspaceafterscript 1

A value of two will not initialize the variable, so its old value (when set) is kept. This is somewhat

experimental and more options might show up.

848 \setmathoptions

This primitive expects a class (number) and a bitset.

0x00000001 nopreslack 0x00004000 raiseprime

0x00000002 nopostslack 0x00008000 carryoverlefttopkern

0x00000004 lefttopkern 0x00010000 carryoverrighttopkern

0x00000008 righttopkern 0x00020000 carryoverleftbottomkern

0x00000010 leftbottomkern 0x00040000 carryoverrightbottomkern

0x00000020 rightbottomkern 0x00080000 preferdelimiterdimensions

0x00000040 lookaheadforend 0x00100000 autoinject

0x00000080 noitaliccorrection 0x00200000 removeitaliccorrection

0x00000100 checkligature 0x00400000 operatoritaliccorrection

0x00000200 checkitaliccorrection 0x00800000 shortinline

0x00000400 checkkernpair 0x01000000 pushnesting

0x00000800 flatten 0x02000000 popnesting

0x00001000 omitpenalty 0x04000000 obeynesting

0x00002000 unpack

849 \setmathpostpenalty

This penalty is inserted after an item of a given class but only in inline math when text, script or

scriptscript style is used, for instance:

227

\setmathpostpenalty 2 250

850 \setmathprepenalty

This penalty is inserted before an item of a given class but only in inline math when text, script or

scriptscript style is used, for instance:

\setmathprepenalty 2 250

851 \setmathspacing

More details about this feature can be found in ConTEXt but it boils down to registering what spacing

gets inserted between a pair of classes. It can be defined per style or for a set of styles, like:

\inherited\setmathspacing

\mathimplicationcode \mathbinarycode

\alldisplaystyles \thickermuskip

\inherited\setmathspacing

\mathradicalcode \mathmiddlecode

\allunsplitstyles \pettymuskip

Here the \inherited prefix signals that a change in for instance \pettymuskip is reflected in this

spacing pair. In ConTEXt there is a lot of granularity with respect to spacing and it took years of

experimenting (and playing with examples) to get at the current stage. In general users are not

invited to mess around too much with these values, although changing the bound registers (here

\pettymuskip and thickermuskip) is no problem as it consistently makes related spacing pairs follow.

852 \sfcode

You can set a space factor on a character. That factor is used when a space factor is applied (as part of

spacing). It is (mostly) used for adding a different space (glue) after punctuation. In some languages

different punctuation has different factors.

853 \shapingpenaltiesmode

Shaping penalties are inserted after the lines of a \parshape and accumulate according to this mode,

a bitset of:

0x01 interlinepenalty

0x02 widowpenalty

0x04 clubpenalty

0x08 brokenpenalty

854 \shapingpenalty

In order to prevent a \parshape to break in unexpected ways we can add a dedicated penalty, specified

by this parameter.

228

855 \shipout

Because there is no backend, this is not supposed to be used. As in traditional TEX a box is grabbed

but instead of it being processed it gets shown and then wiped. There is no real benefit of turning it

into a callback.

856 \shortinlinemaththreshold

This parameter determines when an inline formula is considered to be short. This criterium is used

for for \preshortinlinepenalty and \postshortinlinepenalty.

857 \shortinlineorphanpenalty

Short formulas at the end of a line are normally not followed by something other than punctuation.

This penalty will discourage a break before a short inline formula. In practice one can set this penalty

to e.g. a relatively low 200 to get the desired effect.

858 \show

Prints to the console (and/or log) what the token after it represents.

859 \showbox

The given box register is shown in the log and on te console (depending on \tracingonline. How

much is shown depends on \showboxdepth and \showboxbreadth. In LuaMetaTEX we show more

detailed information than in the other engines; some specific information is provided via callbacks.

860 \showboxbreadth

This primitives determine how much of a box is shown when asked for or when tracing demands it.

861 \showboxdepth

This primitives determine how deep tracing a box goes into the box. Some boxes, like the ones that

has the assembled page.

862 \showcodestack

This inspector is only useful for low level debugging and reports the current state of for instance the

current catcode table: \showcodestack\catcode. See \restorecatcodes for an example.

863 \showgroups

This primitive reports the group nesting. At this spot we have a not so impressive nesting:

2:3: simple group entered at line 9375:

1:3: semisimple group: \begingroup

0:3: bottomlevel

229

864 \showifs

This primitive will show the conditional stack in the log file or on the console (assuming \tracin

gonline being non-zero). The shown data is different from other engines because we have more

conditionals and also support a more flat nesting model

865 \showlists

This shows the currently built list.

866 \shownodedetails

When set to a positive value more details will be shown of nodes when applicable. Values larger than

one will also report attributes. What gets shown depends on related callbacks being set.

867 \showstack

This tracer is only useful for low level debugging of macros, for instance when you run out of save

space or when you encounter a performance hit.

test\scratchcounter0 \showstack

{test\scratchcounter1 \showstack}

{{test\scratchcounter1 \showstack}}

reports

1:3: [savestack size 0]

1:3: [savestack bottom]

2:3: [savestack size 2]

2:3: [1: restore, level 1, cs \scratchcounter=integer 1]

2:3: [0: boundary, group 'bottomlevel', boundary 0, attrlist 3600, line 0]

2:3: [savestack bottom]

3:3: [savestack size 3]

3:3: [2: restore, level 1, cs \scratchcounter=integer 1]

3:3: [1: boundary, group 'simple', boundary 0, attrlist 3600, line 12]

3:3: [0: boundary, group 'bottomlevel', boundary 0, attrlist 3600, line 0]

3:3: [savestack bottom]

while

test\scratchcounter1 \showstack

{test\scratchcounter1 \showstack}

{{test\scratchcounter1 \showstack}}

shows this:

1:3: [savestack size 0]

1:3: [savestack bottom]

2:3: [savestack size 1]

230

2:3: [0: boundary, group 'bottomlevel', boundary 0, attrlist 3600, line 0]

2:3: [savestack bottom]

3:3: [savestack size 2]

3:3: [1: boundary, group 'simple', boundary 0, attrlist 3600, line 16]

3:3: [0: boundary, group 'bottomlevel', boundary 0, attrlist 3600, line 0]

3:3: [savestack bottom]

Because in the second example the value of \scratchcounter doesn't really change inside the group

there is no need for a restore entry on the stack. In LuaMetaTEX there are checks for that so that we

consume less stack space. We also store some states (like the line number and current attribute list

pointer) in a stack boundary.

868 \showthe

Prints to the console (and/or log) the value of token after it.

869 \showtokens

This command expects a (balanced) token list, like

\showtokens{a few tokens}

Depending on what you want to see you need to expand:

\showtokens\expandafter{\the\everypar}

which is equivalent to \showthe\everypar. It is an 𝜀-TEX extension.

870 \singlelinepenalty

This is a penalty that gets injected before a paragraph that has only one line. It is a one-shot parameter,

so like \looseness it only applies to the upcoming (or current) paragraph.

871 \skewchar

This is an (imaginary) character that is used in math fonts. The kerning pair between this character

and the current one determines the top anchor of a possible accent. In OpenType there is a dedicated

character property for this (but for some reason not for the bottom anchor).

872 \skip

This is the accessor for an indexed skip (glue) register.

873 \skipdef

This command associates a control sequence with a skip register (accessed by number).

874 \snapshotpar

There are many parameters involved in typesetting a paragraph. One complication is that parameters

set in the middle might have unpredictable consequences due to grouping, think of:

231

text text <some setting> text text \par

text {text <some setting> text } text \par

This makes in traditional TEX because there is no state related to the current paragraph. But in Lua-

TEX we have the initial so called par node that remembers the direction as well as local boxes. In

LuaMetaTEX we store way more when this node is created. That means that later settings no longer

replace the stored ones.

The \snapshotpar takes a bitset that determine what stored parameters get updated to the current

values.

0x00000001 hsize 0x00000800 linepenalty 0x00400000 toddlerpenalty

0x00000002 skip 0x00001000 clubpenalty 0x00800000 emergency

0x00000004 hang 0x00002000 widowpenalty 0x01000000 parpasses

0x00000008 indent 0x00004000 displaypenalty 0x02000000 singlelinepenalty

0x00000010 parfill 0x00008000 brokenpenalty 0x04000000 hyphenpenalty

0x00000020 adjust 0x00010000 demerits 0x08000000 exhyphenpenalty

0x00000040 protrude 0x00020000 shape 0x10000000 linebreakchecks

0x00000080 tolerance 0x00040000 line 0x20000000 twindemerits

0x00000100 stretch 0x00080000 hyphenation 0x40000000 fitnessclasses

0x00000200 looseness 0x00100000 shapingpenalty

0x00000400 lastline 0x00200000 orphanpenalty

One such value covers multiple values, so for instance skip is good for storing the current \leftskip

and \rightskip values. More about this feature can be found in the ConTEXt documentation.

The list of parameters that gets reset after a paragraph is longer than for pdfTEX and LuaMeta-

TEX: \emergencyleftskip, \emergencyrightskip, \hangafter, \hangindent, \interlinepenalties,

\localbrokenpenalty, \localinterlinepenalty, \localpretolerance, \localtolerance, \loose

ness, \parshape and \singlelinepenalty.

875 \spacechar

When \nospaces is set to 3 a glyph node with the character value of this parameter is injected.

876 \spacefactor

The space factor is a somewhat complex feature. When during scanning a character is appended that

has a \sfcode other than 1000, that value is saved. When the time comes to insert a space triggered

glue, and that factor is 2000 or more, and when \xspaceskip is nonzero, that value is used and we're

done.

If these criteria are not met, and \spaceskip is nonzero, that value is used, otherwise the space

value from the font is used. Now, it if the space factor is larger than 2000 the extra space value

from the font is added to the set value. Next the engine is going to tweak the stretch and shrink if

that value and in LuaMetaTEX that can be done in different ways, depending on \spacefactormode,

\spacefactorstretchlimit and \spacefactorshrinklimit.

First the stretch. When the set limit is 1000 or more and the saved space factor is also 1000 or more,

we multiply the stretch by the limit, otherwise the saved space factor is used.

232

Shrink is done differently. When the shrink limit and space factor are both 1000 or more, we will scale

the shrink component by the limit, otherwise we multiply by the saved space factor but here we have

three variants, determined by the value of \spacefactormode.

In the first case, when the limit kicks in, a mode value 1 will multiply by limit and divides by 1000. A

value of 2 multiplies by 2000 and divides by the limit. Other mode values multiply by 1000 and divide

by the limit. When the limit is not used, the same happens but with the saved space factor.

If this sounds complicated, here is what regular TEX does: stretch is multiplied by the factor and

divided by 1000 while shrink is multiplied by 1000 and divided by the saved factor. The (new) mode

driven alternatives are the result of extensive experiments done in the perspective of enhancing the

rendering of inline math as well as additional par builder passes. For sure alternative strategies are

possible and we can always add more modes.

A better explanation of the default strategy around spaces can be found in (of course) The TEXbook

and TEX by Topic.

877 \spacefactormode

Its setting determines the way the glue components (currently only shrink) adapts itself to the current

space factor (determined by by the character preceding a space).

878 \spacefactoroverload

When set to value between zero and thousand, this value will be used when TEX encounters a below

thousand space factor situation (usually used to suppress additional space after a period following an

uppercase character which then gets (often) a 999 space factor. This feature only kicks in when the

overload flag is set in the glyph options, so it can be applied selectively.

879 \spacefactorshrinklimit

This limit is used when \spacefactormode is set. See \spacefactor for a bit more explanation.

880 \spacefactorstretchlimit

This limit is used when \spacefactormode is set. See \spacefactor for a bit more explanation.

881 \spaceskip

Normally the glue inserted when a space is encountered is taken from the font but this parameter can

overrule that.

882 \span

This primitive combined two upcoming cells into one. Often it is used in combination with \omit.

However, in the preamble it forces the next token to be expanded, which means that nested \tabskips

and align content markers are seen.

233

883 \specificationdef

There are some datastructures that are like arrays: \adjacentdemerits, \brokenpenalties,

\clubpenalties, \displaywidowpenalties, \fitnessclasses, \interlinepenalties, \mathback

wardpenalties, \mathforwardpenalties, \orphanpenalties, \parpasses, \parshape and \widow

penalties. They accept a counter than tells how many entries follow and depending in the specifica

tion options, keywords and/or just values are expected.

With \specificationdef you can define a command that holds such an array and that can be used

afterwards as a fast way to enable that specification. The way it work is as follows:

\specificationdef\MyWidowPenalties

\widowpenalties 4 2000 1000 500 250

\relax

where the relax is optional but a reasonabel way to make sure we end the definition (when keywords

are used, as in \parpasses it prevents running into unexpected keywords.

884 \splitbotmark

This is a reference to the last mark on the currently split off box, it gives back tokens.

885 \splitbotmarks

This is a reference to the last mark with the given id (a number) on the currently split off box, it gives

back tokens.

886 \splitdiscards

When a box is split off, items like glue are discarded. This internal register keeps the that list so that

it can be pushed back if needed.

887 \splitextraheight

A possible (permissive) overrun of the split off part in a \vsplit.

888 \splitfirstmark

This is a reference to the first mark on the currently split off box, it gives back tokens.

889 \splitfirstmarks

This is a reference to the first mark with the given id (a number) on the currently split off box, it gives

back tokens.

890 \splitlastdepth

This returns the last depth in a vsplit.

234

891 \splitlastheight

This returns the last (accumulated) height in a vsplit.

892 \splitlastshrink

This returns the last (accumulated) shrink in a vsplit.

893 \splitlaststretch

This returns the last (accumulated) stretch in a vsplit.

894 \splitmaxdepth

The depth of the box that results from a \vsplit.

895 \splittopskip

This is the amount of glue that is added to the top of a (new) split of part of a box when \vsplit is

applied.

896 \srule

This inserts a rule with no width. When a font and a char are given the height and depth of that

character are taken. Instead of a font fam is also accepted so that we can use it in math mode.

897 \string

We mention this original primitive because of the one in the next section. It expands the next token

or control sequence as if it was just entered, so normally a control sequence becomes a backslash

followed by characters and a space.

898 \subprescript

Instead of three or four characters with catcode 8 (__ or ____) this primitive can be used. It will add

the following argument as lower left script to the nucleus.

899 \subscript

Instead of one or two characters with catcode 7 (_ or __) this primitive can be used. It will add the

following argument as upper left script to the nucleus.

900 \superprescript

Instead of three or four characters with catcode 7 (^^^ or ^^^^) this primitive can be used. It will add

the following argument as upper left script to the nucleus.

235

901 \superscript

Instead of one or two character with catcode 7 (^ or ^^)t his primitive can be used. It will add the

following argument as upper right script to the nucleus.

902 \supmarkmode

As in other languages, TEX has ways to escape characters and get whatever character needed into the

input. By default multiple ^ are used for this. The dual ^^ variant is a bit weird as it is not continuous

but ^^^^ and ^^^^^^ provide four or six byte hexadecimal references ot characters. The single ^ is

also used for superscripts but because we support prescripts and indices we get into conflicts with

the escapes.

When this internal quantity is set to zero, multiple ^'s are interpreted in the input and produce char

acters. Other values disable the multiple parsing in text and/or math mode:

\normalsupmarkmode0 $ X^58 \quad X^^58 $

\normalsupmarkmode1 $ X^58 \quad X^^58 $ ^^58

\normalsupmarkmode2 $ X^58 \quad X^^58 $ % ^^58 : error

In ConTEXt we default to one but also have the \catcode set to 12, and the \amcode to 7.

𝑋58 𝑋𝑋
𝑋58 𝑋58 X

𝑋58 𝑋58

903 \swapcsvalues

Because we mention some def and let primitives here, it makes sense to also mention a primitive

that will swap two values (meanings). This one has to be used with care. Of course that what gets

swapped has to be of the same type (or at least similar enough not to cause issues). Registers for

instance store their values in the token, but as soon as we are dealing with token lists we also need

to keep an eye on reference counting. So, to some extend this is an experimental feature.

\scratchcounterone 1 \scratchcountertwo 2

(\the\scratchcounterone,\the\scratchcountertwo)

\swapcsvalues \scratchcounterone \scratchcountertwo

(\the\scratchcounterone,\the\scratchcountertwo)

\swapcsvalues \scratchcounterone \scratchcountertwo

(\the\scratchcounterone,\the\scratchcountertwo)

\scratchcounterone 3 \scratchcountertwo 4

(\the\scratchcounterone,\the\scratchcountertwo)

\bgroup

\swapcsvalues \scratchcounterone \scratchcountertwo

(\the\scratchcounterone,\the\scratchcountertwo)

\egroup

(\the\scratchcounterone,\the\scratchcountertwo)

We get similar results:

(1,2)

236

(2,1)

(1,2)

(3,4)

(4,3)

(3,4)

904 \tabsize

This primitive can be used in the preamble of an alignment and sets the size of a column, as in:

\halign{%

\aligncontent \aligntab

\aligncontent\tabsize 3cm \aligntab

\aligncontent \aligntab

\aligncontent\tabsize 0cm \cr

1 \aligntab 111\aligntab 1111\aligntab 11\cr

222\aligntab 2 \aligntab 2222\aligntab 22\cr

}

As with \tabskip you need to reset the value explicitly, so that is why we get two wide columns:

1 H__ 111H__ 1111H__ 11H__H__

222H__ 2 H__ 2222H__ 22H__H__

905 \tabskip

This traditional primitive can be used in the preamble of an alignment and sets the space added

between columns, for example:

\halign{%

\aligncontent \aligntab

\aligncontent\tabskip 3cm \aligntab

\aligncontent \aligntab

\aligncontent\tabskip 0cm \cr

1 \aligntab 111\aligntab 1111\aligntab 11\cr

222\aligntab 2 \aligntab 2222\aligntab 22\cr

}

You need to reset the skip explicitly, which is why we get it applied twice here:

1 H__ 111H__ 1111H__ 11H__H__

222H__ 2 H__ 2222H__ 22H__H__

906 \textdirection

This set the text direction to l2r (0) or r2l (1). It also triggers additional checking for balanced

flipping in node lists.

907 \textfont

This primitive is like \font but with a family number as (first) argument so it is specific for math. It is

the largest one of the three family members; its relatives are \scriptfont and \scriptscriptfont.

237

908 \textstyle

One of the main math styles; integer representation: 2.

909 \the

The \the primitive serializes the following token, when applicable: integers, dimensions, token reg

isters, special quantities, etc. The catcodes of the result will be according to the current settings, so

in \the\dimen0, the pt will have catcode ‘letter’ and the number and period will become ‘other’.

910 \thewithoutunit

The \the primitive, when applied to a dimension variable, adds a pt unit. because dimensions are

the only traditional unit with a fractional part they are sometimes used as pseudo floats in which

case \thewithoutunit can be used to avoid the unit. This is more convenient than stripping it off

afterwards (via an expandable macro).

911 \thickmuskip

A predefined mu skip register that can be used in math (inter atom) spacing. The current value is

5.0mu plus 3.0mu minus 1.0mu. In traditional TEX most inter atom spacing is hard coded using the

predefined registers.

912 \thinmuskip

A predefined mu skip register that can be used in math (inter atom) spacing. The current value is

3.0mu. In traditional TEX most inter atom spacing is hard coded using the predefined registers.

913 \time

This internal number starts out with minute (starting at midnight) that the job started.

914 \tinymuskip

A predefined mu skip register that can be used in math (inter atom) spacing. The current value is

2.0mu minus 1.0mu. This one complements \thinmuskip, \medmuskip, \thickmuskip and the new

\pettymuskip

915 \tocharacter

The given number is converted into an utf-8 sequence. In LuaTEX this one is named \Uchar.

916 \toddlerpenalties

This an (possible double entry) array parameter: first the size is given followed by that amount of

penalties (can be pairs). These penalties are injected after (and before) single glyphs bounded by

spaces, going backward from the end of a sequence of them.

238

917 \todimension

The following code gives this: 1234.0pt and like its numeric counterparts accepts anything that re

sembles a number this one goes beyond (user, internal or pseudo) registers values too.

\scratchdimen = 1234pt \todimension\scratchdimen

918 \tohexadecimal

The following code gives this: 4D2 with uppercase letters.

\scratchcounter = 1234 \tohexadecimal\scratchcounter

919 \tointeger

The following code gives this: 1234 and is equivalent to \number.

\scratchcounter = 1234 \tointeger\scratchcounter

920 \tokenized

Just as \expanded has a counterpart \unexpanded, it makes sense to give \detokenize a companion:

\edef\foo{\detokenize{\inframed{foo}}}

\edef\oof{\detokenize{\inframed{oof}}}

\meaning\foo \crlf \dontleavehmode\foo

\edef\foo{\tokenized{\foo\foo}}

\meaning\foo \crlf \dontleavehmode\foo

\dontleavehmode\tokenized{\foo\oof}

macro:\inframed {foo}

\inframed {foo}

macro:\inframed {foo}\inframed {foo}

foo foo

foo foo oof

This primitive is similar to:

\def\tokenized#1{\scantextokens\expandafter{\normalexpanded{#1}}}

and should be more efficient, not that it matters much as we don't use it that much (if at all).

921 \toks

This is the accessor of a token register so it expects a number or \toksdef'd macro.

239

922 \toksapp

One way to append something to a token list is the following:

\scratchtoks\expandafter{\the\scratchtoks more stuff}

This works all right, but it involves a copy of what is already in \scratchtoks. This is seldom a real

issue unless we have large token lists and many appends. This is why LuaTEX introduced:

\toksapp\scratchtoks{more stuff}

\toksapp\scratchtoksone\scratchtokstwo

At some point, when working on LuaMetaTEX, I realized that primitives like this one and the next

appenders and prependers to be discussed were always on the radar of Taco and me. Some were even

implemented in what we called eetex: extended 𝜀-TEX, and we even found back the prototypes, dating

from pre-pdfTEX times.

923 \toksdef

The given name (control sequence) will be bound to the given token register (a number). Often this

primitive is hidden in a high level macro that manages allocation.

924 \tokspre

Where appending something is easy because of the possible \expandafter trickery a prepend would

involve more work, either using temporary token registers and/or using a mixture of the (no)expansion

added by 𝜀-TEX, but all are kind of inefficient and cumbersome.

\tokspre\scratchtoks{less stuff}

\tokspre\scratchtoksone\scratchtokstwo

This prepends the token list that is provided.

925 \tolerance

When the par builder runs into a line with a badness larger than this value and when \emergencys

tretch is set a third pass is enabled. In LuaMetaTEX we can have more than one second pass and

there are more parameters that influence the process.

926 \tolerant

This prefix tags the following macro as being tolerant with respect to the expected arguments. It only

makes sense when delimited arguments are used or when braces are mandate.

\tolerant\def\foo[#1]#*[#2]{(#1)(#2)}

This definition makes \foo tolerant for various calls:

\foo \foo[1] \foo [1] \foo[1] [2] \foo [1] [2]

these give: ()()(1)()(1)()(1)(2) (1)(2). The spaces after the first call disappear because the macro name

parser gobbles it, while in the second case the #* gobbles them. Here is a variant:

240

\tolerant\def\foo[#1]#,[#2]{!#1!#2!}

\foo[?] x

\foo[?] [?] x

\tolerant\def\foo[#1]#*[#2]{!#1!#2!}

\foo[?] x

\foo[?] [?] x

We now get the following:

!?!! x !?!?! x

!?!!x !?!?! x

Here the #, remembers that spaces were gobbles and they will be put back when there is no further

match. These are just a few examples of this tolerant feature. More details can be found in the lowlevel

manuals.

927 \tomathstyle

Internally math styles are numbers, where \displaystyle is 0 and \crampedscriptscriptstyle is

7. You can convert the verbose style to a number with \tomathstyle.

928 \topmark

This is a reference to the last mark on the previous (split off) page, it gives back tokens.

929 \topmarks

This is a reference to the last mark with the given id (a number) on the previous page, it gives back

tokens.

930 \topskip

This is the amount of glue that is added to the top of a (new) page.

931 \toscaled

The following code gives this: 1234.0 is similar to \todimension but omits the pt so that we don't

need to revert to some nasty stripping code.

\scratchdimen = 1234pt \toscaled\scratchdimen

932 \tosparsedimension

The following code gives this: 1234pt where ‘sparse’ indicates that redundant trailing zeros are not

shown.

\scratchdimen = 1234pt \tosparsedimension\scratchdimen

241

933 \tosparsescaled

The following code gives this: 1234 where ‘sparse’ means that redundant trailing zeros are omitted.

\scratchdimen = 1234pt \tosparsescaled\scratchdimen

934 \tpack

This primitive is like \vtop but without the callback overhead.

935 \tracingadjusts

In LuaMetaTEX the adjust feature has more functionality and also is carried over. When set to a positive

values \vadjust processing reports details. The higher the number, the more you'll get.

936 \tracingalignments

When set to a positive value the alignment mechanism will keep you informed about what is done in

various stages. Higher values unleash more information, including what callbacks kick in.

937 \tracingassigns

When set to a positive values assignments to parameters and variables are reported on the console

and/or in the log file. Because LuaMetaTEX avoids redundant assignments these don't get reported.

938 \tracingbalancing

When set to a positive some insight in the balancing process is given, kind of like with the par builder,

so it can be noisy.

939 \tracingcommands

When set to a positive values the commands (primitives) are reported on the console and/or in the log

file.

940 \tracingexpressions

The extended expression commands like \numexpression and \dimexpression can be traced by set

ting this parameter to a positive value.

941 \tracingfitness

Because we have more fitness classes we also have (need) a (bit) more detailed tracing.

942 \tracingfullboxes

When set to a positive value the box will be shown in case of an overfull box. When a quality callback

is set this will not happen as all reporting is then delegated.

242

943 \tracinggroups

When set to a positive values grouping is reported on the console and/or in the log file.

944 \tracinghyphenation

When set to a positive values the hyphenation process is reported on the console and/or in the log file.

945 \tracingifs

When set some details of what gets tested and what results are seen is reported.

946 \tracinginserts

A positive value enables tracing where values larger than 1 will report more details.

947 \tracinglevels

The lines in a log file can be prefixed with some details, depending on the bits set:

0x1 current group

0x2 current input

0x4 catcode table

948 \tracinglists

At various stages the lists being processed can be shown. This is mostly an option for developers.

949 \tracingloners

With loners we mean ‘widow’ and ‘club’ lines. This tracer can be handy when \doublepenaltymode is

set and facing pages have different penalty values.

950 \tracinglooseness

This tracer reports some details about the decision made towards a possible loose result.

951 \tracinglostchars

When set to one characters not present in a font will be reported in the log file, a value of two will also

report this on the console. In ConTEXt we use the missing_character instead. Contrary to in LuaTEX

values larger than two have no special meaning and we don't error.

952 \tracingmacros

This parameter controls reporting of what macros are seen and expanded.

243

953 \tracingmarks

Marks are information blobs that track states that can be queried when a page is handled over to the

shipout routine. They travel through the system in a bit different than traditionally: like like adjusts

and inserts deeply buried ones bubble up to outer level boxes. This parameters controls what progress

gets reported.

954 \tracingmath

The higher the value, the more information you will get about the various stages in rendering math.

Because tracing of nodes is rather verbose you need to know a bit what this engine does. Conceptually

there are differences between the LuaMetaTEX and traditional engine, like more passes, inter-atom

spacing, different low level mechanisms. This feature is mostly meant for developers who tweak the

many available parameters.

955 \tracingmvl

When set to a positive value mvl switching is reported.

956 \tracingnesting

A positive value triggers log messages about the current level.

957 \tracingnodes

When set to a positive value more details about nodes (in boxes) will be reported. Because this is also

controlled by callbacks what gets reported is macro package dependent.

958 \tracingonline

The engine has two output channels: the log file and the console and by default most tracing (when

enabled) goes to the log file. When this parameter is set to a positive value tracing will also happen

in the console. Messages from the Lua end can be channeled independently.

959 \tracingorphans

When set to a positive value handling of orphans is shown.

960 \tracingoutput

Values larger than zero result in some information about what gets passed to the output routine.

961 \tracingpages

Values larger than one result in some information about the page building process. In LuaMetaTEX

there is more info for higher values.

244

962 \tracingparagraphs

Values larger than one result in some information about the par building process. In LuaMetaTEX

there is more info for higher values.

963 \tracingpasses

In LuaMetaTEX you can configure additional second stage par builder passes and this parameter con

trols what gets reported on the console and/or in the log file.

964 \tracingpenalties

This setting triggers reporting of actions due to special penalties in the page builder.

965 \tracingrestores

When set to a positive values (re)assignments after grouping to parameters and variables are reported

on the console and/or in the log file. Because LuaMetaTEX avoids redundant assignments these don't

get reported.

966 \tracingstats

This parameter is a dummy in LuaMetaTEX. There are anyway some statistic reported when the format

is made but for a regular run it is up to the macro package to come up with useful information.

967 \tracingtoddlers

When set to a positive value handling of toddlers is shown.

968 \tsplit

This splits like \vsplit but it returns a \vtop box instead.

969 \uccode

When the \uppercase operation is applied the uppercase code of a character is used for the replace

ment. This primitive is used to set that code, so it expects two character number.

970 \uchyph

When set to a positive number words that start with a capital will be hyphenated.

971 \uleaders

This leader adapts itself after a paragraph has been typeset. Here are a few examples:

test \leaders \hbox {x}\hfill\ test

test \uleaders \hbox{x x x x}\hfill\ test

245

test \hbox{x x x x}\hskip 3cm plus 1cm\ test

test \uleaders \hbox{x x x x}\hskip 3cm plus 1cm\ test

When an \uleaders is used the glue in the given box will be adapted to the available space.

test xxx test

test x x x x test

test x x x x test

test x x x x test

Optionally the callback followed by a number can be given, in which case a callback kicks in that gets

that the node, a group identifier, and the number passed. It permits (for instance) adaptive graphics:

1=i 6=vi 11=xi 16=xvi 21=xxi 26=xxvi 31=xxxi 36=xxxvi 41=xli

46=xlvi 51=li 56=lvi 61=lxi 66=lxvi 71=lxxi 76=lxxvi 81=lxxxi

86=lxxxvi 91=xci 96=xcvi .

These \uleaders can be used in horizontal and vertical mode so we give a few more examples.

\unexpandedloop 1 30 1 {x \hbox{1 2 3} x

}

\unexpandedloop 1 30 1 {x {\uleaders \hbox{1 2 3}\hskip 0pt plus 10pt minus

10pt\relax} x }

\unexpandedloop 1 30 1 {x {\uleaders \hbox{1 2 3}\hskip 0pt plus \interwordstretch

minus \interwordshrink} x }

\unexpandedloop 1 30 1 {x {\uleaders \hbox{1 2 3}\hskip 0pt plus 2\interwordstretch

minus 2\interwordshrink} x }

This renders as:

x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x

1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x

1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x

x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x

x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x

x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x

x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x

x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x

x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x

x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x

x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x

x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x x 1 2 3 x

It is clear that the flexibility of the box plays a role in the line break calculations. But in the end the

backend has to do the work which is why it's a ‘user’ leader. Here is an example of a vertical one.

Compare:

{\green \hrule width \hsize} \par \vskip2pt

\vbox to 40pt {

{\red\hrule width \hsize} \par \vskip2pt

\vbox {

\vskip2pt {\blue\hrule width \hsize} \par

\vskip 10pt plus 10pt minus 10pt

246

{\blue\hrule width \hsize} \par \vskip2pt

}

\vskip2pt {\red\hrule width \hsize} \par

}

\vskip2pt {\green \hrule width \hsize} \par

with:

{\green \hrule width \hsize} \par \vskip2pt

\vbox to 40pt {

{\red\hrule width \hsize} \par \vskip2pt

\uleaders\vbox {

\vskip2pt {\blue\hrule width \hsize} \par

\vskip 10pt plus 10pt minus 10pt

{\blue\hrule width \hsize} \par \vskip2pt

}\vskip 0pt plus 10pt minus 10pt

\vskip2pt {\red\hrule width \hsize} \par

}

\vskip2pt {\green \hrule width \hsize} \par

In the first case we get the this:

but with \uleaders we get:

or this:

In the second case we flatten the leaders in the engine by setting the second bit in the \normal

izeparmode parameter (0x2). We actually do the same with \normalizelinemode where bit 10 is set

(0x200). The delay keyword can be passed with a box to prevent flattening. If we don't do this in the

engine, the backend has to take care of it. In principle this permits implementing variants in a macro

package. Eventually there will be plenty examples in the ConTEXt code base and documentation. Till

then, consider this experimental.

972 \unboundary

When possible a preceding boundary node will be removed.

973 \undent

When possible the already added indentation will be removed.

247

974 \underline

This is a math specific primitive that draws a line under the given content. It is a poor mans replace

ment for a delimiter. The thickness is set with \Umathunderbarrule, the distance between content

and rule is set by \Umathunderbarvgap and \Umathunderbarkern is added above the rule. The style

used for the content under the rule can be set with \Umathunderlinevariant. See \overline for

what these parameters do.

975 \unexpanded

This is an 𝜀-TEX enhancement. The content will not be expanded in a context where expansion is

happening, like in an \edef. In ConTEXt you need to use \normalunexpanded because we already had

a macro with that name.

\def \A{!} \meaning\A

\def \B{?} \meaning\B

\edef\C{\A\B} \meaning\C

\edef\C{\normalunexpanded{\A}\B} \meaning\C

macro:!

macro:?

macro:!?

macro:\A ?

976 \unexpandedendless

This one loops forever so you need to quit explicitly.

977 \unexpandedloop

As follow up on \expandedloop we now show its counterpart:

\edef\whatever

{\unexpandedloop 1 10 1

{\scratchcounter=\the\currentloopiterator\relax}}

\meaningasis\whatever

\def \whatever {\scratchcounter =0\relax \scratchcounter =0\relax \scratchcounter =0\relax \scratchcounter

=0\relax \scratchcounter =0\relax \scratchcounter =0\relax \scratchcounter =0\relax \scratchcounter =0\relax

\scratchcounter =0\relax \scratchcounter =0\relax }

The difference between the (un)expanded loops and a local controlled one is shown here. Watch the

out of order injection of A's.

\edef\TestA{\localcontrolledloop 1 5 1 {A}} % out of order

\edef\TestB{\expandedloop 1 5 1 {B}}

\edef\TestC{\unexpandedloop 1 5 1 {C\relax}}

AAAAA

We show the effective definition as well as the outcome of using them

248

\meaningasis\TestA

\meaningasis\TestB

\meaningasis\TestC

A: \TestA

B: \TestB

C: \TestC

\def \TestA {}

\def \TestB {BBBBB}

\def \TestC {C\relax C\relax C\relax C\relax C\relax }

A:

B: BBBBB

C: CCCCC

Watch how because it is empty \TestA has become a constant macro because that's what deep down

empty boils down to.

978 \unexpandedrepeat

This one takes one instead of three arguments which looks better in simple loops.

979 \unhbox

A box is a packaged list and once packed travels through the system as a single object with properties,

like dimensions. This primitive injects the original list and discards the wrapper.

980 \unhcopy

This is like \unhbox but keeps the original. It is one of the more costly operations.

981 \unhpack

This primitive is like \unhbox but without the callback overhead.

982 \unkern

This removes the last kern, if possible.

983 \unless

This 𝜀-TEX prefix will negate the test (when applicable).

\ifx\one\two YES\else NO\fi

\unless\ifx\one\two NO\else YES\fi

This primitive is hardly used in ConTEXt and we probably could get rid of these few cases.

249

984 \unletfrozen

A frozen macro cannot be redefined: you get an error. But as nothing in TEX is set in stone, you can

do this:

\frozen\def\MyMacro{...}

\unletfrozen\MyMacro

and \MyMacro is no longer protected from overloading. It is still undecided to what extend ConTEXt

will use this feature.

985 \unletprotected

The complementary operation of \letprotected can be used to unprotect a macro, so that it gets

expandable.

\def \MyMacroA{alpha}

\protected \def \MyMacroB{beta}

\edef \MyMacroC{\MyMacroA\MyMacroB}

\unletprotected \MyMacroB

\edef \MyMacroD{\MyMacroA\MyMacroB}

\meaning \MyMacroC\crlf

\meaning \MyMacroD\par

Compare this with the example in the previous section:

macro:alpha\MyMacroB

macro:alphabeta

986 \unpenalty

This removes the last penalty, if possible.

987 \unskip

This removes the last glue, if possible.

988 \untraced

Related to the meaning providers is the \untraced prefix. It marks a macro as to be reported by name

only. It makes the macro look like a primitive.

\def\foo{}

\untraced\def\oof{}

\scratchtoks{\foo\foo\oof\oof}

\tracingall \the\scratchtoks \tracingnone

This will show up in the log as follows:

1:4: {\the}

250

1:5: \foo ->

1:5: \foo ->

1:5: \oof

1:5: \oof

This is again a trick to avoid too much clutter in a log. Often it doesn't matter to users what the

meaning of a macro is (if they trace at all).12

989 \unvbox

A box is a packaged list and once packed travels through the system as a single object with properties,

like dimensions. This primitive injects the original list and discards the wrapper.

990 \unvcopy

This is like \unvbox but keeps the original. It is one of the more costly operations.

991 \unvpack

This primitive is like \unvbox but without the callback overhead.

992 \uppercase

See its counterpart \lowercase for an explanation.

993 \vadjust

This injects a node that stores material that will injected before or after the line where it has become

part of. In LuaMetaTEX there are more features, driven by keywords.

994 \valign

This command starts vertically aligned material. Its counterpart \halign is used more frequently.

Most macro packages provide wrappers around these commands. First one specifies a preamble

which is then followed by entries (rows and columns).

995 \variablefam

In traditional TEX sets the family of what are considered variables (class 7) to the current family

(which often means that they adapt to the current alphabet) and then injects a math character of class

ordinary. This parameter can be used to obey the given class when the family set for a character is

the same as this parameter. So we then use the given class with the current family. It is mostly there

for compatibility with LuaTEX and experimenting (outside ConTEXt).

996 \vbadness

This sets the threshold for reporting a (vertical) badness value, its current value is 0.

12 An earlier variant could also hide the expansion completely but that was just confusing.

251

997 \vbadnessmode

This parameter determines what gets reported when the (in the vertical packer) badness exceeds

some limit. The current value of this bitset is "F.

0x01 underfull 0x02 loose 0x04 tight 0x08 overfull

998 \vbalance

In addition to the page builder and vbox splitter we have what's called a balancer. This routine splits

a vertical list in pieces (slots) according to a specification (see \balanceshape). It can do so in multi

ple passes (see \balancepasses). The balancing ‘framework’ operates independently from the page

builder and vsplitter.

Because there are multiple primitives involved and because one will normally write decent wrapper,

wd delegate a more detailed explanation to a ConTEXt low level manual.

\setbox 0 \vbox\bgroup \hsize 10em

line 1\par line 2\par line 3\par

line 4\par line 5\par line 6\par

line 7\par line 8\par

\egroup

\balancetopskip \strutht

\balancebottomskip \strutht

\balancevsize 3\lineheight

\balancetolerance 100

\balanceemergencystretch 0pt

\setbox 2 \vbalance 0

\hbox \bgroup

\vbalancedbox 2 \hskip2em

\vbalancedbox 2 \hskip2em

\vbalancedbox 2

\egroup

Here we use a simple specification (no shape). The balancer does a whole list optimization so it does

honor penalties and works with some tolerance too. Decisions are made on badness and demerits.

Like the par builder you can get overfull slots so in practice one might rebalance with different spec

ifications if that happens.

The results are collected in a box (in this example box register 2) which destroys the original. With

\setbox 2 \vbalance trial 0

we keep the original and the result will have empty boxes with the dimensions of the slots. You can

loop over the result and check the real height with \balanceshapevsize.

line 1

line 2

line 3

line 4

line 5

line 6

999 \vbalancedbox

This command take the topmost balanced slot from the given balanced box and wraps it in a \vbox.

When there is is no more to fetch the result is void.

252

1000 \vbalanceddeinsert

This will convert the inserts in the given balancing result into a form that is useable for the balancer.

This is not mandate but needed if you want split insertions. The keyword descend will locate the rele

vant box and forcedepth will make sure that we get constant depths (but expects \insertlinedepth

being set.

1001 \vbalanceddiscard

One of the features of balancing is that we can can have discardable content at the top and/or bottom

of slots. This primitive will remove discarded content from the given result of \vbalance, like:

\setbox 2 \vbalance 0

\vbalanceddiscard 2

1002 \vbalancedinsert

This one fetches the inserts from a balanced slot result. This happens per insert class.

\setbox 4 \vbalancedinsert 2 4

Instead you can give:

\setbox 4 \vbalancedinsert 2 index 4 descend \relax

Here descend will locate the relevant slot box which is handy in case one already wrapped the result

in a box.

1003 \vbalancedreinsert

This will convert the inserts in the given balancing slot result into a more original form, assumign

that \vbalanceddeinsert was applied.. This is not mandate and depends on what is expected further

down the line (read: this is macro package specific). You can use the keyword descend to locate the

relevant slot box.

1004 \vbalancedtop

This command take the topmost balanced slot from the given balanced box and wraps it in a \vbox.

When there is is no more to fetch the result is void.

1005 \vbox

This creates a vertical box. In the process callbacks can be triggered that can preprocess the content,

influence line breaking as well as assembling the resulting paragraph. More can be found in dedicated

manuals. The baseline is at the bottom.

1006 \vcenter

In traditional TEX this box packer is only permitted in math mode but in LuaMetaTEX it also works in

text mode. The content is centered in the vertical box.

253

1007 \vfil

This is a shortcut for \vskip plus 1 fil (first order filler).

1008 \vfill

This is a shortcut for \vskip plus 1 fill (second order filler).

1009 \vfilneg

This is a shortcut for \vskip plus - 1 fil so it can compensate \vfil.

1010 \vfuzz

This dimension sets the threshold for reporting vertical boxes that are under- or overfull. The current

value is 0.1pt.

1011 \virtualhrule

This is a horizontal rule with zero dimensions from the perspective of the frontend but the backend

can access them as set.

1012 \virtualvrule

This is a vertical rule with zero dimensions from the perspective of the frontend but the backend can

access them as set.

1013 \vkern

This primitive is like \kern but will force the engine into vertical mode if it isn't yet.

1014 \vpack

This primitive is like \vbox but without the callback overhead.

1015 \vpenalty

This primitive is like \penalty but will force the engine into vertical mode if it isn't yet.

1016 \vrule

This creates a vertical rule. Unless the height and depth are set they will stretch to fix the available

space. In addition to the traditional width, height and depth specifiers some more are accepted.

These are discussed in other manuals. See \hrule for a simple example.

1017 \vsize

This sets (or gets) the current vertical size. While setting the \hsize inside a \vbox has consequences,

setting the \vsize mostly makes sense at the outer level (the page).

254

1018 \vskip

The given glue is injected in the vertical list. If possible vertical mode is entered.

1019 \vsplit

This operator splits a given amount from a vertical box. In LuaMetaTEX we can split to but also upto,

so that we don't have to repack the result in order to see how much is actually in there.

1020 \vsplitchecks

This parameter is passed to the show_vsplit callback.

1021 \vss

This is the vertical variant of \hss. See there for what it means.

1022 \vtop

This creates a vertical box. In the process callbacks can be triggered that can preprocess the content,

influence line breaking as well as assembling the resulting paragraph. More can be found in dedicated

manuals. The baseline is at the top.

1023 \wd

Returns the width of the given box.

1024 \widowpenalties

This is an array of penalty put before the last lines in a paragraph. High values discourage (or even

prevent) a lone line at the beginning of a next page. This command expects a count value indicating

the number of entries that will follow. The first entry is ends up before the last line.

1025 \widowpenalty

This is the penalty put before a widow line in a paragraph. High values discourage (or even prevent)

a lone line at the beginning of a next page.

1026 \wordboundary

The hypenation routine has to decide where a word begins and ends. If you want to make sure that

there is a proper begin or end of a word you can inject this boundary.

1027 \wrapuppar

What this primitive does can best be shown with an example:

some text\wrapuppar{one} and some\wrapuppar{two} more

255

We get:

some text and some more twoone

So, it is a complementary command to \everypar. It can only be issued inside a paragraph.

1028 \xdef

This is an alternative for \global\edef:

\xdef\MyMacro{...}

1029 \xdefcsname

This is the companion of \xdef:

\expandafter\xdef\csname MyMacro:1\endcsname{...}

\xdefcsname MyMacro:1\endcsname{...}

1030 \xleaders

See \gleaders for an explanation.

1031 \xspaceskip

Normally the glue inserted when a space is encountered after a character with a space factor other

than 1000 is taken from the font (fontdimen 7) unless this parameter is set in which case its value is

added.

1032 \xtoks

This is the global variant of \etoks.

1033 \xtoksapp

This is the global variant of \etoksapp.

1034 \xtokspre

This is the global variant of \etokspre.

1035 \year

This internal number starts out with the year that the job started.

256

6.4 Syntax

6.4.1 accent

t \accent

[xoffset dimension] [yoffset
dimension] integer character

6.4.2 aftersomething

l \afterassigned

{tokens}
t \afterassignment

token

t \aftergroup

token

l \aftergrouped

{tokens}
l \atendoffile

token

l \atendoffiled

[reverse] {tokens}
l \atendofgroup

token

l \atendofgrouped

{tokens}

6.4.3 alignmenttab

l \aligntab

6.4.4 arithmic

t \advance

quantity [by] quantity

l \advanceby

quantity quantity

t \divide

quantity [by] quantity

l \divideby

quantity quantity

l \edivide

quantity quantity

l \edivideby

quantity quantity

t \multiply

quantity [by] quantity

l \multiplyby

quantity quantity

l \rdivide

quantity quantity

l \rdivideby

quantity quantity

6.4.5 association

l \associateunit

\cs [=] integer

> \cs : integer

6.4.6 auxiliary

l \insertmode

integer

: integer

e \interactionmode

integer

: integer

t \prevdepth

dimension

: dimension

t \prevgraf

integer

: integer

t \spacefactor

integer

: integer

6.4.7 begingroup

t \begingroup

l \beginmathgroup

l \beginsimplegroup

6.4.8 beginlocal

l \beginlocalcontrol

l \expandedendless

{tokens}
l \expandedloop

integer integer integer {tokens}

257

l \expandedrepeat

integer {tokens}
l \localcontrol

tokens\endlocalcontrol

l \localcontrolled

{tokens}
l \localcontrolledendless

{tokens}
l \localcontrolledloop

see \expandedloop

l \localcontrolledrepeat

integer {tokens}
l \unexpandedendless

{tokens}
l \unexpandedloop

see \expandedloop

l \unexpandedrepeat

integer {tokens}

6.4.9 beginparagraph

t \indent

t \noindent

l \parattribute

integer [=] integer

l \paroptions

[=] integer

l \quitvmode

l \snapshotpar

cardinal

: integer

l \undent

l \wrapuppar

[reverse] {tokens}

6.4.10 boundary

l \balanceboundary

[=] integer integer

l \boundary

[=] integer

l \luaboundary

[=] integer integer

l \mathboundary

[=] integer [integer]
l \noboundary

l \optionalboundary

[=] integer

l \pageboundary

[=] integer

l \protrusionboundary

[=] integer

l \wordboundary

6.4.11 boxproperty

l \boxadapt

(index|box) [=] integer

> (index|box) : dimension

l \boxanchor

see \boxadapt

l \boxanchors

(index|box) [=] integer integer

> (index|box) : integer

l \boxattribute

(index|box) integer [=] integer

> (index|box) integer : integer

l \boxdirection

see \boxadapt

l \boxfinalize

see \boxadapt

l \boxfreeze

see \boxadapt

l \boxgeometry

see \boxadapt

l \boxinserts

see \boxadapt

l \boxlimit

(index|box)
l \boxlimitate

see \boxadapt

l \boxmigrate

see \boxadapt

l \boxorientation

see \boxadapt

l \boxrepack

see \boxlimit

l \boxshift

(index|box) [=] dimension

> (index|box) : dimension

l \boxshrink

see \boxlimit

l \boxsource

see \boxadapt

l \boxstretch

see \boxlimit

258

l \boxsubtype

see \boxlimit

l \boxtarget

see \boxadapt

l \boxtotal

see \boxlimit

l \boxvadjust

(index|box) {tokens}
> (index|box) : cardinal

l \boxxmove

see \boxshift

l \boxxoffset

see \boxshift

l \boxymove

see \boxshift

l \boxyoffset

see \boxshift

t \dp

see \boxshift

t \ht

see \boxshift

t \wd

see \boxshift

6.4.12 caseshift

t \lowercase

{tokens}
t \uppercase

{tokens}

6.4.13 catcodetable

l \initcatcodetable

integer

l \restorecatcodetable

integer

l \savecatcodetable

integer

6.4.14 charnumber

t \char

integer

l \glyph

[xoffset dimension] [yoffset
dimension] [scale integer] [xscale

integer] [yscale integer] [left
dimension] [right dimension] [raise
dimension] [options integer] [font
integer] [id integer] [keepspacing]
integer

6.4.15 combinetoks

l \etoks

toks {tokens}
l \etoksapp

toks {tokens}
l \etokspre

toks {tokens}
l \gtoksapp

toks {tokens}
l \gtokspre

toks {tokens}
l \toksapp

toks {tokens}
l \tokspre

toks {tokens}
l \xtoks

toks {tokens}
l \xtoksapp

toks {tokens}
l \xtokspre

toks {tokens}

6.4.16 convert

l \csactive

> token : tokens

l \csnamestring

: tokens

l \csstring

> token : tokens

l \detokened

> (\cs|{tokens}|toks) : tokens

l \detokenized

> {tokens} : tokens

l \directlua

> {tokens} : tokens

l \expanded

> {tokens} : tokens

l \fontidentifier

> (font|integer) : tokens

t \fontname

259

> (font|integer) : tokens

l \fontspecifiedname

> (font|integer) : tokens

l \formatname

: tokens

t \jobname

: tokens

l \luabytecode

> integer : tokens

l \luaescapestring

> {tokens} : tokens

l \luafunction

> integer : tokens

l \luatexbanner

: tokens

t \meaning

> token : tokens

l \meaningasis

> token : tokens

l \meaningful

> token : tokens

l \meaningfull

> token : tokens

l \meaningles

> token : tokens

l \meaningless

> token : tokens

t \number

> integer : tokens

t \romannumeral

> integer : tokens

l \semiexpanded

> {tokens} : tokens

t \string

> token : tokens

l \tocharacter

> integer : tokens

l \todimension

> dimension : tokens

l \tohexadecimal

> integer : tokens

l \tointeger

> integer : tokens

l \tolimitedfloat

TODO

l \tomathstyle

> mathstyle : tokens

l \toscaled

> dimension : tokens

l \tosparsedimension

> dimension : tokens

l \tosparsescaled

> dimension : tokens

6.4.17 csname

l \begincsname

tokens\endcsname

t \csname

tokens\endcsname

l \futurecsname

tokens\endcsname

l \lastnamedcs

6.4.18 def

l \cdef

\cs [preamble] {tokens}
l \cdefcsname

tokens\endcsname [preamble] {tokens}
t \def

\cs [preamble] {tokens}
l \defcsname

tokens\endcsname [preamble] {tokens}
t \edef

\cs [preamble] {tokens}
l \edefcsname

tokens\endcsname [preamble] {tokens}
t \gdef

\cs [preamble] {tokens}
l \gdefcsname

tokens\endcsname [preamble] {tokens}
t \xdef

\cs [preamble] {tokens}
l \xdefcsname

tokens\endcsname [preamble] {tokens}

6.4.19 definecharcode

l \Udelcode

integer [=] integer

> integer : integer

l \Umathcode

integer [=] integer

> integer : integer

l \amcode

integer [=] integer

260

> integer : integer

t \catcode

integer [=] integer

> integer : integer

l \cccode

integer [=] integer

> integer : integer

t \delcode

integer [=] integer

> integer : integer

l \hccode

integer [=] integer

> integer : integer

l \hmcode

integer [=] integer

> integer : integer

t \lccode

integer [=] integer

> integer : integer

t \mathcode

integer [=] integer

> integer : integer

t \sfcode

integer [=] integer

> integer : integer

t \uccode

integer [=] integer

> integer : integer

6.4.20 definefamily

t \scriptfont

family (font|integer)
> family : integer

t \scriptscriptfont

see \scriptfont

t \textfont

see \scriptfont

6.4.21 definefont

t \font

\cs ({filename}|filename) [(at
dimension|scaled integer)]

: tokens

6.4.22 delimiternumber

l \Udelimiter

integer integer integer

t \delimiter

integer

6.4.23 discretionary

t \-

l \automaticdiscretionary

t \discretionary

[penalty] [postword] [preword]
[break] [nobreak] [options] [class]
[standalone] {tokens} {tokens}
{tokens}

l \explicitdiscretionary

6.4.24 endcsname

t \endcsname

6.4.25 endgroup

t \endgroup

l \endmathgroup

l \endsimplegroup

6.4.26 endjob

t \dump

t \end

6.4.27 endlocal

l \endlocalcontrol

6.4.28 endparagraph

l \localbreakpar

t \par

6.4.29 endtemplate

l \aligncontent

261

t \cr

t \crcr

t \noalign

{tokens}
t \omit

l \realign

{tokens} {tokens}
t \span

6.4.30 equationnumber

t \eqno

{tokens}
t \leqno

{tokens}

6.4.31 expandafter

l \expand

token

l \expandactive

token

t \expandafter

token token

l \expandafterpars

token

l \expandafterspaces

token

l \expandcstoken

token

l \expandedafter

token {tokens}
l \expandparameter

integer

l \expandtoken

token

l \expandtoks

{tokens}
l \futureexpand

token token token

l \futureexpandis

TODO

l \futureexpandisap

TODO

l \semiexpand

token

e \unless

6.4.32 explicitspace

t \

l \explicitspace

6.4.33 fontproperty

l \cfcode

(font|integer) integer [=] integer

> (font|integer) integer : integer

l \efcode

see \cfcode

t \fontdimen

(font|integer) integer [=] dimension

> (font|integer) integer : dimension

t \hyphenchar

(font|integer) [=] integer

> (font|integer) : integer

l \lpcode

see \fontdimen

l \rpcode

see \fontdimen

l \scaledfontdimen

see \hyphenchar

t \skewchar

see \hyphenchar

6.4.34 getmark

t \botmark

e \botmarks

integer

l \currentmarks

integer

t \firstmark

e \firstmarks

integer

t \splitbotmark

e \splitbotmarks

integer

t \splitfirstmark

e \splitfirstmarks

integer

t \topmark

e \topmarks

integer

262

6.4.35 halign

t \halign

[attr integer integer] [callback
integer] [callbacks integer]
[discard] [noskips] [reverse] [to
dimension] [spread dimension]
{tokens}

6.4.36 hmove

t \moveleft

dimension box

t \moveright

dimension box

6.4.37 hrule

t \hrule

[attr integer [=] integer] [width
dimension] [height dimension] [depth
dimension] [pair dimension

dimension] [xoffset dimension]
[yoffset dimension] [running]
[discardable] [keepspacing]
[resetspacing] [left dimension]
[right dimension] [top dimension]
[bottom dimension] [on dimension]
[off dimension]

l \nohrule

see \hrule

l \virtualhrule

see \hrule

6.4.38 hskip

t \hfil

t \hfill

t \hfilneg

t \hskip

dimension [plus
(dimension|fi[n*l])] [minus
(dimension|fi[n*l])]

t \hss

6.4.39 hyphenation

l \hjcode

integer [=] integer

t \hyphenation

{tokens}
l \hyphenationmin

[=] integer

t \patterns

{tokens}
l \postexhyphenchar

[=] integer

l \posthyphenchar

[=] integer

l \preexhyphenchar

[=] integer

l \prehyphenchar

[=] integer

6.4.40 iftest

t \else

t \fi

t \if

l \ifabsdim

dimension

(!|<|=|>|∈|∉|≠|≤|≥|≰|≱)
dimension

l \ifabsfloat

float (!|<|=|>|∈|∉|≠|≤|≥|≰|≱)
float

l \ifabsnum

integer

(!|<|=|>|∈|∉|≠|≤|≥|≰|≱)
integer

l \ifarguments

l \ifboolean

integer

t \ifcase

integer

t \ifcat

token

l \ifchkdim

tokens\or

l \ifchkdimension

tokens\or

l \ifchkdimexpr

tokens\or

263

l \ifchknum

tokens\or

l \ifchknumber

tokens\or

l \ifchknumexpr

tokens\or

l \ifcmpdim

dimension dimension

l \ifcmpnum

integer integer

l \ifcondition

\if...

l \ifcramped

e \ifcsname

tokens\endcsname

l \ifcstok

tokens\relax

e \ifdefined

token

t \ifdim

see \ifabsdim

l \ifdimexpression

tokens\relax

l \ifdimval

tokens\or

l \ifempty

(token|{tokens})
t \iffalse

l \ifflags

\cs

l \iffloat

see \ifabsfloat

e \iffontchar

integer integer

l \ifhaschar

token {tokens}
l \ifhastok

token {tokens}
l \ifhastoks

tokens\relax

l \ifhasxtoks

tokens\relax

t \ifhbox

(index|box)
t \ifhmode

l \ifinalignment

l \ifincsname

tokens\endcsname

t \ifinner

l \ifinsert

integer

l \ifintervaldim

dimension dimension dimension

l \ifintervalfloat

integer integer integer

l \ifintervalnum

float float float

l \iflastnamedcs

l \iflist

see \ifhbox

l \ifmathparameter

integer

l \ifmathstyle

mathstyle

t \ifmmode

t \ifnum

see \ifabsnum

l \ifnumexpression

tokens\relax

l \ifnumval

tokens\or

t \ifodd

integer

l \ifparameter

parameter\or

l \ifparameters

l \ifrelax

token

l \iftok

tokens\relax

t \iftrue

t \ifvbox

see \ifhbox

t \ifvmode

t \ifvoid

see \ifhbox

t \ifx

token

l \ifzerodim

dimension

l \ifzerofloat

float

l \ifzeronum

integer

t \or

l \orelse

l \orunless

264

6.4.41 ignoresomething

l \ignorearguments

l \ignorenestedupto

token

l \ignorepars

l \ignorerest

t \ignorespaces

l \ignoreupto

token

6.4.42 input

t \endinput

t \eofinput

{tokens} ({filename}|filename)
t \input

({filename}|filename)
l \quitloop

l \quitloopnow

l \retokenized

[catcodetable] {tokens}
l \scantextokens

{tokens}
e \scantokens

{tokens}
l \tokenized

{tokens}

6.4.43 insert

t \insert

integer

6.4.44 interaction

t \batchmode

t \errorstopmode

t \nonstopmode

t \scrollmode

6.4.45 internaldimension

l \balanceemergencyshrink

[=] dimension

: dimension

l \balanceemergencystretch

[=] dimension

: dimension

l \balancelineheight

[=] dimension

: dimension

l \balancevsize

[=] dimension

: dimension

t \boxmaxdepth

[=] dimension

: dimension

t \delimitershortfall

[=] dimension

: dimension

t \displayindent

[=] dimension

: dimension

t \displaywidth

[=] dimension

: dimension

t \emergencyextrastretch

[=] dimension

: dimension

t \emergencystretch

[=] dimension

: dimension

l \glyphxoffset

[=] dimension

: dimension

l \glyphyoffset

[=] dimension

: dimension

t \hangindent

[=] dimension

: dimension

t \hfuzz

[=] dimension

: dimension

t \hsize

[=] dimension

: dimension

l \ignoredepthcriterion

[=] dimension

: dimension

t \lineskiplimit

[=] dimension

: dimension

265

t \mathsurround

[=] dimension

: dimension

t \maxdepth

[=] dimension

: dimension

t \nulldelimiterspace

[=] dimension

: dimension

t \overfullrule

[=] dimension

: dimension

l \pageextragoal

[=] dimension

: dimension

t \parindent

[=] dimension

: dimension

t \predisplaysize

[=] dimension

: dimension

l \pxdimen

[=] dimension

: dimension

t \scriptspace

[=] dimension

: dimension

l \shortinlinemaththreshold

[=] dimension

: dimension

l \splitextraheight

[=] dimension

: dimension

t \splitmaxdepth

[=] dimension

: dimension

l \tabsize

[=] dimension

: dimension

t \vfuzz

[=] dimension

: dimension

t \vsize

[=] dimension

: dimension

6.4.46 internalglue

t \abovedisplayshortskip

[=] glue

: glue

t \abovedisplayskip

[=] glue

: glue

l \additionalpageskip

[=] glue

: glue

l \balancebottomskip

[=] glue

: glue

l \balancetopskip

[=] glue

: glue

t \baselineskip

[=] glue

: glue

t \belowdisplayshortskip

[=] glue

: glue

t \belowdisplayskip

[=] glue

: glue

l \bottomskip

[=] glue

: glue

l \emergencyleftskip

[=] glue

: glue

l \emergencyrightskip

[=] glue

: glue

l \initialpageskip

[=] glue

: glue

l \initialtopskip

[=] glue

: glue

t \leftskip

[=] glue

: glue

t \lineskip

[=] glue

: glue

l \mathsurroundskip

[=] glue

266

: glue

l \maththreshold

[=] glue

: glue

l \parfillleftskip

[=] glue

: glue

l \parfillrightskip

[=] glue

: glue

t \parfillskip

[=] glue

: glue

l \parinitleftskip

[=] glue

: glue

l \parinitrightskip

[=] glue

: glue

t \parskip

[=] glue

: glue

t \rightskip

[=] glue

: glue

t \spaceskip

[=] glue

: glue

t \splittopskip

[=] glue

: glue

t \tabskip

[=] glue

: glue

t \topskip

[=] glue

: glue

t \xspaceskip

[=] glue

: glue

6.4.47 internalinteger

t \adjdemerits

[=] integer

: integer

l \adjustspacing

[=] integer

: integer

l \adjustspacingshrink

[=] integer

: integer

l \adjustspacingstep

[=] integer

: integer

l \adjustspacingstretch

[=] integer

: integer

l \alignmentcellsource

[=] integer

: integer

l \alignmentwrapsource

[=] integer

: integer

l \automatichyphenpenalty

[=] integer

: integer

l \automigrationmode

[=] integer

: integer

l \autoparagraphmode

[=] integer

: integer

l \balanceadjdemerits

[=] integer

: integer

l \balancebreakpasses

[=] integer

: integer

l \balancechecks

[=] integer

: integer

l \balancelooseness

[=] integer

: integer

l \balancepenalty

[=] integer

: integer

l \balancetolerance

[=] integer

: integer

t \binoppenalty

[=] integer

: integer

l \boxlimitmode

[=] integer

: integer

267

t \brokenpenalty

[=] integer

: integer

l \catcodetable

[=] integer

: integer

t \clubpenalty

[=] integer

: integer

t \day

[=] integer

: integer

t \defaulthyphenchar

[=] integer

: integer

t \defaultskewchar

[=] integer

: integer

t \delimiterfactor

[=] integer

: integer

l \discretionaryoptions

[=] integer

: integer

t \displaywidowpenalty

[=] integer

: integer

t \doublehyphendemerits

[=] integer

: integer

l \doublepenaltymode

[=] integer

: integer

l \emptyparagraphmode

TODO

t \endlinechar

[=] integer

: integer

t \errorcontextlines

[=] integer

: integer

t \escapechar

[=] integer

: integer

l \etexexprmode

[=] integer

: integer

l \eufactor

[=] integer

: integer

l \exapostrophechar

TODO

l \exceptionpenalty

[=] integer

: integer

t \exhyphenchar

[=] integer

: integer

t \exhyphenpenalty

[=] integer

: integer

l \explicithyphenpenalty

[=] integer

: integer

t \fam

[=] integer

: integer

t \finalhyphendemerits

[=] integer

: integer

l \firstvalidlanguage

[=] integer

: integer

t \floatingpenalty

[=] integer

: integer

t \globaldefs

[=] integer

: integer

l \glyphdatafield

[=] integer

: integer

l \glyphoptions

[=] integer

: integer

l \glyphscale

[=] integer

: integer

l \glyphscriptfield

[=] integer

: integer

l \glyphscriptscale

[=] integer

: integer

l \glyphscriptscriptscale

[=] integer

: integer

268

l \glyphslant

[=] integer

: integer

l \glyphstatefield

[=] integer

: integer

l \glyphtextscale

[=] integer

: integer

l \glyphweight

[=] integer

: integer

l \glyphxscale

[=] integer

: integer

l \glyphyscale

[=] integer

: integer

t \hangafter

[=] integer

: integer

t \hbadness

[=] integer

: integer

l \hbadnessmode

[=] integer

: integer

t \holdinginserts

[=] integer

: integer

l \holdingmigrations

[=] integer

: integer

l \hyphenationmode

[=] integer

: integer

t \hyphenpenalty

[=] integer

: integer

t \interlinepenalty

[=] integer

: integer

t \language

[=] integer

: integer

e \lastlinefit

[=] integer

: integer

t \lefthyphenmin

[=] integer

: integer

l \lefttwindemerits

[=] integer

: integer

l \linebreakchecks

[=] integer

: integer

l \linebreakoptional

[=] integer

: integer

l \linebreakpasses

[=] integer

: integer

l \linedirection

[=] integer

: integer

t \linepenalty

[=] integer

: integer

l \localbrokenpenalty

[=] integer

: integer

l \localinterlinepenalty

[=] integer

: integer

l \localpretolerance

[=] integer

: integer

l \localtolerance

[=] integer

: integer

t \looseness

[=] integer

: integer

l \luacopyinputnodes

[=] integer

: integer

l \mathbeginclass

[=] integer

: integer

l \mathcheckfencesmode

[=] integer

: integer

l \mathdictgroup

[=] integer

: integer

269

l \mathdictproperties

[=] integer

: integer

l \mathdirection

[=] integer

: integer

l \mathdisplaymode

[=] integer

: integer

l \mathdisplaypenaltyfactor

[=] integer

: integer

l \mathdisplayskipmode

[=] integer

: integer

l \mathdoublescriptmode

[=] integer

: integer

l \mathendclass

[=] integer

: integer

l \matheqnogapstep

[=] integer

: integer

l \mathfontcontrol

[=] integer

: integer

l \mathgluemode

[=] integer

: integer

l \mathgroupingmode

[=] integer

: integer

l \mathinlinepenaltyfactor

[=] integer

: integer

l \mathleftclass

[=] integer

: integer

l \mathlimitsmode

[=] integer

: integer

l \mathoptions

TODO

l \mathpenaltiesmode

[=] integer

: integer

l \mathpretolerance

[=] integer

: integer

l \mathrightclass

[=] integer

: integer

l \mathrulesfam

[=] integer

: integer

l \mathrulesmode

[=] integer

: integer

l \mathscriptsmode

[=] integer

: integer

l \mathslackmode

[=] integer

: integer

l \mathspacingmode

[=] integer

: integer

l \mathsurroundmode

[=] integer

: integer

l \mathtolerance

[=] integer

: integer

t \maxdeadcycles

[=] integer

: integer

t \month

[=] integer

: integer

t \newlinechar

[=] integer

: integer

l \nooutputboxerror

[=] integer

: integer

l \normalizelinemode

[=] integer

: integer

l \normalizeparmode

[=] integer

: integer

l \nospaces

[=] integer

: integer

l \outputbox

[=] integer

: integer

270

t \outputpenalty

[=] integer

: integer

l \overloadmode

[=] integer

: integer

l \parametermode

[=] integer

: integer

l \pardirection

[=] integer

: integer

t \pausing

[=] integer

: integer

t \postdisplaypenalty

[=] integer

: integer

l \postinlinepenalty

[=] integer

: integer

l \postshortinlinepenalty

[=] integer

: integer

l \prebinoppenalty

[=] integer

: integer

e \predisplaydirection

[=] integer

: integer

l \predisplaygapfactor

[=] integer

: integer

t \predisplaypenalty

[=] integer

: integer

l \preinlinepenalty

[=] integer

: integer

l \prerelpenalty

[=] integer

: integer

l \preshortinlinepenalty

[=] integer

: integer

t \pretolerance

[=] integer

: integer

l \protrudechars

[=] integer

: integer

t \relpenalty

[=] integer

: integer

t \righthyphenmin

[=] integer

: integer

l \righttwindemerits

[=] integer

: integer

e \savinghyphcodes

[=] integer

: integer

e \savingvdiscards

[=] integer

: integer

l \scriptspaceafterfactor

[=] integer

: integer

l \scriptspacebeforefactor

[=] integer

: integer

l \scriptspacebetweenfactor

[=] integer

: integer

l \setfontid

[=] integer

: integer

t \setlanguage

[=] integer

: integer

l \shapingpenaltiesmode

[=] integer

: integer

l \shapingpenalty

[=] integer

: integer

l \shortinlineorphanpenalty

[=] integer

: integer

t \showboxbreadth

[=] integer

: integer

t \showboxdepth

[=] integer

: integer

271

t \shownodedetails

[=] integer

: integer

l \singlelinepenalty

[=] integer

: integer

l \spacechar

[=] integer

: integer

l \spacefactormode

[=] integer

: integer

l \spacefactoroverload

[=] integer

: integer

l \spacefactorshrinklimit

[=] integer

: integer

l \spacefactorstretchlimit

[=] integer

: integer

l \supmarkmode

[=] integer

: integer

l \textdirection

[=] integer

: integer

t \time

[=] integer

: integer

t \tolerance

[=] integer

: integer

l \tracingadjusts

[=] integer

: integer

l \tracingalignments

[=] integer

: integer

e \tracingassigns

[=] integer

: integer

l \tracingbalancing

[=] integer

: integer

t \tracingcommands

[=] integer

: integer

l \tracingexpressions

[=] integer

: integer

l \tracingfitness

[=] integer

: integer

l \tracingfullboxes

[=] integer

: integer

e \tracinggroups

[=] integer

: integer

l \tracinghyphenation

[=] integer

: integer

e \tracingifs

[=] integer

: integer

l \tracinginserts

[=] integer

: integer

l \tracinglevels

[=] integer

: integer

l \tracinglists

[=] integer

: integer

t \tracingloners

[=] integer

: integer

l \tracinglooseness

[=] integer

: integer

t \tracinglostchars

[=] integer

: integer

t \tracingmacros

[=] integer

: integer

l \tracingmarks

[=] integer

: integer

l \tracingmath

[=] integer

: integer

l \tracingmvl

[=] integer

: integer

272

e \tracingnesting

[=] integer

: integer

l \tracingnodes

[=] integer

: integer

t \tracingonline

[=] integer

: integer

l \tracingorphans

[=] integer

: integer

t \tracingoutput

[=] integer

: integer

t \tracingpages

[=] integer

: integer

t \tracingparagraphs

[=] integer

: integer

l \tracingpasses

[=] integer

: integer

l \tracingpenalties

[=] integer

: integer

t \tracingrestores

[=] integer

: integer

t \tracingstats

[=] integer

: integer

l \tracingtoddlers

[=] integer

: integer

t \uchyph

[=] integer

: integer

l \variablefam

[=] integer

: integer

t \vbadness

[=] integer

: integer

l \vbadnessmode

[=] integer

: integer

l \vsplitchecks

[=] integer

: integer

t \widowpenalty

[=] integer

: integer

t \year

[=] integer

: integer

6.4.48 internalmuglue

t \medmuskip

[=] muglue

: muglue

l \pettymuskip

[=] muglue

: muglue

t \thickmuskip

[=] muglue

: muglue

t \thinmuskip

[=] muglue

: muglue

l \tinymuskip

[=] muglue

: muglue

6.4.49 internaltoks

t \errhelp

[=] toks

: toks

l \everybeforepar

[=] toks

: toks

t \everycr

[=] toks

: toks

t \everydisplay

[=] toks

: toks

e \everyeof

[=] toks

: toks

t \everyhbox

[=] toks

: toks

273

t \everyjob

[=] toks

: toks

t \everymath

[=] toks

: toks

l \everymathatom

[=] toks

: toks

t \everypar

[=] toks

: toks

l \everytab

[=] toks

: toks

t \everyvbox

[=] toks

: toks

t \output

[=] toks

: toks

6.4.50 italiccorrection

t \/

l \explicititaliccorrection

l \forcedleftcorrection

l \forcedrightcorrection

6.4.51 kern

t \hkern

dimension

t \kern

dimension

t \vkern

dimension

6.4.52 leader

t \cleaders

(box|rule|glyph) glue

l \gleaders

see \cleaders

t \leaders

see \cleaders

l \uleaders

[callback integer] [line] [nobreak]

(box|rule|glyph) glue

t \xleaders

see \cleaders

6.4.53 legacy

t \shipout

{tokens}

6.4.54 let

l \futuredef

\cs \cs

t \futurelet

\cs [=] \cs

l \glet

\cs

l \gletcsname

tokens\endcsname

l \glettonothing

\cs

t \let

\cs

l \letcharcode

\cs

l \letcsname

tokens\endcsname

l \letfrozen

\cs

l \letprotected

\cs

l \lettolastnamedcs

\cs

l \lettonothing

\cs

l \swapcsvalues

\cs \cs

l \unletfrozen

\cs

l \unletprotected

\cs

6.4.55 localbox

l \localleftbox

box

l \localmiddlebox

box

274

l \localrightbox

box

l \resetlocalboxes

6.4.56 luafunctioncall

l \luabytecodecall

integer

l \luafunctioncall

integer

6.4.57 makebox

t \box

(index|box)
t \copy

see \box

l \dbox

[target integer] [to dimension]
[adapt] [attr integer integer]
[anchor integer] [axis integer]
[shift dimension] [spread dimension]
[source integer] [direction integer]
[delay] [orientation integer]
[xoffset dimension] [xmove
dimension] [yoffset dimension]
[ymove dimension] [reverse] [retain]
[container] [mathtext]
[keepspacing] [class integer] [swap]
{tokens}

l \dpack

see \dbox

l \dsplit

[attr] [to] [upto] {tokens}
l \flushmvl

integer

t \hbox

see \dbox

l \hpack

see \dbox

l \insertbox

integer

l \insertcopy

integer

t \lastbox

l \localleftboxbox

l \localmiddleboxbox

l \localrightboxbox

l \tpack

see \dbox

l \tsplit

see \dsplit

l \vbalance

[exactly] [additional] [trial]
(index|box)

l \vbalancedbox

see \box

l \vbalanceddeinsert

(index|box) [descend] [forceheight]
[forcedepth]

l \vbalanceddiscard

(index|box) [descend] [remove]
l \vbalancedinsert

(index|box) [index] [descend]
integer

l \vbalancedreinsert

(index|box) [descend]
l \vbalancedtop

see \box

t \vbox

see \dbox

l \vpack

see \dbox

t \vsplit

see \dsplit

t \vtop

see \dbox

6.4.58 mark

l \clearmarks

integer

l \flushmarks

t \mark

{tokens}
e \marks

integer {tokens}

6.4.59 mathaccent

l \Umathaccent

[attr integer integer] [center]
[class integer] [exact] [source
integer] [stretch] [shrink]
[fraction integer] [fixed]
[keepbase] [nooverflow] [base]

275

(both [fixed] character [fixed]
character|bottom [fixed]
character|top [fixed]
character|overlay
character|character)

t \mathaccent

{tokens}

6.4.60 mathcharnumber

l \Umathchar

integer

t \mathchar

integer

l \mathclass

integer

l \mathdictionary

integer mathchar

l \nomathchar

6.4.61 mathchoice

t \mathchoice

{tokens} {tokens} {tokens} {tokens}
l \mathdiscretionary

[class integer] {tokens} {tokens}
{tokens}

l \mathstack

{tokens}

6.4.62 mathcomponent

l \mathatom

[attr integer integer] [all integer]
[leftclass integer] [limits]
[rightclass integer] [class integer]
[unpack] [unroll] [single] [source
integer] [textfont] [mathfont]
[options integer] [nolimits]
[nooverflow] [void] [phantom]
[continuation] [integer]

t \mathbin

{tokens}
t \mathclose

{tokens}
t \mathinner

{tokens}

t \mathop

{tokens}
t \mathopen

{tokens}
t \mathord

{tokens}
t \mathpunct

{tokens}
t \mathrel

{tokens}
t \overline

{tokens}
t \underline

{tokens}

6.4.63 mathfence

l \Uleft

[auto] [attr integer integer] [axis]
[bottom dimension] [depth dimension]
[factor integer] [height dimension]
[noaxis] [nocheck] [nolimits]
[nooverflow] [leftclass integer]
[limits] [exact] [void] [phantom]
[class integer] [rightclass integer]
[scale] [source integer] [top]
delimiter

l \Umiddle

see \Uleft

l \Uoperator

see \Uleft

l \Uright

see \Uleft

l \Uvextensible

see \Uleft

t \left

see \Uleft

t \middle

see \Uleft

t \right

see \Uleft

6.4.64 mathfraction

l \Uabove

dimension [attr integer integer]
[class integer] [center] [exact]
[proportional] [noaxis]

276

[nooverflow] [style mathstyle]
[source integer] [hfactor integer]
[vfactor integer] [font] [thickness
dimension] [usecallback]

l \Uabovewithdelims

delimiter delimiter dimension [attr
integer integer] [class integer]
[center] [exact] [proportional]
[noaxis] [nooverflow] [style
mathstyle] [source integer] [hfactor
integer] [vfactor integer] [font]
[thickness dimension] [usecallback]

l \Uatop

see \Uabove

l \Uatopwithdelims

see \Uabovewithdelims

l \Uover

[attr integer integer] [class
integer] [center] [exact]
[proportional] [noaxis]
[nooverflow] [style mathstyle]
[source integer] [hfactor integer]
[vfactor integer] [font] [thickness
dimension] [usecallback]

l \Uoverwithdelims

delimiter delimiter [attr integer

integer] [class integer] [center]
[exact] [proportional] [noaxis]
[nooverflow] [style mathstyle]
[source integer] [hfactor integer]
[vfactor integer] [font] [thickness
dimension] [usecallback]

l \Uskewed

delimiter [attr integer integer]
[class integer] [center] [exact]
[proportional] [noaxis]
[nooverflow] [style mathstyle]
[source integer] [hfactor integer]
[vfactor integer] [font] [thickness
dimension] [usecallback]

l \Uskewedwithdelims

delimiter delimiter delimiter [attr
integer integer] [class integer]
[center] [exact] [proportional]
[noaxis] [nooverflow] [style
mathstyle] [source integer] [hfactor
integer] [vfactor integer] [font]
[thickness dimension] [usecallback]

l \Ustretched

see \Uskewed

l \Ustretchedwithdelims

see \Uskewedwithdelims

t \above

dimension

t \abovewithdelims

delimiter delimiter dimension

t \atop

dimension

t \atopwithdelims

delimiter delimiter dimension

t \over

t \overwithdelims

delimiter delimiter

6.4.65 mathmodifier

l \Umathadapttoleft

l \Umathadapttoright

l \Umathlimits

l \Umathnoaxis

l \Umathnolimits

l \Umathopenupdepth

dimension

l \Umathopenupheight

dimension

l \Umathphantom

l \Umathsource

[nucleus] integer

l \Umathuseaxis

l \Umathvoid

t \displaylimits

t \limits

t \nolimits

6.4.66 mathparameter

l \Umathaccentbasedepth

mathstyle [=] dimension

> mathstyle : dimension

l \Umathaccentbaseheight

mathstyle [=] dimension

> mathstyle : dimension

l \Umathaccentbottomovershoot

mathstyle [=] dimension

> mathstyle : dimension

l \Umathaccentbottomshiftdown

mathstyle [=] dimension

277

> mathstyle : dimension

l \Umathaccentextendmargin

mathstyle [=] dimension

> mathstyle : dimension

l \Umathaccentsuperscriptdrop

mathstyle [=] dimension

> mathstyle : dimension

l \Umathaccentsuperscriptpercent

mathstyle [=] integer

> mathstyle : integer

l \Umathaccenttopovershoot

mathstyle [=] dimension

> mathstyle : dimension

l \Umathaccenttopshiftup

mathstyle [=] dimension

> mathstyle : dimension

l \Umathaccentvariant

[=] mathstyle

: mathstyle

l \Umathaxis

mathstyle [=] dimension

> mathstyle : dimension

l \Umathbottomaccentvariant

[=] mathstyle

: mathstyle

l \Umathconnectoroverlapmin

mathstyle [=] dimension

> mathstyle : dimension

l \Umathdegreevariant

[=] mathstyle

: mathstyle

l \Umathdelimiterextendmargin

mathstyle [=] dimension

> mathstyle : dimension

l \Umathdelimiterovervariant

[=] mathstyle

: mathstyle

l \Umathdelimiterpercent

mathstyle [=] integer

> mathstyle : integer

l \Umathdelimitershortfall

mathstyle [=] dimension

> mathstyle : dimension

l \Umathdelimiterundervariant

[=] mathstyle

: mathstyle

l \Umathdenominatorvariant

[=] mathstyle

: mathstyle

l \Umathexheight

mathstyle [=] dimension

> mathstyle : dimension

l \Umathextrasubpreshift

mathstyle [=] dimension

> mathstyle : dimension

l \Umathextrasubprespace

mathstyle [=] dimension

> mathstyle : dimension

l \Umathextrasubshift

mathstyle [=] dimension

> mathstyle : dimension

l \Umathextrasubspace

mathstyle [=] dimension

> mathstyle : dimension

l \Umathextrasuppreshift

mathstyle [=] dimension

> mathstyle : dimension

l \Umathextrasupprespace

mathstyle [=] dimension

> mathstyle : dimension

l \Umathextrasupshift

mathstyle [=] dimension

> mathstyle : dimension

l \Umathextrasupspace

mathstyle [=] dimension

> mathstyle : dimension

l \Umathflattenedaccentbasedepth

mathstyle [=] dimension

> mathstyle : dimension

l \Umathflattenedaccentbaseheight

mathstyle [=] dimension

> mathstyle : dimension

l \Umathflattenedaccentbottomshiftdown

mathstyle [=] dimension

> mathstyle : dimension

l \Umathflattenedaccenttopshiftup

mathstyle [=] dimension

> mathstyle : dimension

l \Umathfractiondelsize

mathstyle [=] dimension

> mathstyle : dimension

l \Umathfractiondenomdown

mathstyle [=] dimension

> mathstyle : dimension

l \Umathfractiondenomvgap

mathstyle [=] dimension

> mathstyle : dimension

278

l \Umathfractionnumup

mathstyle [=] dimension

> mathstyle : dimension

l \Umathfractionnumvgap

mathstyle [=] dimension

> mathstyle : dimension

l \Umathfractionrule

mathstyle [=] dimension

> mathstyle : dimension

l \Umathfractionvariant

[=] mathstyle

: mathstyle

l \Umathhextensiblevariant

[=] mathstyle

: mathstyle

l \Umathlimitabovebgap

mathstyle [=] dimension

> mathstyle : dimension

l \Umathlimitabovekern

mathstyle [=] dimension

> mathstyle : dimension

l \Umathlimitabovevgap

mathstyle [=] dimension

> mathstyle : dimension

l \Umathlimitbelowbgap

mathstyle [=] dimension

> mathstyle : dimension

l \Umathlimitbelowkern

mathstyle [=] dimension

> mathstyle : dimension

l \Umathlimitbelowvgap

mathstyle [=] dimension

> mathstyle : dimension

l \Umathnolimitsubfactor

mathstyle [=] integer

> mathstyle : integer

l \Umathnolimitsupfactor

mathstyle [=] integer

> mathstyle : integer

l \Umathnumeratorvariant

[=] mathstyle

: mathstyle

l \Umathoperatorsize

mathstyle [=] dimension

> mathstyle : dimension

l \Umathoverbarkern

mathstyle [=] dimension

> mathstyle : dimension

l \Umathoverbarrule

mathstyle [=] dimension

> mathstyle : dimension

l \Umathoverbarvgap

mathstyle [=] dimension

> mathstyle : dimension

l \Umathoverdelimiterbgap

mathstyle [=] dimension

> mathstyle : dimension

l \Umathoverdelimitervariant

[=] mathstyle

: mathstyle

l \Umathoverdelimitervgap

mathstyle [=] dimension

> mathstyle : dimension

l \Umathoverlayaccentvariant

[=] mathstyle

: mathstyle

l \Umathoverlinevariant

[=] mathstyle

: mathstyle

l \Umathprimeraise

mathstyle [=] dimension

> mathstyle : dimension

l \Umathprimeraisecomposed

mathstyle [=] dimension

> mathstyle : dimension

l \Umathprimeshiftdrop

mathstyle [=] dimension

> mathstyle : dimension

l \Umathprimeshiftup

mathstyle [=] dimension

> mathstyle : dimension

l \Umathprimespaceafter

mathstyle [=] dimension

> mathstyle : dimension

l \Umathprimevariant

[=] mathstyle

: mathstyle

l \Umathquad

mathstyle [=] dimension

> mathstyle : dimension

l \Umathradicaldegreeafter

mathstyle [=] dimension

> mathstyle : dimension

l \Umathradicaldegreebefore

mathstyle [=] dimension

> mathstyle : dimension

279

l \Umathradicaldegreeraise

mathstyle [=] dimension

> mathstyle : dimension

l \Umathradicalextensibleafter

mathstyle [=] dimension

> mathstyle : dimension

l \Umathradicalextensiblebefore

mathstyle [=] dimension

> mathstyle : dimension

l \Umathradicalkern

mathstyle [=] dimension

> mathstyle : dimension

l \Umathradicalrule

mathstyle [=] dimension

> mathstyle : dimension

l \Umathradicalvariant

[=] mathstyle

: mathstyle

l \Umathradicalvgap

mathstyle [=] dimension

> mathstyle : dimension

l \Umathruledepth

mathstyle [=] dimension

> mathstyle : dimension

l \Umathruleheight

mathstyle [=] dimension

> mathstyle : dimension

l \Umathskeweddelimitertolerance

mathstyle [=] dimension

> mathstyle : dimension

l \Umathskewedfractionhgap

mathstyle [=] dimension

> mathstyle : dimension

l \Umathskewedfractionvgap

mathstyle [=] dimension

> mathstyle : dimension

l \Umathspaceafterscript

mathstyle [=] dimension

> mathstyle : dimension

l \Umathspacebeforescript

mathstyle [=] dimension

> mathstyle : dimension

l \Umathspacebetweenscript

mathstyle [=] dimension

> mathstyle : dimension

l \Umathstackdenomdown

mathstyle [=] dimension

> mathstyle : dimension

l \Umathstacknumup

mathstyle [=] dimension

> mathstyle : dimension

l \Umathstackvariant

[=] mathstyle

: mathstyle

l \Umathstackvgap

mathstyle [=] dimension

> mathstyle : dimension

l \Umathsubscriptsnap

mathstyle [=] dimension

> mathstyle : dimension

l \Umathsubscriptvariant

[=] mathstyle

: mathstyle

l \Umathsubshiftdown

mathstyle [=] dimension

> mathstyle : dimension

l \Umathsubshiftdrop

mathstyle [=] dimension

> mathstyle : dimension

l \Umathsubsupshiftdown

mathstyle [=] dimension

> mathstyle : dimension

l \Umathsubsupvgap

mathstyle [=] dimension

> mathstyle : dimension

l \Umathsubtopmax

mathstyle [=] dimension

> mathstyle : dimension

l \Umathsupbottommin

mathstyle [=] dimension

> mathstyle : dimension

l \Umathsuperscriptsnap

mathstyle [=] dimension

> mathstyle : dimension

l \Umathsuperscriptvariant

mathstyle [=] dimension

> mathstyle : dimension

l \Umathsupshiftdrop

mathstyle [=] dimension

> mathstyle : dimension

l \Umathsupshiftup

mathstyle [=] dimension

> mathstyle : dimension

l \Umathsupsubbottommax

mathstyle [=] dimension

> mathstyle : dimension

280

l \Umathtopaccentvariant

[=] mathstyle

: mathstyle

l \Umathunderbarkern

mathstyle [=] dimension

> mathstyle : dimension

l \Umathunderbarrule

mathstyle [=] dimension

> mathstyle : dimension

l \Umathunderbarvgap

mathstyle [=] dimension

> mathstyle : dimension

l \Umathunderdelimiterbgap

mathstyle [=] dimension

> mathstyle : dimension

l \Umathunderdelimitervariant

[=] mathstyle

: mathstyle

l \Umathunderdelimitervgap

mathstyle [=] dimension

> mathstyle : dimension

l \Umathunderlinevariant

[=] mathstyle

: mathstyle

l \Umathvextensiblevariant

[=] mathstyle

: mathstyle

l \Umathxscale

mathstyle [=] integer

> mathstyle : integer

l \Umathyscale

mathstyle [=] integer

> mathstyle : integer

l \copymathatomrule

integer integer

l \copymathparent

integer integer

l \copymathspacing

integer integer

l \letmathatomrule

integer integer integer integer

integer

l \letmathparent

integer integer

l \letmathspacing

see \letmathatomrule

l \resetmathspacing

l \setdefaultmathcodes

l \setmathatomrule

integer integer mathstyle integer

integer

l \setmathdisplaypostpenalty

integer [=] integer

l \setmathdisplayprepenalty

integer [=] integer

l \setmathignore

mathparameter integer

l \setmathoptions

integer [=] integer

l \setmathpostpenalty

integer [=] integer

l \setmathprepenalty

integer [=] integer

l \setmathspacing

integer integer mathstyle glue

6.4.67 mathradical

l \Udelimited

[attr integer integer] [bottom]
[exact] [top] [style mathstyle]
[source integer] [stretch] [shrink]
[width dimension] [height dimension]
[depth dimension] [left] [middle]
[right] [nooverflow] [usecallback]
delimiter delimiter [delimiter]
[delimiter] (mathatom|{tokens})

l \Udelimiterover

[attr integer integer] [bottom]
[exact] [top] [style mathstyle]
[source integer] [stretch] [shrink]
[width dimension] [height dimension]
[depth dimension] [left] [middle]
[right] [nooverflow] [usecallback]
delimiter [delimiter] [delimiter]
(mathatom|{tokens})

l \Udelimiterunder

see \Udelimiterover

l \Uhextensible

see \Udelimiterover

l \Uoverdelimiter

see \Udelimiterover

l \Uradical

see \Udelimiterover

l \Uroot

[attr integer integer] [bottom]
[exact] [top] [style mathstyle]

281

[source integer] [stretch] [shrink]
[width dimension] [height dimension]
[depth dimension] [left] [middle]
[right] [nooverflow] [usecallback]
delimiter [delimiter] [delimiter]
(mathatom|{tokens})
(mathatom|{tokens})

l \Urooted

[attr integer integer] [bottom]
[exact] [top] [style mathstyle]
[source integer] [stretch] [shrink]
[width dimension] [height dimension]
[depth dimension] [left] [middle]
[right] [nooverflow] [usecallback]
delimiter delimiter [delimiter]
[delimiter] (mathatom|{tokens})
(mathatom|{tokens})

l \Uunderdelimiter

see \Udelimiterover

t \radical

see \Uroot

6.4.68 mathscript

l \indexedsubprescript

(mathatom|{tokens})
l \indexedsubscript

see \indexedsubprescript

l \indexedsuperprescript

see \indexedsubprescript

l \indexedsuperscript

see \indexedsubprescript

l \noatomruling

t \nonscript

l \noscript

l \nosubprescript

l \nosubscript

l \nosuperprescript

l \nosuperscript

l \primescript

see \indexedsubprescript

l \subprescript

see \indexedsubprescript

l \subscript

see \indexedsubprescript

l \superprescript

see \indexedsubprescript

l \superscript

see \indexedsubprescript

6.4.69 mathshiftcs

l \Ustartdisplaymath

l \Ustartmath

l \Ustartmathmode

l \Ustopdisplaymath

l \Ustopmath

l \Ustopmathmode

6.4.70 mathstyle

l \allcrampedstyles

l \alldisplaystyles

l \allmainstyles

l \allmathstyles

l \allscriptscriptstyles

l \allscriptstyles

l \allsplitstyles

l \alltextstyles

l \alluncrampedstyles

l \allunsplitstyles

l \crampeddisplaystyle

l \crampedscriptscriptstyle

l \crampedscriptstyle

l \crampedtextstyle

l \currentlysetmathstyle

t \displaystyle

l \givenmathstyle

mathstyle

l \scaledmathstyle

integer

> mathstyle : integer

t \scriptscriptstyle

t \scriptstyle

t \textstyle

6.4.71 message

t \errmessage

{tokens}
t \message

{tokens}

6.4.72 mkern

t \mkern

dimension

282

6.4.73 mskip

l \mathatomskip

muglue

t \mskip

muglue

6.4.74 mvl

l \beginmvl

[index integer] [options integer]
[prevdepth dimension] [integer]

l \endmvl

integer

6.4.75 noexpand

t \noexpand

token

6.4.76 pageproperty

t \deadcycles

[=] integer

: integer

l \insertdepth

integer [=] dimension

> integer : dimension

l \insertdistance

integer [=] dimension

> integer : dimension

l \insertheight

integer [=] dimension

> integer : dimension

l \insertheights

[=] dimension

: dimension

l \insertlimit

integer [=] dimension

> integer : dimension

l \insertlinedepth

TODO

l \insertlineheight

TODO

l \insertmaxdepth

integer [=] dimension

> integer : dimension

l \insertmultiplier

integer [=] integer

> integer : integer

t \insertpenalties

[=] integer

: integer

l \insertpenalty

integer [=] integer

> integer : integer

l \insertshrink

integer [=] dimension

> integer : dimension

l \insertstorage

integer [=] integer

> integer : integer

l \insertstoring

[=] integer

: integer

l \insertstretch

integer [=] dimension

> integer : dimension

l \insertwidth

integer [=] dimension

> integer : dimension

l \mvlcurrentlyactive

[=] integer

: integer

t \pagedepth

[=] dimension

: dimension

l \pageexcess

[=] dimension

: dimension

t \pagefilllstretch

[=] dimension

: dimension

t \pagefillstretch

[=] dimension

: dimension

t \pagefilstretch

[=] dimension

: dimension

l \pagefistretch

[=] dimension

: dimension

t \pagegoal

[=] dimension

: dimension

283

l \pagelastdepth

[=] dimension

: dimension

l \pagelastfilllstretch

[=] dimension

: dimension

l \pagelastfillstretch

[=] dimension

: dimension

l \pagelastfilstretch

[=] dimension

: dimension

l \pagelastfistretch

[=] dimension

: dimension

l \pagelastheight

[=] dimension

: dimension

l \pagelastshrink

[=] dimension

: dimension

l \pagelaststretch

[=] dimension

: dimension

t \pageshrink

[=] dimension

: dimension

t \pagestretch

[=] dimension

: dimension

t \pagetotal

[=] dimension

: dimension

l \pagevsize

[=] dimension

: dimension

l \splitlastdepth

[=] dimension

: dimension

l \splitlastheight

[=] dimension

: dimension

l \splitlastshrink

[=] dimension

: dimension

l \splitlaststretch

[=] dimension

: dimension

6.4.77 parameter

l \alignmark

l \parametermark

6.4.78 penalty

l \hpenalty

integer

t \penalty

integer

l \vpenalty

integer

6.4.79 prefix

l \aliased

l \constant

l \constrained

l \deferred

l \enforced

l \frozen

t \global

l \immediate

l \immutable

l \inherited

l \instance

t \long

l \mutable

l \noaligned

t \outer

l \overloaded

l \permanent

e \protected

l \retained

l \semiprotected

l \tolerant

l \untraced

6.4.80 register

l \attribute

(index|box) [=] integer

> (index|box) : integer

t \count

see \attribute

284

t \dimen

(index|box) [=] dimension

> (index|box) : dimension

l \float

(index|box) [=] float

> (index|box) : float

t \muskip

(index|box) [=] muglue

> (index|box) : muglue

t \skip

(index|box) [=] glue

> (index|box) : glue

t \toks

(index|box) [=] {tokens}
> (index|box) : {tokens}

6.4.81 relax

l \norelax

t \relax

6.4.82 removeitem

t \unboundary

t \unkern

t \unpenalty

t \unskip

6.4.83 setbox

t \setbox

(index|box) [=]

6.4.84 setfont

t \nullfont

6.4.85 shorthanddef

l \Umathchardef

\cs integer

l \Umathdictdef

\cs integer integer

l \attributedef

\cs integer

t \chardef

\cs integer

t \countdef

\cs integer

t \dimendef

\cs integer

l \dimensiondef

\cs integer

l \floatdef

\cs integer

l \fontspecdef

\cs (font|integer)
l \gluespecdef

\cs integer

l \integerdef

\cs integer

l \luadef

\cs integer

t \mathchardef

\cs integer

l \mugluespecdef

\cs integer

t \muskipdef

\cs integer

l \parameterdef

\cs integer

l \positdef

\cs integer

t \skipdef

\cs integer

l \specificationdef

\cs tokens\relax

t \toksdef

\cs integer

6.4.86 someitem

t \badness

[=] integer

: integer

l \balanceshapebottomspace

integer [=] dimension

> integer : dimension

l \balanceshapetopspace

integer [=] dimension

> integer : dimension

l \balanceshapevsize

integer [=] dimension

> integer : dimension

285

e \currentgrouplevel

[=] integer

: integer

e \currentgrouptype

[=] integer

: integer

e \currentifbranch

[=] integer

: integer

e \currentiflevel

[=] integer

: integer

e \currentiftype

[=] integer

: integer

l \currentloopiterator

[=] integer

: integer

l \currentloopnesting

[=] integer

: integer

e \currentstacksize

[=] integer

: integer

l \dimexperimental

TODO

e \dimexpr

tokens\relax [=] dimension

> tokens\relax : dimension

l \dimexpression

tokens\relax [=] dimension

> tokens\relax : dimension

l \floatexpr

tokens\relax [=] float

> tokens\relax : float

l \fontcharba

integer [=] dimension

> integer : dimension

e \fontchardp

integer [=] dimension

> integer : dimension

e \fontcharht

integer [=] dimension

> integer : dimension

e \fontcharic

integer [=] dimension

> integer : dimension

l \fontcharta

integer [=] dimension

> integer : dimension

e \fontcharwd

integer [=] dimension

> integer : dimension

l \fontid

(font|integer) [=] integer

> (font|integer) : integer

l \fontmathcontrol

see \fontid

l \fontspecid

see \fontid

l \fontspecifiedsize

see \fontid

l \fontspecscale

see \fontid

l \fontspecslant

see \fontid

l \fontspecweight

see \fontid

l \fontspecxscale

see \fontid

l \fontspecyscale

see \fontid

l \fonttextcontrol

see \fontid

e \glueexpr

tokens\relax [=] glue

> tokens\relax : glue

e \glueshrink

glue [=] dimension

> glue : dimension

e \glueshrinkorder

glue [=] dimension

> glue : dimension

e \gluestretch

glue [=] integer

> glue : integer

e \gluestretchorder

glue [=] integer

> glue : integer

e \gluetomu

glue [=] glue

> glue : glue

l \glyphxscaled

[=] integer

: integer

l \glyphyscaled

[=] integer

: integer

286

l \indexofcharacter

integer [=] integer

> integer : integer

l \indexofregister

integer [=] integer

> integer : integer

t \inputlineno

[=] integer

: integer

l \insertprogress

integer [=] dimension

> integer : dimension

l \lastarguments

[=] integer

: integer

l \lastatomclass

[=] integer

: integer

l \lastboundary

[=] integer

: integer

l \lastchkdimension

[=] dimension

: dimension

l \lastchknumber

[=] integer

: integer

t \lastkern

[=] dimension

: dimension

l \lastleftclass

[=] integer

: integer

l \lastloopiterator

[=] integer

: integer

l \lastnodesubtype

[=] integer

: integer

e \lastnodetype

[=] integer

: integer

l \lastpageextra

[=] dimension

: dimension

l \lastparcontext

[=] integer

: integer

l \lastpartrigger

[=] integer

: integer

t \lastpenalty

[=] integer

: integer

l \lastrightclass

[=] integer

: integer

t \lastskip

[=] glue

: glue

l \leftmarginkern

[=] dimension

: dimension

l \luametatexmajorversion

[=] integer

: integer

l \luametatexminorversion

[=] integer

: integer

l \luametatexrelease

[=] integer

: integer

l \luatexrevision

[=] integer

: integer

l \luatexversion

[=] integer

: integer

l \mathatomglue

[=] glue

: glue

l \mathcharclass

integer [=] integer

> integer : integer

l \mathcharfam

integer [=] integer

> integer : integer

l \mathcharslot

integer [=] integer

> integer : integer

l \mathmainstyle

[=] integer

: integer

l \mathparentstyle

[=] integer

: integer

287

l \mathscale

[=] integer

: integer

l \mathstackstyle

[=] integer

: integer

l \mathstyle

[=] integer

: integer

l \mathstylefontid

[=] integer

: integer

e \muexpr

tokens\relax [=] muglue

> tokens\relax : muglue

e \mutoglue

muglue [=] glue

> muglue : glue

l \nestedloopiterator

[=] integer

: integer

l \numericscale

(integer|float) [=] integer

> (integer|float) : integer

l \numericscaled

see \numericscale

l \numexperimental

TODO

e \numexpr

tokens\relax [=] integer

> tokens\relax : integer

l \numexpression

tokens\relax [=] integer

> tokens\relax : integer

l \overshoot

[=] dimension

: dimension

l \parametercount

[=] integer

: integer

l \parameterindex

[=] integer

: integer

e \parshapedimen

integer [=] dimension

> integer : dimension

e \parshapeindent

integer [=] dimension

> integer : dimension

e \parshapelength

[=] dimension

: dimension

l \parshapewidth

[=] dimension

: dimension

l \previousloopiterator

[=] integer

: integer

l \rightmarginkern

[=] dimension

: dimension

l \scaledemwidth

(font|integer) [=] dimension

> (font|integer) : dimension

l \scaledexheight

see \scaledemwidth

l \scaledextraspace

see \scaledemwidth

l \scaledfontcharba

integer [=] dimension

> integer : dimension

l \scaledfontchardp

integer [=] dimension

> integer : dimension

l \scaledfontcharht

integer [=] dimension

> integer : dimension

l \scaledfontcharic

integer [=] dimension

> integer : dimension

l \scaledfontcharta

integer [=] dimension

> integer : dimension

l \scaledfontcharwd

integer [=] dimension

> integer : dimension

l \scaledinterwordshrink

see \scaledemwidth

l \scaledinterwordspace

see \scaledemwidth

l \scaledinterwordstretch

see \scaledemwidth

l \scaledmathaxis

mathstyle [=] dimension

> mathstyle : dimension

l \scaledmathemwidth

mathstyle [=] dimension

> mathstyle : dimension

288

l \scaledmathexheight

mathstyle [=] dimension

> mathstyle : dimension

l \scaledslantperpoint

see \scaledemwidth

6.4.87 specification

l \adjacentdemerits

[options] integer n * (integer)
: integer

l \balancefinalpenalties

TODO

l \balancepasses

[options] n * ([next] [quit]
[adjdemerits integer] [classes
integer] [demerits integer]
[emergencyfactor integer]
[emergencypercentage dimension]
[emergencystretch dimension]
[fitnessclasses <fitnessclasses>]
[identifier integer]
[ifemergencystretch integer]
[iflooseness integer] [looseness
integer] [threshold dimension]
[tolerance integer] [pagebreakchecks
integer] [pagepenalty integer])

: integer

l \balanceshape

[options] n * ([next] [index
integer] [identifier integer]
[height dimension] [top glue]
[bottom glue] [options integer])

: integer

l \brokenpenalties

see \adjacentdemerits

e \clubpenalties

see \adjacentdemerits

e \displaywidowpenalties

see \adjacentdemerits

l \fitnessclasses

see \adjacentdemerits

e \interlinepenalties

see \adjacentdemerits

l \mathbackwardpenalties

see \adjacentdemerits

l \mathforwardpenalties

see \adjacentdemerits

l \orphanlinefactors

TODO

l \orphanpenalties

see \adjacentdemerits

l \parpasses

[options] n * ([next] [quit] [skip]
[adjdemerits integer]
[adjacentdemerits
<adjacentdemerits>] [adjustspacing
integer] [adjustspacingshrink
integer] [adjustspacingstep integer]
[adjustspacingstretch integer]
[callback integer] [classes integer]
[demerits integer]
[doubleadjdemerits integer]
[doublehyphendemerits integer]
[emergencyfactor integer]
[emergencyleftextra integer]
[emergencypercentage dimension]
[emergencyrightextra integer]
[emergencystretch dimension]
[emergencywidthextra integer]
[extrahyphenpenalty integer]
[finalhyphendemerits integer]
[fitnessclasses <fitnessclasses>]
[hyphenation integer] [identifier
integer] [ifadjustspacing integer]
[ifemergencystretch integer] [ifglue
integer] [iflooseness integer]
[ifmath integer] [iftext integer]
[lefttwindemerits integer]
[linebreakchecks integer]
[linebreakcriterium integer]
[linebreakoptional integer]
[linepenalty integer] [looseness
integer] [mathpenaltyfactor integer]
[orphanpenalties] [toddlerpenalties
<toddlerpenalties>]
[righttwindemerits integer]
[threshold dimension] [tolerance
integer] [unlessmath integer])

: integer

l \parpassesexception

see \type{\parpasses}
: integer

t \parshape

[options] integer n * (dimension
dimension)

: integer

289

l \toddlerpenalties

see \adjacentdemerits

e \widowpenalties

see \adjacentdemerits

6.4.88 the

e \detokenize

{tokens}
l \expandeddetokenize

{tokens}
l \protecteddetokenize

{tokens}
l \protectedexpandeddetokenize

{tokens}
t \the

dimension

l \thewithoutunit

quantity

e \unexpanded

{tokens}

6.4.89 unhbox

t \unhbox

integer

t \unhcopy

integer

l \unhpack

integer

6.4.90 unvbox

l \copysplitdiscards

l \insertunbox

integer

l \insertuncopy

integer

e \pagediscards

e \splitdiscards

t \unvbox

integer

t \unvcopy

integer

l \unvpack

integer

6.4.91 vadjust

t \vadjust

[pre] [post] [baseline] [before]
[index integer] [after] [attr
integer integer] [depth
(after|before|check|last)]
{tokens}

6.4.92 valign

t \valign

[attr integer integer] [callback
integer] [callbacks integer]
[discard] [noskips] [reverse] [to
dimension] [spread dimension]
{tokens}

6.4.93 vcenter

t \vcenter

[target integer] [to dimension]
[adapt] [attr integer integer]
[anchor integer] [axis integer]
[shift dimension] [spread dimension]
[source integer] [direction integer]
[delay] [orientation integer]
[xoffset dimension] [xmove
dimension] [yoffset dimension]
[ymove dimension] [reverse] [retain]
[container] [mathtext]
[keepspacing] [class integer] [swap]
{tokens}

6.4.94 vmove

t \lower

dimension box

t \raise

dimension box

6.4.95 vrule

l \novrule

[attr integer [=] integer] [width
dimension] [height dimension] [depth

290

dimension] [pair dimension

dimension] [xoffset dimension]
[yoffset dimension] [running]
[discardable] [keepspacing]
[resetspacing] [left dimension]
[right dimension] [top dimension]
[bottom dimension] [on dimension]
[off dimension]

l \srule

[attr integer [=] integer] [width
dimension] [height dimension] [depth
dimension] [pair dimension

dimension] [xoffset dimension]
[yoffset dimension] [running]
[discardable] [keepspacing]
[resetspacing] [font integer] [fam
integer] [char integer]

l \virtualvrule

see \novrule

t \vrule

see \novrule

6.4.96 vskip

t \vfil

t \vfill

t \vfilneg

t \vskip

dimension [plus
(dimension|fi[n*l])] [minus
(dimension|fi[n*l])]

t \vss

6.4.97 xray

t \show

token

t \showbox

(index|box)
l \showcodestack

e \showgroups

e \showifs

t \showlists

l \showstack

t \showthe

quantity

e \showtokens

{tokens}

291

6.5 To be checked primitives (new)

dimexperimental

emptyparagraphmode

exapostrophechar

numexperimental

tolimitedfloat

292

6.6 To be checked primitives (math)

Uabove

Udelcode

Udelimited

Udelimiter

Udelimiterover

Udelimiterunder

Uhextensible

Uleft

Umathaccentbasedepth

Umathaccentbaseheight

Umathaccentbottomovershoot

Umathaccentbottomshiftdown

Umathaccentextendmargin

Umathaccentsuperscriptdrop

Umathaccentsuperscriptpercent

Umathaccenttopovershoot

Umathaccenttopshiftup

Umathaccentvariant

Umathadapttoleft

Umathadapttoright

Umathaxis

Umathbottomaccentvariant

Umathcode

Umathconnectoroverlapmin

Umathdegreevariant

Umathdelimiterextendmargin

Umathdelimiterovervariant

Umathdelimiterpercent

Umathdelimitershortfall

Umathdelimiterundervariant

Umathdenominatorvariant

Umathdictdef

Umathexheight

Umathextrasubpreshift

Umathextrasubprespace

Umathextrasubshift

Umathextrasubspace

Umathextrasuppreshift

Umathextrasupprespace

Umathextrasupshift

Umathextrasupspace

Umathflattenedaccentbasedepth

Umathflattenedaccentbaseheight

Umathflattenedaccentbottomshiftdown

Umathflattenedaccenttopshiftup

Umathfractiondelsize

Umathfractiondenomdown

Umathfractiondenomvgap

Umathfractionnumup

Umathfractionnumvgap

Umathfractionrule

Umathfractionvariant

Umathhextensiblevariant

Umathlimitabovebgap

Umathlimitabovekern

Umathlimitabovevgap

Umathlimitbelowbgap

Umathlimitbelowkern

Umathlimitbelowvgap

Umathlimits

Umathnoaxis

Umathnolimits

Umathnumeratorvariant

Umathopenupdepth

Umathopenupheight

Umathoperatorsize

Umathoverdelimiterbgap

Umathoverdelimitervariant

Umathoverdelimitervgap

Umathoverlayaccentvariant

Umathphantom

Umathprimeraise

Umathprimeraisecomposed

Umathprimeshiftdrop

Umathprimeshiftup

Umathprimespaceafter

Umathprimevariant

Umathquad

Umathradicaldegreeafter

Umathradicaldegreebefore

Umathradicaldegreeraise

Umathradicalextensibleafter

Umathradicalextensiblebefore

Umathradicalkern

Umathradicalrule

Umathradicalvariant

Umathradicalvgap

Umathruledepth

Umathruleheight

Umathskeweddelimitertolerance

Umathskewedfractionhgap

Umathskewedfractionvgap

Umathsource

Umathstackdenomdown

293

Umathstacknumup

Umathstackvariant

Umathstackvgap

Umathsubscriptsnap

Umathsubscriptvariant

Umathsubshiftdown

Umathsubshiftdrop

Umathsubsupshiftdown

Umathsubsupvgap

Umathsubtopmax

Umathsupbottommin

Umathsuperscriptsnap

Umathsuperscriptvariant

Umathsupshiftdrop

Umathsupshiftup

Umathsupsubbottommax

Umathtopaccentvariant

Umathunderdelimiterbgap

Umathunderdelimitervariant

Umathunderdelimitervgap

Umathuseaxis

Umathvextensiblevariant

Umathvoid

Umiddle

Uoperator

Uoverdelimiter

Uroot

Urooted

Uskewed

Uskewedwithdelims

Ustartdisplaymath

Ustartmath

Ustartmathmode

Ustopdisplaymath

Ustopmath

Ustopmathmode

Ustretched

Ustretchedwithdelims

Uunderdelimiter

Uvextensible

mathoptions

Many primitives starting with Umath are math parameters that are discussed elsewhere, if at all.

294

6.7 To be checked primitives (old)

295

6.8 Indexed primitives

-

/

<space>

Uabovewithdelims

Uatop

Uatopwithdelims

Umathaccent

Umathchar

Umathchardef

Umathnolimitsubfactor

Umathnolimitsupfactor

Umathoverbarkern

Umathoverbarrule

Umathoverbarvgap

Umathoverlinevariant

Umathspaceafterscript

Umathspacebeforescript

Umathspacebetweenscript

Umathunderbarkern

Umathunderbarrule

Umathunderbarvgap

Umathunderlinevariant

Umathxscale

Umathyscale

Uover

Uoverwithdelims

Uradical

Uright

above

abovedisplayshortskip

abovedisplayskip

abovewithdelims

accent

additionalpageskip

adjacentdemerits

adjdemerits

adjustspacing

adjustspacingshrink

adjustspacingstep

adjustspacingstretch

advance

advanceby

afterassigned

afterassignment

aftergroup

aftergrouped

aliased

aligncontent

alignmark

alignmentcellsource

alignmentwrapsource

aligntab

allcrampedstyles

alldisplaystyles

allmainstyles

allmathstyles

allscriptscriptstyles

allscriptstyles

allsplitstyles

alltextstyles

alluncrampedstyles

allunsplitstyles

amcode

associateunit

atendoffile

atendoffiled

atendofgroup

atendofgrouped

atop

atopwithdelims

attribute

attributedef

automaticdiscretionary

automatichyphenpenalty

automigrationmode

autoparagraphmode

badness

balanceadjdemerits

balancebottomskip

balanceboundary

balancebreakpasses

balancechecks

balanceemergencyshrink

balanceemergencystretch

balancefinalpenalties

balancelineheight

balancelooseness

balancepasses

balancepenalty

balanceshape

balanceshapebottomspace

balanceshapetopspace

balanceshapevsize

balancetolerance

296

balancetopskip

balancevsize

baselineskip

batchmode

begincsname

begingroup

beginlocalcontrol

beginmathgroup

beginmlv

beginmvl

beginsimplegroup

belowdisplayshortskip

belowdisplayskip

binoppenalty

botmark

botmarks

bottomskip

boundary

box

boxadapt

boxanchor

boxanchors

boxattribute

boxdirection

boxfinalize

boxfreeze

boxgeometry

boxinserts

boxlimit

boxlimitate

boxlimitmode

boxmaxdepth

boxmigrate

boxorientation

boxrepack

boxshift

boxshrink

boxsource

boxstretch

boxsubtype

boxtarget

boxtotal

boxvadjust

boxxmove

boxxoffset

boxymove

boxyoffset

brokenpenalties

brokenpenalty

catcode

catcodetable

cccode

cdef

cdefcsname

cf

cfcode

char

chardef

cleaders

clearmarks

clubpenalties

clubpenalty

constant

constrained

copy

copymathatomrule

copymathparent

copymathspacing

copysplitdiscards

correctionskip

count

countdef

cr

crampeddisplaystyle

crampedscriptscriptstyle

crampedscriptstyle

crampedtextstyle

crcr

csactive

csname

csnamestring

csstring

currentgrouplevel

currentgrouptype

currentifbranch

currentiflevel

currentiftype

currentloopiterator

currentloopnesting

currentlysetmathstyle

currentmarks

currentstacksize

day

dbox

deadcycles

def

defaulthyphenchar

defaultskewchar

297

defcsname

deferred

delcode

delimiter

delimiterfactor

delimitershortfall

detokened

detokenize

detokenized

dimen

dimendef

dimensiondef

dimexpr

dimexpression

directlua

discretionary

discretionaryoptions

displayindent

displaylimits

displayskipmode

displaystyle

displaywidowpenalties

displaywidowpenalty

displaywidth

divide

divideby

doublehyphendemerits

doublepenaltymode

dp

dpack

dsplit

dump

edef

edefcsame

edefcsname

edivide

edivideby

efcode

else

emergencyextrastretch

emergencyleftskip

emergencyrightskip

emergencystretch

end

endcsname

endgroup

endinput

endlinechar

endlocalcontrol

endmathgroup

endmvl

endsimplegroup

enforced

eofinput

eqno

errhelp

errmessage

errorcontextlines

errorstopmode

escapechar

etexexprmode

etoks

etoksapp

etokspre

eufactor

everybeforepar

everycr

everydisplay

everyeof

everyhbox

everyjob

everymath

everymathatom

everypar

everytab

everyvbox

exceptionpenalty

exhyphenchar

exhyphenpenalty

expand

expandactive

expandafter

expandafterpars

expandafterspaces

expandcstoken

expanded

expandedafter

expandeddetokenize

expandedendless

expandedloop

expandedrepeat

expandparameter

expandtoken

expandtoks

explicitdiscretionary

explicithyphenpenalty

explicititaliccorrection

explicitspace

298

fam

fi

finalhyphendemerits

firstmark

firstmarks

firstvalidlanguage

fitnessclasses

float

floatdef

floatexpr

floatingpenalty

flushmarks

flushmvl

font

fontcharba

fontchardp

fontcharht

fontcharic

fontcharta

fontcharwd

fontdimen

fontid

fontidentifier

fontmathcontrol

fontname

fontspecdef

fontspecid

fontspecifiedname

fontspecifiedsize

fontspecscale

fontspecslant

fontspecweight

fontspecxscale

fontspecyscale

fonttextcontrol

forcedleftcorrection

forcedrightcorrection

formatname

frozen

futurecsname

futuredef

futureexpand

futureexpandis

futureexpandisap

futurelet

gdef

gdefcsname

givenmathstyle

gleaders

glet

gletcsname

glettonothing

global

globaldefs

glue

glueexpr

glueshrink

glueshrinkorder

gluespecdef

gluestretch

gluestretchorder

gluetomu

glyph

glyphdatafield

glyphoptions

glyphscale

glyphscriptfield

glyphscriptscale

glyphscriptscriptscale

glyphslant

glyphstatefield

glyphtextscale

glyphweight

glyphxoffset

glyphxscale

glyphxscaled

glyphyoffset

glyphyscale

glyphyscaled

gtoksapp

gtokspre

halign

hangafter

hangindent

hbadness

hbadnessmode

hbox

hccode

hfil

hfill

hfilneg

hfuzz

hj

hjcode

hkern

hmcode

holdinginserts

holdingmigrations

299

hpack

hpenalty

hrule

hsize

hskip

hss

ht

hyphenation

hyphenationmin

hyphenationmode

hyphenchar

hyphenpenalty

if

ifabsdim

ifabsfloat

ifabsnum

ifarguments

ifboolean

ifcase

ifcat

ifchkdim

ifchkdimension

ifchkdimexpr

ifchknum

ifchknumber

ifchknumexpr

ifcmpdim

ifcmpnum

ifcondition

ifcramped

ifcsname

ifcstok

ifdefined

ifdim

ifdimexpression

ifdimval

ifempty

iffalse

ifflags

iffloat

iffontchar

ifhaschar

ifhastok

ifhastoks

ifhasxtoks

ifhbox

ifhmode

ifinalignment

ifincsname

ifinner

ifinsert

ifintervaldim

ifintervalfloat

ifintervalnum

iflastnamedcs

iflist

ifmathparameter

ifmathstyle

ifmmode

ifnum

ifnumexpression

ifnumval

ifodd

ifparameter

ifparameters

ifrelax

iftok

iftrue

ifvbox

ifvmode

ifvoid

ifx

ifzerodim

ifzerofloat

ifzeronum

ignorearguments

ignoredepthcriterion

ignorenestedupto

ignorepars

ignorerest

ignorespaces

ignoreupto

immediate

immutable

indent

indentskip

indexedsubprescript

indexedsubscript

indexedsuperprescript

indexedsuperscript

indexofcharacter

indexofregister

inherited

initcatcodetable

initialpageskip

initialtopskip

input

inputlineno

300

insert

insertbox

insertcopy

insertdepth

insertdistance

insertheight

insertheights

insertlimit

insertlinedepth

insertlineheight

insertmaxdepth

insertmode

insertmultiplier

insertpenalties

insertpenalty

insertprogress

insertshrink

insertstorage

insertstoring

insertstretch

insertunbox

insertuncopy

insertwidth

instance

integerdef

interactionmode

interlinepenalties

interlinepenalty

jobname

kern

language

lastarguments

lastatomclass

lastboundary

lastbox

lastchkdimension

lastchknumber

lastkern

lastleftclass

lastlinefit

lastloopiterator

lastnamedcs

lastnodesubtype

lastnodetype

lastpageextra

lastparcontext

lastpartrigger

lastpenalty

lastrightclass

lastskip

lccode

leaders

left

lefthangskip

lefthyphenmin

leftmarginkern

leftskip

lefttwindemerits

leqno

let

letcharcode

letcsname

letfrozen

letmathatomrule

letmathparent

letmathspacing

letprotected

lettolastnamedcs

lettonothing

limits

linebreakchecks

linebreakoptional

linebreakpasses

linedirection

linepenalty

lineskip

lineskiplimit

localbreakpar

localbrokenpenalty

localcontrol

localcontrolled

localcontrolledendless

localcontrolledloop

localcontrolledrepeat

localinterlinepenalty

localleftbox

localleftboxbox

localmiddlebox

localmiddleboxbox

localpretolerance

localrightbox

localrightboxbox

localtolerance

long

looseness

lower

lowercase

lpcode

301

luaboundary

luabytecode

luabytecodecall

luacopyinputnodes

luadef

luaescapestring

luafunction

luafunctioncall

luametatexmajorversion

luametatexminorversion

luametatexrelease

luatexbanner

luatexrevision

luatexversion

mark

marks

mathaccent

mathatom

mathatomglue

mathatomskip

mathbackwardpenalties

mathbeginclass

mathbin

mathboundary

mathchar

mathcharclass

mathchardef

mathcharfam

mathcharslot

mathcheckfencesmode

mathchoice

mathclass

mathclose

mathcode

mathdictgroup

mathdictionary

mathdictproperties

mathdirection

mathdiscretionary

mathdisplaymode

mathdisplaypenaltyfactor

mathdisplayskipmode

mathdoublescriptmode

mathendclass

matheqnogapstep

mathfontcontrol

mathforwardpenalties

mathgluemode

mathgroupingmode

mathinlinepenaltyfactor

mathinner

mathleftclass

mathlimitsmode

mathmainstyle

mathnolimitsmode

mathop

mathopen

mathord

mathparentstyle

mathpenaltiesmode

mathpretolerance

mathpunct

mathrel

mathrightclass

mathrulesfam

mathrulesmode

mathscale

mathscriptsmode

mathslackmode

mathspacingmode

mathstack

mathstackstyle

mathstyle

mathstylefontid

mathsurround

mathsurroundmode

mathsurroundskip

maththreshold

mathtolerance

maxdeadcycles

maxdepth

meaning

meaningasis

meaningful

meaningfull

meaningles

meaningless

medmuskip

message

middle

mkern

month

moveleft

moveright

mskip

muexpr

mugluespecdef

multiply

302

multiplyby

muskip

muskipdef

mutable

mutoglue

mvlcurrentlyactive

nestedloopiterator

newlinechar

noalign

noaligned

noatomruling

noboundary

noexpand

nohrule

noindent

nolimits

nomathchar

nonscript

nonstopmode

nooutputboxerror

norelax

normalizelinemode

normalizeparmode

normalunexpanded

noscript

nospaces

nosubprescript

nosubscript

nosuperprescript

nosuperscript

novrule

nulldelimiterspace

nullfont

number

numericscale

numericscaled

numexpr

numexpression

omit

open

optionalboundary

options 4

or

orelse

orphanlinefactors

orphanpenalties

orunless

outer

output

outputbox

outputpenalty

over

overfullrule

overline

overloaded

overloadmode

overshoot

overwithdelims

pageboundary

pagedepth

pagediscards

pageexcess

pageextragoal

pagefilllstretch

pagefillstretch

pagefilstretch

pagefistretch

pagegoal

pagelastdepth

pagelastfilllstretch

pagelastfillstretch

pagelastfilstretch

pagelastfistretch

pagelastheight

pagelastshrink

pagelaststretch

pageshrink

pagestretch

pagetotal

pagevsize

par

parametercount

parameterdef

parameterindex

parametermark

parametermode

parattribute

pardirection

parfillleftskip

parfillrightskip

parfillskip

parindent

parinitleftskip

parinitrightskip

paroptions

parpasses

parpassesexception

parshape

303

parshapedimen

parshapeindent

parshapelength

parshapewidth

parskip

patterns

pausing

penalty

permanent

pettymuskip

positdef

postdisplaypenalty

postexhyphenchar

posthyphenchar

postinlinepenalty

postshortinlinepenalty

prebinoppenalty

predisplaydirection

predisplaygapfactor

predisplaypenalty

predisplaysize

preexhyphenchar

prehyphenchar

preinlinepenalty

prerelpenalty

preshortinlinepenalty

presuperscript

pretolerance

prevdepth

prevgraf

previousloopiterator

primescript

protected

protecteddetokenize

protectedexpandeddetokenize

protrudechars

protrusionboundary

pxdimen

quitloop

quitloopnow

quitvmode

radical

raise

rdivide

rdivideby

realign

relax

relpenalty

resetlocalboxes

resetmathspacing

restorecatcodes

restorecatcodetable

retained

retokenized

right

righthangskip

righthyphenmin

rightmarginkern

rightskip

righttwindemerits

romannumeral

rpcode

savecatcodetable

savinghyphcodes

savingvdiscards

scaledemwidth

scaledexheight

scaledextraspace

scaledfontcharba

scaledfontchardp

scaledfontcharht

scaledfontcharic

scaledfontcharta

scaledfontcharwd

scaledfontdimen

scaledinterwordshrink

scaledinterwordspace

scaledinterwordstretch

scaledmathaxis

scaledmathemwidth

scaledmathexheight

scaledmathstyle

scaledslantperpoint

scantextokens

scantokens

scriptfont

scriptscriptfont

scriptscriptstyle

scriptspace

scriptspaceafterfactor

scriptspacebeforefactor

scriptspacebetweenfactor

scriptstyle

scrollmode

semiexpand

semiexpanded

semiprotected

semprotected

304

setbox

setdefaultmathcodes

setfontid

setlanguage

setmathatomrule

setmathdisplaypostpenalty

setmathdisplayprepenalty

setmathignore

setmathoptions

setmathpostpenalty

setmathprepenalty

setmathspacing

sfcode

shapingpenaltiesmode

shapingpenalty

shipout

shortinlinemaththreshold

shortinlineorphanpenalty

show

showbox

showboxbreadth

showboxdepth

showcodestack

showgroups

showifs

showlists

shownodedetails

showstack

showthe

showtokens

singlelinepenalty

skewchar

skip

skipdef

snapshotpar

spacechar

spacefactor

spacefactormode

spacefactoroverload

spacefactorshrinklimit

spacefactorstretchlimit

spaceskip

span

special

specificationdef

splitbotmark

splitbotmarks

splitdiscards

splitextraheight

splitfirstmark

splitfirstmarks

splitlastdepth

splitlastheight

splitlastshrink

splitlaststretch

splitmaxdepth

splittopskip

srule

string

subprescript

subscript

superprescript

superscript

supmarkmode

swapcsvalues

tabsize

tabskip

tabskips

textdirection

textfont

textstyle

the

thewithoutunit

thickmuskip

thinmuskip

time

tinymuskip

tocharacter

toddlerpenalties

todimension

tohexadecimal

tointeger

tokenized

toks

toksapp

toksdef

tokspre

tolerance

tolerant

tomathstyle

topmark

topmarks

topskip

toscaled

tosparsedimension

tosparsescaled

tpack

tracingadjusts

305

tracingalignments

tracingassigns

tracingbalancing

tracingcommands

tracingexpressions

tracingfitness

tracingfullboxes

tracinggroups

tracinghyphenation

tracingifs

tracinginserts

tracinglevels

tracinglists

tracingloners

tracinglooseness

tracinglostchars

tracingmacros

tracingmarks

tracingmath

tracingmvl

tracingnesting

tracingnodes

tracingonline

tracingorphans

tracingoutput

tracingpages

tracingparagraphs

tracingpasses

tracingpenalties

tracingrestores

tracingstats

tracingtoddlers

tsplit

uccode

uchyph

uleaders

unboundary

undent

underline

unexpanded

unexpandedendless

unexpandedloop

unexpandedrepeat

unhbox

unhcopy

unhpack

unkern

unless

unletfrozen

unletprotected

unpenalty

unskip

untraced

unvbox

unvcopy

unvpack

uppercase

vadjust

valign

variablefam

vbadness

vbadnessmode

vbalance

vbalancedbox

vbalanceddeinsert

vbalanceddiscard

vbalancedinsert

vbalancedreinsert

vbalancedtop

vbox

vcenter

vfil

vfill

vfilneg

vfuzz

virtualhrule

virtualvrule

vkern

vpack

vpenalty

vrule

vsize

vskip

vsplit

vsplitchecks

vss

vtop

wd

widowpenalties

widowpenalty

wordboundary

wrapuppar

write

xdef

xdefcsname

xleaders

xspaceskip

xtoks

306

xtoksapp

xtokspre

year

307

308

7 Callbacks

7.1 Introduction

Right from the start of the LuaTEX project callbacks were the way to extend the engine. At various

places in processing the document source and typesetting the text the engine checks if there is a

callback set and if so, calls out to Lua. Here we collect the various callbacks. For examples you can

consult the ConTEXt code base.

The callback library has functions that register, find and list callbacks. Callbacks are Lua functions

that are called in well defined places. There are two kinds of callbacks: those that mix with existing

functionality, and those that (when enabled) replace functionality. In most cases the second category is

expected to behave similar to the built in functionality because in a next step specific data is expected.

For instance, you can replace the hyphenation routine. The function gets a list that can be hyphenated

(or not). The final list should be valid and is (normally) used for constructing a paragraph. Another

function can replace the ligature builder and/or kern routine. Doing something else is possible but in

the end might not give the user the expected outcome.

In order for a callback to kick in you need register it. This can be permanent or temporarily.

id = callback.register(<t:string> callback_name, <function> func)

id = callback.register(<t:string> callback_name, nil)

id = callback.register(<t:string> callback_name, false)

Here the callback_name is a predefined callback name as discusses in following sections. The function

returns the internal id of the callback or nil, if the callback could not be registered. LuaMetaTEX

internalizes the callback function in such a way that it does not matter if you redefine a function

accidentally.

Callback assignments are always global. You can use the special value nil instead of a function for

clearing the callback.

For some minor speed gain, you can assign the boolean false to the non-file related callbacks, doing

so will prevent LuaTEX from executing whatever it would execute by default (when no callback function

is registered at all). This needs checking.

<table> info = callback.list()

The keys in the table are the known callback names, the value is a boolean where true means that

the callback is currently set (active).

<function> f = callback.find(callback_name)

If the callback is not set, find returns nil. The known function can be used to check if a callback is

supported.

if callback.known("foo") then

-- do what is needed

end

309

7.2 Files

7.2.1 find_log_file

This is one of the callbacks that has to be set in order for the engine to work at all.

function (

<t:string> askedname

)

return <t:string> foundname

end

7.2.2 find_format_file

A format file is an efficient memory dump of the (in our case ConTEXt) macro package. In LuaTEX it

can have a mix of TEXand Lua code but one should be aware that storing the Lua state is not up to the

engine.

function (<t:string> askedname)

return <t:string> foundname

end

A format file can be read from any valid location but is always written in the current directory. When

written the number of bytes for each section is reported. When read all kind of checks take place ijn

order to intercept corruption or incompatibilities. Contrary to LuaTEX, the LuaMetaTEX is not (zip)

compressed so, in spite of more aggressive compression of data otherwise the file is a bit larger.

7.2.3 open_data_file

This callback function gets a filename passed. The return value is either the boolean value false or a

table with two functions. A mandate reader function fill be called once for each new line to be read,

the optional close function will be called once LuaTEX is done with the file.

function (

<t:string> filename

)

return <table> {

<function> reader(<table> environment) end,

<function> close (<table> environment) end,

}

end

LuaMetaTEX never looks at the rest of the table, so we can use it to store additional per-file data. Both

the callback functions will receive the table as their only argument.

7.2.4 start_file

This callback replaces the code that LuaMetaTEX prints when a file is opened like (filename for

regular files. The category is a number:

310

function (

<t:integer> category,

<t:string> filename

)

-- no return values

end

The following categories can occur:

value meaning

1 a normal data file, like a TEX source

2 a font map coupling font names to resources

3 an image file (png, pdf, etc)

4 an embedded font subset

5 a fully embedded font

7.2.5 stop_file

This callback replaces the code that LuaMetaTEX prints when a file is closed like the) for regular files.

function (

<t:integer> category

)

-- no return values

end

7.3 Running

7.3.1 process_jobname

This callback allows you to change the jobname given by \jobname in TEX and tex.jobname in Lua. It

does not affect the internal job name or the name of the output or log files.

function (

<t:string> jobname

)

return <t:string> adjusted_jobname

end

The only argument is the actual job name; you should not use tex.jobname inside this function or infi

nite recursion may occur. If you return nil, LuaMetaTEX will pretend your callback never happened.

This callback does not replace any internal code.

7.3.2 pre_dump

This function is called just before dumping to a format file starts. It does not replace any code and there

are neither arguments nor return values. It can be used to do some cleanup and other housekeeping.

function (

311

-- no arguments

)

-- no return values

end

7.3.3 start_run

function(

-- no arguments

)

-- no return values

end

This callback replaces the code that prints LuaTEX's banner. Note that for successful use, this callback

has to be set in the Lua initialization script, otherwise it will be seen only after the run has already

started.

7.3.4 stop_run

function(

-- no arguments

)

-- no return values

end

This callback replaces the code that prints LuaTEX's statistics and ‘output written to’ messages. The

engine can still do housekeeping and therefore you should not rely on this hook for postprocessing

the pdf or log file.

7.3.5 intercept_tex_error

This callback is run from inside the TEX error function, and the idea is to allow you to do some extra

reporting on top of what TEX already does (none of the normal actions are removed). You may find

some of the values in the status table useful. The TEX related callback gets two arguments: the

current processing mode and a boolean indicating if there was a runaway.

function (

-- no arguments

)

-- no return values

end

7.3.6 intercept_lua_error

This callback is similar to the one discussed in the previous section but for Lua. Of course we should

in a recoverable state for this to work well.

function (

-- no arguments

312

)

-- no return values

end

7.3.7 show_error_message

This callback replaces the code that prints the error message. The usual interaction after the message

is not affected but it is best to quit the run after reporting.

function (

-- no arguments

)

-- no return values

end

7.3.8 show_warning_message

This callback replaces the code that prints a (non fatal) warning message. The usual interaction after

the message is not affected.

function (

-- no arguments

)

-- no return values

end

7.3.9 wrapup_run

This callback is called after the pdf and log files are closed. Use it at your own risk. efine_f risk.

function (

-- no arguments

)

-- no return values

end

7.3.10 handle_overload

One characteristic of TEX is that you have quite some control over what a control sequence triggers.

For instance, \hbox normally starts a horizontal box but a user can redefine this primitive as macro

to do whatever is required. This means that when other macros use this primitive their behavior will

change. One way out of this is using aliases, for instance:

\normalsetbox0\normalhbox{test}

\normalifdim\normalwd0>10pt \normalbox0 \normalfi

But even these normal aliases can be redefined. Of course you can use special characters like _ in

names but once you start doing this:

\p_setbox0\p_hbox{test}

313

\p_ifdim\p_wd0>10pt \p_box0 \p_fi

you should wonder if you still offer the user TEX as a programming language. It's not the route that

ConTEXt takes.

In LuaMetaTEX every macro (including primitives) can be flagged and that happens with so called

prefixes. Traditional TEX offers:

\global\def\foo{...}

\long \def\foo{...} % no-op

\outer \def\foo{...} % no-op

The \long and \outer made sense at that time but are no-ops in LuaMetaTEX: every macro can take

\par equivalents as arguments and can be defined at every level. The 𝜀-TEX extensions introduced

this prefix:

\protected\def\foo{...}

which prevents expansion unless the value is really expected (needed). The LuaMetaTEX engine added:

\semiprotected\def\foo{...}

but when eventually I see no reason to use it in ConTEXt it might be dropped. A special prefix is:

\constant\def\foo{...}

This effectively is equivalent to \edef but signals that in some scenarios (like an \csname equivalent

situation) no expansion and checking has to happen which improves performance.

These two prefixes are just signals to Lua driven functionality:

\deferred \foo

\immediate \foo

The prefixes do nothing except when \foo are Lua calls that can use this information to adapt behavior.

Because we have no backend the macro package has to come up with equivalents for e.g. \write than

can be immediate or deferred (default) operations.

Another prefix relates to alignments:

\noaligned\protected\def\foo{...}

Which makes a macro accepted between alignment rows where otherwise protected macros will trig

ger an error due to look ahead.

A definition with \def or \gdef can take arguments and these can be made optional with:

\def\tolerant[#1]{...}

but there are more features related to tolerant:

\def\tolerant[#1]#*[#2]{...}

that are discusses in low level manuals. Users can define macros that are reported (in tracing) as if

they were primitives:

314

\untraced\protected\def\foo{...}

The prefixes \constrained and \retained relate to register values being saved and restored in

groups. The \inherited is used in for instance math spacing assignments where we need dynamic

binding to for instance \muskip registers (instead of values).

Although not related to the callback discussed here we mentioned these prefixes because they belong

to the prefixed_cmd operator/operand pair. So to come back to users being able to use primitives

instead of funny unreadable aliases. It's good to keep in mind that one can combine prefixes like the

following:

\frozen \foo{...}

\immutable \foo{...}

\instance \foo{...}

\mutable \foo{...}

\overloaded\foo{...}

\permanent \foo{...}

so this is valid too:

\global\permanent\untraced\tolerant\protected\def\foo[#1]#*[#2]{...}

So what do these prefixes do? It depends on the value of an internal integer \overloadmode where

the following values have meaning:

immutable permanent primitive frozen instance

1 warning ⋆ ⋆ ⋆
2 error ⋆ ⋆ ⋆
3 warning ⋆ ⋆ ⋆ ⋆
4 error ⋆ ⋆ ⋆ ⋆
5 warning ⋆ ⋆ ⋆ ⋆ ⋆
6 error ⋆ ⋆ ⋆ ⋆ ⋆

The \enforced prefix can be used to bypass this mechanism:

\permanent\protected\def\foo{...}

\protected\def\oof{\enforced\def\foo{...}}

But only in so called quote ini mode, that is when the format file is created. In order to save work we

also have:

\aliased\let\foo\relax

This makes \foo a copy (or more precise, a reference) including all flags, so in this case it will be

flagged a a primitive which is \permanent too. You cannot define primitives yourself but when reported

in a trace you see it being a primitive indeed.

Of course this all means that one has to define basically all relevant macros with a combination of

prefixes and that happens to be the case in ConTEXt, which in the end makes this callback a rather

ConTEXt specific one.

function (

315

<t:boolean> error,

<t:integer> overload,

<t:string> csname,

<t:integer> flags

)

-- no return values

end

7.4 Fonts

7.4.1 define_font

The engine has no font loader but it does need some information about the glyphs that are uses like

width, height and depth, possibly italic correction, kerns, and ligatures. And for math some more

information is needed. Keep in mind that for instance italic correction is something specific for TEX and

that kerns and ligatures only are needed when you leave them to the engine. For modern OpenType

fonts we let Lua deal with this.

function (

<t:string> name,

<t:integer> size

)

return <t:integer> id

end

The string name is the filename part of the font specification, as given by the user, for instance when

\font is used for defining an instance. The number size is a bit special:

• If it is positive, it specifies an ‘at size’ in scaled points.

• If it is negative, its absolute value represents a ‘scaled’ setting relative to the design size of the

font.

The font can be defined with font.define which returns a font identifier that can be returned in the

callback. Contrary to LuaTEX, in LuaMetaTEX we only accept a number.

The internal structure of the font table that is passed to font.define is explained elsewhere but

there can be much more in that table. Likely the macro package will keep the passes table around for

other usage, for instance for usage in the backend.

Setting this callback to false is pointless because it will prevent font loading completely because

without fonts there is little to do for the engine.

7.4.2 quality_font

When you use font expansion you will normally pass the glyph specific expansion and compression

values along with the dimensions. However, this can be delayed. When we use par passes (or other

wise set one of the adjust parameters) and a font has not yet bee setup for expansion this callback will

kick in but only once per font.

function (

316

<t:integer> id

)

-- no return values

end

The function can set additional parameters in the font and pass them to TEX using helpers from the

font library.

7.5 Typesetting

7.5.1 pre_output

This callback is called when TEX is ready to start boxing the box 255 for \output. The callback does

not replace any internal code.

function (

<t:node> head,

<t:string> groupcode,

<t:integer> size,

<t:string> packtype,

<t:integer> maxdepth,

<t:integer> direction

)

return <t:node> newhead

end

7.5.2 buildpage

This callback is called whenever LuaMetaTEX is ready to move stuff to the main vertical list. You can

use this callback to do specialized manipulation of the page building stage like imposition or column

balancing.

function (

<t:string> extrainfo

)

-- no return values

end

The string extrainfo gives some additional information about what TEX's state is with respect to the

‘current page’. The possible values for this callback are:

value explanation

alignment a (partial) alignment is being added

after_output an output routine has just finished

new_graf the beginning of a new paragraph

vmode_par \par was found in vertical mode

hmode_par \par was found in horizontal mode

insert an insert is added

penalty a penalty (in vertical mode)

317

before_display immediately before a display starts

after_display a display is finished

end LuaMetaTEX is terminating (it's all over)

7.5.3 hpack

This callback is called when TEX is ready to start boxing some horizontal mode material. Math items

and line boxes are ignored at the moment. The callback does not replace any internal code.

function (

<t:node> head,

<t:string> groupcode,

<t:integer> size,

<t:string> packtype

<t:integer> direction,

<t:node> attributelist

)

return <t:node> newhead

end

The packtype is either additional or exactly. If additional, then the size is a \hbox spread ...

argument. If exactly, then the size is a \hbox to In both cases, the number is in scaled points.

7.5.4 vpack

This callback is called when TEX is ready to start boxing some vertical mode material. Math displays

are ignored at the moment. The callback does not replace any internal code.

This function is very similar to hpack. Besides the fact that it is called at different moments, there is

an extra variable that matches TEX's \maxdepth setting.

function (

<t:node> head,

<t:string> groupcode,

<t:integer> size,

<t:string> packtype,

<t:integer> maxdepth,

<t:integer> direction,

<t:node> attributelist

)

return <t:node> newhead

end

7.5.5 hyphenate

This callback is supposed to insert discretionary nodes in the node list it receives.

function (

<t:node> head,

<t:node> tail

318

)

-- no return values

end

Setting this callback to false will prevent the internal discretionary insertion pass.

7.5.6 ligaturing

This callback, which expects no return values, has to apply ligaturing to the node list it receives.

function (

<t:node> head,

<t:node> tail

)

-- no return values

end

You don't have to worry about return values because the head node that is passed on to the callback is

guaranteed not to be a glyph_node (if need be, a temporary node will be prepended), and therefore it

cannot be affected by the mutations that take place. After the callback, the internal value of the ‘tail

of the list’ will be recalculated.

The next of head is guaranteed to be non-nil. The next of tail is guaranteed to be nil, and therefore

the second callback argument can often be ignored. It is provided for orthogonality, and because it

can sometimes be handy when special processing has to take place.

Setting this callback to false will prevent the internal ligature creation pass. You must not ruin the

node list. For instance, the head normally is a local par node, and the tail a glue. Messing too much

can push LuaTEX into panic mode.

7.5.7 kerning

This callback has to apply kerning between the nodes in the node list it receives. See ligaturing for

calling conventions.

function (

<t:node> head,

<t:node> tail

)

-- no return values

end

Setting this callback to false will prevent the internal kern insertion pass. You must not ruin the node

list. For instance, the head normally is a local par node, and the tail a glue. Messing too much can

push LuaTEX into panic mode.

7.5.8 glyph_run

When set this callback is triggered when TEX normally handles the ligaturing and kerning. In Lua-

TEX you use the hpack and pre_linebreak callbacks for that (where each passes different arguments).

319

This callback doesn't get triggered when there are no glyphs (in LuaTEX this optimization is controlled

by a a variable).

function (

<t:node> head,

<t:string> groupcode,

<t:integer> direction

)

return <t:node> newhead

end

The traditional TEX font processing is bypassed so you need to take care of that with the helpers. (For

the moment we keep the ligaturing and kerning callbacks but they are kind of obsolete.)

7.5.9 pre_linebreak

This callback is called just before LuaTEX starts converting a list of nodes into a stack of \hboxes, after

the addition of \parfillskip. The callback does not replace any internal code.

function (

<t:node> head,

<t:string> groupcode

)

return <t:node> newhead

end

The string called groupcode identifies the nodelist's context within TEX's processing. The range of

possibilities is given in the table below, but not all of those can actually appear here, some are for the

hpack and vpack callbacks.

value explanation

<empty> main vertical list

hbox \hbox in horizontal mode

adjusted_hbox \hbox in vertical mode

vbox \vbox

vtop \vtop

align \halign or \valign

disc discretionaries

insert packaging an insert

vcenter \vcenter

local_box \localleftbox or \localrightbox

split_off top of a \vsplit

split_keep remainder of a \vsplit

align_set alignment cell

fin_row alignment row

As for all the callbacks that deal with nodes, the return value can be one of three things:

• boolean true signals successful processing

• <t:node> signals that the ‘head’ node should be replaced by the returned node

• boolean false signals that the ‘head’ node list should be ignored and flushed from memory

320

7.5.10 linebreak

This callback replaces LuaTEX's line breaking algorithm. The callback does not replace any internal

code.

function (

<t:node> head,

<t:boolean> is_display

)

return <t:node> newhead

end

The returned node is the head of the list that will be added to the main vertical list, the boolean

argument is true if this paragraph is interrupted by a following math display.

If you return something that is not a <t:node>, LuaTEX will apply the internal linebreak algorithm on

the list that starts at <head>. Otherwise, the <t:node> you return is supposed to be the head of a list

of nodes that are all allowed in vertical mode, and at least one of those has to represent an \hbox.

Failure to do so will result in a fatal error.

Setting this callback to false is possible, but dangerous, because it is possible you will end up in an

unfixable ‘deadcycles loop’.

7.5.11 post_linebreak

This callback is called just after LuaTEX has converted a list of nodes into a stack of \hboxes.

function (

<t:node> head,

<t:string> groupcode

)

return <t:node> newhead

end

7.5.12 append_to_vlist

This callback is called whenever LuaTEX adds a box to a vertical list (the mirrored argument is obso

lete):

function (

<t:node> box,

<t:string> locationcode,

<t:integer> prevdepth

)

return <t:node> list [, <t:integer> prevdepth [, <t:boolean> checkdepth]]

end

It is ok to return nothing or nil in which case you also need to flush the box or deal with it your

self. The prevdepth is also optional. Locations are box, alignment, equation, equation_number and

post_linebreak. When the third argument returned is true the normal prevdepth correction will be

applied, based on the first node.

321

7.5.13 alignment

This is an experimental callback that when set is called several times during the construction of an

alignment. The context values are available in tex.getalignmentcontextvalues().

function (

<t:node> head,

<t:string> context,

<t:node> attributes,

<t:node> preamble

)

-- no return values

end

There are no sanity checks so if a user messes up the passed node lists the results can be unpredictable

and, as with other node related callbacks, crash the engine.

7.5.14 local_box

Local boxes are a somewhat tricky and error prone feature so use this callback with care because the

paragraph is easily messed up. A line can have a left, right and middle box where the middle one has

no width. This callback does not replace any internal code. The callback gets quite some parameters

passed:

function (

<t:node> linebox,

<t:node> leftbox,

<t:node> rightbox,

<t:node> middlebox,

<t:integer> linenumber,

<t:integer> leftskip,

<t:integer> rightskip,

<t:integer> lefthang,

<t:integer> righthang,

<t:integer> indentation,

<t:integer> parinitleftskip,

<t:integer> parinitrightskip,

<t:integer> parfillleftskip,

<t:integer> parfillrightskip,

<t:integer> overshoot

)

-- no return values

end

This is an experimental callback that will be tested in different ConTEXt mechanisms before it will be

declared stable.

7.5.15 packed_vbox

After the vpack callback (see previous section) is triggered the box get packed and after that this

callback can be configured to kick in.

322

function (

<t:node> head,

<t:string> groupcode

)

return <t:node> newhead

end

7.5.16 handle_uleader

The \uleaders command inserts a user leader into the list. When a list get packed and has such

leaders, a run over the list happens after packing so that it can be finalized.

function (

<t:node> head,

<t:string> context,

<t:integer> index,

<t:node> box,

<t:integer> location

)

return <t:node> head

end

7.5.17 italic_correction

The concept of italic correction is very much related to traditional TEX fonts. At least in 2024 it is

absent from OpenType although it has some meaning in OpenType math. In TEX this correction is

normally inserted by \/ although in LuaMetaTEX we also have \explicititaliccorrection as well

as \forcedleftcorrection and \forcedrightcorrection.

When this callback is enabled it gets triggered when one of left or right correction commands is given

and the returned kern is then used as correction.

function (

<t:node> glyph,

<t:integer> kern,

<t:integer> subtype,

)

return <t:integer> kern

end

7.5.18 insert_par

Each paragraph starts with a local par node that keeps track of for instance the direction. You can

hook a callback into the creator:

function (

<t:node> par,

<t:string> location

)

323

-- no return values

end

There is no return value and you should make sure that the node stays valid as otherwise TEX can get

confused.

7.5.19 append_line

Every time a line is added this callback is triggered, when set. migrated material and adjusts also

qualify as such and the detail relates to the adjust index.

function (

<t:node> head,

<t:node> tail,

<t:string> context,

<t:integer> detail

)

return <t:node> newhead

end

A list of possible context values can be queried with tex.getappendlinecontextvalues().

7.5.20 insert_distance

This callback is called when the page builder adds an insert. There is not much control over this

mechanism but this callback permits some last minute manipulations of the spacing before an insert,

something that might be handy when for instance multiple inserts (types) are appended in a row.

function (

<t:integer> class,

<t:integer> order

)

return <t:integer> register

end

The return value is a number indicating the skip register to use for the prepended spacing. This

permits for instance a different top space (when class equals one) and intermediate space (when

class is larger than one). Of course you can mess with the insert box but you need to make sure that

LuaTEX is happy afterwards.

7.5.21 begin_paragraph

Every time a paragraph starts this callback, when configured, will kick in:

function (

<t:boolean> invmode,

<t:boolean> indented,

<t:string> context

)

return <t:boolean> indented

324

end

There are many places where a new paragraph can be triggered:

0x00 normal 0x04 dbox 0x08 output 0x0C math

0x01 vmode 0x05 vcenter 0x09 align 0x0D lua

0x02 vbox 0x06 vadjust 0x0A noalign 0x0E reset

0x03 vtop 0x07 insert 0x0B span

7.5.22 paragraph_context

When the return value of this callback is false the paragraph related settings, when they have been

updated, will not be updated.

function (

<t:string> context

)

return <t:boolean> ignore

end

7.5.23 missing_character

This callback is triggered when a character node is created and the font doesn't have the requested

character.

function (

<t:integer> location,

<t:node> glyph,

<t:integer> font,

<t:integer> character

)

-- no return value

end

When \tracinglostchars is set to a positive value a message goes to the log and a value larger than

one also makes it show up non the terminal. In the callback, the location is one of:

0x01 textglyph 0x02 mathglyph 0x03 mathkernel

7.5.24 process_character

This callback is experimental and gets called when a glyph node is created and the callback field in a

character is set.

function (

<t:integer> font,

<t:integer> character

)

-- no return value

end

325

7.5.25 tail_append

7.6 Tracing

7.6.1 hpack_quality

This callback can be used to intercept the overfull messages that can result from packing a horizontal

list (as happens in the par builder). The function takes a few arguments:

function (

<t:string> incident,

<t:integer> detail,

<t:node> head,

<t:integer> first,

<t:integer> last

)

return <t:node> whatever

end

The incident is one of overfull, underfull, loose or tight. The detail is either the amount of overflow

in case of overfull, or the badness otherwise. The head is the list that is constructed (when protrusion

or expansion is enabled, this is an intermediate list). Optionally you can return a node, for instance

an overfull rule indicator. That node will be appended to the list (just like TEX's own rule would).

7.6.2 vpack_quality

This callback can be used to intercept the overfull messages that can result from packing a vertical

list (as happens in the page builder). The function takes a few arguments:

function (

<t:string> incident,

<t:integer> detail,

<t:node> head,

<t:integer> first,

<t:integer> last

)

-- no return values

end

The incident is one of overfull, underfull, loose or tight. The detail is either the amount of overflow

in case of overfull, or the badness otherwise. The head is the list that is constructed.

7.6.3 line_break

This callback is actually a set of callbacks that has to be deals with as a whole. The main reason

why we have this callback is that we wanted to be able to see what the par builder is doing, especially

when we implement multiple paragraph building passes. This makes the callback pretty much a rather

ConTEXt specific one.

326

We can also consider fetching the passive and active lists because we now keep much more info around.

function(

<t:integer> context,

<t:integer> checks,

...

)

-- no return values

end

function initialize (

<t:integer> context,

<t:integer> checks,

<t:integer> subpasses

)

-- no return values

end

function start (

<t:integer> context,

<t:integer> checks,

<t:integer> pass,

<t:integer> subpass,

<t:integer> classes,

<t:integer> decent

)

-- no return values

end

function stop (

<t:integer> context,

<t:integer> checks,

<t:integer> demerits

)

-- no return values

end

function collect (

<t:integer> context,

<t:integer> checks

)

-- no return values

end

function line (

<t:integer> context,

<t:integer> checks,

<t:integer> box,

<t:integer> badness,

<t:integer> overshoot,

<t:integer> shrink,

327

<t:integer> stretch,

<t:integer> line,

<t:integer> serial

)

-- no return values

end

function delete (

<t:integer> context,

<t:integer> checks,

<t:integer> serial

)

-- no return values

end

function wrapup (

<t:integer> context,

<t:integer> checks,

<t:integer> demerits,

<t:integer> looseness

)

-- no return values

end

function check (

<t:integer> context,

<t:integer> checks,

<t:integer> pass,

<t:integer> subpass,

<t:integer> serial,

<t:integer> prevserial,

<t:integer> linenumber,

<t:integer> nodetype,

<t:integer> fitness,,

<t:integer> demerits,

<t:integer> classes,

<t:integer> badness,

<t:integer> demerits,

<t:node> breakpoint,

<t:integer> short,

<t:integer> glue,

<t:integer> linewidth

)

return <t:integer> demerits -- optional

end

function list (

<t:integer> context,

<t:integer> checks,

<t:integer> serial

)

328

-- no return values

end

Every one of these gets a context and checks passes. Possible contexts are:

0x00 initialize 0x03 stop 0x06 delete

0x01 start 0x04 collect 0x07 report

0x02 list 0x05 line 0x08 wrapup

The checks parameters is the value of \linebreakchecks which makes it possible to plug in actions

depending on that number. To give an idea if what gets called, this is what you get when typesetting

tufte.tex: initialize, start, report, delete, delete, stop, start, report, report, delete, report, report,

report, delete, delete, report, report, report, delete, report, delete, delete, report, report, report,

delete, report, delete, delete, report, report, delete, report, report, delete, delete, delete, report,

delete, report, delete, delete, report, report, report, delete, delete, report, delete, report, report,

delete, report, delete, delete, delete, report, report, delete, report, report, delete, report, delete,

report, delete, report, delete, delete, report, report, report, report, delete, delete, delete, delete,

delete, delete, delete, delete, delete, report, stop, collect, list, list, list, list, list, list, list, list, list, line,

line, line, line, line, line, line, line, line, wrapup.

7.6.4 show_build

You can trace (and even influence) the page builder with this callback. It comes in several variants

that are called during the process. Callbacks like these assume that one knows what is going on in

the engine.

function initialize (

<t:integer> context

)

-- no return values

end

function step (

<t:integer> context,

<t:node> current,

<t:integer> pagegoal,

<t:integer> pagetotal

)

-- no return values

end

function check (

<t:integer> context,

<t:node> current,

<t:boolean> moveon,

<t:boolean> fireup,

<t:integer> badness,

<t:integer> costs,

<t:integer> penalty

)

return <t:boolean> moveon, <t:boolean> fireup

329

end

function skip (

<t:integer> context,

<t:node> current,

)

-- no return values

end

function move (

<t:integer> context,

<t:node> current,

<t:integer> lastheight,

<t:integer> lastdepth,

<t:integer> laststretch,

<t:integer> lastshrink,

<t:boolean> hasstretch

)

-- no return values

end

function fireup (

<t:integer> context,

<t:node> current

)

-- no return values

end

function wrapup (

<t:integer> context

)

-- no return values

end

7.6.5 show_whatsit

Because we only have a generic whatsit it is up to the macro package to provide details when tracing

them.

function (

<t:node> whatsit,

<t:integer> indentation,

<t:integer> tracinglevel,

<t:integer> currentlevel,

<t:integer> inputlevel

)

-- no return value

end

Here indentation tells how many periods are to be typeset if you want to be compatible with the

rest of tracing. The tracinglevel indicates if the current level and/or input level are shown cf.

\tracinglevels. Of course one is free to show whatever in whatever way suits the whatsit best.

330

7.6.6 linebreak_quality

function (

<t:node> par,

<t:integer> id,

<t:integer> pass,

<t:integer> subpass,

<t:integer> subpasses,

<t:integer> state,

<t:integer> overfull,

<t:integer> underfull,

<t:integer> verdict,

<t:integer> classified,

<t:integer> line

)

return <t:node> result

end

7.6.7 show_loners

In spite of widow, club, broken and shaping penalties we can have single lines in the result. When set,

this callback replaces the output that normally \tracingloners produces.

function (

<t:integer> options,

<t:integer> penalty

)

return <t:node> result

end

The options are those set on the encountered penalty:

0x0000 normal 0x0020 toddlered 0x0800 doubleused

0x0001 mathforward 0x0040 widow 0x1000 factorused

0x0002 mathbackward 0x0080 club 0x2000 endofpar

0x0004 orphaned 0x0100 broken 0x4000 ininsert

0x0008 widowed 0x0200 shaping 0x8000 finalbalance

0x0010 clubbed 0x0400 double

7.6.8 get_attribute

Because attributes are abstract pairs of indices and values the reported properties makes not much

sense and are very macro package (and user) dependent. This callback permits more verbose report

ing by the engine when tracing is enabled.

function (

<t:integer> index,

<t:integer> value

)

return <t:string>, <t:string>

331

end

7.6.9 get_noad_class

We have built-in math classes but there can also be user defined ones. This callback can be used to

report more meaningful strings instead of numbers when tracing.

function (

<t:integer> class

)

return <t:string>

end

7.6.10 get_math_dictionary

todo

7.6.11 show_lua_call

When the engine traces something that involves a Lua call it makes sense to report something more

meaningful than just that. This callback can be used provide a meaningful string (like the name of a

function).

function (

<t:string> name,

<t:integer> index

)

return <t:string>

end

7.6.12 trace_memory

When the engine starts all kind of memory is pre-allocated> depending on the configuration more

gets allocated when a category runs out of memory. The LuaMetaTEX engine is more dynamic than

LuaTEX. If this callback is set it will get called as follows:

function (

<t:string> category,

<t:boolean> success

)

-- no return value

end

The boolean indicates if the allocation has been successful. One can best quit the run when this one

is false which the engine is likely to do that anyway, be in in a less graceful way that you might like.

7.6.13 paragraph_pass

This callback is not yet stable.

332

7.7 Math

7.7.1 mlist_to_hlist

This callback replaces LuaTEX's math list to node list conversion algorithm.

function (

<t:node> head,

<t:string> display_type,

<t:boolean> need_penalties

)

return <t:node> newhead

end

The returned node is the head of the list that will be added to the vertical or horizontal list, the string

argument is either ‘text’ or ‘display’ depending on the current math mode, the boolean argument is

true if penalties have to be inserted in this list, false otherwise.

Setting this callback to false is bad, it will almost certainly result in an endless loop.

7.7.2 math_rule

In math rules are used for fractions, radicals and accents. In the case of radicals rules mix with glyphs

to build the symbol. In ConTEXt we can enable an alternate approach that uses glyphs instead of rules

so that we can have more consistent shapes, for instance with slopes or non square endings. This

callback takes care of that.

function (

<t:integer> subtype,

<t:integer> font,

<t:integer> width,

<t:integer> height,

<t:node> attributes

)

return <t:node> rule

end

7.7.3 make_extensible

Like math_rule this callback is used to construct nicer extensibles in ConTEXt math support. It can

optionally be followed by register_extensible.

function (

<t:node> extensible,

<t:integer> fnt,

<t:integer> chr,

<t:integer> size,

<t:integer> width,

<t:integer> height,

333

<t:integer> depth,

<t:integer> linewidth,

<t:integer> axis,

<t:integer> exheight,

<t:integer> emwidth

)

return <t:node> -- boxed extensible

end

7.7.4 register_extensible

This callback is a possible follow up on make_extensible and it can be used to share pre-build exten

sibles or package them otherwise (for instance as Type3 glyph).

function (

<t:integer> fnt,

<t:integer> chr,

<t:integer> size,

<t:node> attributes,

<t:node> extensible

)

return <t:node> -- boxed

end

7.7.5 balance

This callback is comparable with the line_break callback. We use it for tracing in ConTEXt during

development (as well as for documentation).

7.7.6 balance_insert

This is callback kicks in every time an insert is seen when balancing.

function (

<t:node> current,

<t:integer> callback,

<t:integer> insert_index,

<t:integer> insert_identifier

)

-- no return value

end

7.7.7 balance_boundary

When balancing, this is callback kicks in every time a node resulting from \balanceboundary is seen.

function (

<t:integer> boundary_data,

<t:integer> boundary_reserved,

334

<t:integer> shape_identifier,

<t:integer> shape_slot

)

return

<t:integer>, -- action

<t:integer>, -- penalty

<t:integer> -- extra

end

What happens after the callback returns control to TEX depends on the first return value:

getbalancecallbackvalues

there is no function tex.getgetbalancecallbackvalues

This is an experimental feature. In due time there will be a bit more explanation here.

335

336

337

8 Fonts

8.1 Introduction

The LuaTEX engine changed the approach to loading fonts and processing kerns and ligatures by

introducing a Lua loader and callbacks for processing replacement and positioning features. In Lua-

MetaTEX we go a step further and no longer load fonts otherwise than with Lua. In the end, all that TEX

needs are a few dimensions and optionally ligature and kerning tables. Of course for math a bit more

is needed but even there we can safely delegate all loading to Lua. In LuaMetaTEX we still have the

traditional kerning and ligature built in because after all that method is the reference for traditional

fonts and the amount of code needed is relatively small.

The backend is gone, so here the final font inclusion is also done by Lua. This means that in the engine

the amount of code involved in that is zero. In the engine we have glyphs and glyphs traditionally carry

a font identifier (an number) and a glyph reference (also a number). Both are used to fetch the width,

height, depth, italic correction ans some more from the fonts registered in the engine. For TEX a font is

more of an abstraction that from Lua, where we can manipulate details and deal with the real shapes.

In LuaMetaTEX the situation is simplified on the one hand, read: no font loader, but complicated on the

other, for instance because we have dynamic scaling. In this chapter we discuss what data is stored

in glyphs, what primitives are involved, and how loading takes place. Because a lot can be done in

Lua and because there are no standards involved, we don't need to discuss how a macro package is

supposed to deal with all this; one can consider ConTEXt as a reference implementation if needed.

Removing the font loader and backend had relatively little impact on ConTEXt because we already did

most in Lua, but as we developed LuaMetaTEX both subsystems evolved further. Especially moving

more backend processing to Lua had some impact on performance but in the end the engine is much

faster so we gained that back. Additions to the font system, like dynamic scaling of course have

impact too but we could also limit the amount of fonts that get loaded which compensates for any

loss in performance. The most complicated and demanding part of the backend code is that what

deals with fonts: sharing, subsetting, devirtualizing, scaling, effects like weight, slanting, expansion,

accuracy, accessibility, . . ., all of that has to be dealt with.

In this chapter we discuss a few aspects like primitives, defining fonts, Lua helpers, and virtual fonts,

but for a more complete picture one really has to read the documents that describe how all evolved,

how fonts are used in ConTEXt as well as look at how we apply all this. There is no reason to repeat

everything here, especially because for most users this is not something they need to know. There are

dedicated manuals and articles that cover different aspects.

8.2 Primitives

8.2.1 Basic properties

Although primitives are discusses in their own chapter we repeat some here because it impacts fol

lowing sections. Let's start with the commands that change the look and feel of a font:

\begingroup glyphs represent characters \endgroup

\begingroup \glyphscale 1200 glyphs represent characters \endgroup

338

\begingroup \glyphxscale 1200 glyphs represent characters \endgroup

\begingroup \glyphyscale 800 glyphs represent characters \endgroup

\begingroup \glyphslant 200 glyphs represent characters \endgroup

\begingroup \glyphweight 200 glyphs represent characters \endgroup

This results in:

glyphs represent characters

glyphs represent characters
glyphs represent characters

glyphs represent characters

glyphs represent characters

glyphs represent characters

These parameters are applied to glyphs that get added to the current list of nodes. Whenever the

engine (or the Lua end) needs a dimension, two scales have to be applied, depending on the dimension

being horizontal or vertical. Sometimes the slant and weight also have to be taken into account. Later

we will see that we have additional math scaling so you can imagine that applying a handful of scales

has a bit of impact on the code and also performance. However, the later will not be noticed because

computers are fast enough.

Here is how we can apply the scaling factors to dimensions:

{\glyphxscale 1500 \the\glyphxscaled 100pt} and

{\glyphyscale 750 \the\glyphyscaled 100pt} and

{\glyphscale 1500 \glyphxscale 500 \the\glyphxscaled 100pt}

We get: 150.0pt and 75.0pt and 75.0pt. In scenarios like these you need to keep in mind that the

currently set scales also apply. The main reason why we use these 1000 based factor is that it is the

way TEX does things. We could have used posits instead but those were added later so for now it's

factors that dominate.

8.2.2 Specifications

A font is loaded at a specific size, so these properties start from that: the design size and the requested

size which results in a scaling factor. Every font has a number so here we have:

\tf \the \fontid \font \hskip1cm

\bf \the \fontid \font \hskip1cm

\sl \the \fontid \font

1 4 7

A set of settings can be combined in specification, here \font is the current font, from which the

specification takes the identifier.

\fontspecdef \MyFontA \font xscale 2000 yscale 800 weight 200 slant 200 \relax

\fontspecdef \MyFontB \font all 1000 1500 800 250 150 \relax

\begingroup \MyFontA Is this neat or not? \endgroup

\begingroup \MyFontB Is this neat or not? \endgroup

Is this neat or not?

339

Is this neat or not?

Instead of an id an already defined specification can be given in which case we start from a copy:

\fontspecdef \MyFontA 2 all 1000

\fontspecdef \MyFontB \MyFontA xscale 1200

Say that we have:

\fontspecdef\MyFoo\font xscale 1200 \relax

The four properties of such a specification can then be queried as follows:

[\the\fontspecid \MyFoo]

[\the\fontspecscale \MyFoo]

[\the\fontspecxscale \MyFoo]

[\the\fontspecyscale \MyFoo]

[\the\fontspecifiedsize\MyFoo]

[\fontspecifiedname \MyFoo]

[1] [1000] [1200] [1000] [10.0pt] [Serif sa 1]

A font specification obeys grouping but is not a register. Like \integerdef and \dimendef it is just a

control sequence with a special meaning.

If you read about compact font mode in ConTEXt, this is what we're using there. It started out by more

aggressive sharing and scaling but eventually all five properties were integrated in a fast font switch.

However, setting these five properties, even with one command has some overhead because they are

saved on the save stack. Okay, that was a bit if a lie: no one will notice that overhead:

\fontspecdef \MyFontA \font

scale 1100 xscale 2000 yscale 800 weight 200 slant 200

\relax

\fontspecdef \MyFontB \font

scale 1200 xscale 1000 yscale 200 weight 100 slant 100

\relax

A 100.000 times {\MyFontA\MyFontB} grouped expansion takes 0.02 seconds runtime on my 2018 lap

top, which is just noise once we start processing text: 100.000 times {\MyFontA efficient \MyFontB

efficient} takes 1.4 seconds and 100.000 times {\MyFontA test \MyFontB test} takes 0.4 sec

onds. Guess why.

8.2.3 Offsets

These two parameters control the horizontal and vertical shift of glyphs with, when applied to a stretch

of them, the horizontal offset probably being the least useful. The values default to the currently set

values. Here is a ConTEXt example:

\ruledhbox \bgroup

\ruledhbox {\glyph yoffset 1ex xoffset -.5em 123}

\ruledhbox {\glyph yoffset 1ex 125}

\ruledhbox \bgroup

340

baseline

\glyphyoffset 1ex \glyphxscale 800 \glyphyscale \glyphxscale

raised%

\egroup

\egroup

Visualized:

{ }
baseline

raised

8.2.4 Math scales and identifiers

More details about fonts in math mode can be found in the chapters about math and primitives so

here we just mention a few of these primitives. The internal \glyphtextscale, \glyphscriptscale

and \glyphscriptscriptscale registers can be set to enforce additional scaling of math, like this:

$ a = b^2 = c^{d^2}$

$\glyphtextscale 800 a = b^2 = c^{d^2}$

$\glyphscriptscale 800 a = b^2 = c^{d^2}$

$\glyphscriptscriptscale 800 a = b^2 = c^{d^2}$

You can of course set them all in any mix as long as the value is larger than zero and doesn't ex

ceed 1000. In ConTEXt we use this for special purposes so don't mess with it there. as there can be

unexpected (but otherwise valid) side effects.

𝑎 = 𝑏2 = 𝑐𝑑2

𝑎 = 𝑏2 = 𝑐𝑑
2

𝑎 = 𝑏2 = 𝑐𝑑2

𝑎 = 𝑏2 = 𝑐𝑑2

The next few reported values depend on the font setup. A math font can be loaded at a certain scale

and further scaled on the fly. An open type math font comes with recommended script and script script

scales and gets passed to the engine scaled. The values reported by \mathscale are additional scales.

$\the\mathscale\textfont \zerocount$

$\the\mathscale\scriptfont \zerocount$

$\the\mathscale\scriptscriptfont\zerocount$

gives: 1000 1000 1000

In math mode the font id depends on the style because there we have a family of three related fonts

or the same font with different scales. In this document we get the following identifiers:

$\the\mathstylefontid\scriptscriptstyle \fam$

$\the\mathstylefontid\scriptstyle \fam$

$\the\mathstylefontid\textstyle \fam$

Gives: 2 2 2, which is no surprise because we use the same font for all sizes combined with the smaller

field options discusses later. In ConTEXt math uses compact font mode with in-place scaling by default.

8.2.5 Scaled fontdimensions

When you use \glyphscale, \glyphxscale and/or \glyphyscale the font dimensions also scale. The

values that are currently used can be queried:

341

dimension scale xscale yscale

\scaledemwidth ⋆ ⋆
\scaledexheight ⋆ ⋆
\scaledextraspace ⋆ ⋆
\scaledinterwordshrink ⋆ ⋆
\scaledinterwordspace ⋆ ⋆
\scaledinterwordstretch ⋆ ⋆
\scaledslantperpoint ⋆ ⋆

The next table shows the effective sized when we scale by 2000. The last two columns scale twice:

the shared scale and the 𝑥 or 𝑦 scale.

\scaledemwidth 20.0 20.0 10.0 40.0 20.0

\scaledexheight 10.38086 5.19043 10.38086 10.38086 20.76172

\scaledextraspace 2.11914 2.11914 1.05957 4.23828 2.11914

\scaledinterwordshrink 2.11914 2.11914 1.05957 4.23828 2.11914

\scaledinterwordspace 6.35742 6.35742 3.17871 12.71484 6.35742

\scaledinterwordstretch 3.17871 3.17871 1.58936 6.35742 3.17871

\scaledslantperpoint 0.0 0.0 0.0 0.0 0.0

8.2.6 Character properties

The \fontcharwd, \fontcharht, \fontchardp and \fontcharic give access to character proper

ties. To this repertoire LuaMetaTEX adds the top and bottom accent accessors \fontcharta and

\fontcharba that came in handy for tracing. You pass a font reference and character code. Nor

mally only OpenType math fonts have this property.

8.2.7 Glyph options

In LuaTEX the \noligs and \nokerns primitives suppress these features but in LuaMetaTEX these

primitives are gone. They are replace by a more generic control primitive \glyphoptions. This nu

merical parameter is a bitset with the following fields:

0x00000000 normal 0x00000800 mathsitalicstoo

0x00000001 noleftligature 0x00001000 mathartifact

0x00000002 norightligature 0x00002000 weightless

0x00000004 noleftkern 0x00004000 spacefactoroverload

0x00000008 norightkern 0x00008000 checktoddler

0x00000010 noexpansion 0x00010000 checktwin

0x00000020 noprotrusion 0x00020000 istoddler

0x00000040 noitaliccorrection 0x00040000 iscontinuation

0x00000080 nozeroitaliccorrection 0x00080000 keepspacing

0x00000100 applyxoffset 0x01000000 userfirst

0x00000200 applyyoffset 0x40000000 userlast

0x00000400 mathdiscretionary

The effects speak for themselves. They provide detailed control over individual glyph, this because

the current value of this option is stored with glyphs. In ConTEXt we have commands that set flags

342

like that and also make sure that there is no interference in setting them. it's good to know that some

of these options are there so that we can properly demonstrate, discuss and document LuaMetaTEX

behavior. The current value of this parameter is 0x18080 but that can of course change because we

experiment with options and bit positions might change over time, which is why we can query the

engine.

8.3 Nodes

This chapter is not about nodes so we keep this section short. A glyph node is an important one and

a page easily has a few thousand of them. When a list that has glyphs nodes is processed, depending

on the font quite some passes over that list are made in order to sort out substitutions, alternatives

and ligatures as well as font kerning and anchoring. When the paragraph is constructed these glyphs

are consulted and dimensions and expansion properties are accessed and scaling can happen. These

glyph nodes are among the largest and have many fields. To what extend you can use these fields

depends on the macro package and the reason is that some of these fields also affect the backend and

the backend is provided by the macro package. When the script/language combination that you use

supports hyphenation, there can be discretionary nodes that have a pre, post and/or replace compo

nent set that are node lists that can contain glyph nodes and whenever we mess around with glyphs

we also need to check these.

The most important fields are font and character, as these uniquely point to what shape is used.

That also means that at the Lua end we can have more information than TEX needs and can do things

that TEX in its role as constructor is unaware of. The par builder doesn't really care what it deals with,

it only needs dimensions and maybe some properties.

The data, state, script and protected fields are used for instance by ConTEXt and in particular

the font handler. There are primitives that can query and set these fields, like \glyphdatafield,

\glyphscriptfield and \glyphstatefield.

These primitives can be used to set an additional glyph properties. Of course it's very macro package

dependent what is done with that. It started with just the first one as experiment, simply because we

had some room left in the glyph data structure. It's basically an single attribute. Then, when we got

rid of the ligature pointer we could either drop it or use that extra field for some more, and because

ConTEXt already used the data field, that is what happened. The script and state fields are shorts, that

is, they run from zero to 0xFFFF where we assume that zero means ‘unset’. Although they can be used

for whatever purpose their use in ConTEXt is fixed. So far for a historical note.

The language field is used by the hyphenator but can also be used by the macro package. The lhmin

and rhmin are only useful for the hyphenator and these values are set by the language mechanisms

and primitives. The discpart bitset registers what the engine did which can be handy for tracing.

We already mentioned scales, slant and weight and these go to fields scale, xscale, yscale, slant

and weight. The expansion, raise, left, right, xoffset and yoffset can be set by TEX but also

by the font handler. Messing with any of these fields at the TEX end is easy but one really should

take into account what the macro packages needs them for and does with them at the Lua end and in

the backend. In that respect LuaMetaTEX lets the user free but it also means that you cannot expect

macro packages (assuming that ConTEXt is not the only user) to behave the same.

The various math subsystems use properties, group and index and again this also macro package

specific. The options bitset controls all kind of processes in the engine when it comes to using glyphs

(user level \glyphoptions) as do control and hyphenate.

343

It would take many pages to explain all this so again we just refer to how ConTEXt uses these fields,

the way they can be set from TEX and accessed in Lua. In the end, all the users see of this is shapes

anyway, while macro packages integrate and present these as features.

8.4 Loading

A font is normally defined by \font which in LuaMetaTEX is just a trigger for a callback. You can

even do without that primitive because you can load a font and then use \setfontid or the previously

mentioned specification to switch to a font. The callback, discussed in the callbacks chapter, gets a

name and size, and is supposed to return a font identifier. You can use the name to locate and load

a font, register the font using the following function, which gives you an identifier that satisfies the

callback.

function font.define (<t:table> font, <t:integer> id)

return <t:integer> id

end

with respect to \font it's good to know that the engine accept a braced argument as a font name:

\font\myfont = {My Fancy Font}

This allows for embedded spaces, without the need for double quotes. Macro expansion takes place

inside the argument. Although in ConTEXt LMTX we don't use the \font for defining fonts, it still can

be uses.

The font table is mandate but the identifier is optional. The table has the following fields, most of

which concern math. The name field is mandate because it is needed in various feedback scenarios.

key type description

name string metric (file) name

original string the name used in logging and feedback

designsize number expected size (default: 655360 == 10pt)

size number the required scaling (by default the same as designsize)

compactmath boolean use the smaller fields in lookups

mathcontrol bitset this controls various options in the math engine

textcontrol bitset this controls various options in the text engine

nomath boolean don't check for math parameters and properties

characters table the defined glyphs of this font

fonts table locally used fonts

parameters table parameters by index and/or key

MathConstants table OpenType math parameter

hyphenchar number default: TEX's \hyphenchar

skewchar number default: TEX's \skewchar

textscale number scale applied to math text

scriptscale number scale applied to math script

scriptscriptscale number scale applied to math script script

textxscale number horizontal scale applied to math text

scriptxscale number horizontal scale applied to math script

344

scriptxscriptscale number horizontal scale applied to math script script

textyscale number vertical scale applied to math text

scriptyscale number vertical scale applied to math script

scriptyscriptscale number vertical scale applied to math script script

textweight number weight applied to math text

scriptweight number weight applied to math script

scriptscriptweight number weight applied to math script script

There are three tables that need their own explanation. The parameters table is a hash with mixed key

types. There are seven possible string keys, as well as a number of integer indices. The seven strings

are actually used instead of the bottom seven indices, because that gives a nicer user interface. There

are additional indexed entries possible for math fonts but nowadays one will use OpenType math fonts

so these no longer make sense.

name index

slant 1

space 2

spacestretch 3

spaceshrink 4

xheight 5

quad 6

extraspace 7

The characters table can be pretty large when we have OpenType fonts. In ConTEXt we use Unicode

as encoding which means that glyphs are organized as such. This also means that we have a hash and

not an indexed array due to gaps. There can be more data in the glyph sub tables than the engine

needs because the engine only picks up those that it needs. You can also later decide to pass additional

properties and even glyphs to the engine, but changes can of course have consequences because at

some point the backend will pick up data and use that. Additions are fine but changes have to be

consistent. Of course it all depends on how you implement a backend.

When a character in the input is turned into a glyph node, it gets a character code that normally refers

to an entry in that table. For proper paragraph building and math rendering the fields in the tables

below can best be present in an entry in the characters table. As said, you can of course add all

kind of extra fields. The engine only uses those that it needs for typesetting a paragraph or formula.

The sub tables that define ligatures and kerns are also hashes with integer keys, and these indices

should point to entries in the main characters table. The fields common to text and math chartacters

are: callback, compression, depth, expansion, height, italic, kerns, leftprotrusion, ligatures,

rightprotrusion, tag, width.

Providing ligatures and kerns via this table permits TEX to construct ligatures and add inter-character

kerning. However, normally you will use an OpenType font in combination with Lua code that does

this. In ConTEXt we have base mode that uses the engine, and node mode that uses Lua. A mono

spaced font normally has no ligatures and inter character kerns and is normally not processed at all.

We can group the parameters. All characters have the following base set. It must be noted here that

OpenType doesn't have a italic property and that the height and depth are also not part of the design:

one can choose to derive them from the bounding box.

key type description

345

width number width in sp (default 0)

height number height in sp (default 0)

depth number depth in sp (default 0)

italic number italic correction in sp (default 0)

There are four parameters that are more optional and relate to advanced optical paragraph optimiza

tion:

key type description

leftprotruding number left protruding factor (\lpcode)

rightprotruding number right protruding factor (\rpcode)

expansion number expansion factor (\efcode)

compression number compression factor (\cfcode)

The left and right protrusion factors as well as the expansion factor are comparable to the ones intro

duced by pdfTEX, but compression is new and complements expansion. In LuaMetaTEX the expansion

mechanism is also available in math. You might have noticed that we don't have expansion related

parameters in the main font table. This is because we have a more dynamic model. These values

are anyway only used when \protrudechars and/or \adjustspacing are set. The later can also be

controlled by so called par passes and thereby applied more selectively. Because setting these fields

using specific glyph properties can take time, it is also possible to delay these settings till a dedicated

callback is triggered when they are needed.

From TEX we inherit the following tables. Ligatures are only used in so call base mode, when the

engine does the font magic. Kerns are used in base mode text and optionally in math.

key type description

ligatures table ligaturing information

kerns table kerning information

The next fields control the engine and are a variant on TEX's tfm tag property. In a future we might

provide a bit more (local) control although currently we see no need. Originally the tag and next field

were combined into a packed integer but in current LuaMetaTEX we have a 32 bit tag and the next

field moved to the math blob as it only is used as variant selector.

key type description

tag number a bitset, currently not really exposed

In a math font characters have many more fields: bottomanchor, bottomleft, bottommargin, botto

movershoot, bottomright, extensible, flataccent, innerlocation, innerxoffset, inneryoffset,

keepbase, leftmargin, mathkerns, mirror, parts, rightmargin, smaller, topanchor, topleft, top

margin, topovershoot, topright.

key type description

smaller number the next smaller math size character

mirror number a right to left alternative

flataccent number an accent alternative with less height (OpenType)

next number ‘next larger’ character index

346

topleft number alternative script kern

topright number alternative script kern

bottomleft number alternative script kern

bottomright number alternative script kern

topmargin number alternative accent calculation margin

bottomargin number alternative accent calculation margin

leftmargin number alternative accent calculation margin

rightmargin number alternative accent calculation margin

topovershoot number accent width tolerance

bottomovershoot number accent width tolerance

topanchor number horizontal top accent alignment position

bottomanchor number horizontal bottom accent alignment position

innerlocation string left or right

innerxoffset number radical degree horizontal position

inneryoffset number radical degree vertical position

parts table constituent parts of an extensible

partsitalic number the italic correction applied with the extensible

partsorientation number horizontal or vertical

mathkerns table math cut-in specifications

extensible table stretch a fixed width accent to fit

In LuaMetaTEX combined with ConTEXt MkXL we go beyond OpenType math and have more fields

here than in LuaTEX. In ConTEXt those values are set with so called tweaks and defined in so called

font goody files. This relates to the extended math rendering engine in LuaMetaTEX.

Bidirectional math is also supported and driven by (in ConTEXt speak) tweaks which means that it has

to be set up explicitly as it uses a combination of fonts. The mirror field points to an alternative glyph.

The smaller field points to a script glyph alternative and that glyph can then point to a script script

one (in OpenType speak ssty alternates respectively one 1 and 2). In ConTEXt is also uses specific

features of the font subsystems that hook into the backend where we have a more advanced virtual

font subsystem than in LuaTEX. Because this is macro package dependent it will not be discussed here.

Here is the character ‘f’ (decimal 102) in the font cmr10 at 10pt. The numbers that represent dimen

sions are in scaled points. Of course you will use Latin Modern OpenType instead but the principles

are the same:

[102] = {

["width"] = 200250,

["height"] = 455111,

["depth"] = 0,

["italic"] = 50973,

["kerns"] = {

[63] = 50973,

[93] = 50973,

[39] = 50973,

[33] = 50973,

[41] = 50973

347

},

["ligatures"] = {

[102] = { ["char"] = 11, ["type"] = 0 },

[108] = { ["char"] = 13, ["type"] = 0 },

[105] = { ["char"] = 12, ["type"] = 0 }

}

}

In ConTEXt, when they are really needed, we normally turn these traditional eight bit fonts into em

ulated OpenType (Unicode) fonts so there you will only encounter tables like this when we process a

font in base mode.

Two very special string indexes can be used also: leftboundary is a virtual character whose ligatures

and kerns are used to handle word boundary processing. rightboundary is similar but not actually

used for anything (yet).

The values of topanchor, bottomanchor and mathkern are used only for math accent and superscript

placement, see page ?? in this manual for details. The italic corrections are a story in themselves

and discussed in detail in other manuals. The additional parameters that deal with kerns, margins,

overshoots, inner anchoring, etc. are engine specific and not part of OpenType. More information

can be found in the ConTEXt distribution; they relate the upgraded math engine project by Mikael and

Hans.

A math character can have a next field that points to a next larger shape. However, the presence of

extensible will overrule next, if that is also present. The extensible field in turn can be overruled

by parts, the OpenType version. The extensible table is very simple:

key type description

top number top character index

mid number middle character index

bot number bottom character index

rep number repeatable character index

The parts entry is an arrays of components. Each of those components is itself a hash of up to five

keys:

key type description

glyph number character index

extender number (1) if this part is repeatable, (0) otherwise

start number maximum overlap at the starting side (scaled points)

end number maximum overlap at the ending side (scaled points)

advance number advance width of this item (width is default)

The traditional (text and math) kerns table is a hash indexed by character index (and ‘character index’

is defined as either a non-negative integer or the string value rightboundary), with the values of the

kerning to be applied, in scaled points.

The traditional (text) ligatures table is a hash indexed by character index (and ‘character index’ is

defined as either a non-negative integer or the string value rightboundary), with the values being yet

another small hash, with two fields:

348

key type description

type number the type of this ligature command (default 0)

char number the character index of the resultant ligature

The char field in a ligature is required. The type field inside a ligature is the numerical or string

value of one of the eight possible ligature types supported by TEX. When TEX inserts a new ligature,

it puts the new glyph in the middle of the left and right glyphs. The original left and right glyphs

can optionally be retained, and when at least one of them is kept, it is also possible to move the new

‘insertion point’ forward one or two places. The glyph that ends up to the right of the insertion point

will become the next ‘left’.

textual (Knuth) number string result

l + r =: n 0 =: |n

l + r =:| n 1 =:| |nr

l + r |=: n 2 |=: |ln

l + r |=:| n 3 |=:| |lnr

l + r =:|> n 5 =:|> n|r

l + r |=:> n 6 |=:> l|n

l + r |=:|> n 7 |=:|> l|nr

l + r |=:|>> n 11 |=:|>> ln|r

The default value is 0, and can be left out. That signifies a ‘normal’ ligature where the ligature replaces

both original glyphs. In this table the | indicates the final insertion point.

The third table has the MathConstants as the camel case name suggests. These are not discussed

here. The fonts table relates to virtual fonts that are discussed later.

8.5 Helpers

Without argument this function returns the current font identifier and when an identifier is passed

that one is made current.

function font.current (<t:nil> | <t:integer>)

-- no return value

end

This returns the maximum font identifier in use:

function font.max ()

return <t:integer> -- identifier

end

This one defines a font but needs an identifier, for instance reserved by font.nextid. The table is the

same as with font.define.

function font.setfont (<t:integer> identifier, <t:table> data)

-- no return value

end

The next function can be used to add characters to a font. The table is the same as the table used

when defining the characters in a font. The identifier must be known.

349

function font.addcharacters (<t:integer> identifier, <t:table> characters)

-- no return value

end

When protrusion or expansion data is needed for a character in a font and the relevant values are not

yet known, a callback can be triggered and the next function can then be used to assign these.

function font.addquality (

<t:integer> identifier,

<t:table> characters

)

-- no return value

end

The table looks like this:

{

[index] = {

leftprotrusion = <t:integer>,

rightprotrusion = <t:integer>,

expansion = <t:integer>,

compression = <t:integer>,

},

...

}

Sometimes it can be handy to check what the next identifier will be. The optional boolean, when true,

makes that the font is allocated.

function font.nextid (<t:nil> | <t:boolean>)

return <t:integer> -- identifier

end

This function does a lookup by name and returns the font identifier when it's known:

function font.id (<t:string> name)

return <t:integer> -- identifier

end

The value that gets returned or is assigned is always an integer because that is what these parameters

are: scaled dimensions, percentages, factors.

function font.getfontdimen (

<t:integer> identifier,

<t:integer> parameter

)

return <t:integer> -- value

end

function font.setfontdimen (

<t:integer> identifier,

<t:integer> parameter,

350

<t:integer> value

)

-- no return value

end

This one returns the properties that relate to a \fontspecdef:

function font.getfontspec (<t:string> name)

return

<t:integer>, -- identifier

<t:integer>, -- scale

<t:integer>, -- xscale

<t:integer>, -- yscale

<t:integer>, -- slant

<t:integer> -- weight

end

Math characters are not really defined along with a font but their family can bind them to one. How

ever, in ConTEXt we have them decoupled and families are assigned fonts when the need is there.

function font.getmathspec ()

return

<t:integer>, -- class

<t:integer>, -- family

<t:integer> -- character

end

Internally a math font parameter has a number. This function returns that number plus a boolean

indicating if we have an variable that is not officially in OpenType math but an addition to the Lua-

MetaTEX engine.

function font.getmathindex (<t:string> | <t:number>)

return

<t:number> -- index

<t:boolean> -- engine

end

These two don't operate on a font but multiply the given value by the \glyphscale and \glyphxscale

respectively \glyphyscale.

function font.xscaled (<t:number> value)

return <t:number> -- scaled value

end

function font.yscaled (<t:number> value)

return <t:number> -- scaled value

end

Like in other places the engine can report what fields we have, which is handy when we want to check

manuals like this one.

function font.getparameterfields () return <t:table> end

351

function font.getfontfields () return <t:table> end

function font.gettextcharacterfields () return <t:table> end

function font.getmathcharacterfields () return <t:table> end

8.6 Virtual fonts

Virtual fonts have been introduced in TEX because they permit combining fonts and constructing for

instance accented characters from several glyphs and they are what one nowadays tags as a ‘cool’

feature, especially because in LuaTEX we can use this mechanism runtime. The nice thing is that

because all that TEX needs is dimensions, the hard work is delegated to the backend which means that

the front end can be agnostic when it comes to virtual fonts.

So, in the beginning they were mostly used for providing a direct mapping from for instance accented

characters onto a glyph btu we use it for a lot of other situations, like math. But keep in mind that

because we basically define the backend ourselves and because we also control everything fonts, we

can go way further in ConTEXt than in other engines and macro packages.

A character is virtual when it has a commands array as part of the data. A virtual character can itself

point to virtual characters but be careful with nesting as you can create loops and overflow the stack

(which often indicates an error anyway).

At the font level there can be a an (indexed) fonts table. The values are one- or two-key hashes

themselves, each entry indicating one of the base fonts in a virtual font. In case your font is referring

to itself in for instance a virtual font, you can use the slot command with a zero font reference, which

indicates that the font itself is used. So, a table looks like this:

fonts = {

{ name = "ptmr8a", size = 655360 }, -- referenced as font 1

{ name = "psyr", size = 600000 }, -- referenced as font 2

{ id = 38 } -- referenced as font 3

}

The first referenced font (at index 1) in this virtual font is ptrmr8a loaded at 10pt, and the second is

psyr loaded at a little over 9pt. The third one is a previously defined font that is known to LuaMetaTEX

as font id 38. The array index numbers are used by the character command definitions that are part

of each character.

However, the only place in ConTEXt where we really need this fonts table is in some math fonts where

we, also as illustration and as recognition of past work, assemble a Unicode math font from sort of

obsolete Type1 fonts. In most cases the virtual glyphs use glyphs that are also in the font. In that case

we can use id zero which is resolved to the font identifiers of the font itself.

The commands array is a hash where each item is another small array, with the first entry representing

a command and the extra items being the parameters to that command. The frontend is only interested

in the dimensions, ligatures and kerns of a font, which is the reason why the TEX engine didn't have

to be extended when virtual fonts showed up: dealing with it is up to the driver that comes after

the backend. The first block in the next table is what the standard mentions. These two engines

also support the special and LuaTEX brings the pdf and pdfmode commands but in LuaMetaTEX we

dropped all three and also LuaTEX's image.

But . . . in LuaMetaTEX there is no backend built in but we might assume that the one provided deals

with the standard entries. However, a provided backend can provide more and that is indeed what

352

happens in ConTEXt. Because we no longer have compacting (of passed tables) and unpacking (when

embedding) of these tables going on we stay in the Lua domain. None of the virtual specification is

ever seen in the engine.

command arguments type description

font 1 number select a new font from the local fonts table

char 1 number typeset this character number from the current font, and

move right by the character's width

slot 2 2 numbers a shortcut for the combination of a font and char command

push 0 save current position

pop 0 pop position

rule 2 2 numbers output a rule ℎ𝑡 ∗𝑤𝑑, and move right.

down 1 number move down on the page

right 1 number move right on the page

nop 0 do nothing

node 1 node output this node (list), and move right by the width of this

list

lua 1 string, function execute a Lua script when the glyph is embedded; in case

of a function it gets the font id and character code passed

comment any any the arguments of this command are ignored

The default value for font is always 1 at the start of the commands array. Therefore, if the virtual font

is essentially only a re-encoding, then you do usually not have created an explicit ‘font’ command in

the array. Rules inside of commands arrays are built up using only two dimensions: they do not have

depth. For correct vertical placement, an extra down command may be needed. Regardless of the

amount of movement you create within the commands, the output pointer will always move by exactly

the width that was given in the width key of the character hash. Any movements that take place inside

the commands array are ignored on the upper level.

In addition to the above in ConTEXt we have use, left, up, offset, stay, compose, frame, line,

inspect, trace and a plugin feature so that we can add more commands (which we do). These not

only provide more advanced trickery but also make for smaller command tables. For some features

we don't even need virtual magic but have additional parameters in the glyph tables. But all that is

not part of the engine and its specification so it will be discussed elsewhere.

8.7 Callbacks

The traditional TEX ligature and kerning routines are build into the engine but anything more (like

OpenType rendering) has to be implemented in Lua. The same is true for math: the engine has some

expectations, for instance with respect to script and script script sizes, larger sizes and extensibles

and needs to know at least dimensions and slots in fonts in order to assemble the math. Actually there

are additional scaling factors in play here because math has its own scaling demands.

8.8 Protrusion

This is more an implementation note. Compared to pdfTEX and LuaTEX the protrusion detection mech

anism is enhanced a bit to enable a bit more complex situations. When protrusion characters are

identified some nodes are skipped:

353

• zero glue

• penalties

• empty discretionaries

• normal zero kerns

• rules with zero dimensions

• math nodes with a surround of zero

• dir nodes

• empty horizontal lists

• local par nodes

• inserts, marks and adjusts

• boundaries

• whatsits

Because this can not be enough, you can also use a protrusion boundary node to make the next node

being ignored. When the value is 1 or 3, the next node will be ignored in the test when locating a left

boundary condition. When the value is 2 or 3, the previous node will be ignored when locating a right

boundary condition (the search goes from right to left). This permits protrusion combined with for

instance content moved into the margin:

\protrusionboundary1\llap{!\quad}«Who needs protrusion?»

8.9 Spaces

There are officially no spaces in TEX, there is only glue. This is not problem, on the contrary, it is what

makes the rendering so good. In ConTEXt the backend can convert glue to spaces in a font but that's

not an engine feature.

The \nospaces primitive can be used to overrule the usual \spaceskip related heuristics when a space

character is seen in a text flow. The value 1 triggers no injection while 2 results in injection of a zero

skip. In figure 8.1 we see the results for four characters separated by a space.

x x x x xxxx xxxx

0 / hsize 10mm 1 / hsize 10mm 2 / hsize 10mm

x

x

x

x

xxxx x

x

x

x

0 / hsize 1mm 1 / hsize 1mm 2 / hsize 1mm

Figure 8.1 The nospaces options.

YouSPcan,SFinSPConTEXtSPseeSPwhereSPspacesSPareSPaddedSPbySPenablingSPaSPvisualizer: SF\showmakeup[space]SPdoes

the SPtrick, SFas SPin SPthis SPparagraph. SF We SPsee SPregular SPspaces SPas SPwell SPas SPspaces SPthat SPhave SPa SPspace SPfactor

appliedSP(afterSPpunctuation).

354

355

356

9 Languages

9.1 Introduction

Although languages play an important role in a macro package that doesn't mean that TEX is busy

with it. The engine only needs to know how to hyphenate and for that a number that identifies what

patterns to use is sufficient. All the action happens in the hyphenator: what characters make words,

how many characters are kept at the left and right, which symbols end up at the end or beginning of

a line, what input combine into (normally) dashes, how do we penalize a hyphenation point, etc.

Where in regular TEX we have special nodes that signal a language switch, and some shared variables

that determine mentioned details, in LuaTEX every glyph carries the language information, including

those minima. In LuaMetaTEX we put even more in a glyph by using a bitset of options. We also have

some more character code bound properties. The LuaTEX engines store the current state in the glyph

and discretionary nodes.

You can find more practical information about languages in ConTEXt manuals than in this document

because users seldom go low level. Before we discuss these low level aspect anyway, we discuss how

we came thus far; for that we borrow from the LuaTEX and LuaMetaTEX manuals.

9.2 Evolution

LuaTEX's internal handling of the characters and glyphs that eventually become typeset is quite dif

ferent from the way TEX82 handles those same objects. The easiest way to explain the difference is

to focus on unrestricted horizontal mode (i.e. paragraphs) and hyphenation first. Later on, it will be

easy to deal with the differences that occur in horizontal and math modes.

In TEX82, the characters you type are converted into char node records when they are encountered by

the main control loop. TEX attaches and processes the font information while creating those records,

so that the resulting ‘horizontal list’ contains the final forms of ligatures and implicit kerning. This

packaging is needed because we may want to get the effective width of for instance a horizontal box.

No hyphenation is needed in that case.

When it becomes necessary to hyphenate words in a paragraph, TEX converts (one word at time) the

char node records into a string by replacing ligatures with their components and ignoring the kerning.

Then it runs the hyphenation algorithm on this string, and converts the hyphenated result back into

a ‘horizontal list’ that is consecutively spliced back into the paragraph stream. Keep in mind that the

paragraph may contain unboxed horizontal material, which then already contains ligatures and kerns

and the words therein are part of the hyphenation process.

Lets stress this: before LuaTEX ligaturing and kerning took place during input, and hyphenation,

combined with temporarily juggling ligatures and kerns, took place while building the paragraph.

It's a selective process where hyphenation only takes place where it is expected to influence the line

breaks.

Those char node records are somewhat misnamed, as they are glyph positions in specific fonts, and

therefore not really ‘characters’ in the linguistic sense. In TEX82 there is no language information

inside the char node records at all. Instead, language information is passed along using language

whatsit nodes inside the horizontal list.

357

In LuaTEX and thereby LuaMetaTEX the situation is quite different. The characters you type are al

ways converted into glyph node records with a special subtype to identify them as being intended as

linguistic characters. LuaTEX stores the needed language information in those records, but does not

do any font-related processing at the time of node creation. It only stores the index of the current font

and a reference to a character in that font.

When it becomes necessary to typeset a paragraph, LuaTEX first inserts all hyphenation points right

into the whole node list. Next, it processes all the font information in the whole list, creating ligatures

and adjusting kerning, and finally it adjusts all the subtype identifiers so that the records are ‘glyph

nodes’ from now on. Actually in LuaMetaTEX the subtype is no longer used to store the state but that

is not relevant here.

In LuaMetaTEX we also have this separation but there is more control over when hyphenation is ap

plied, what becomes en- and em-dashes, hoe penalties kick in, etc. There are some additional callbacks

that can manipulate words as they are encountered and exceptions can be handled differently.

9.3 Characters, glyphs and discretionaries

TEX82 (including pdfTEX) differentiates between char nodes and lig nodes. The former are simple

items that contained nothing but a ‘character’ and a ‘font’ field, and they lived in the same memory

as tokens did. The latter also contained a list of components, and a subtype indicating whether this

ligature was the result of a word boundary, and it was stored in the same place as other nodes like

boxes and kerns and glues.

In LuaMetaTEX we no longer keep the list of components with the glyph node because we have to deal

with more advanced scenarios in ‘node mode’, for instance in attaching vowels to stepwise constructed

ligatures. Also, in OpenType ligatures are just a many to one mapping and the kind of ligatures that

we see TEX fonts in OpenType often are achieved by kerning substituted single glyphs.

In LuaTEX, these two types are merged into one, somewhat larger structure called a glyph node.

Besides having the old character, font, and component fields there are a few more, like ‘attr’, these

nodes also contain a subtype, that codes four main types and two additional ghost types. For ligatures,

multiple bits can be set at the same time (in case of a single-glyph word).

• character, for characters to be hyphenated: the lowest bit (bit 0) is set to 1.

• glyph, for specific font glyphs: the lowest bit (bit 0) is not set.

• ligature, for constructed ligatures bit 1 is set.

But while TEX86 has this construct, deconstruct and reconstruct model in LuaTEX we don't do that so

in the end this made little sense do we dropped it. We still have a (small) protection field that fulfills

the job of signaling that we're done with processing glyphs.

We now arrive at languages. The glyph nodes also contain language data, split into four items that

were current when the node was created: the \setlanguage (15 bits), \lefthyphenmin (8 bits),

\righthyphenmin (8 bits), and \uchyph (1 bit). In LuaMetaTEX we just use small dedicated fields

instead.

Incidentally, LuaTEX allows 16383 separate languages, and words can be 256 characters long. The

language is stored with each character. You can set \firstvalidlanguage to for instance 1 and make

thereby language 0 an ignored hyphenation language. In LuaMetaTEX we have a more reasonable

358

allowance because we don't expect that many languages in one document, but we do permits longer

words.

The new primitive \hyphenationmin can be used to signal the minimal length of a word. This value is

stored with the (current) language.

Because the \uchyph value is saved in the actual nodes, its handling is subtly different from TEX82:

changes to \uchyph become effective immediately, not at the end of the current partial paragraph.

But this is true for more properties: for instance we store a penalty in a discretionary node and freeze

glue in spaces, of course all at the price of using more memory.

Typeset boxes now always have their language information embedded in the nodes themselves, so

there is no longer a possible dependency on the surrounding language settings. In TEX82, a mid-

paragraph statement like \unhbox0 would process the box using the current paragraph language

unless there was a \setlanguage issued inside the box. In LuaTEX, all language variables are already

frozen. Also, every list is hyphenated so that the font handler can do it's job taking that into account.

In traditional TEX the process of hyphenation is driven by \lccodes. In LuaTEX we made this depen

dency less strong. There are several strategies possible. When you do nothing, the currently used

\lccodes are used, when loading patterns, setting exceptions or hyphenating a list.

When you set \savinghyphcodes to a value greater than zero the current set of \lccodes will be saved

with the language. In that case changing a \lccode afterwards has no effect. However, you can adapt

the set with:

\hjcode`a=`a

This change is global which makes sense if you keep in mind that the moment that hyphenation hap

pens is (normally) when the paragraph or a horizontal box is constructed. When \savinghyphcodes

was zero when the language got initialized you start out with nothing, otherwise you already have a

set.

When a \hjcode is greater than 0 but less than 32 the value indicates the to be used length. In the

following example we map a character (x) onto another one in the patterns and tell the engine that

œ counts as two characters. Because traditionally zero itself is reserved for inhibiting hyphenation, a

value of 32 counts as zero.

Here are some examples (we assume that French patterns are used):

foobar foo-bar

\hjcode `x=`o fxxbar fxx-bar

\lefthyphenmin 3 œdipus œdi-pus

\lefthyphenmin 4 œdipus œdipus

\hjcode `œ=2 œdipus œdi-pus

\hjcode `i=32 \hjcode `d=32 œdipus œdipus

Carrying all this information with each glyph would give too much overhead and also make the process

of setting up these codes more complex. A solution with \hjcode sets was considered but rejected

because in practice the current approach is sufficient and it would not be compatible anyway.

Beware: the values are always saved in the format, independent of the setting of \savinghyphcodes

at the moment the format is dumped.

359

We also have \hccode or hyphen code. A character can be set to non zero to indicate that it should be

regarded as value visible hyphenation point. These examples show how that works (it is the second

bit in \hyphenationmode that does the magic but we set them all here):

{\hsize 1mm \hccode"2014 \zerocount \hyphenationmode "0000000 xxx\emdash xxx \par}

{\hsize 1mm \hccode"2014 "2014\relax \hyphenationmode "0000000 xxx\emdash xxx \par}

{\hsize 1mm \hccode"2014 \zerocount \hyphenationmode "FFFFFFF xxx\emdash xxx \par}

{\hsize 1mm \hccode"2014 "2014\relax \hyphenationmode "FFFFFFF xxx\emdash xxx \par}

{\hyphenationmode "0000000 xxx--xxx---xxx \par}

{\hyphenationmode "FFFFFFF xxx--xxx---xxx \par}

Here we assign the code point because who knows what future extensions will bring. As with the other

codes you can also set them from Lua. The feature is experimental and might evolve when ConTEXt

users come up with reasonable demands.

xxx—xxx

xxx—

xxx

xxx—xxx

xxx—

xxx

xxx--xxx---xxx

xxx–xxx—xxx

A boundary node normally would mark the end of a word which interferes with for instance discre

tionary injection. For this you can use the \wordboundary as a trigger. Here are a few examples of

usage:

discrete---discrete

dis

crete—

dis

crete

discrete\discretionary{}{}{---}discrete

discrete

discrete

discrete\wordboundary\discretionary{}{}{---}discrete

dis

crete

discrete

discrete\wordboundary\discretionary{}{}{---}\wordboundary discrete

dis

crete

dis

crete

360

discrete\wordboundary\discretionary{---}{}{}\wordboundary discrete

dis

crete—

dis

crete

We only accept an explicit hyphen when there is a preceding glyph and we skip a sequence of explicit

hyphens since that normally indicates a -- or --- ligature in which case we can in a worse case usage

get bad node lists later on due to messed up ligature building as these dashes are ligatures in base

fonts. This is a side effect of separating the hyphenation, ligaturing and kerning steps.

The start and end of a sequence of characters is signalled by a glue, penalty, kern or boundary node.

But by default also a hlist, vlist, rule, dir, whatsit, insert, and adjust node indicate a start or

end. You can omit the last set from the test by setting flags in \hyphenationmode:

0x000001 normal 0x000400 permitglue

0x000002 automatic 0x000800 permitall

0x000004 explicit 0x001000 permitmathreplace

0x000008 syllable 0x002000 forcecheck

0x000010 uppercase 0x004000 lazyligatures

0x000020 compound 0x008000 forcehandler

0x000040 strictstart 0x010000 feedbackcompound

0x000080 strictend 0x020000 ignorebounds

0x000100 automaticpenalty 0x040000 collapse

0x000200 explicitpenalty 0x080000 replaceapostrophe

The word start is determined as follows:

node behaviour

boundary yes when wordboundary

hlist when the start bit is set

vlist when the start bit is set

rule when the start bit is set

dir when the start bit is set

whatsit when the start bit is set

glue yes

math skipped

glyph exhyphenchar (one only) : yes (so no – —)

otherwise yes

The word end is determined as follows:

node behaviour

boundary yes

glyph yes when different language

glue yes

penalty yes

kern yes when not italic (for some historic reason)

hlist when the end bit is set

vlist when the end bit is set

361

rule when the end bit is set

dir when the end bit is set

whatsit when the end bit is set

ins when the end bit is set

adjust when the end bit is set

Figures 9.1 upto 9.5 show some examples. In all cases we set the min values to 1 and make sure that

the words hyphenate at each character.

o

n

e

o

n

e

o

n

e

o

n

e

0 64 128 192

Figure 9.1 one

o

n

et

w

o

o

n

et

w

o

onet

w

o

onet

w

o

0 64 128 192

Figure 9.2 one\null two

o

n

et

w

o

o

n

et

w

o

onet

w

o

onet

w

o

0 64 128 192

Figure 9.3 \null one\null two

o

n

et

w

o

o

n

et

w

o

onetwo onetwo

0 64 128 192

Figure 9.4 one\null two\null

o

n

et

w

o

o

n

et

w

o

onetwo onetwo

0 64 128 192

Figure 9.5 \null one\null two\null

In traditional TEX ligature building and hyphenation are interwoven with the line break mechanism. In

LuaTEX these phases are isolated. As a consequence we deal differently with (a sequence of) explicit

362

hyphens. We already have added some control over aspects of the hyphenation and yet another one

concerns automatic hyphens (e.g. - characters in the input).

Hyphenation and discretionary injection is driven by a mode parameter which is a bitset made from

the following values, some of which we saw in the previous examples.

1 honour (normal) \discretionary's

2 turn - into (automatic) discretionaries

4 turn \- into (explicit) discretionaries

8 hyphenate (syllable) according to language

10 hyphenate uppercase characters too (replaces \uchyph

20 permit break at an explicit hyphen (border cases)

40 traditional TEX compatibility wrt the start of a word

80 traditional TEX compatibility wrt the end of a word

100 use \automatichyphenpenalty

200 use \explicithyphenpenalty

400 turn glue in discretionaries into kerns

800 okay, let's be even more tolerant in discretionaries

1000 and again we're more permissive

4000 controls how successive explicit discretionaries are handled in base mode

2000 treat all discretionaries equal when breaking lines (in all three passes)

8000 kick in the handler (experiment)

10000 feedback compound snippets

Some of these options are still experimental, simply because not all aspects and side effects have been

explored. You can find some experimental use cases in ConTEXt.

There are also \discretionaryoptions. Some are set by the engine:

0x00000000 normalword 0x00000040 noitaliccorrection

0x00000001 preword 0x00000080 nozeroitaliccorrection

0x00000002 postword 0x00000100 standalone

0x00000010 preferbreak 0x00010000 userfirst

0x00000020 prefernobreak 0x40000000 userlast

9.4 Controlling hyphenation

The \hyphenationmin parameter can be used to set the minimal word length, so setting it to a value

of 5 means that only words of 6 characters and more will be hyphenated, of course within the con

straints of the \lefthyphenmin and \righthyphenmin values (as stored in the glyph node). This prim

itive accepts a number and stores the value with the language.

The \noboundary command is used to inject a whatsit node but now injects a normal node with type

boundary and subtype 0. In addition you can say:

x\boundary 123\relax y

This has the same effect but the subtype is now 1 and the value 123 is stored. The traditional ligature

builder still sees this as a cancel boundary directive but at the Lua end you can implement different

behaviour. The added benefit of passing this value is a side effect of the generalization. The subtypes 2

and 3 are used to control protrusion and word boundaries in hyphenation and have related primitives.

363

9.5 The main control loop

In LuaTEX's main loop, almost all input characters that are to be typeset are converted into glyph

node records with subtype ‘character’, but there are a few exceptions.

1. The \accent primitive creates nodes with subtype ‘glyph’ instead of ‘character’: one for the actual

accent and one for the accentee. The primary reason for this is that \accent in TEX82 is explicitly

dependent on the current font encoding, so it would not make much sense to attach a new meaning

to the primitive's name, as that would invalidate many old documents and macro packages. A

secondary reason is that in TEX82, \accent prohibits hyphenation of the current word. Since in

LuaTEX hyphenation only takes place on ‘character’ nodes, it is possible to achieve the same effect.

Of course, modern Unicode aware macro packages will not use the \accent primitive at all but try

to map directly on composed characters.

This change of meaning did happen with \char, that now generates ‘glyph’ nodes with a charac

ter subtype. In traditional TEX there was a strong relationship between the 8-bit input encoding,

hyphenation and glyphs taken from a font. In LuaTEX we have utf input, and in most cases this

maps directly to a character in a font, apart from glyph replacement in the font engine. If you want

to access arbitrary glyphs in a font directly you can always use Lua to do so, because fonts are

available as Lua table.

2. All the results of processing in math mode eventually become nodes with ‘glyph’ subtypes. In fact,

the result of processing math is just a regular list of glyphs, kerns, glue, penalties, boxes etc.

3. Automatic discretionaries are handled differently. TEX82 inserts an empty discretionary after sens

ing an input character that matches the \hyphenchar in the current font. This test is wrong in

our opinion: whether or not hyphenation takes place should not depend on the current font, it is a

language property.13

The \defaulthyphenchar parameter is used as fallback when defining a font where that one is not

explicitly set.

In LuaTEX, it works like this: if it senses a string of input characters that matches the value of the

new integer parameter \exhyphenchar, it will insert an explicit discretionary after that series of

nodes. Initially TEX sets the \exhyphenchar=`\-. Incidentally, this is a global parameter instead of

a language-specific one because it may be useful to change the value depending on the document

structure instead of the text language.

The insertion of discretionaries after a sequence of explicit hyphens happens at the same time as

the other hyphenation processing, not inside the main control loop.

The only use LuaTEX has for \hyphenchar is at the check whether a word should be considered for

hyphenation at all. If the \hyphenchar of the font attached to the first character node in a word

is negative, then hyphenation of that word is abandoned immediately. This behaviour is added for

backward compatibility only, and the use of \hyphenchar=-1 as a means of preventing hyphenation

should not be used in new LuaTEX documents.

4. The \setlanguage command no longer creates whatsits. The meaning of \setlanguage is changed

so that it is now an integer parameter like all others. That integer parameter is used in glyph node

13 When TEX showed up we didn't have Unicode yet and being limited to eight bits meant that one sometimes had to compromise

between supporting character input, glyph rendering, hyphenation.

364

creation to add language information to the glyph nodes. In conjunction, the \language primitive

is extended so that it always also updates the value of \setlanguage.

5. The \noboundary command (that prohibits word boundary processing where that would normally

take place) now does create nodes. These nodes are needed because the exact place of the

\noboundary command in the input stream has to be retained until after the ligature and font

processing stages.

6. There is no longer a main_loop label in the code. Remember that TEX82 did quite a lot of processing

while adding char_nodes to the horizontal list? For speed reasons, it handled that processing code

outside of the ‘main control’ loop, and only the first character of any ‘word’ was handled by that

‘main control’ loop. In LuaTEX, there is no longer a need for that (all hard work is done later),

and the (now very small) bits of character-handling code have been moved back inline. When

\tracingcommands is on, this is visible because the full word is reported, instead of just the initial

character.

Because we tend to make hard coded behavior configurable a few new primitives have been added:

\automatichyphenpenalty

\explicithyphenpenalty

These relate to:

\automaticdiscretionary % -

\explicitdiscretionary % \-

The usage of these penalties is controlled by the \hyphenationmode flags 0x100 and 0x200 and when

these are not set \exhyphenpenalty is used.

You can use the \tracinghyphenation variable to get a bit more information about what happens.

value effect

1 report redundant pattern (happens by default in LuaTEX)

2 report words that reach the hyphenator and got treated

3 show the result of a hyphenated word (a node list)

9.6 Loading patterns and exceptions

Although we keep the traditional approach towards hyphenation (which is still superior) the imple

mentation of the hyphenation algorithm in LuaTEX is quite different from the one in TEX82.

After expansion, the argument for \patterns has to be proper utf8 with individual patterns separated

by spaces, no \char or \chardefd commands are allowed. The current implementation is quite strict

and will reject all non-Unicode characters. Likewise, the expanded argument for \hyphenation also

has to be proper utf8, but here a bit of extra syntax is provided:

1. Three sets of arguments in curly braces ({}{}{}) indicate a desired complex discretionary, with

arguments as in \discretionary's command in normal document input.

2. A - indicates a desired simple discretionary, cf. \- and \discretionary{-}{}{} in normal docu

ment input.

365

3. Internal command names are ignored. This rule is provided especially for \discretionary, but it

also helps to deal with \relax commands that may sneak in.

4. An = indicates a (non-discretionary) hyphen in the document input.

The expanded argument is first converted back to a space-separated string while dropping the internal

command names. This string is then converted into a dictionary by a routine that creates key-value

pairs by converting the other listed items. It is important to note that the keys in an exception dictio

nary can always be generated from the values. Here are a few examples:

value implied key (input) effect

ta-ble table ta\-ble (= ta\discretionary{-}{}{}ble)

ba{k-}{}{c}ken backen ba\discretionary{k-}{}{c}ken

The resultant patterns and exception dictionary will be stored under the language code that is the

present value of \language.

In the last line of the table, you see there is no \discretionary command in the value: the command

is optional in the TEX-based input syntax. The underlying reason for that is that it is conceivable that

a whole dictionary of words is stored as a plain text file and loaded into LuaTEX using one of the

functions in the Lua language library. This loading method is quite a bit faster than going through

the TEX language primitives, but some (most?) of that speed gain would be lost if it had to interpret

command sequences while doing so.

It is possible to specify extra hyphenation points in compound words by using {-}{}{-} for the explicit

hyphen character (replace - by the actual explicit hyphen character if needed). For example, this

matches the word ‘multi-word-boundaries’ and allows an extra break inbetween ‘boun’ and ‘daries’:

\hyphenation{multi{-}{}{-}word{-}{}{-}boun-daries}

The motivation behind the 𝜀-TEX extension \savinghyphcodes was that hyphenation heavily depended

on font encodings. This is no longer true in LuaTEX, and the corresponding primitive is basically

ignored. Because we now have \hjcode, the case related codes can be used exclusively for \uppercase

and \lowercase.

The three curly brace pair pattern in an exception can be somewhat unexpected so we will try to

explain it by example. The pattern foo{}{}{x}bar pattern creates a lookup fooxbar and the pattern

foo{}{}{}bar creates foobar. Then, when a hit happens there is a replacement text (x) or none.

Because we introduced penalties in discretionary nodes, the exception syntax now also can take a

penalty specification. The value between square brackets is a multiplier for \exceptionpenalty.

Here we have set it to 10000 so effectively we get 30000 in the example.

x{a-}{-b}{}x{a-}{-b}{}x{a-}{-b}{}x{a-}{-b}{}xx

10em 3em 0em 6em

123 xxxxxx 123 123

xxa-

bxa-

bxa-

bxx

123

123

xa-

bxa-

bxa-

bxa-

bxx

123

123 xxxxxx

xxxxxx xxa-

bxxxx xxa-

bxxxx 123

366

x{a-}{-b}{}x{a-}{-b}{}[3]x{a-}{-b}{}[1]x{a-}{-b}{}xx

10em 3em 0em 6em

123 xxxxxx 123 123

xa-

bxxxa-

bxx

123

123

xa-

bxxxa-

bxx

123

123 xxxxa-

bxx xxxxxx

xxxxxx xa-

bxxxxx 123

z{a-}{-b}{z}{a-}{-b}{z}{a-}{-b}{z}{a-}{-b}{z}z

10em 3em 0em 6em

123 zzzzzz 123 123

zza-

ba-

bzz

123

123

za-

ba-

ba-

ba-

bz

123

123 zzzzzz

zzzzzz zzza-

bzz zzzzzz

123

z{a-}{-b}{z}{a-}{-b}{z}[3]{a-}{-b}{z}[1]{a-}{-b}{z}z

10em 3em 0em 6em

123 zzzzzz 123 123

za-

bzza-

bz

123

123

za-

bzza-

bz

123

123 zzzza-

bz zzzzzz

zzzzzz za-

bzzzz 123

9.7 Applying hyphenation

The internal structures LuaTEX uses for the insertion of discretionaries in words is very different from

the ones in TEX82, and that means there are some noticeable differences in handling as well.

First and foremost, there is no ‘compressed trie’ involved in hyphenation. The algorithm still reads

pattern files generated by Patgen, but LuaTEX uses a finite state hash to match the patterns against

the word to be hyphenated. This algorithm is based on the ‘libhnj’ library used by OpenOffice, which

in turn is inspired by TEX.

There are a few differences between LuaTEX and TEX82 that are a direct result of the implementation:

• LuaTEX happily hyphenates the full Unicode character range.

• Pattern and exception dictionary size is limited by the available memory only, all allocations are

done dynamically. The trie-related settings in texmf.cnf are ignored.

• Because there is no ‘trie preparation’ stage, language patterns never become frozen. This means

that the primitive \patterns (and its Lua counterpart language.patterns) can be used at any time,

not only in iniTEX.

• Only the string representation of \patterns and \hyphenation is stored in the format file. At

format load time, they are simply re-evaluated. It follows that there is no real reason to preload

367

languages in the format file. In fact, it is usually not a good idea to do so. It is much smarter to

load patterns no sooner than the first time they are actually needed.

• LuaTEX uses the language-specific variables \prehyphenchar and \posthyphenchar in the creation

of implicit discretionaries, instead of TEX82's \hyphenchar, and the values of the language-spe

cific variables \preexhyphenchar and \postexhyphenchar for explicit discretionaries (instead of

TEX82's empty discretionary).

• The value of the two counters related to hyphenation, \hyphenpenalty and \exhyphenpenalty, are

now stored in the discretionary nodes. This permits a local overload for explicit \discretionary

commands. The value current when the hyphenation pass is applied is used. When no callbacks are

used this is compatible with traditional TEX. When you apply the Lua language.hyphenate function

the current values are used.

• The hyphenation exception dictionary is maintained as key-value hash, and that is also dynamic, so

the hyph_size setting is not used either.

Because we store penalties in the disc node the \discretionary command has been extended to

accept an optional penalty specification, so you can do the following:

\hsize1mm

1:foo{\hyphenpenalty 10000\discretionary{}{}{}}bar\par

2:foo\discretionary penalty 10000 {}{}{}bar\par

3:foo\discretionary{}{}{}bar\par

This results in:

1:foobar

2:foobar

3:foo

bar

Inserted characters and ligatures inherit their attributes from the nearest glyph node item (usually

the preceding one, but the following one for the items inserted at the left-hand side of a word).

Word boundaries are no longer implied by font switches, but by language switches. One word can have

two separate fonts and still be hyphenated correctly (but it can not have two different languages, the

\setlanguage command forces a word boundary).

All languages start out with \prehyphenchar=`\-, \posthyphenchar=0, \preexhyphenchar=0 and

\postexhyphenchar=0. When you assign the values of one of these four parameters, you are actu

ally changing the settings for the current \language, this behaviour is compatible with \patterns

and \hyphenation.

LuaTEX also hyphenates the first word in a paragraph. Words can be up to 256 characters long (up from

64 in TEX82). Longer words are ignored right now, but eventually either the limitation will be removed

or perhaps it will become possible to silently ignore the excess characters (this is what happens in

TEX82, but there the behaviour cannot be controlled).

If you are using the Lua function language.hyphenate, you should be aware that this function expects

to receive a list of ‘character’ nodes. It will not operate properly in the presence of ‘glyph’, ‘ligature’,

or ‘ghost’ nodes, nor does it know how to deal with kerning.

368

9.8 Applying ligatures and kerning

We discuss this base mode aspect here because in traditional TEX the process is interwoven with

hyphenation. After all possible hyphenation points have been inserted in the list, LuaTEX will process

the list to convert the ‘character’ nodes into ‘glyph’ and ‘ligature’ nodes. This is actually done in two

stages: first all ligatures are processed, then all kerning information is applied to the result list. But

those two stages are somewhat dependent on each other: If the used font makes it possible to do so,

the ligaturing stage adds virtual ‘character’ nodes to the word boundaries in the list. While doing so,

it removes and interprets \noboundary nodes. The kerning stage deletes those word boundary items

after it is done with them, and it does the same for ‘ghost’ nodes. Finally, at the end of the kerning

stage, all remaining ‘character’ nodes are converted to ‘glyph’ nodes.

This separation is worth mentioning because, if you overrule from Lua only one of the two callbacks

related to font handling, then you have to make sure you perform the tasks normally done by LuaTEX

itself in order to make sure that the other, non-overruled, routine continues to function properly.

Although we could improve the situation the reality is that in modern OpenType fonts ligatures can

be constructed in many ways: by replacing a sequence of characters by one glyph, or by selectively

replacing individual glyphs, or by kerning, or any combination of this. Add to that contextual analysis

and it will be clear that we have to let Lua do that job instead. The generic font handler that we provide

(which is part of ConTEXt) distinguishes between base mode (which essentially is what we describe

here and which delegates the task to TEX) and node mode (which deals with more complex fonts.

In so called base mode, where TEX does the work, the ligature construction (normally) goes in small

steps. An f followed by an f becomes an ff ligatures and that one followed by an i can become a ffi

ligature. The situation can be complicated by hyphenation points between these characters. When

there are several in a ligature collapsing happens. Flag 0x4000 in the \hyphenationmode variable

determines if this happens lazy or greedy, i.e. the first hyphen wins or the last one does. In practice a

ConTEXt user won't have to deal with this because most fonts are processed in node mode.

9.9 Breaking paragraphs into lines

This code is almost unchanged, but because of the above-mentioned changes with respect to discre

tionaries and ligatures, line breaking will potentially be different from traditional TEX. The actual line

breaking code is still based on the TEX82 algorithms, and there can be no discretionaries inside of

discretionaries. But, as patterns evolve and font handling can influence discretionaries, you need to

be aware of the fact that long term consistency is not an engine matter only.

But that situation is now fairly common in LuaTEX, due to the changes to the ligaturing mechanism.

And also, the LuaTEX discretionary nodes are implemented slightly different from the TEX82 nodes:

the no_break text is now embedded inside the disc node, where previously these nodes kept their

place in the horizontal list. In traditional TEX the discretionary node contains a counter indicating

how many nodes to skip, but in LuaTEX we store the pre, post and replace text in the discretionary

node.

The combined effect of these two differences is that LuaTEX does not always use all of the potential

breakpoints in a paragraph, especially when fonts with many ligatures are used. Of course kerning

also complicates matters here. In practice that doesn't matter much because the par builder has

enough solution space due to spaces; it's not like out of a sudden we wonder why paragraphs look

worse.

369

The \doublehyphendemerits and \finalhyphendemerits parameters play a role in the par builder:

they discourage a page break when there are two or more hyphens in a row and if there's one in the

pre-last line. These are not bound to a language.

9.10 The language library

This library provides the interface to the internal structure representing a language, and the associ

ated functions.

function language.new (<t:nil> | <t:integer> identifier)

return <t:userdata> -- language

end

This function creates a new userdata object. An object of type <language> is the first argument to

most of the other functions in the language library. These functions can also be used as if they were

object methods, using the colon syntax. Without an argument, the next available internal id number

will be assigned to this object. With argument, an object will be created that links to the internal

language with that id number. The number returned is the internal \language id number this object

refers to.

function language.id (<t:userdata> language)

return <t:integer> -- identifier

end

You can load exceptions with:

function language.hyphenation(<t:userdata> language, <t:string> list)

-- no return value

end

When no string is given (the first example) a string with all exceptions is returned.

function language.hyphenation (<t:userdata> language)

return <t:string> list

end

This either returns the current hyphenation exceptions for this language, or adds new ones. The

syntax of the string is explained in section 9.6.

This call clears the exception dictionary (string) for this language:

function language.clearhyphenation(<t:userdata> language)

--- no return value

end

This function creates a hyphenation key from the supplied hyphenation value. The syntax of the argu

ment string is explained in section 9.6. The function is useful if you want to do something else based

on the words in a dictionary file, like spell-checking.

function language.clean(<t:userdata> language, <t:string> str)

return <t:string> cln

end

370

function language.clean(<t:string> str)

return <t:string> cln

end

This adds additional patterns for this language object, or returns the current set. The syntax of this

string is explained in section 9.6.

function language.patterns(<t:userdata> language, <string> list)

-- no return value

end

The registered list can be fetched with:

function language.patterns(<t:userdata> language)

return <t:string> -- list

end

This can be used to clear the pattern dictionary for a language.

function language.clearpatterns (<t:userdata> language)

-- no return value

end

This function sets (or gets) the value of the TEX parameter \hyphenationmin.

function language.hyphenationmin (<t:userdata> language, <t:number> n)

-- no return value

end

function language.hyphenationmin (<t:userdata> language)

return <t:integer> n

end

These two are used to get or set the ‘pre-break’ and ‘post-break’ hyphen characters for implicit hy

phenation in this language. The initial values are decimal 45 (hyphen) and decimal 0 (indicating

emptiness).

function language.prehyphenchar (<t:userdata> language, <t:integer> n) end

function language.posthyphenchar (<t:userdata> language, <t:integer> n) end

function language.prehyphenchar (<t:userdata> language) return <t:integer> n end

function language.posthyphenchar (<t:userdata> language) return <t:integer> n end

These gets or set the ‘pre-break’ and ‘post-break’ hyphen characters for explicit hyphenation in this

language. Both are initially decimal 0 (indicating emptiness).

function language.preexhyphenchar (<t:userdata> language, <t:integer> n) end

function language.postexhyphenchar (<t:userdata> language, <t:integer> n) end

function language.preexhyphenchar (<t:userdata> language) return <t:integer> n end

function language.postexhyphenchar (<t:userdata> language) return <t:integer> n end

The next call inserts hyphenation points (discretionary nodes) in a node list. If tail is given as argu

ment, processing stops on that node. Currently, success is always true if head (and optionally tail)

are proper nodes, regardless of possible other errors.

371

function language.hyphenate(<t:node> head, <t:node> tail)

return <t:boolean> success

end

Hyphenation works only on ‘characters’, a special subtype of all the glyph nodes with the node subtype

having the value 1. Glyph modes with different subtypes are not processed. See section 9.3 for more

details.

The following two commands can be used to set or query a \hjcode:

function language.sethjcode (

<t:userdata> language,

<t:number> character,

<t:number> usedchar

)

-- no return value

end

function language.gethjcode (

<t:userdata> language,

<t:number> character

)

return <t:number> -- usedchar

end

There are similar function for \hccode:

function language.sethccode (

<t:userdata> language,

<t:number> character,

<t:number> usedchar

)

-- no return value

end

function language.gethccode (

<t:userdata> language,

<t:number> character

)

return <t:number> -- usedchar

end

9.11 Math

For the record we mention that in math you can also have discretionaries:

$ 2x \mathdiscretionary{+}{+}{+} 1 = 3y $

these actually do relate to languages but are not stored in the language data but have to be handled by

the macro package. It will be clear that there is a bit involved because we have spacing and penalties

driven by math classes.

372

9.12 Tracing

There are several trackers in ConTEXt that can show where hyphenation was considered and where

it got applied, but this is really macro package dependent. There is also a built in tracing command:

\tracinghyphenation. When you say:

\tracinghyphenation2

\tracingonline 2

You get something like this:

1:3: [language: not hyphenated There]

1:3: [language: hyphenated several at 1 positions]

1:3: [language: hyphenated trackers at 1 positions]

1:3: [language: not hyphenated where]

1:3: [language: hyphenated hyphenation at 2 positions]

1:3: [language: hyphenated considered at 2 positions]

1:3: [language: not hyphenated where]

1:3: [language: hyphenated applied at 1 positions]

1:3: [language: hyphenated really at 1 positions]

1:3: [language: not hyphenated macro]

1:3: [language: hyphenated package at 1 positions]

1:3: [language: hyphenated dependent at 2 positions]

1:3: [language: not hyphenated There]

1:3: [language: not hyphenated built]

1:3: [language: hyphenated tracing at 1 positions]

1:3: [language: hyphenated command at 1 positions]

1:3: [language: hyphenated tracinghyphenation at 3 positions]

Higher values give more details, like the pre, post and replace lists so that

output is rather noisy. Contrary to \type {\tracinghyphenation} is verbatim we do

permit it \type {\tracinghyphenation} to be hyphenated.

renders as:

Higher values give more details, like the pre, post and replace lists so that output is rather noisy. Con

trary to \tracinghyphenation is verbatim we do permit it \tracinghyphenation to be hyphenated.

and traces as:

1:3: [language: hyphenated renders at 1 positions]

1:4: [language: not hyphenated Higher]

1:4: [language: hyphenated values at 1 positions]

1:4: [language: hyphenated details at 1 positions]

1:4: [language: hyphenated replace at 1 positions]

1:4: [language: not hyphenated lists]

1:4: [language: hyphenated output at 1 positions]

1:4: [language: not hyphenated rather]

1:4: [language: not hyphenated noisy]

1:4: [language: hyphenated Contrary at 1 positions]

1:4: [language: hyphenated verbatim at 2 positions]

1:4: [language: hyphenated permit at 1 positions]

373

1:4: [language: hyphenated hyphenated at 2 positions]

1:3: [language: not hyphenated traces]

374

375

10 Lua

10.1 Introduction

In this chapter aspects of the Lua interfaces will be discusses. The lua module described here is

rather low level and probably not of much interest to the average user as its functions are meant to

be used in higher level interfaces.

10.2 Initialization

10.2.1 A bare bone engine

When the LuaMetaTEX program launches it will not do much useful. You can compare it to computer

hardware without (high level) operating system with a TEX kernel being the bios. It can interpret TEX

code but for typesetting you need a reasonable setup. You also need to load fonts, and for output

you need a backend, and both can be implemented in Lua. If you don't like that and want to get up

and running immediately, you will be more happy with LuaTEX, pdfTEX or XƎTEX, combined with your

favorite macro package.

If you just want to play around you can install the ConTEXt distribution which (including manuals

and some fonts) is tiny compared to a full TEXLive installation and can be run alongside it without

problems. If there are issues you can go to the usual ConTEXt support platforms and seek help where

you can find the people who made LuaTEX and LuaMetaTEX.

If you use the engine as TEX interpreter you need to set up a few characters. Of course one can wonder

why this is the case, but let's consider this to be educational of nature as it right from the start forces

one to wonder what category codes are.

\catcode`\{=1 \catcode`\}=2 \catcode`\#=6

After that you can start defining macros. Contrary to LuaTEX the LuaMetaTEX engine initializes all

the primitives but it will quit when the minimal set of callback is not initialized, like a logger. The lack

of font loader and backend makes that it is not usable for loading an arbitrary macro package that

doesn't set up these components. There is simply no argument for starting in in original TEX mode

without 𝜀-TEX extensions and such.

10.2.2 LuaMetaTEX as a Lua interpreter

Although LuaMetaTEX is primarily meant as a TEX engine, it can also serve as a stand alone Lua

interpreter and there are two ways to make LuaMetaTEX behave like one. The first method uses the

command line option --luaonly followed by a filename. The second is more automatic: if the only

non-option argument (file) on the command line has the extension lmt or lua. The luc extension

has been dropped because bytecode compiled files are not portable and one can always load them

indirectly. The lmt suffix is more ConTEXt specific and makes it possible to have files for LuaTEX and

LuaMetaTEX alongside.

In interpreter mode, the program will set Lua's arg[0] to the found script name, pushing preceding

options in negative values and the rest of the command line in the positive values, just like the Lua

376

interpreter does. The program will exit immediately after executing the specified Lua script and is

thereby effectively just a somewhat bulky stand alone Lua interpreter with a bunch of extra preloaded

libraries. But we still wanted and managed to keep the binary small, somewhere around 3MB, which

is okay for a script engine.

When no argument is given, LuaMetaTEX will look for a Lua file with the same name as the binary

and run that one when present. This makes it possible to use the engine as a stub. For instance, in

ConTEXt a symlink from mtxrun to type luametatex will run the mtxrun.lmt or mtxrun.lua script when

present in the same path as the binary itself. As mentioned before first checking for (ConTEXt) lmt

files permits different files for different engines in the same path.

10.2.3 Other commandline processing

When the LuaMetaTEX executable starts, it looks for the --lua command line option. If there is no

such option, the command line is interpreted in a similar fashion as the other TEX engines. All options

are accepted but only some are understood by LuaMetaTEX itself:

commandline argument explanation

--credits display credits and exit

--fmt=FORMAT load the format file FORMAT

--help display help and exit

--ini be iniluatex, for dumping formats

--jobname=STRING set the job name to STRING

--lua=FILE load and execute a Lua initialization script

--version display version and exit

--permitloadlib permits loading of external libraries

There are less options than with LuaTEX, because one has to deal with them in Lua anyway. So for

instance there are no options to enter a safer mode or control executing programs because this can

easily be achieved with a startup Lua script, which can interpret whatever options got passed.

Next the initialization script is loaded and executed. From within the script, the entire command

line is available in the Lua table arg, beginning with arg[0], containing the name of the executable.

As consequence warnings about unrecognized options are suppressed. Command line processing

happens very early on. So early, in fact, that none of TEX's initializations have taken place yet. The

Lua libraries that don't deal with TEX are initialized rather soon so you have these available.

LuaMetaTEX allows some of the command line options to be overridden by reading values from the

texconfig table at the end of script execution (see the description of the texconfig table later on in

this document for more details on which ones exactly). The value to use for \jobname is decided as

follows:

• If --jobname is given on the command line, its argument will be the value for \jobname, without

any changes. The argument will not be used for actual input so it need not exist. The --jobname

switch only controls the \jobname setting.

• Otherwise, \jobname will be the name of the first file that is read from the file system, with any

path components and the last extension (the part following the last .) stripped off.

• There is an exception to the previous point: if the command line goes into interactive mode (by

starting with a command) and there are no files input via \everyjob either, then the \jobname is

set to texput as a last resort.

377

So let's summarize this. The handling of what is called job name is a bit complex. There can be explicit

names set on the command line but when not set they can be taken from the texconfig table.

startup filename --lua a Lua file

startup jobname --jobname a TEX tex texconfig.jobname

startup dumpname --fmt a format file texconfig.formatname

These names are initialized according to --luaonly or the first filename seen in the list of options.

Special treatment of & and * as well as interactive startup is gone but we still enter TEX via an forced

\input into the input buffer.14

When we are in TEX mode at some point the engine needs a filename, for instance for opening a log

file. At that moment the set jobname becomes the internal one and when it has not been set which

internalized to jobname but when not set becomes texput. When you see a texput.log file someplace

on your system it normally indicates a bad run.

The command line option --permitloadlib has to be given when you load external libraries via Lua.

Although you could manage this via Lua itself in a startup script, the reason for having this as option

is the wish for security (at some point that became a demand for LuaTEX), so this might give an extra

feeling of protection.

10.3 Lua behaviour

10.3.1 The Lua version

We currently use Lua version 5.5 and will follow developments of the language but normally with some

delay. Therefore the user needs to keep an eye on (subtle) differences in successive versions of the

language. Here are a few examples.

Luas tostring function (and string.format) may return values in scientific notation, thereby con

fusing the TEX end of things when it is used as the right-hand side of an assignment to a \dimen or

\count. The output of these serializers also depend on the Lua version, so in Lua 5.3 you can get

different output than from 5.2. It is best not to depend the automatic cast from string to number and

vise versa as this can change in future versions.

When Lua introduced bitwise operators, instead of providing functions in the bit32 library, we wanted

to use these. The solution in ConTEXt was to implement a macro subsystem (kind of like what C does)

and replace the function calls by native bitwise operations. However, because LuajitTEX didn't evolve

we dropped that and when we split the code base between MkIV and MkXL we went native bitwise.

The bit32 library is still there but implemented in Lua instead.

10.3.2 Locales

In stock Lua, many things depend on the current locale. In LuaMetaTEX, we can't do that, because it

makes documents non-portable. While LuaMetaTEX is running if forces the following locale settings:

LC_CTYPE=C

LC_COLLATE=C

14 This might change at some point into an explicit loading triggered via Lua.

378

LC_NUMERIC=C

There is no way to change that as it would interfere badly with the often language specific conversions

needed at the TEX end.

10.4 Lua modules

Of course the regular Lua modules are present. In addition we provide the lpeg library by Roberto

Ierusalimschy, This library is not Unicode-aware, but interprets strings on a byte-per-byte basis. This

mainly means that lpeg.S cannot be used with utf8 characters that need more than one byte, and

thus lpeg.S will look for one of those two bytes when matching, not the combination of the two. The

same is true for lpeg.R, although the latter will display an error message if used with multi-byte

characters. Therefore lpeg.R('aä') results in the message bad argument #1 to 'R' (range must

have two characters), since to lpeg, ä is two 'characters' (bytes), so aä totals three. In practice this

is no real issue and with some care you can deal with Unicode just fine.

There are some more libraries present. For instance we embed luasocket but contrary to LuaTEX don't

embed the related Lua code but some patched and extended variant. The luafilesystem module has

been replaced by a more efficient one that also deals with the MS Windows file and environment prop

erties better (Unicode support in MS Windows dates from before utf8 became dominant so we need

to deal with wide Unicode16). We don't have a Unicode library because we always did conversions in

Lua, but there are some helpers in the string library, which makes sense because Lua itself is now

also becoming Unicode aware.

There are more extensive math libraries and there are libraries that deal with encryption and com

pression. There are also some optional libraries that we do interface but that are loaded on demand.

The interfaces are as minimal as can be because we so much in Lua, which also means that one can

tune behavior to usage better.

10.5 Files

10.5.1 File syntax

LuaMetaTEX will accept a braced argument as a file name:

\input {plain}

\openin 0 {plain}

This allows for embedded spaces, without the need for double quotes. Macro expansion takes place

inside the argument. Keep in mind that as side effect of delegating io to Lua the \openin primitive is

not provided by the engine and has to be implemented by the macro package. This also means that

the limit on the number of open files is not enforced by the engine.

10.5.2 Writing to file

Writing to a file in TEX has two forms: delayed and immediate. Delayed writing means that the to be

written text is anchored in the node list and flushed by the backend. As all io is delegated to Lua,

this also means that it has to deal with distinction. In LuaTEX the number of open files was already

379

bumped to 127, but in LuaMetaTEX it depends on the macro package. The special meaning of channel

18 was already dropped in LuaTEX because we have os.execute.

10.6 Testing

For development reasons you can influence the used startup date and time. By setting the start_time

variable in the texconfig table; as with other variables we use the internal name there. When Uni

versal Time is needed, set the entry use_utc_time in the texconfig table.

In ConTEXt we provide the command line argument --nodates that does a bit more than disabling

dates; it avoids time dependent information in the output file for instance.

10.7 Helpers

10.7.1 Basics

The lua library is relatively small and only provides a few functions. There are many more helpers

but these are organized in specific modules for file i/o, handling strings, and manipulating table.

The Lua interpreter is stack bases and when you put a lot of values on the stack it can overflow.

However, if that is the case you're probably doing something wrong. The next function returns the

current top and is mainly there for development reasons.

function lua.getstacktop ()

return <t:integer>

end

The next example:

\startluacode

context(lua.getstacktop())

context(lua.getstacktop(1,2,3))

context(lua.getstacktop(1,2,3,4,5,6))

\stopluacode

typesets: 036, so we're fine.

\startluacode

context(lua.getstacktop(unpack(token.getprimitives())))

\stopluacode

But even this one os okay: 1197, because some thousand plus entries is not bothering the engine. Of

course it makes little sense because now one has to loop over the arguments.

The engines exit code can be set with:

function lua.setexitcode (<t:integer>)

-- no return values

end

and queried with:

380

function lua.getexitcode ()

return <t:integer>

end

The name of the startup file, in our case ‘cont-en.lui’ with the path part stripped, can be fetched

with:

function lua.getstartupfile ()

return <t:string>

end

The current Lua version, as reported by the next helper, is Lua 5.5.

function lua.getversion ()

-- return todo

end

We provide high resolution timers so that we can more reliable do performance tests when needed

and for that we have time related helpers. The getruntime function returns the time passed since

startup. The getcurrenttime does what its name says. Just play with them to see how it pays off. The

getpreciseticks returns a number that can be used later, after a similar call, to get a difference. The

getpreciseseconds function gets such a tick (delta) as argument and returns the number of seconds.

Ticks can differ per operating system, but one always creates a reference first and then use deltas to

this reference.

10.7.2 Timers

function lua.getruntime ()

return <t:number> -- actually an integer

end

function lua.getcurrenttime ()

return <t:number> -- actually an integer

end

function lua.getpreciseticks ()

return <t:number> -- actually an integer

end

function lua.getpreciseseconds (<t:number> ticks)

return <t:number>

end

There is a little bit of duplication in the timers; here is what they report at this stage of the current

run:

library function result

lua getruntime 11.054286956787109

getcurrenttime 1748976937.7175655

getpreciseticks 4184693866456.0

getpreciseseconds 418469.3867546

381

os clock 11.057

time 1748976937

gettimeofday 1748976937.717566

10.7.3 Bytecode registers

Lua registers can be used to store Lua code chunks. The accepted values for assignments are functions

and nil. Likewise, the retrieved value is either a function or nil.

function lua.setbytecode (

<t:integer> register,

<t:function> loader,

<t:boolean> strip

)

-- no return values

end

An example of a valid call is lua.setbytecode(5,loadfile("foo.lua")). The complement of this

helper is:

function lua.getbytecode (<t:integer> register)

retrurn <t:bytecode>

end

The codes are stored in the virtual table lua.bytecode. The contents of this array is stored inside the

format file as actual Lua bytecode, so it can also be used to preload Lua code. The function must not

contain any upvalues. The associated function calls are:

function lua.callbytecode (<t:integer> register)

-- <t:boolean> -- success

end

Note that the path of the file is stored in the Lua bytecode to be used in stack backtraces and therefore

dumped into the format file if the above code is used in iniTEX. If it contains private information, i.e.

the user name, this information is then contained in the format file as well. This should be kept in

mind when preloading files into a bytecode register in iniTEX.

10.7.4 Tables

You can preallocate tables with these two helpers. The first one preallocates the given amount of hash

entries and index entries. The newindex function create an indexed table with default values:

function lua.newtable (<t:integer> hashsize, <t:integer> indexsize)

return <t:table>

end

function lua.newindex (<t:integer> size, <t:whatever> default)

return <t:table>

end

382

10.7.5 Nibbles

Nibbles are half bytes so they run from 0x0 upto 0xF. When we needed this for math state fields, the

helpers made it here.

function lua.setnibble (<t:integer> original, <t:integer> position, <t:integer>

value)

return <t:integer>

end

function lua.getnibble (<t:integer> original, <t:integer> position)

return <t:integer>

end

function lua.addnibble (<t:integer> original, <t:integer> position, <t:integer>

value)

return <t:integer>

end

function lua.subnibble (<t:integer> original, <t:integer> position, <t:integer>

value)

return <t:integer>

end

Here a a few examples (positions go from right to left and start at one):

lua.setnibble(0x0000,2,0x1) 0x0010

lua.setnibble(0x0000,4,0x7) 0x7000

lua.getnibble(0x1234,2) 0x3

lua.getnibble(0x1234,4) 0x1

lua.addnibble(0x0000,2) 0x0010

lua.addnibble(0x0030,2) 0x0040

lua.subnibble(0x00F0,2) 0x00E0

lua.subnibble(0x0080,2) 0x0070

10.7.6 Functions

The functions table stores functions by index. The index can be used with the primitives that call

functions by index. In order to prevent interferences a macro package should provide some interface

to the function call mechanisms, just like it does with registers.

function lua.getfunctionstable ()

return <t:table>

end

10.7.7 Tracing

The engine also includes the serializer from the luac program, just because it can be interesting to

see what Lua does with your code.

function luac.print (<t:string> bytecode, <t:boolean> detailed)

-- nothing to return

end

383

384

11 Metapost

11.1 Introduction

Four letters in the name LuaMetaTEX refer to the graphical subsystem MetaPost, originally writen

by John Hobby as follow up on MetaFont. This library was introduced in LuaTEX in order to generate

graphics runtime instead of via a separate system call. The library in LuaTEX is also used for the stand-

alone program so it has a PostScript backend as well as font related frontend. The version used in

LuaMetaTEX has neither. The lack of a backend can be explained from the fact that we have to provide

one anyway: the pdf output is generated by Lua, which at that time was derived from the converter

that I wrote for pdfTEX, although there the starting point is the PostScript output. Removing the font

related code also makes sense, because in MkIV we never used it: we need to support OpenType and

also want to use properly typeset text so we used a different approach (textext and friends).

Another difference with the LuaTEX library is that we don't support the binary number model, which

removes a dependency. We kept decimal number support and also opened that up to the TEX end

via Lua. In addition we support the posit number model, mostly because we also have that at the

TEX end to suit the 32 bit model. The repertoire of scanners and injectors has been enlarged which

makes it easier and more efficient to interface between the LuaMetaTEX subsystems. We also added

functionality to MetaPost, the language and processor. From the users perspective the library is

downward compatible but at the same time it offers more.

Just as LuaTEX is frozen, the MetaPost library that it uses can be considered frozen. In LuaMetaTEX we

have plans for some more extensions. We don't discuss the already present new functionality here in

detail, for that we have separate manuals, organized under the LuaMetaFun umbrella. After all, most

of what we did was done in the perspective of using ConTEXt. Users don't use the functions discussed

below because they only make sense in a more integrated approach as with LuaMetaFun.

11.2 Instances

Before you can process MetaPost code an instance needs to be created. There can be multiple in

stances active at the same time. They are isolated from each other so they can use different number

models and macro sets. Although you can do without files, normally you will load (for instance) macros

from a file. This means that we need to interface the library to the file system. If we want to run Lua,

we need to be able to load Lua code. All this is achieved via callbacks that have to be set up when an

instance is created.

function mplib.new (

{

random_seed = <t:integer>,

interaction = <t:string>,

job_name = <t:string>,

find_file = <t:function>,

open_file = <t:function>,

run_script = <t:function>,

run_internal = <t:function>,

make_text = <t:function>,

math_mode = <t:string>,

utf8_mode = <t:boolean>,

385

text_mode = <t:boolean>,

show_mode = <t:boolean>,

halt_on_error = <t:boolean>,

run_logger = <t:function>,

run_overload = <t:function>,

run_error = <t:function>,

run_warning = <t:function>,

bend_tolerance = <t:number>,

move_tolerance = <t:number>,

}

)

return <t:mp>

end

The library is fed with MetaPost snippets via an execute function. We will discuss this in a while.

function mplib.execute (<t:mp> instance)

return <t:table> -- results

end

An instance can be released with:

function mplib.finish (<t:mp> instance)

return <t:table> -- results

end

Keeping an instance open is more efficient than creating one per graphic especially when a format

has to be loaded. When you execute code, there can be results that for instance can be converted into

pdf and included in the currently made document. If one closes an instance it can be that there are

pending results to take care of, although in practice that is unlikely to happen.

When the utf8_mode parameter is set to true characters with codes 128 upto 255 can be part of

identifiers. There is no checking if we have valid utf but it permits to use that encoding. In ConTEXt,

of course, we enable this. When text_mode is true you can use the characters with ascii STX (2) and

ETC (3) to fence string literals so that we can use double quotes in strings without the need to escape

them. The math_mode parameter controls the number model that this instance will use. Valid values

are scaled (default), double (default in ConTEXt), binary (not supported), decimal (less performing

but maybe useful) and posit (so that we can complements the TEX end).

Valid interaction values are batch, nonstop, scroll, errorstop (default) and silent but in ConTEXt

only the last one makes sense. Setting the random_seed parameter makes it possible to reproduce

graphics and prevent documents to be different each run when the size of graphics are different due

to randomization. The job_name parameter is used in reporting and therefore it is mandate.

Both tolerance parameters default to 131/65536 = 0.001998901 and help to make the output smaller:

‘bend’ relate to straight lines and ‘move’ to effectively similar points. You can adapt the tolerance any

time with:

function mplib.settolerance (

<t:mp> instance,

<t:number> bendtolerance,

<t:number> movetolerance

386

)

-- no return values

end

function mplib.gettolerance (<t:mp> instance)

return

<t:number>, -- bendtolerance

<t:number> -- movetolerance

end

Next we detail the functions that are hooked into the instance because without them being passed

to the engine not that much will happen. We start with the finder. Here mode is w or r. Normally a

lookup of a file that is to be read from is done by a dedicated lookup mechanism that knows about the

ecosystem the library operates in (like the TEX Directory Structure).

function find_file (

<t:string> filename,

<t:string> mode,

<t:string> filetype | <t:integer> index

)

return <t:string> -- foundname

end

A (located) file is opened with the open_file callback that has to return a table with a close method

and a reader or a writer dependent of the mode.

function open_file (

<t:string> filename,

<t:string> mode,

<t:string> filetype | <t:integer> index

)

return {

close = function()

-- return nothing

end,

reader = function()

return <t:string>

end,

writer = function(<t:string>)

-- return nothing

end

}

end

This approach is not that different from the way we do this at the TEX so like there a reader normally

returns lines. The way MetaPost writes to and read from files using primitives is somewhat curious

which is why the file type can be a number indicating what handle is used. However, apart from

reading files that have code using input one hardly needs the more low level read and write related

primitives.

The runner is what makes it possible to communicate between MetaPost and Lua and thereby TEX.

There are two possible calls:

387

function run_script (<t:string> code | <t:integer> reference)

return <t:string> metapost

end

The second approach makes it possible to implement efficient interfaces where code is turned into

functions that are kept around. At the MetaPost end we therefore have, as in LuaTEX:

runscript "some code that will be loaded and run"

% more code

runscript "some code that will be loaded and run"

which can of course be optimized by caching, but more interesting is:

newinternal my_function ; my_function := 123 ;

runscript my_function ;

% more code

runscript my_function ;

which of course has to be dealt with in Lua. The return value can be a string but also a direct object:

function run_script (

<t:string> code | <t:integer> reference,

<t:boolean> direct

)

return

<t:boolean> | <t:number> | <t:string> | <t:table>, -- result

<t:boolean> -- success

end

When the second argument is true, the results are injected directly and tables become pairs, colors,

paths, transforms, depending on how many elements there are.

In MetaPost internal variables are quantities that are stored a bit differently and are accessed without

using the expression scanner. The run_internal function triggers when internal MetaPost variables

flagged with runscript are initialized, saved or restored. The first argument is an action, the second

the value of internal. When we initialize an internal a third and fourth argument are passed.

function run_internal (

<t:integer> action,

<t:integer> internal,

<t:integer> category,

<t:string> name

)

-- no return values

end

The category is one of the types that MetaPost also uses elsewhere: integer, boolean, numeric or

known. From this you can deduce that internals in LuaMetaTEX can not only be numbers but also

strings or booleans. The possible actions are:

0 initialize

1 save

2 restore

388

There is of course bit extra overhead involved than normal but that can be neglected especially because

we can have more efficient calls to Lua using references stored in internals. It also has the benefit

that one can implement additional tracing.

MetaPost is a graphic language and system and typesetting text is not what it is meant for so that gets

delegated to (for instance) TEX using btex which grabs text upto etex and passes it to this callback:

function make_text (<t:string> str, <t:integer> mode)

return <t:string> -- metapost

end

Here mode is only relevant if you want to intercept verbatimtex which is something that we don't

recommend doing in ConTEXt, just like we don't recommend using btex. But, if you use these, keep

in mind that spaces matter. The parameter texscriptmode controls how spaces and newlines get

honored. The default value is 1. Possible values are:

value meaning

0 no newlines

1 newlines in verbatimtex

2 newlines in verbatimtex and etex

3 no leading and trailing strip in verbatimtex

4 no leading and trailing strip in verbatimtex and btex

That way the Lua handler (assigned to make_text) can do what it likes. An etex has to be followed by

a space or ; or be at the end of a line and preceded by a space or at the beginning of a line. But let's

repeat: these commands are kind of old school and not to be used in LuaMetaFun.

Logging, which includes the output of message and show, is also handled by a callback:

function run_logger (<t:integer> target, <t:string> str)

-- no return values

end

The possible log targets are:

0 void

1 terminal

2 file

3 both

4 error

An overload handler will take care of potentially dangerous overloading of for instance primitives,

macro package definitions and special variables.

function run_overload (<t:integer> property, <t:string> name, <t:integer> mode)

return <t:boolean> -- resetproperty

end

The mode value is the currently set overloadmode internal. The MetaPost command setproperty can

be used to relate an integer value to a quantity and when that value is positive a callback is triggered

when that quantity gets redefined. Primitives get a property value 1 by the engine.

389

-3 mutable

1 primitive

2 permanent

3 immutable

4 frozen

Overload protect is something very ConTEXt and also present at the TEX end. All TEX and MetaPost

quantities have such properties assigned.

When an error is issued it is often best to just quit the run and fix the issue, just because the instance

can now be in a confused state,

function run_error (

<t:string> message,

<t:string> helpinfo,

<t:integer> interactionmode

)

-- no return values

end

You can get some statistics concerning an instance but in practice that is not so relevant for users. In

ConTEXt these go to the log file.

function mplib.getstatistics (<t:mp> instance)

return <t:table>

end

The next set of numbers reflect for the current state of the metafun:1 instance that is active for this

specific run.

avlsymbols table: 00000264a2aba830ifstack table: 00000264a2aba7a0shapes table: 00000264a2aba650

buffer 21816input 17start table: 00000264a2aba710

bytemaps table: 00000264a2abaa10internals table: 00000264a2aba9e0startobjects table: 00000264a2aba950

bytes 0knotobjects table: 00000264a2aba8c0stop table: 00000264a2aba740

characters 19242knots table: 00000264a2aba680stopobjects table: 00000264a2aba980

colors table: 00000264a2aba5c0loopstate table: 00000264a2aba7d0strings 1178

dashes table: 00000264a2aba620maxopen 3subst table: 00000264a2aba800

dashobjects table: 00000264a2aba890pairs table: 00000264a2aba590symbols table: 00000264a2aba6e0

edgeheaders table: 00000264a2aba8f0parameters 42tokens table: 00000264a2aba560

edgeobjects table: 00000264a2aba860save table: 00000264a2aba770transforms table: 00000264a2aba5f0

identifiers table: 00000264a2aba9b0shapeobjects table: 00000264a2aba920values table: 00000264a2aba6b0

In this version of mplib this is informational only. The objects are all allocated dynamically, so there is

no chance of running out of space unless the available system memory is exhausted. There is no need

to configure memory.

The scanner in an instance can be in a specific state:

function mplib.getstatus (<t:mp> instance)

return <t:integer>

end

where possible states are:

390

0 normal 2 flushing 4 var_defining 6 loop_defining

1 skipping 3 absorbing 5 op_defining

Macro names and variable names are stored in a hash table. You can get a list with entries with

gethashentries, which takes an instance as first argument. When the second argument is true more

details will be provided. With gethashentry you get info about the given macro or variable.

function mplib.gethashentries (<t:mp> instance, <t:boolean> details)

<t:table> hashentries

end

function mplib.gethashentry (<t:mp> instance, <t:string> name)

return

<t:integer> -- command

<t:integer> -- property

<t:integer> -- subcommand

end

Say that we have defined:

numeric a ; numeric b ; numeric c ; a = b ; c := b ;

We get values like:

a 45 0 22

b 45 0 20

c 45 0 20

d 45 0

def 20 1 1

vardef 20 1 2

fullcircle 45 3 10

These numbers represent commands, properties and subcommands, and thereby also assume some

knowledge about how MetaPost works internally. As this kind of information is only useful when doing

low level development we leave it at that.

11.3 Processing

It is up to the user to decide what to pass to the execute function as long as it is valid code. Think of

each chunk being a syntactically correct file. Statements cannot be split over chunks.

function mplib.execute (<t:mp> instance, <t:string> code)

return {

status = <t:integer>,

fig = <t:table>,

}

end

In contrast with the normal stand alone mpost command, there is no implied ‘input’ at the start of

the first chunk. When no string is passed to the execute function, there will still be one triggered

because it then expects input from the terminal and you can emulate that channel with the callback

you provide. In practice this is not something you need to be worry about.

391

When code is fed into the library at some point it will shipout a picture. The result always has a

status field and an indexed fig table that has the graphics produced, although that is not mandate,

for instance macro definitions can happen or variables can be set in which case graphics will be

constructed later.

<t:userdata> o = <t:mpobj>:objects ()

<t:table> b = <t:mpobj>:boundingbox ()

<t:number> w = <t:mpobj>:width ()

<t:number> h = <t:mpobj>:height ()

<t:number> d = <t:mpobj>:depth ()

<t:number> i = <t:mpobj>:italic ()

<t:integer> c = <t:mpobj>:charcode ()

<t:number> t = <t:mpobj>:tolerance ()

<t:boolean> s = <t:mpobj>:stacking ()

When you access a object that object gets processed before its properties are returned and in the

process we loose the original. This means that some information concerning the whole graphic is also

no longer reliably available. For instance, you can check if a figure uses stacking with the stacking

function but because objects gets freed after being accessed, no information about stacking is avail

able then.

The charcode, width, height, depth and italic are a left-over from MetaFont. They are values of

the MetaPost variables charcode, fontcharwd, fontcharht, fontchardp and fontcharit at the time

the graphic is shipped out.

You can call fig:objects() only once for any one fig object! In the end the graphic is a list of such

userdata objects with accessors that depends on what specific data we have at hand. You can check

out what fields with the following helper:

function mplib.getfields (<t:integer> object | <t:mpobj> object | <t:nil>)

return <t:table>

end

You get a simple table with one list of fields, or a table with all possible fields, organized per object

type. In practice this helper is only used for documentation.

1 fill type path htap pen color linejoin miterlimit prescript postscript stack

ing curvature bytemap

2 outline type path pen color linejoin miterlimit linecap dash prescript postscript

stacking curvature bytemap

3 start_clip type path prescript postscript stacking

4 start_group type path prescript postscript stacking

5 start_bounds type path prescript postscript stacking

6 stop_clip type stacking

7 stop_group type stacking

8 stop_bounds type stacking

All graphical objects have a field type (the second column in the table above) that gives the object

type as a string value. When you have a non circular pen an envelope is uses defined by path as well

as htap and the backend has to make sure that this gets translated into the proper pdf operators.

Discussing this is beyond this manual. A color table has one, three or four values depending on

the color space used. The prescript and postscript strings are the accumulated values of these

392

operators, separated by newline characters. The stacking number is just that: a number, which can

be used to put shapes in front or other shapes, some order, but it depends on the macro package as

well as the backend to deal with that; it's basically just a numeric tag.

Each dash is a hash with two items. We use the same model as PostScript for the representation of

the dash list; dashes is an array of ‘on’ and ‘off’, values, and offset is the phase of the pattern.

There is helper function peninfo that returns a table containing a bunch of vital characteristics of the

used pen:

function mplib.peninfo (<t:mpobj> object)

return {

width = <t:number>,

rx = <t:number>,

ry = <t:number>,

sx = <t:number>,

sy = <t:number>,

tx = <t:number>,

ty = <t:number>,

}

end

11.4 Internals

There are a couple of helpers that can be used to query the meaning of specific codes and states.

function mplib.gettype (<mopobj> object)

return <t:integer> -- typenumber

end

function mplib.gettypes ()

return <t:table> -- types

end

0 undefined 7 unknownpen 14 transform 21 protodependent

1 vacuous 8 nep 15 color 22 independent

2 boolean 9 unknownnep 16 cmykcolor 23 tokenlist

3 unknownboolean 10 path 17 pair 24 structured

4 string 11 unknownpath 18 numeric 25 unsuffixedmacro

5 unknownstring 12 picture 19 known 26 suffixedmacro

6 pen 13 unknownpicture 20 dependent

function mplib.getcolormodels ()

return <t:table> -- colormodels

end

0 no 1 grey 2 rgb 3 cmyk

function mplib.getcodes ()

return <t:table> -- codes

end

393

0 undefined 22 addto 44 internal 66 macrospecial

1 btex 23 setbounds 45 tag 67 rightdelimiter

2 etex 24 protection 46 numeric 68 leftbracket

3 if 25 property 47 plusorminus 69 rightbracket

4 fiorelse 26 show 48 secondarydef 70 rightbrace

5 input 27 mode 49 tertiarybinary 71 with

6 iteration 28 onlyset 50 leftbrace 72 thingstoadd

7 repeatloop 29 message 51 pathjoin 73 of

8 exittest 30 everyjob 52 pathconnect 74 to

9 relax 31 delimiters 53 ampersand 75 step

10 scantokens 32 write 54 tertiarydef 76 until

11 runscript 33 typename 55 primarybinary 77 within

12 maketext 34 leftdelimiter 56 equals 78 assignment

13 expandafter 35 begingroup 57 and 79 colon

14 definedmacro 36 nullary 58 primarydef 80 comma

15 save 37 unary 59 slash 81 semicolon

16 interim 38 str 60 secondarybinary 82 endgroup

17 let 39 void 61 parametertype 83 stop

18 newinternal 40 cycle 62 controls 84 undefinedcs

19 newbytemap 41 ofbinary 63 tension

20 macrodef 42 capsule 64 atleast

21 shipout 43 string 65 curl

function mplib.getstates ()

return <t:table> -- states

end

0 normal 2 flushing 4 var_defining 6 loop_defining

1 skipping 3 absorbing 5 op_defining

Knots is how the ‘points’ in a curve are called internally and in paths we can find these:

function mplib.getknotstates ()

return <t:table> -- knotstates

end

0 regular 1 begin 2 end 3 single

function mplib.getscantypes ()

return <t:table> -- scantypes

end

0 expression 1 primary 2 secondary 3 tertiary

As with TEX we can log to the console, a log file or both. But one will normally intercept log message

anyway.

function mplib.getlogtargets ()

return <t:table> -- logtargets

end

0 void 1 terminal 2 file 3 both

394

4 error

function mplib.getinternalactions ()

return <t:table> -- internalactions

end

0 initialize 1 save 2 restore

function mplib.getobjecttypes ()

return <t:table> -- objecttypes

end

0 3 start_clip 6 stop_clip

1 fill 4 start_group 7 stop_group

2 outline 5 start_bounds 8 stop_bounds

The next one is of course dependent on what one runs. These statistics are for all instances:

function mplib.getcallbackstate ()

return <t:table> -- callbackstate

end

count 50918 script 36068

error 0 status 0

file 14721 text 0

log 129 warning 0

overloaded 0

The text counter is only counting what gets intercepted by MetaPost and as you can see below, the

recommended textext is handled differently and not counted at all.

okay okay

intercepted

by ConTEXt

intercepted

by MetaPost

So we get this now. The file count goes up because from the perspective of MetaPost code that gets

executed and passed as string is just like reading from file. The relative high number that we see here

reflects that we load quite some MetaFun macros when an instance is initialized.

count 50953 log 141 status 0

error 0 overloaded 0 text 1

file 14735 script 36076 warning 0

11.5 Information

The MetaPost library in LuaTEX starts with version 2 so in LuaMetaTEX we start with version 3, as

suming that there will me no major update to the older library.

function mplib.version ()

395

return <t:string>

end

When there is an error you can ask for some more context:

function mplib.showcontext (<t:mp> instance)

return <t:string>

end

11.6 Methods

For historical reasons we provide a few functions as methods to an instance: execute, finish, get

statistics, getstatus and solvepath, just in case someone goes low level.

11.7 Scanners

There are quite some scanners available and they all take an instance as first argument. Some have

optional arguments that give some control. A very basic one is the following. Scanning for a next

token in MetaPost is different from TEX because while TEX just gets the token, MetaPost can delay

in cases where an expression is seen. This means that you can inspect what is coming but do some

further scanning based on that. Examples of usage can be found in ConTEXt as it permits to come up

with extensions that behave like new primitives or implement interfaces that are otherwise hard to do

in pure MetaPost.

function mplib.scannext (<t:mp> instance, <t:boolean> keep)

return <t:integer> token, <t:integer> mode, <t:integer> kind

end

here the optional keep boolean argument default to false but when true we basically have a look ahead

scan. Contrary to TEX a next token is not expanded. If we want to pick up the result from an expression

we use the next one where again we can push back the result:

0 expression 1 primary 2 secondary 3 tertiary

function mplib.scanexpression (<t:mp> instance, <t:boolean> keep)

return <t:integer> -- kind

end

The difference between scantoken and scannext is that the first one scans for a token and the later

for a value and yes, one has to play a bit with this to see when one gets what.

function mplib.scantoken (<t:mp> instance, <t:boolean> keep)

return

<t:integer>, -- token

<t:integer>, -- mode

<t:integer> -- kind

end

function mplib.scansymbol (<t:mp> instance, <t:boolean> expand, <t:boolean> keep)

return <t:string>

end

396

function mplib.scanproperty (<t:mp> instance)

return <t:integer>

end

These are scanners for the simple data types:

function mplib.scannumeric (<t:mp> instance) return <t:number> end -- scannumber

function mplib.scaninteger (<t:mp> instance) return <t:integer> end

function mplib.scanboolean (<t:mp> instance) return <t:boolean> end

function mplib.scanstring (<t:mp> instance) return <t:string> end

The scanners that return data types with more than one value can will return a table when the second

argument is true:

function mplib.scanpair (<t:mp> instance, <t:boolean astable)

return

<t:number>, -- x

t:number> -- y

end

function mplib.scancolor (

<t:mp> instance,

<t:boolean astable

)

return

<t:number>, -- r

<t:number>, -- g

<t:number> -- b

end

function mplib.scancmykcolor (<t:mp> instance, <t:boolean astable)

return

<t:number>, -- c

<t:number>, -- m

<t:number>, -- y

<t:number> -- k

end

function mplib.scantransform (<t:mp> instance, <t:boolean astable)

return

<t:number>, -- x

<t:number>, -- y

<t:number>, -- xx

<t:number>, -- yx

<t:number>, -- xy

<t:number> -- yy

end

The path scanned is more complex. First an expression is scanned and when okay it is converted to a

table. The compact option gives:

{

397

cycle = <t:boolean>, -- close

pen = <t:boolean>,

{

<t:number>, -- x_coordinate

<t:number>, -- y_coordinate

},

...

}

otherwise we get the more detailed:

{

curved = <t:boolean>,

pen = <t:boolean>,

{

[1] = <t:number>, -- x_coordinate

[2] = <t:number>, -- y_coordinate

[3] = <t:number>, -- x_left

[4] = <t:number>, -- y_left

[5] = <t:number>, -- x_right

[6] = <t:number>, -- y_right

left_type = <t:integer>,

right_type = <t:integer>,

curved = <t:boolean>,

state = <t:integer>,

},

...

}

Possible (knot, the internal name for a point) states are:

0 regular 1 begin 2 end 3 single

The path scanner function that produces such tables is:

function mplib.scanpath (

<t:mp> instance,

<t:boolean> compact,

<t:integer> kind,

<t:boolean> check

)

return <t:table>

end

This pen scanner returns similar tables:

function mplib.scanpen (

<t:mp> instance,

<t:boolean> compact,

<t:integer> kind,

<t:boolean> check

)

398

return <t:table>

end

The next is not really a scanner. It skips a token that matches the given command and returns a

boolean telling if that succeeded.

function mplib.skiptoken (<t:mp> instance, <t:integer> command)

return <t:boolean>

end

11.8 Injectors

The scanners are complemented by injectors. Instead of strings that have to be parsed by MetaPost

they inject the right data structures directly.

function mplib.injectnumeric (<t:mp> instance, <t:number> value) end

function mplib.injectinteger (<t:mp> instance, <t:integer> value) end

function mplib.injectboolean (<t:mp> instance, <t:boolean> value) end

function mplib.injectstring (<t:mp> instance, <t:string> value) end

In following injectors accept a table as well as just the values. which can more efficient:

function mplib.injectpair (<t:mp> instance, <t:table> value) end

function mplib.injectcolor (<t:mp> instance, <t:table> value) end

function mplib.injectcmykcolor (<t:mp> instance, <t:table> value) end

function mplib.injecttransform (<t:mp> instance, <t:table> value) end

Injecting a path is not always trivial because we have to connect the points emulating .., ..., ---

and even && and cycle. A path is passed as table. The table can be nested and has entries like these:

{

{

x_coord = <t:number>,

y_coord = <t:number>,

x_left = <t:number>,

y_left = <t:number>,

x_right = <t:number>,

y_right = <t:number>,

left_curl = <t:number>,

right_curl = <t:number>,

left_tension = <t:number>,

right_tension = <t:number>,

direction_x = <t:number>,

direction_y = <t:number>,

},

{

[1] = <t:number>, -- x_coordinate

[2] = <t:number>, -- x_coordinate

[3] = <t:number>, -- x_left

[4] = <t:number>, -- y_left

[5] = <t:number>, -- x_right

399

[6] = <t:number>, -- y_right

},

"append",

"cycle",

}

Here append is like && which picks up the pen, and cycle, not surprisingly, behaves like the cycle

operator.

function mplib.injectpath (<t:mp> instance, <t:table> value)

-- return nothing

end

function mplib.injectwhatever (<t:mp> instance, <t:hybrid> value)

-- return nothing

end

When a path is entered and has to be injected some preparation takes place out of the users sight.

A special variant of the path processor is the following, where the path is adapted and the boolean

indicates success.

function mplib.solvepath (<t:mp> instance, <t:table> value)

return <t:boolean>

end

A still somewhat experimental injectors is the following one, that can be used to fetch information

from the TEX end. Valid values for expected are 1 (integer), 2 (cardinal, 3 (dimension), 5 (boolean)

and 7 (string).

function mplib.expandtex (

<t:mp> instance,

<t:integer> expected,

<t:string> macro,

<t:whatever> arguments

)

return <t:whatever>

end

400

401

12 TEX

12.1 Introduction

Here we don't explain TEX itself but the interface between TEX and Lua. We don't need to talk nodes

and tokens because they have their own chapters.

12.2 Status information

The status library provides information not only about the current run and system setup but also

about all kind of variables and constants used in the engine. A difference between LuaTEX and Lua-

MetaTEX is that every quantity that is hard coded is available as a constant to be used. The same is

true for various bit sets for instance those use in setting options, as we will see in the tex library.

A number of run-time configuration items that you may find useful in message reporting, as well as

an iterator function that gets all of the names and values as a table.

function status.list ()

return <t:table>

end

The keys in the returned table are the known items, the value is the current value. There are top level

items and items that are tables with sub entries. The current list gives:

toplevel statistics

banner This is LuaMetaTeX, Version 2.11.07

copyright Taco Hoekwater, Hans Hagen, Wolfgang Schuster & Mikael Sundqvist

development_id 20250528

filename luametatex-tex.tex

format_id 720

logfilename luametatex.log

lua_format 7

lua_version 5.5

lua_version_major 5

lua_version_minor 5

lua_version_release 0

luatex_engine luametatex

luatex_release 7

luatex_revision 0

luatex_verbose 2.11.07

luatex_version 211

majorversion 2

minorversion 11

permit_loadlib false

release 7

run_state 2

used_compiler gcc

version 211.7

402

balancestate.*

callbacks 0

calls 253

checkedinserts 0

final 253

first 0

foundinserts 0

second 0

specification 0

sub 0

bufferstate.*

all 1000000

ext 0

ini -1

itm 1

max 100000000

mem 1000000

min 1000000

ptr 0

set 10000000

stp 1000000

top 3182

callbackstate.*

bytecode 635

count 546246

direct 305

file 31835

function 147990

local 0

message 0

saved 348099

value 17382

enginestate.*

banner This is LuaMetaTeX, Version 2.11.07

copyright Taco Hoekwater, Hans Hagen, Wolfgang Schuster & Mikael Sundqvist

development_id 20250528

format_id 720

logfilename luametatex.log

luatex_engine luametatex

luatex_release 7

luatex_revision 0

luatex_verbose 2.11.07

luatex_version 211

permit_loadlib false

403

run_state 2

tex_hash_size 262144

used_compiler gcc

version 211.7

errorlinestate.*

max 255

min 132

set 250

top 0

errorstate.*

error unset

errorcontext unset

luaerror unset

expandstate.*

max 1000000

min 10000

set 10000

top 10

filestate.*

all 16000

ext 0

ini -1

itm 32

max 2000

mem 500

min 500

ptr 6

set 2000

stp 250

top 11

fontstate.*

all 15239180

ext 15237180

ini -1

itm 8

max 100000

mem 250

min 250

ptr 64

set 100000

stp 250

top 250

404

halferrorlinestate.*

max 255

min 80

set 234

top 0

hashstate.*

all 2400000

ext 0

ini 0

itm 16

max 2097152

mem 150000

min 150000

ptr 8562

set 250000

stp 100000

top 938216

hyphenationstate.*

checked 30313

exceptions 358

hyphenated 29375

lists 30313

nothing 19631

words 40325

inputstate.*

all 320000

ext 0

ini -1

itm 32

max 100000

mem 10000

min 10000

ptr 7

set 100000

stp 10000

top 46

insertstate.*

all 1400

ext 0

ini -1

itm 56

max 500

405

mem 25

min 25

ptr 11

set 250

stp 25

top 25

languagestate.*

all 2096

ext 96

ini 0

itm 8

max 10000

mem 250

min 250

ptr 0

set 250

stp 250

top 250

linebreakstate.*

align table: 00000264a3111710

dbox table: 00000264a3111620

doubletwins 0

insert table: 00000264a31116b0

lefttwins 0

lua table: 00000264a31117d0

math table: 00000264a31117a0

noalign table: 00000264a3111740

normal table: 00000264a3111530

output table: 00000264a31116e0

reset table: 00000264a3111800

righttwins 0

span table: 00000264a3111770

vadjust table: 00000264a3111680

vbox table: 00000264a31115c0

vcenter table: 00000264a3111650

vmode table: 00000264a3111560

vtop table: 00000264a31115f0

lookupstate.*

all 1

ext 0

ini 51858

itm -1

max 2097152

mem -1

min 150000

406

ptr 56396

set 250000

stp 100000

top 262146

luastate.*

bytecodebytes 16480

bytecodes 1029

functionsize 32768

propertiessize 10000

statebytes 351307159

statebytesmax 351307159

markstate.*

all 1400

ext 0

ini -1

itm 28

max 10000

mem 50

min 50

ptr 28

set 250

stp 50

top 50

mvlstate.*

all 800

ext 0

ini -1

itm 80

max 500

mem 10

min 10

ptr 0

set 10

stp 10

top 10

neststate.*

all 80000

ext 0

ini -1

itm 80

max 10000

mem 1000

min 1000

ptr 0

407

set 10000

stp 1000

top 19

nodestate.*

all 90000400

ext 400

ini 0

itm 9

max 100000000

mem 10000000

min 10000000

ptr -376466

set 100000000

stp 5000000

top 401748

parameterstate.*

all 80000

ext 0

ini -1

itm 4

max 100000

mem 20000

min 20000

ptr 1

set 100000

stp 10000

top 55

poolstate.*

all 1090810

ext 0

ini 993583

itm 1

max 100000000

mem 1090810

min 10000000

ptr -1

set 10000000

stp 1000000

top -1

readstate.*

filename luametatex-tex.tex

iocode 5

408

linenumber 71

skiplinenumber 33

savestate.*

all 160000

ext 0

ini -1

itm 16

max 500000

mem 10000

min 100000

ptr 342

set 500000

stp 10000

top 1411

sparsestate.*

all 3732336

ext 0

ini -1

itm 1

max -1

mem 3732336

min -1

ptr -1

set -1

stp -1

top -1

stringstate.*

all 2400000

ext 0

ini 2149027

itm 16

max 2097152

mem 150000

min 150000

ptr 56413

set 500000

stp 100000

top 56413

texstate.*

approximate 133524422

tokenstate.*

all 16000000

409

ext 0

ini 573375

itm 8

max 10000000

mem 2000000

min 2000000

ptr -2015184

set 10000000

stp 1000000

top 666229

warningstate.*

warning unset

warningtag unset

The getconstants query gives back a table with all kind of internal quantities and again these are

only relevant for diagnostic and development purposes. Many are good old TEX constants that are

describes in the original documentation of the source but some are definitely LuaMetaTEX specific.

function status.getconstants ()

return <t:table>

end

The returned table contains:

constants.*

all_fitness_values 255

assumed_math_control 4125694

awful_bad 1073741823

decent_criterion 12

default_catcode_table -1

default_character_control 0

default_deadcycles 25

default_eqno_gap_step 1000

default_hangafter 1

default_output_box 255

default_pre_display_gap 2000

default_rule 26214

default_space_factor 1000

default_tolerance 10000

deplorable 100000

eject_penalty -10000

ignore_depth -65536000

infinite_bad 10000

infinite_penalty 10000

infinity 2147483647

large_width_excess 7230584

loose_criterion 99

math_all_class 61

math_begin_class 62

410

math_default_penalty 10001

math_end_class 63

math_first_user_class 20

math_last_user_class 60

max_attribute_register_index 65535

max_box_register_index 65535

max_bytecode_index 65535

max_calculated_badness 8189

max_cardinal 4294967295

max_character_code 1114111

max_data_value 2097151

max_dimen 1073741823

max_dimen_register_index 65535

max_dimension 1073741823

max_dimension_register_index 65535

max_endline_character 127

max_float_register_index 65535

max_font_adjust_shrink_factor 500

max_font_adjust_step 100

max_font_adjust_stretch_factor 1000

max_function_reference 2097151

max_glue_register_index 65535

max_half_value 32767

max_halfword 1073741823

max_int_register_index 65535

max_integer 2147483647

max_integer_register_index 65535

max_limited_scale 1000

max_mark_index 9999

max_math_class_code 63

max_math_family_index 63

max_math_scaling_factor 5000

max_math_style_scale 2000

max_muglue_register_index 65535

max_mvl_index 500

max_n_of_bytecodes 65536

max_n_of_catcode_tables 256

max_n_of_fitness_values 15

max_n_of_fonts 100000

max_n_of_languages 10000

max_n_of_marks 10000

max_n_of_math_families 64

max_newline_character 127

max_quarterword 65535

max_scale_factor 100000

max_size_of_word 1000

max_space_factor 32767

max_toks_register_index 65535

max_twin_length 16

411

min_cardinal 0

min_data_value 0

min_dimen -1073741823

min_dimension -1073741823

min_halfword -1073741823

min_infinity -2147483647

min_integer -2147483647

min_mvl_index 1

min_n_of_fitness_values 5

min_quarterword 0

min_scale_factor 0

min_space_factor 0

no_catcode_table -2

null 0

null_flag -1073741824

null_font 0

one_bp 65781

preset_rule_thickness 1073741824

running_rule -1073741824

small_stretchability 1663497

special_space_factor 999

tex_eqtb_size 788216

tex_hash_prime 262103

tex_hash_size 262144

two 131072

undefined_math_parameter 1073741823

unity 65536

unused_attribute_value -2147483647

unused_math_family 255

unused_math_style 255

unused_script_value 0

unused_state_value 0

zero_glue 0

Most variables speak for themselves, some are more obscure. For instance the runstate variable

indicates what the engine is doing:

0x00 initializing

0x01 updating

0x02 production

These overviews can get asked for, for instance with getrunstatevalues in the tex library. Most of

these constants are stable but especially for those that relate to evolving engine functionality there

can be changes, so keep an eye on these mappings!

The individual states can be fetched with the following helpers:

function status.getbufferstate () return <t:table> end

function status.getcallbackstate () return <t:table> end

function status.geterrorlinestate () return <t:table> end

function status.geterrorstate () return <t:table> end

412

function status.getexpandstate () return <t:table> end

function status.getextrastate () return <t:table> end

function status.getfilestate () return <t:table> end

function status.getfontstate () return <t:table> end

function status.gethalferrorlinestate () return <t:table> end

function status.gethashstate () return <t:table> end

function status.gethyphenationstate () return <t:table> end

function status.getinputstate () return <t:table> end

function status.getinsertstate () return <t:table> end

function status.getlanguagestate () return <t:table> end

function status.getlinebreakstate () return <t:table> end

function status.getlookupstate () return <t:table> end

function status.getluastate () return <t:table> end

function status.getmarkstate () return <t:table> end

function status.getneststate () return <t:table> end

function status.getnodestate () return <t:table> end

function status.getparameterstate () return <t:table> end

function status.getpoolstate () return <t:table> end

function status.getreadstate () return <t:table> end

function status.getsavestate () return <t:table> end

function status.getsparsestate () return <t:table> end

function status.getstringstate () return <t:table> end

function status.gettexstate () return <t:table> end

function status.gettokenstate () return <t:table> end

function status.getwarningstate () return <t:table> end

The error and warning messages can be wiped with:

function status.resetmessages ()

-- no return values

end

12.3 Everything TEX

12.3.1 Introduction

The tex library contains a large list of (possibly virtual) internal TEX parameters that are partially

writable. The designation ‘virtual’ means that these items are not properly defined in Lua, but are

only front-ends that are handled by a metatable that operates on the actual TEX values. As a result,

most of the Lua table operators (like pairs and #) do not work on such items. In addition to this kind

of access we have getters and setters, which are the preferred way, but e keep the field like accessors

around for compatibility reasons.

At the moment, it is possible to access almost every parameter that you can use after \the, is a

single token or is sort of special in TEX. This excludes parameters that need extra arguments, like

\the\scriptfont. The subset comprising simple integer and dimension registers are writable as well

as readable (like \tracingcommands and \parindent).

413

12.3.2 Registers

Among of the oldest accessors to internals are tex.dimen and tex.count. This permits calls like this:

\setbox0\hbox{test}

\directlua{tex.sprint(tex.box[0].width)}

to give us (in this case typeset): 1250880 scaled points. Here we access a box register, get back

a userdata node, and access one of its fields. The skip registers also are stored on userdata. The

register are accessed in the following way; watch the different value types that you get:

<t:integer> value = tex.attribute [index]

<t:node> value = tex.skip [index]

<t:integer> value = tex.glue [index]

<t:node> value = tex.muskip [index]

<t:integer> value = tex.muglue [index]

<t:integer> value = tex.dimen [index]

<t:integer> value = tex.count [index]

<t:number> value = tex.posit [index]

<t:string> value = tex.toks [index]

<t:node> value = tex.box [index]

You can also assign values:

tex.attribute [index] = value -- <t:integer>

tex.skip [index] = value -- <t:node>

tex.glue [index] = value -- <t:integer>

tex.muskip [index] = value -- <t:node>

tex.muglue [index] = value -- <t:integer>

tex.dimen [index] = value -- <t:integer>

tex.count [index] = value -- <t:integer>

tex.posit [index] = value -- <t:number>

tex.toks [index] = value -- <t:string>

tex.box [index] = value -- <t:node>

Be warned that an assignment like

tex.box[0] = tex.box[2]

does not copy the node list, it just duplicates a node pointer. If \box2 will be cleared by TEX commands

later on, the contents of \box0 becomes invalid as well. To prevent this from happening, always use

node.copylist unless you are assigning to a temporary variable:

tex.box[0] = node.copylist(tex.box[2])

When you access a TEX parameter a look up takes place. For read-only variables that means that you

will get something back, but when you set them you create a new entry in the table thereby making

the original invisible.

Although these are actually not stored in arrays but in hashes, the various ‘codes’ can also be accessed

this way:

<t:integer> value = tex.sfcode = [index]

414

<t:integer> value = tex.lccode = [index]

<t:integer> value = tex.uccode = [index]

<t:integer> value = tex.hccode = [index]

<t:integer> value = tex.hmcode = [index]

<t:integer> value = tex.amcode = [index]

<t:integer> value = tex.cccode = [index]

<t:integer> value = tex.catcode = [index]

<t:integer> value = tex.mathcode = [index]

<t:integer> value = tex.delcode = [index]

and

tex.sfcode = [index] = value -- <t:integer>

tex.lccode = [index] = value -- <t:integer>

tex.uccode = [index] = value -- <t:integer>

tex.hccode = [index] = value -- <t:integer>

tex.hmcode = [index] = value -- <t:integer>

tex.amcode = [index] = value -- <t:integer>

tex.cccode = [index] = value -- <t:integer>

tex.catcode = [index] = value -- <t:integer>

tex.mathcode = [index] = value -- <t:integer>

tex.delcode = [index] = value -- <t:integer>

The getters are

function tex.getamcode (<t:integer> character) return <t:integer> end

function tex.getcatcode (<t:integer> character) return <t:integer> end

function tex.getcccode (<t:integer> character) return <t:integer> end

function tex.gethccode (<t:integer> character) return <t:integer> end

function tex.gethmcode (<t:integer> character) return <t:integer> end

function tex.getlccode (<t:integer> character) return <t:integer> end

function tex.getsfcode (<t:integer> character) return <t:integer> end

function tex.getuccode (<t:integer> character) return <t:integer> end

and the setters:

function tex.setamcode (<t:integer> character, <t:integer> value) end

function tex.setcatcode (<t:integer> character, <t:integer> value) end

function tex.setcccode (<t:integer> character, <t:integer> value) end

function tex.sethccode (<t:integer> character, <t:integer> value) end

function tex.sethmcode (<t:integer> character, <t:integer> value) end

function tex.setlccode (<t:integer> character, <t:integer> value) end

function tex.setsfcode (<t:integer> character, <t:integer> value) end

function tex.setuccode (<t:integer> character, <t:integer> value) end

The setlccode and setuccode additionally allow you to set the associated sibling at the same time by

passing an extra argument.

function tex.setlccode (<t:integer> character, <t:integer> lcvalue, <t:integer>

ucvalue) end

function tex.setuccode (<t:integer> character, <t:integer> ucvalue, <t:integer>

lcvalue) end

415

The function call interface for setcatcode also allows you to specify a category table to use on assign

ment or on query (default in both cases is the current one):

function tex.setcatcode (

<t:integer> catcodetable,

<t:integer> character,

<t:integer> value

)

-- no return values

end

All these setters accept an initial global string.

12.3.3 Setters and getters

Most of TEX's parameters can be accessed directly by using their names as index in the tex table, or

by using one of the functions tex.get and tex.set. The exact parameters and return values differ

depending on the actual parameter. In most cases we have integers but especially glue have more

properties than just the amount. For the parameters that can be set, it is possible to use global as

the first argument to tex.set. Them being more complete is an argument for using setters instead of

assignments.

The set function is meant for what we call internal parameter. These can be registers but without a

known number (one can actually figure out the internal number via the token library).

function tex.set (<t:string> name, <t:whatever> value)

-- no return values

end

function tex.set ("global", <t:string> name, <t:whatever> value)

-- no return values

end

You can get back a value with:

function tex.get (<t:string> name)

return <t:whatever>

end

Glue is kind of special because there are five values involved. The return value is a glue_spec node

but when you pass false as last argument to tex.get you get the width of the glue and when you

pass true you get all five values. Otherwise you get a node which is a copy of the internal value so

you are responsible for its freeing at the Lua end. When you set a glue quantity you can either pass a

glue_spec or upto five numbers.

Traditional TEX has 256 registers per type, 𝜀-TEX bumps that to 32K and LuaMetaTEX doubles that.

But how many are enough? Do we really need that many different attributes and glue specifiers?

In LuaMetaTEX on the one hand can go lower on registers and at the same time go beyond with

alternatives when using named quantities.

It is possible to define named registers with t\attributedef, \countdef, \dimendef, \skipdef,

\floatdef or \toksdef control sequences as indices to these tables and these can be accessed by

name at the Lua end. Here are some examples:

416

tex.count.scratchcounter = 123

tex.dimen.scratchdimen = "20pt"

tex.setcount("scratchcounter", 123)

tex.setdimen("scratchdimen", 10 *65536)

tex.setdimen("global", "scratchdimen", "10pt")

enormous = tex.dimen.maxdimen

enormous = tex.getdimen("maxdimen")

unknown = tex.dimen[3]

unknown = tex.getdimen(3)

Of course this assumes that these registers are defined. What you can do depends on the type:

• The count registers accept and return Lua numbers (integers in this case).

• The dimension registers accept Lua numbers (in scaled points) or strings with a dimension.

• The token registers accept and return Lua strings. Lua strings are converted to and from token

lists using \the\toks style expansion: all category codes are either space (10) or other (12).

• The skip registers accept and return glue_spec userdata node objects (see the description of the

node interface elsewhere in this manual).

• The glue registers are just skip registers but instead of userdata accept verbose (integers).

• Like the counts, the attribute registers accept and return integers.

• Float (aka posit) registers accept and return floating point numbers.

The setglue function accepts upto five arguments:

function tex.setskip (

<t:string> register, -- can also be an index

<t:node> value -- glue_spec

)

-- no return values

end

function tex.setglue (

<t:string> register, -- can also be an index

<t:integer> amount,

<t:integer> stretch,

<t:integer> shrink,

<t:integer> stretchorder,

<t:integer> shrinkorder

)

-- no return values

end

Actually there can be one more argument here because as first argument we can pass "global". The

whole repertoire is:

417

function tex.getattribute (<t:string> name) return <t:integer> end

function tex.getcount (<t:string> name) return <t:integer> end

function tex.getdimen (<t:string> name) return <t:integer> end

function tex.getfloat (<t:string> name) return <t:number> end

function tex.getskip (<t:string> name) return <t:node> end

function tex.getmuskip (<t:string> name) return <t:node> end

function tex.gettoks (<t:string> name) return <t:string> end

function tex.getglue (<t:string> name) return <t:integer>, ... end

function tex.getmuglue (<t:string> name) return <t:integer>, ... end

function tex.getglue (<t:string> name, false) return <t:integer> end

function tex.getmuglue (<t:string> name, false) return <t:integer> end

and

function tex.setattribute (<t:string> name, <t:integer> value) end

function tex.setcount (<t:string> name, <t:integer> value) end

function tex.setdimen (<t:string> name, <t:integer> value) end

function tex.setfloat (<t:string> name, <t:number> value) end

function tex.setmuskip (<t:string> name, <t:node> value) end

function tex.setskip (<t:string> name, <t:node> value) end

function tex.settoks (<t:string> name, <t:string> value) end

function tex.setglue (<t:string> name, <t:integer> value, ...) end

function tex.setmuglue (<t:string> name, <t:integer> value, ...) end

Just to be clear, getting a glue has two variants, the third one is just a reduced variant:

function tex.getskip (

<t:string> register -- can also be an index

)

return <t:node> -- a glue_spec

end

function tex.getglue (

<t:string> register -- can also be an index

)

return

<t:integer> -- amount,

<t:integer> -- stretch,

<t:integer> -- shrink,

<t:integer> -- stretchorder,

<t:integer> -- shrinkorder

end

function tex.getglue (

<t:string> register, -- can also be an index

false

)

return <t:integer> amount,

end

418

When tex.gettoks gets an extra argument true it will return a table with userdata tokens. For tokens

registers we have an alternative where a catcode table is specified:

function tex.scantoks (

<t:integer> catcodetable,

<t:integer> registerindex, -- or just a name

<t:string> data

)

-- no return values

end

Again there is the option to pass "global" as first argument. Here is an example that used the default

ConTEXt catcode table index tex.ctxcatcodes.

local t = tex.scantoks("global",tex.ctxcatcodes,3,"$e=mc^2$")

This is a bit different getter that was introduced to accommodate interfacing between TEX and Meta

Post. We specify what kind of parsing takes place:

function tex.expandasvalue (

<t:integer> kind, -- how interpreted

<t:string> name -- macro name

)

return <t:integer> | <t:boolean> | <t:string>

end

0x00 none 0x03 dimension 0x06 float 0x09 direct

0x01 integer 0x04 skip 0x07 string 0x0A conditional

0x02 cardinal 0x05 boolean 0x08 node

12.3.4 Fonts

There are a few functions that deal with fonts. The next function relates a control sequence to a font

identifier. This is not to be confused with registering font data in the engine which happens with

the functions in the font library. This is basically a setter that as one some in the token library also

accepts prefixes (like global):

function tex.definefont (

<t:string> name,

<t:integer> fontid,

<t:string> prefix

-- there can be more prefixes

)

-- no return values

end

In LuaTEX and other engines the file names are stored in the table of equivalents but not so in Lua-

MetaTEX. But for old times sake we keep some getters in the tex library, as they are basically ‘convert’

commands. The next two are like \fontid and \fontname:

function tex.fontidentifier (<t:integer> id) return <t:integer> end

function tex.fontname (<t:integer> id) return <t:string> end

419

When no id is given the current font is assumed, as if \font was the argument to the mentioned equiv

alent macros, so here we have: <5: DejaVuSansMono @ 10.0pt> and DejaVuSansMono at 10.0pt.

We can query the font id bound to a family (and optionally style):

function tex.getfontoffamily (

<t:integer> family,

<t:integer> style -- 0, 1, 2

)

return <t:integer> -- id

end

This is a good place to mention a pitfall when it comes to accessing some internals. Many variables

are just that, variables, but there are also some that need an argument. This means that we get the

following:

Lua call result (if any)

tex.fontname

tex.fontidentifier

tex.fontname() DejaVuSerif at 10.0pt

tex.fontidentifier() <1: DejaVuSerif @ 10.0pt>

tex.get("fontname",-1) DejaVuSerif at 10.0pt

tex.get("fontidentifier",-1) <1: DejaVuSerif @ 10.0pt>

When called as ‘field’ we get nothing. When called as a function we get the font info of the id passes

as argument. When no argument is given the current font is used. When we use a getter the id is

mandate but a negative value will again make that the current font is used. Making the first two use

the current font and the last two accept no second argument is technically possible but complicating

the code for these few cases makes no sense. We already handle more than in LuaTEX anyway.

12.3.5 Box registers

It is possible to set and query actual boxes, coming for instance from \hbox, \vbox or \vtop, using

the node interface as defined in the node library. In the setters you can pass as first argument global

if needed. Alternatively you can use the tex.box array interface.

function tex.setbox (

<t:integer> index,

<t:node> packedlist

)

-- no return values

end

function tex.setbox (

<t:string> name,

<t:node> packedlist

)

-- no return values

end

The getters return a packed list or nil when the register is void.

420

function tex.getbox (

<t:integer> index

)

return <t:node>

end

function tex.getbox (

<t:string> name

)

return <t:node>

end

You can split a box:

local vlist =

function tex.splitbox (

<t:integer> index,

<t:integer> height,

<t:integer> mode

)

The remainder is kept in the original box and a packaged vlist is returned. This operation is comparable

to the \vsplit operation. The mode can be additional or exactly and concerns the split off box.

12.3.6 Marks

There is a dedicated getter for marks:

function tex.getmark (

<t:string> name,

<t:integer> markindex

)

-- no return values

end

function tex.getmark ()

return <t:integer> -- max mark class

end

The first argument can also be an integer, actually the subtype of a mark node:

0x00 current 0x03 bottom

0x01 top 0x04 splitfirst

0x02 first 0x05 splitbottom

The largest used mark class is returned by:

function tex.getlargestusedmark ()

return <t:integer> -- max mark class

end

421

12.3.7 Inserts

Access to inserts is kind of special and often only makes sense when we are constructing the final page.

Where in traditional TEX inserts use a \dimen, \count, \skip and \box, registers, in LuaMetaTEX we

can use dedicted storage instead. This is why we need setters and getters.

function tex.getinsertdistance (<t:integer> class) return <t:integer> end

function tex.getinsertmultiplier (<t:integer> class) return <t:integer> end

function tex.getinsertlimit (<t:integer> class) return <t:integer> end

function tex.getinsertcontent (<t:integer> class) return <t:node> end

function tex.getinsertheight (<t:integer> class) return <t:integer> end

function tex.getinsertdepth (<t:integer> class) return <t:integer> end

function tex.getinsertwidth (<t:integer> class) return <t:integer> end

Only some properties can be set:

function tex.setinsertdistance (<t:integer> class, <t:integer> distance) end

function tex.setinsertmultiplier (<t:integer> class, <t:integer> multiplier) end

function tex.setinsertlimit (<t:integer> class, <t:integer> limit) end

function tex.setinsertcontent (<t:integer> class, <t:node> list) end

12.3.8 Local boxes

Local boxes, \localleftbox, \localrightbox and specific for LuaMetaTEX, \localmiddlebox, are

not regular box registers so they have dedicated accessors:

function tex.getlocalbox (<t:integer> location)

return <t:node>

end

function tex.setlocalbox (<t:integer> location, <t:node> list)

-- no return values

end

Instead of integers you can also use the name. Valid local box locations are:

0x00 left

0x01 right

0x02 middle

12.3.9 Constants

The name of this section is a bit misleading but reflects history. At some point LuaMetaTEX got a way

to store values differently than in registers because it felt a bit weird to use registers for what actually

are constant values. However, it was not that hard to make them behave like registers which opens

up the possibility to reduce the number of registers at some point.

At the TEX end we have \integerdef, \dimensiondef, \floatdef, \gluespecdef and \mugluespecdef

but at the Lua end we (currently) only handle the first three.

function tex.dimensiondef (<t:string> name) end

422

function tex.integerdef (<t:string> name) end

function tex.positdef (<t:string> name) end

These are the setters:

function tex.setdimensionvalue (<t:string> name, <t:integer> value) end

function tex.setintegervalue (<t:string> name, <t:integer> value) end

function tex.setcardinalvalue (<t:string> name, <t:integer> value) end

function tex.setpositvalue (<t:string> name, <t:number> value) end

and these the getters:

function tex.getdimensionvalue (<t:string> name) return <t:integer> end

function tex.getintegervalue (<t:string> name) return <t:integer> end

function tex.getcardinalvalue (<t:string> name) return <t:integer> end

function tex.getpositvalue (<t:string> name) return <t:number> end

Now, in order to make access more convenient, the getters and setters that deal with these quantities

that we discussed in a previous section also handle these ‘constants’.

The following helper is a bit tricky:

function tex.getregisterindex (<t:string> name)

return <t:integer>

end

The integer that is returned can be used instead of a name when accessing a register,

\newcount \MyCount \newinteger \MyInteger

\newdimen \MyDimen \newdimension \MyDimension

\startluacode

context("[%s] [%s] [%s] [%s]",

tex.getregisterindex("MyCount"),

tex.getregisterindex("MyInteger"),

tex.getregisterindex("MyDimen"),

tex.getregisterindex("MyDimension")

)

\stopluacode

This will only show something for the registers:

[273] [] [269] []

This is why we have a more complete completed solution:

tex.isattribute (<t:string> name) return <t:integer> end

tex.iscount (<t:string> name) return <t:integer> end

tex.isdimen (<t:string> name) return <t:integer> end

tex.isfloat (<t:string> name) return <t:integer> end

tex.isglue (<t:string> name) return <t:integer> end

tex.ismuglue (<t:string> name) return <t:integer> end

tex.ismuskip (<t:string> name) return <t:integer> end

423

tex.isskip (<t:string> name) return <t:integer> end

tex.istoks (<t:string> name) return <t:integer> end

tex.isbox (<t:string> name) return <t:integer> end

We now use this:

\startluacode

context("[%s] [%s] [%s] [%s]",

tex.iscount("MyCount"),

tex.iscount("MyInteger"),

tex.isdimen("MyDimen"),

tex.isdimen("MyDimension")

)

\stopluacode

This time all four names are resolved:

[273] [112321] [269] [250825]

The larger numbers are references to these ‘constants’. Using these instead of names in the getters

(like getcount and getdimen can be more efficient when the number times we need access is very large

because we bypass a hash lookup. Of course these numbers are to be seen as abstract references, so

these larger numbers are unpredictable.

12.3.10 Nesting

The virtual table nest contains the currently active semantic nesting state (think building boxes). It

has two main parts: a zero-based array of userdata for the semantic nest itself, and the numerical

value ptr, which gives the highest available index. Neither the array items in nest[] nor ptr can be

assigned to, because this would confuse the typesetting engine beyond repair, but you can assign to

the individual values inside the array items.

The zero entry nest[0] is the outermost (main vertical list) level while tex.nest [tex.nest.ptr] is

the current nest state. The next example shows all of this:

\setbox\scratchbox\vbox\bgroup

\vbox\bgroup

\startluacode

for i=0,tex.nest.ptr do

context(tostring(tex.nest[i]))

context.space()

context(tostring(tex.nest[i].prevdepth))

context.par()

end

\stopluacode

\egroup

\egroup

tex.nest.instance: 00000264a3233620 266685

tex.nest.instance: 00000264a32336e0 -65536000

tex.nest.instance: 00000264a3233800 -65536000

424

The current nest level (tex.nest.ptr is also available with:

function tex.getnestlevel ()

return <t:integer>

end

The getter function is tex.getnest. You can pass a number (which gives you a list), nothing or top,

which returns the topmost list, or the string ptr which gives you the index of the topmost list. The

complete list of fields is: delimiter, direction, head, mathbegin, mathdir, mathend, mathflatten,

mathmainstyle, mathmode, mathparentstyle, mathscale, mathstyle, modeline, noad, prevdepth,

prevgraf, spacefactor, tail.

Possible modes are:

0x00 unset 0x02 horizontal

0x01 vertical 0x03 math

Valid directions are:

0x00 lefttoright 0x01 righttoleft

Math styles conforms to:

0x00 display 0x04 script

0x01 crampeddisplay 0x05 crampedscript

0x02 text 0x06 scriptscript

0x03 crampedtext 0x07 crampedscriptscript

The math begin and end classes can be built-in or ConTEXt specific:

0x00 ordinary 0x0B over 0x17 exponential 0x22 textpunctuation

0x01 operator 0x0C fraction 0x18 integral 0x23 unspaced

0x02 binary 0x0D radical 0x19 ellipsis 0x24 experimental

0x03 relation 0x0E middle 0x1A function 0x25 fake

0x04 open 0x10 accent 0x1B digit 0x26 numbergroup

0x05 close 0x11 fenced 0x1C division 0x27 maybeordinary

0x06 punctuation 0x12 ghost 0x1D factorial 0x28 mayberelation

0x07 variable 0x13 vcenter 0x1E wrapped 0x29 maybebinary

0x08 active 0x14 explicit 0x1F construct 0x2A chemicalbond

0x09 inner 0x15 imaginary 0x20 dimension 0x2B implication

0x0A under 0x16 differential 0x21 unary 0x2C continuation

The helpers are:

function tex.getnest (<t:integer> level)

return <t:userdata> -- nest

end

function tex.getnest (<t:integer> level, <t:string> name)

return <t:whatever> -- value

end

function tex.setnest (<t:integer> level, <t:string> name), <t:whatever> value)

425

-- no return values

end

Instead of an integer level you can use the keywords ptr and top instead of the current level or zero.

There are a few special cases that we make an exception for: prevdepth, prevgraf and spacefactor.

These normally are accessed via the tex.nest table:

tex.nest[tex.nest.ptr].prevdepth = <t:integer> value

tex.nest[tex.nest.ptr].spacefactor = <t:integer> value

However, the following also works for the current level:

tex.prevdepth = <t:integer> value

tex.spacefactor = <t:integer> value

Keep in mind that when you mess with node lists directly at the Lua end you might need to update the

top of the nesting stack's \prevdepth explicitly as there is no way LuaTEX can guess your intentions.

By using the accessor in the tex tables, you get and set the values at the top of the nesting stack.

12.3.11 Directions

In LuaMetaTEX we only have left-to-right (l2r) and right-to-left (r2l) directions, contrary to LuaTEX

that has few more. In the end those made no sense because the typesetter is not geared for that and

demands can be met by a combination of TEX macros and Lua code.

There are two sets of helpers:

function tex.gettextdir () return <t:integer end

function tex.getlinedir () return <t:integer end

function tex.getmathdir () return <t:integer end

function tex.getpardir () return <t:integer end

function tex.getboxdir () return <t:integer end

and:

function tex.settextdir (<t:integer> direction) end -- no return values

function tex.setlinedir (<t:integer> direction) end -- no return values

function tex.setmathdir (<t:integer> direction) end -- no return values

function tex.setpardir (<t:integer> direction) end -- no return values

function tex.setboxdir (<t:integer> direction) end -- no return values

For old times sake you can also set them using the virtual interfaces, like

tex.textdirection = 1

but in ConTEXt we consider this obsolete. In LuaMetaTEX we dropped the direction related keywords

and only use numbers:

0x00 lefttoright

0x01 righttoleft

426

12.3.12 Special lists

The virtual table tex.lists contains the set of internal registers that keep track of building page lists.

We have the following lists plus some extras: alignhead, bestpagebreak, bestsize, contribute

head, holdhead, insertheights, insertpenalties, leastpagecost, pagediscardshead, pagehead,

pageinserthead, postadjusthead, postmigratehead, preadjusthead, premigratehead, splitdis

cardshead, temphead. Using these assumes that you know what TEX is doing.

The getter and setter functions are getlist and setlist. You have to be careful with what you set

as TEX can have expectations with regards to how a list is constructed or in what state it is.

function tex.getlist (<t:string> name)

return <t:whatever> -- value

end

function tex.setlist (<t:string> name), <t:whatever> value)

-- no return values

end

You can mess up I ways that make the engine fail, for instance due to wrongly linked lists, for instance

maybe circular, or invalid nodes.

12.3.13 Printing

The engine reads tokens from file, token lists and Lua. When we print from Lua it ends up in a special

data structure that efficiently handle strings, tokens and nodes because we can push all three back

to TEX. It is important to notice that when we have a call to Lua, that new input is collected and only

pushed onto the input stack when we are done. The total amount of returnable text from a \directlua

command or primitive driven function call is only limited by available system ram. However, each

separate printed string has to fit completely in TEX's input buffer. The result of using these functions

from inside callbacks is undefined at the moment. First we look at tex.print and tex.sprint.

function tex.print (-- also tex.sprint

<t:string> data,

-- more strings

)

-- nothing to return

end

function tex.print (-- also tex.sprint

<t:integer> catcodetable,

<t:string> data,

-- more strings

)

-- nothing to return

end

function tex.print (-- also tex.sprint

<t:table> data

)

-- nothing to return

427

end

function tex.print (-- also tex.sprint

<t:integer> catcodetable,

<t:table> data

)

-- nothing to return

end

With tex.print each string argument is treated by TEX as a separate input line. If there is a table

argument instead of a list of strings, this has to be a consecutive array of strings to print (the first

non-string value will stop the printing process). The optional first integer parameter can be used to

print the strings using the catcode regime defined by \catcodetable. A value of −1 means that the

currently active catcode regime is used while −2 gives a result similar to \the\toks: all category codes

are 12 (other) except for the space character, that has category code 10 (space). An invalid catcode

table index is silently ignored, and the currently active catcode regime is used instead. The very

last string of the very last tex.print command in a \directlua call will not have the \endlinechar

appended, all others do.

In the case if tex.sprint each string argument is treated by TEX as a special kind of input line that

makes it suitable for use as a partial line input mechanism:

• TEX does not switch to the ‘new line’ state, so that leading spaces are not ignored.

• No \endlinechar is inserted.

• Trailing spaces are not removed. Note that this does not prevent TEX itself from eating spaces as

result of interpreting the line. For example, in

before\directlua{tex.sprint("\\relax")tex.sprint(" in between")}after

the space before in between will be gobbled as a result of the ‘normal’ scanning of \relax.

Although this needs to be used with care, in both function you can also pass token or node userdata

objects. These get injected into the stream. Tokens had best be valid tokens, while nodes need to be

around when they get injected. Therefore it is important to realize the following:

• When you inject a token, you need to pass a valid token userdata object. This object will be collected

by Lua when it no longer is referenced. When it gets printed to TEX the token itself gets copied so

there is no interference with the Lua garbage collection. You manage the object yourself. Because

tokens are actually just numbers, there is no real extra overhead at the TEX end.

• When you inject a node, you need to pass a valid node userdata object. The node related to the

object will not be collected by Lua when it no longer is referenced. It lives on at the TEX end in

its own memory space. When it gets printed to TEX the node reference is used assuming that node

stays around. There is no Lua garbage collection involved. Again, you manage the object yourself.

The node itself is freed when TEX is done with it.

If you consider the last remark you might realize that we have a problem when a printed mix of

strings, tokens and nodes is reused. Inside TEX the sequence becomes a linked list of input buffers.

So, "123" or "\foo{123}" gets read and parsed on the fly, while <t:token> already is tokenized and

effectively is a token list now. A <t:node> is also tokenized into a token list but it has a reference

to a real node. Normally this goes fine. But now assume that you store the whole lot in a macro:

in that case the tokenized node can be flushed many times. But, after the first such flush the node

428

is used and its memory freed. You can prevent this by using copies which is controlled by setting

\luacopyinputnodes to a non-zero value. This is one of these fuzzy areas you have to live with if you

really mess with these low level issues.

The tex.cprint function is similar to tex,sprint but instead of am optional first catcodetable it takes

a catcode value, like:

function tex.cprint (

<t:integer> catcode,

<string> data

-- more strings

)

-- no return values

end

Of course the other three ways to call it are also supported. This might explain better:

\startluacode

tex.cprint(1," 1: $&{\\foo}") tex.print("\\par") -- a lot of \bgroup s

tex.cprint(2," 2: $&{\\foo}") tex.print("\\par") -- matching \egroup s

tex.cprint(9," 9: $&{\\foo}") tex.print("\\par") -- all get ignored

tex.cprint(10,"10: $&{\\foo}") tex.print("\\par") -- all become spaces

tex.cprint(11,"11: $&{\\foo}") tex.print("\\par") -- letters

tex.cprint(12,"12: $&{\\foo}") tex.print("\\par") -- other characters

tex.cprint(14,"14: $&{\\foo}") tex.print("\\par") -- comment triggers

\stopluacode

We get two lines separate by one with only spaces:

11: $&{\foo}

12: $&{\foo}

A variant on tex.sprint is the next one:

function tex.tprint (

{ <t:integer> catcodetable, <string> data},

-- more tables

)

-- no return values

end

The tex.write function is a quick way to dump information. Each string argument is treated as a

special kind of input line that only has spaces and letters.

function tex.write (<t:string> data, ...)

-- no return values

end

function tex.write (<t:table> data)

-- no return values

end

429

Often you can mix strings, nodes and tokens in a print but you might want to check beforehand what

you pass:

function tex.isprintable (<t:whatever> object)

return <t:boolean>

end

12.3.14 Numbers and dimensions

We can rounds a Lua number to an integer that is in the range of a valid TEX register value. If the

number starts out of range, it generates a ‘number too big’ error as well.

function tex.round (<t:number> n)

return <t:integer>

end

In many places the engine multiplies and divides integers and ensures proper rounding. In LuaMeta-

TEX some (new) mechanisms use doubles and round, especially when multiple scale value accumulate

beyond the available integer range. The next function multiplies two Lua numbers and returns a

rounded number that is in the range of a valid TEX register value. In the table version, it creates a

copy of the table with all numeric top-level values scaled in that manner. If the multiplied number(s)

are of range, it generates ‘number too big’ error(s) as well.

function tex.scale (<t:number> original, <t:number> factor)

return <t:integer> -- result

end

function tex.scale (<t:table> originals, <t:number> factor)

return <t:table> -- results

end

Here are companions to the primitives \number and \romannumeral. Both take the long route: the

string goes to TEX, gets tokenized, then converted to what is wanted and finally ends up in Lua. They

can be used like:

function tex.number (<t:integer> original) return <t:string> end

function tex.romannumeral (<t:integer> original) return <t:string> end

The dimension converter takes a string and returns an integer that represents an dimension in scaled

points. When a number is passed it gets rounded.

function tex.toscaled (<t:string> original) return <t:integer> end

function tex.toscaled (<t:number> original) return <t:integer> end

For completeness the engine also provides tex.tonumber:

function tex.tonumber (<t:string> original) return <t:integer> end

function tex.tonumber (<t:number> original) return <t:integer> end

For parsing the string, the same scanning and conversion rules are used that LuaTEX would use if it

was scanning a dimension specifier in its TEX-like input language (this includes generating errors for

bad values), expect for the following:

430

1. only explicit values are allowed, control sequences are not handled

2. infinite dimension units (fil...) are forbidden

3. mu units do not generate an error (but may not be useful either)

12.3.15 Primitives

Where in LuaTEX we explicitly need to enable the core set of primitives, LuaMetaTEX does that for

you. The only reason that we still have a way to enable them is that it's a convenient way to create

prefixed copies.

function tex.enableprimitives (

<t:string> prefix,

<t:table> names

)

-- no return values

end

Only valid primitive names are processed. Because it is no fun to enter the names, there is this one.

It has two variants, where the boolean variant returns a table with all primitives.

function tex.extraprimitives (<t:string> subset, ...)

return <t:table> -- names

end

function tex.extraprimitives (<t:true>)

return <t:table> -- names

end

Possible values for subset are:

0x01 tex

0x02 etex

0x04 luatex

You can feed the result of the last one in tex.enableprimitives. If there is already a macro with that

name if will not be overloaded.

tex.enableprimitives('normal',tex.extraprimitives(true))

A complete list of primitives can be requested by:

function tex.primitives ()

return <t:table> -- names

end

of course the fact that the name is there doesn't mean that it has the same meaning.

A complete list of all hash entries can be asked for by the following function, but in ConTEXt it will

be a big one, a bit more that 50.000 names, many of which are kind of weird because they use some

namespace.

function tex.hashtokens ()

return <t:table> -- names

431

end

12.3.16 Values (constants)

The engine uses lots of very specific values (constants) for control. These can be status values (where

are we currently), options (in nodes), control parameters (typesetting), etc. and all are available in

lists that relate numbers to strings. Here is the complete list. We show the results in various places

in the documentation. The advantage is that the engine is partly self documenting.

function tex.getadjustoptionvalues () return <t:table> end

function tex.getalignmentcontextvalues () return <t:table> end

function tex.getappendlinecontextvalues () return <t:table> end

function tex.getautomigrationvalues () return <t:table> end

function tex.getautoparagraphvalues () return <t:table> end

function tex.getbalancestepoptionvalues () return <t:table> end

function tex.getbalancecallbackvalues () return <t:table> end

function tex.getboxoptionvalues () return <t:table> end

function tex.getbreakcontextvalues () return <t:table> end

function tex.getbuildcontextvalues () return <t:table> end

function tex.getcharactercontrolvalues () return <t:table> end

function tex.getcharactertagvalues () return <t:table> end

function tex.getdirectionvalues () return <t:table> end

function tex.getdiscoptionvalues () return <t:table> end

function tex.getdiscpartvalues () return <t:table> end

function tex.getdoublescriptoptionvalues () return <t:table> end

function tex.geterrorvalues () return <t:table> end

function tex.getfillvalues () return <t:table> end

function tex.getflagvalues () return <t:table> end

function tex.getfrozenparvalues () return <t:table> end

function tex.getglueoptionvalues () return <t:table> end

function tex.getglyphdiscvalues () return <t:table> end

function tex.getglyphoptionvalues () return <t:table> end

function tex.getglyphprotectionvalues () return <t:table> end

function tex.getgroupvalues () return <t:table> end

function tex.gethyphenationvalues () return <t:table> end

function tex.getiftypes () return <t:table> end

function tex.getinteractionmodes () return <t:table> end

function tex.getiovalues () return <t:table> end

function tex.getkernoptionvalues () return <t:table> end

function tex.getkerneloptionvalues () return <t:table> end

function tex.getlinebreakparameterfields () return <t:table> end

function tex.getlinebreakresultfields () return <t:table> end

function tex.getlinebreakstatevalues () return <t:table> end

function tex.getlistanchorvalues () return <t:table> end

function tex.getlistfields () return <t:table> end

function tex.getlistgeometryvalues () return <t:table> end

function tex.getlistsignvalues () return <t:table> end

function tex.getlocalboxlocations () return <t:table> end

function tex.getmathclassoptionvalues () return <t:table> end

432

function tex.getmathcontrolvalues () return <t:table> end

function tex.getmathgluevalues () return <t:table> end

function tex.getmathoptionvalues () return <t:table> end

function tex.getmathparametervalues () return <t:table> end

function tex.getmathscriptordervalues () return <t:table> end

function tex.getmathscriptsmodevalues () return <t:table> end

function tex.getmathstylenamevalues () return <t:table> end

function tex.getmathstylevalues () return <t:table> end

function tex.getmathsurroundvalues () return <t:table> end

function tex.getmathvariantpresets () return <t:table> end

function tex.getmathvariantvalues () return <t:table> end

function tex.getmarknames () return <t:table> end

function tex.getmvloptionvalues () return <t:table> end

function tex.getmodevalues () return <t:table> end

function tex.getnestfields () return <t:table> end

function tex.getnoadoptionvalues () return <t:table> end

function tex.getnormalizelinevalues () return <t:table> end

function tex.getnormalizeparvalues () return <t:table> end

function tex.getpacktypevalues () return <t:table> end

function tex.getpagecontextvalues () return <t:table> end

function tex.getpagestatevalues () return <t:table> end

function tex.getparametermodevalues () return <t:table> end

function tex.getparcontextvalues () return <t:table> end

function tex.getparmodevalues () return <t:table> end

function tex.getpartriggervalues () return <t:table> end

function tex.getpenaltyoptionvalues () return <t:table> end

function tex.getprepoststatevalues () return <t:table> end

function tex.getprimitiveorigins () return <t:table> end

function tex.getprotrusionboundaryvalues () return <t:table> end

function tex.getruleoptionvalues () return <t:table> end

function tex.getrunstatevalues () return <t:table> end

function tex.getshapingpenaltiesvalues () return <t:table> end

function tex.getspecialmathclassvalues () return <t:table> end

function tex.getspecificationoptionvalues () return <t:table> end

function tex.gettextcontrolvalues () return <t:table> end

function tex.getuleaderlocationvalues () return <t:table> end

function tex.getunitclassvalues () return <t:table> end

12.3.17 Glyphs

There are a few (internal) integer parameters that relate to glyphs, \glyphdatafield, \glyphstate

field, \glyphscriptfield as well as the three scales \glyphscale, \glyphxscale and \glyphyscale,

and for these we have fast accessors:

function tex.setglyphdata (<t:integer>) end

function tex.setglyphstate (<t:integer>) end

function tex.setglyphscript (<t:integer>) end

and

433

function tex.getglyphdata () return <t:integer> end

function tex.getglyphstate () return <t:integer> end

function tex.getglyphscript () return <t:integer> end

The scale getter returns more:

function tex.getglyphscales ()

return

<t:integer>, -- scale

<t:integer>, -- xscale

<t:integer>, -- yscale

<t:integer> -- data

end

12.3.18 Whatever

We have no backend so all that the next does is wiping the box:

function tex.shipout (<t:integer> index)

-- no return values

end

This helper function is useful during line break calculations. The arguments t and s are scaled values;

the function returns the badness for when total t is supposed to be made from amounts that sum to

s. The returned number is a reasonable approximation of 100(𝑡/𝑠)3.

function tex.badness (

<t:integer> t,

<t:integer> s

)

return <t:integer>

end

The page builder can be in different states, so here is how you get the current state:

function tex.getpagestate ()

return <t:integer>

end

possible states are:

0x00 none 0x02 box

0x01 insert 0x03 rule

You can also check if we're in the output routine:

function tex.getoutputactive ()

return <t:boolean>

end

An example of a (possible error triggering) complication is that TEX expects to be in some state, say

horizontal mode, and you have to make sure it is when you start feeding back something from Lua

434

into TEX. Normally a user will not run into issues but when you start writing tokens or nodes or have a

nested run there can be situations that you need to enforce horizontal mode. There is no recipe for this

and intercepting possible cases would weaken LuaTEX's flexibility. Therefore we provide forcehmode

which is similar to \quitvmode at the TEX end, although in ConTEXt, that had it already, we always use

\dontleavehmode as name.

function tex.forcehmode ()

-- no return values

end

The last node in the current list is queried with the following helper. If there is no node you get nil's

back.

function tex.lastnodetype ()

return

<t:integer>, -- type

<t:integer> -- subtype

end

The current mode is available with:

function tex.getmode ()

return <t:integer>

end

Currently we're in mode 0x2, a number that you can give meaning with tex.getmodevalues():

0x00 unset

0x01 vertical

0x02 horizontal

0x03 math

The run state can be fetched with:

function tex.getrunstate ()

return <t:integer>

end

which returns one of:

0x00 initializing

0x01 updating

0x02 production

When we load create the format file we're initializing and when we then do a regular run we are in

production. The updating state is just there so that we can deal with overload protection. In that case

we need to honor the \enforced prefix, that can only be used when not in production mode. When a

runtime module nevertheless wants to use that prefix it can (from Lua) set the mode to updating. This

is all kind of ConTEXt specific because there we use the overload protection mechanism.

12.3.19 Files and lines

You can register a file id and line number in a glyph, hlist and vlist nodes, for instance for imple

menting a SyncTEX emulator. There are some helpers that relate to this. When the mode is zero, no

435

registering will done, when set to one, lists will be tagged and larger values make that glyphs will be

tagged too.

function tex.setinputstatemode (<t:integer> mode)

-- no return values

end

The file is registered as a number and the engine is agnostic about what it refers too. The same is

true for lines. In fact, you can use these fields for whatever purpose you like.

function tex.setinputstatefile (<t:integer> fileid)

-- no return values

end

function tex.setinputstateline (<t:integer> linenumber)

-- no return values

end

The getters just return the currently set values:

function tex.getinputstatemode () return <t:integer> end

function tex.getinputstatefile () return <t:integer> end

function tex.getinputstateline () return <t:integer> end

The file and line number are bound to the current input which can be nested. So, nesting is handled

by the engine. However, you can overload that with the following two helpers. The values set will win

over the ones bound to the current input file.

function tex.forceinputstatefile (<t:integer> fileid)

-- no return values

end

function tex.forceinputstateline (<t:integer> linenumber)

-- no return values

end

12.3.20 Interacting

In LuaMetaTEX valid interaction modes are:

0x00 batch 0x02 scroll

0x01 nonstop 0x03 errorstop

You can get and set the mode with:

function tex.getinteraction ()

return <t:integer> -- mode

end

function tex.setinteraction (<t:integer> mode)

-- no return values

end

436

When an error occurs it can be intercepted by a callback in which case you have to handle the feedback

yourself. For this we have two helpers:

function tex.showcontext () end

function tex.gethelptext () end

An error can be triggered with:

function tex.error (

<t:string> error,

<t:string> help

)

-- no return values

end

Of course these are also intercepted by the callback, when set, in which case the help text can be

fetched. There can arise a situation where the engine is in a state where properly dealing with errors

has become a problem. In that case you can use:

function tex.fatalerror (<t:string> error) end

In this case the run will be aborted. For the record: in ConTEXt any error will quit the run, just because

it makes no sense to try to recover from unpredictable situations and a fix is needed anyway.

12.3.21 Save levels

When you start a group or any construct that behaves like one, for instance boxing, the save stack is

‘pushed’ which means that a boundary is set. When the group ends the values that were saved in the

current region (bounded) are restored. You can also do this in Lua:

function tex.pushsavelevel () end

function tex.popsavelevel () end

This is a way to create grouping when in Lua so that when you set some register the engine will handle

the restore.

12.3.22 Local control

When we talk about local control we mean expanding TEX code in a nested main loop. We start with

explaining tex.runlocal. The first argument can be a number (of a token register), a macro name, the

name of a token list or some (userdata) token made at the Lua end. The second argument is optional

and when true forces expansion inside a definition. The optional third argument can be used to force

grouping. The return value indicates an error: 0 means no error, 1 means that a bad register number

has been passed, a value of 2 indicated an unknown register or macro name, while 3 reports that the

macro is not suitable for local control because it takes arguments.

\scratchtoks{This is {\bf an example} indeed.}%

\startluacode

tex.runlocal("scratchtoks")

\stopluacode

This typesets: This is an example indeed.

437

However, the neat thing about local control is that it happens immediately, so not after the Lua blob

ended as with tex.print ("\\the\scratchtoks").

\scratchtoks{\setbox\scratchbox\hbox{This is {\bf an example} indeed.}}%

\startluacode

tex.runlocal("scratchtoks")

context("The width is: %p",tex.box.scratchbox.width)

\stopluacode

This typesets: The width is: 140.53223pt

function tex.runlocal (

<t:string> name,

<t:boolean> expand,

<t:boolean> group

)

return <t:integer> -- state

end

You can quit a local controlled expansion with the following, but if it works depends on the situation.

function tex.quitlocal ()

-- no return values

end

There might be situations that you push something from Lua to TEX in a local call and don't want

interference. In that case wrapping might help but it is not that well tested yet:

function tex.pushlocal ()

-- no return values

end

function tex.poplocal ()

-- no return values

end

The current level of local calls is available with:

function tex.getlocallevel ()

return <t:integer>

end

You can also run a string through TEX; the last three booleans are optional.

function tex.runlocal (

<t:string> str,

<t:boolean> expand_in_definitions,

<t:boolean> group,

<t:boolean> ignore_undefind_cs

)

-- no return values

end

438

function tex.runlocal (

<t:integer> catcodetable,

<t:string> str,

<t:boolean> expand_in_definitions,

<t:boolean> group,

<t:boolean> ignore_undefind_cs

)

-- no return values

end

12.3.23 Math

There are some setters and getters that relate to the math sub engine. The setter has two variants:

function tex.setmathcode (

<t:integer> target,

<t:integer> class,

<t:integer> family,

<t:integer> character

)

-- no return values

end

function tex.setmathcode (

<t:integer> target,

<t:table> {

<t:integer>, -- class

<t:integer>, -- family

<t:integer> -- character

}

)

-- no return values

end

But there are two getters:

function tex.getmathcode (

<t:integer> target

)

return <t:table> {

<t:integer>, -- class

<t:integer>, -- family

<t:integer> -- character

}

end

function tex.getmathcodes (

<t:integer> target

)

return

439

<t:integer>, -- class

<t:integer>, -- family

<t:integer> -- character

end

Delcodes have different properties:

function tex.setdelcode (

<t:integer> target,

<t:integer> smallfamily,

<t:integer> smallcharacter,

<t:integer> largefamily,

<t:integer> largecharacter

)

-- no return values

end

function tex.setdelcode (

<t:integer> target,

<t:table> {

<t:integer>, -- smallfamily,

<t:integer>, -- smallcharacter,

<t:integer>, -- largefamily,

<t:integer> -- largecharacter

}

)

-- no return values

end

Again there two getters:

function tex.getdelcode (

<t:integer> target

)

return <t:table> {

<t:integer>, -- smallfamily,

<t:integer>, -- smallcharacter,

<t:integer>, -- largefamily,

<t:integer> -- largecharacter

}

end

function tex.getdelcodes (

<t:integer> target

)

return

<t:integer>, -- smallfamily,

<t:integer>, -- smallcharacter,

<t:integer>, -- largefamily,

<t:integer> -- largecharacter

end

440

In LuaMetaTEX the engine can do without these delimiter specifications so they might eventually go

way. The reason is that when a delimiter is needed we also accent a math character. When we use an

OpenType model it's likely that the large character comes from the same font as the small character.

And because the font is loaded under Lua control one can always use a virtual character to refer to

an other font, something that we do in ConTEXt when we load a Type1 based math font.

A named math character is defined with mathchardef but contrary to its TEX counterpart \math

chardef it accepts three four extra parameters. The properties, group and index are data fields

that the (for instance) the backend can use. We make no assumptions about their use because it is

macro package dependent. There can be flags before the three optional parameters.

function tex.mathchardef (

<t:string> name

<t:integer> class,

<t:integer> family,

<t:integer> character,

<t:integer> flags, -- zero or more

<t:integer> properties,

<t:integer> group,

<t:integer> index

)

-- no return values

end

The \chardef equivalent is:

function tex.chardef (

<t:string> name

<t:integer> character,

<t:integer> flags, -- zero or more

)

-- no return values

end

Math parameters have their own setter and getter. The first string is the parameter name minus the

leading Umath, and the second string is the style name minus the trailing style. A value is either an

integer (representing a dimension or number) or a list of glue components.

function tex.setmath (

<t:string> prefix, -- zero or more

<t:integer> parameter,

<t:integer> style,

<t:integer> value, -- one or more

)

-- no return values

end

function tex.setmath (

<t:integer> parameter,

<t:integer> style

)

441

return <t:integer> -- one or more value

end

For the next one you need to know what style variants which we will not discuss here:

function tex.getmathstylevariant (

<t:integer> style,

<t:integer> parameter

)

<t:integer>, -- value

<t:integer> -- variant

end

12.3.24 Processing

You should not expect to much from the triggerbuildpage helpers because often TEX doesn't do much

if it thinks nothing has to be done, but it might be useful for some applications. It just does as it says

it calls the internal function that build a page, given that there is something to build.

function tex.triggerbuildpage ()

-- no return values

end

This function resets the parameters that TEX normally resets when a new paragraph is seen.

function tex.resetparagraph ()

-- no return values

end

The linebreak algorithm can also be applied explicitly to a node list that better be right. There is some

checking done with respect to the beginning and paragraph and interfering glue.

function tex.linebreak (

<t:direct> listhead,

<t:table> parameters

)

return

<t:direct>, -- nodelist

<t:table> -- info

end

There are a lot of parameters that drive the process and many can be set. The interface might be

extended in the future. Valid parameter fields are: adjacentdemerits, adjdemerits, adjustspacing,

adjustspacing, adjustspacingshrink, adjustspacingstep, adjustspacingstretch, baselineskip,

brokenpenalties, brokenpenalty, clubpenalties, clubpenalty, direction, displaywidowpenal

ties, displaywidowpenalty, doublehyphendemerits, emergencyextrastretch, emergencyleft

skip, emergencyrightskip, emergencystretch, exhyphenpenalty, finalhyphendemerits, fitness

classes, hangafter, hangindent, hsize, hyphenationmode, hyphenpenalty, interlinepenalties,

interlinepenalty, lastlinefit, leftskip, lefttwindemerits, linebreakchecks, linebreakop

tional, linepenalty, lineskip, lineskiplimit, looseness, orphanlinefactors, orphanpenalties,

parfillleftskip, parfillrightskip, parinitleftskip, parinitrightskip, parpasses, parshape,

442

pretolerance, protrudechars, rightskip, righttwindemerits, shapingpenaltiesmode, shaping

penalty, singlelinepenalty, toddlerpenalties, tolerance, tracingfitness, tracingparagraphs,

tracingpasses, widowpenalties, widowpenalty. There is no need to set them (at all) because the

usual TEX parameters apply when they are absent.

The result is a node list, it still needs to be vpacked if you want to assign it to a \vbox. The returned

info table contains the following fields: demerits, looseness, prevdepth, prevgraf.

A list can be ‘prepared’ for a linebreak call with the next function. Normally the linebreak routine will

do this. The return values are pointers to some relevant nodes.

function tex.preparelinebreak (

<t:direct> listhead

)

return

<t:node>, -- nodelist

<t:table> -- info

<t:direct>, -- par (head)

<t:direct>, -- tail

<t:direct>, -- parinitleftskip

<t:direct>, -- parinitrightskip

<t:direct>, -- parfillleftskip

<t:direct> -- parfillrightskip

end

function tex.snapshotpar (<t:integer> bitset)

return <t:integer> -- state (bitset)

end

The bitset is made from:

0x00000001 hsize 0x00000800 linepenalty 0x00400000 toddlerpenalty

0x00000002 skip 0x00001000 clubpenalty 0x00800000 emergency

0x00000004 hang 0x00002000 widowpenalty 0x01000000 parpasses

0x00000008 indent 0x00004000 displaypenalty 0x02000000 singlelinepenalty

0x00000010 parfill 0x00008000 brokenpenalty 0x04000000 hyphenpenalty

0x00000020 adjust 0x00010000 demerits 0x08000000 exhyphenpenalty

0x00000040 protrude 0x00020000 shape 0x10000000 linebreakchecks

0x00000080 tolerance 0x00040000 line 0x20000000 twindemerits

0x00000100 stretch 0x00080000 hyphenation 0x40000000 fitnessclasses

0x00000200 looseness 0x00100000 shapingpenalty

0x00000400 lastline 0x00200000 orphanpenalty

This one is handy when you mess with lists and want to take some parameters into account that

matter when building a paragraph. The returned fields are: hangafter, hangindent, hsize, leftskip,

parindent, parshape, rightskip.

function tex.getparstate ()

return <t:table>

end

A par shape normally is discarded when the paragraph ends but we can continue using it if needed.

In that case we can shift the current array and either or not rotate.

443

function tex.shiftparshape (

<t:integer> shift,

<t:boolean> rotate

)

-- no return values

end

A specification, like \parshape or \widowpenalties can be fetched with:

function tex.getspecification (<t:string> name)

return <t:table>

end

12.3.25 MVL

This returns the currently active main vertical list:

function tex.getcurrentmvl ()

return <t:integer>

end

12.3.26 Balancing

At the moment we only have a few balance related helpers. One of them can set the current \bal

anceshape.

function tex.setbalanceshape (

<t:table> steps

)

return <t:integer>

end

The indexed table has subtables with fields:

index <t:integer>

options <t:integer>

vsize <t:number>

topskip <t:number> <t:node>

bottomskip <t:number> <t:node>

extra <t:number>

12.4 The configuration

The global texconfig table is created empty. A startup Lua script could fill this table with a number

of settings that are read out by the executable after loading and executing the startup file. Watch out:

some keys are different from LuaTEX, which is a side effect of a more granular and dynamic memory

management.

key type default comment

buffersize number/table 1000000 input buffer bytes

444

filesize number/table 1000 max number of open files

fontsize number/table 250 number of permitted fonts

hashsize number/table 150000 number of hash entries

inputsize number/table 10000 maximum input stack

languagesize number/table 250 number of permitted languages

marksize number/table 50 number of mark classes

nestsize number/table 1000 max depth of nesting

nodesize number/table 1000000 max node memory (various size)

parametersize number/table 20000 max size of parameter stack

poolsize number/table 10000000 max number of string bytes

savesize number/table 100000 mas size of save stack

stringsize number/table 150000 max number of strings

tokensize number/table 1000000 max token memory

mvlsize number/table 10 max mvl memory

expandsize number/table 10000 max expansion nesting

propertiessize number 0 initial size of node properties table

functionsize number 0 initial size of Lua functions table

errorlinesize number 79 how much or an error is shown

halferrorlinesize number 50 idem

formatname string

jobname string

starttime number for testing only

useutctime number for testing only

permitloadlib number for testing only

If no format name or jobname is given on the command line, the related keys will be tested first

instead of simply quitting. The statistics library has methods for tracking down how much memory is

available and has been configured. The size parameters take a number (for the maximum allocated

size) or a table with three possible keys: size, plus (for extra size) and step for the increment when

more memory is needed. They all start out with a hard coded minimum and also have an hard coded

maximum, the the configured size sits somewhere between these.

12.5 Input and output

This library takes care of the low-level I/O interface: writing to the log file and/or the console. The log

file is registered with the following function:

function texio.setlogfile (<t:file> handle)

-- no return values

end

When TEX serializes something it uses a seslector to determine where it goes. The public selectors

are:

0x01 logfile

0x02 terminal

0x03 terminal_and_logfile

445

Internal we have a string selector, Lua buffer selector, and a so called pseudo selector that is used

when we want to show the context of an error and that keeps track of the position. These are not

opened up.

We start with texio.write. Without the target argument, it writes all given strings to the same

location(s) that TEX writes messages to at that moment. If \batchmode is in effect, it writes only to the

log, otherwise it writes to the log and the terminal. A target can be a number or string.

function texio.write (<t:string> target, <t:string> s, ...)

-- no return values

end

function texio.write (<t:string> s, ...)

-- no return values

end

If several strings are given, and if the first of these strings is or might be one of the targets above, the

target must be specified explicitly to prevent Lua from interpreting the first string as the target.

The next function behaves like the above, but makes sure that the given strings will appear at the

beginning of a new line. You can pass a single empty string if you only want to move to the next line.

One reason why log output can slow down a run is that the engine works piecewise instead of printing

lines. Deep down many writes go character by character because messages can occur everywhere

during the expansion process.

function texio.writenl (<t:string> s, ...)

-- no return values

end

The selector variants below always expect a selector, so there is no misunderstanding if logfile is a

string or selector.

function texio.writeselector (<t:string> s, ...)

-- no return values

end

function texio.writeselectornl (<t:string> s, ...)

-- no return values

end

function texio.writeselectorlf (<t:string> s, ...)

-- no return values

end

The next function should be used with care. It acts as \endinput but at the Lua end. You can use it to

(sort of) force a jump back to TEX. Normally a Lua call will just collect prints and at the end bump an

input level and flush these prints. This function can help you stay at the current level but you need to

know what you're doing (or more precise: what TEX is doing with input).

function texio.closeinput ()

-- no return values

end

446

447

448

13 Math

13.1 Introduction

There is a lot to tell about math typesetting in LuaMetaTEX but plenty is covered in articles, progress

reports and manuals. Here we limit ourselves to some basics. This chapter mostly contains informa

tion that is not presented elsewhere. Because math in regular TEX is basically frozen and other macro

packaged depend on that, the extensions we have in LuaMetaTEX are mainly useful for ConTEXt. Even

there we don't use all features, because completely opening up and providing ways to control every

aspect also served the purpose of testing: it just comes with the package.

This chapter is a variant on the one in the old LuaMetaTEX manual and it might evolve a bit. We will

not discuss the many options that the engine provides, at least not now. There is an extensive “Math in

ConTEXt” that shows the state of the art and serves as reference. In due time we might write some more

about what happens deep down in the engine, although already plenty has been published during the

upgrade, about dealing with math fonts as well as experimenting with new features. Because all gets

wrapped in high level interfaces there is not that much need (nor audience) for endless explanations

anyway. There are also examples given in the chapter that discusses all primitives. Most ConTEXt

users will never see these low level math commands!

13.2 Traditional alongside OpenType

Because we started in 2019 from LuaTEX, by the end of 2021 this chapter started with this, even if we

already reworked the engine:

“At this point there is no difference between LuaMetaTEX and LuaTEX with respect to math. Well,

this might no longer be true because we have more control options that define default behavior

and also have a more extensive scaling model. Anyway, it should not look worse, and maybe

even a bit better. The handling of mathematics in LuaTEX differs quite a bit from how TEX82

(and therefore pdfTEX) handles math. First, LuaTEX adds primitives and extends some others so

that Unicode input can be used easily. Second, all of TEX82's internal special values (for example

for operator spacing) have been made accessible and changeable via control sequences. Third,

there are extensions that make it easier to use OpenType math fonts. And finally, there are some

extensions that have been proposed or considered in the past that are now added to the engine.

You might be surprised that we don't use all these new control features in ConTEXt LMTX, but

who knows what might happen because users drive it. The main reason for adding so much is

that I decided it made more sense to be complete now than gradually add more and more. At

some point we should be able to say ‘This is it’. Also, when looking at these features, you need

to keep in mind that when it comes to math, LATEX is the dominant macro package and it never

needed these engine features, so most are probably just here for exploration purposes.”

Although we still process math as TEX does, there have been some fundamental changes to the ma

chinery. Most of that is discussed in documents that come with ConTEXt and in Mikael Sundqvist math

manual. Together we explored some new ways to deal with math spacing, penalties, fencing, opera

tors, fractions, atoms and other features of the TEX engine. We started from the way ConTEXt used the

already present functionality combine with sometimes somewhat dirty (but on the average working

well) tricks.

449

Much in LuaMetaTEX math handling is about micro-typography and for us the results are quite visible.

But, as far as we know, there have never been complaints or demands in the direction of the features

discussed here. Also, TEX math usage outside ConTEXt is rather chiseled in stone (already for nearly

three decades) so we don't expect other macro packages to use the new features anyway. Anyway,

after spending a real lot of time on this we both decided that we're mostly feature complete.

13.3 Intermezzo

It is important to understand a bit how TEX handles math. The math engine is a large subsystem and

basically can be divided in two parts: convert sequential input into a list of nodes where math related

ones actually are sort of intermediate and therefore called noads.

In text mode entering abc results in three glyph nodes and a b c in three glyph nodes separated by

(spacing) glue. Successive glyphs can be transformed in the font engine later on, just as hyphenation

directive can be added. Eventually one (normally) gets a mix of glyphs, font kerns from a sequence of

glyphs

In math mode abc results in three simple ordinary noads and a b c is equivalent to that: three noads.

But a bc results in two ordinary noads where the second one has a sublist of two ordinary noads.

Because characters have class properties, (a + b = c) results in a simple open noad, a simple

ordinary, a simple binary, a simple ordinary, a simple relation, a simple ordinary and simple close

noad. The next samples show a bit of this; in order to see the effects of spacing between ordinary

atoms set it to 9mu.

$a b c$ \quad $a bc$ \quad abc

𝑎
varvar
𝑏

varvar
𝑐 𝑎

varvar
𝑏

varvar
𝑐 𝑎

varvar
𝑏

varvar
𝑐

With \tracingmath 1 we get this logged:

> \inlinemath=

\noad[ord][...]

.\nucleus

..\mathchar[ord][...], family "0, character "61

\noad[ord][...]

.\nucleus

..\mathchar[ord][...], family "0, character "62

\noad[ord][...]

.\nucleus

..\mathchar[ord][...], family "0, character "63

> \inlinemath=

\noad[ord][...]

.\nucleus

..\mathchar[ord][...], family "0, character "61

\noad[ord][...]

.\nucleus

..\mathchar[ord][...], family "0, character "62

\noad[ord][...]

.\nucleus

450

..\mathchar[ord][...], family "0, character "63

> \inlinemath=

\noad[ord][...]

.\nucleus

..\mathchar[ord][...], family "0, character "61

\noad[ord][...]

.\nucleus

..\mathchar[ord][...], family "0, character "62

\noad[ord][...]

.\nucleus

..\mathchar[ord][...], family "0, character "63

${a} {b} {c}$ \quad ${a} {bc}$ \quad ${abc}$

𝑎H__
ordord
𝑏H__

ordord
𝑐H__ 𝑎H__

ordord
𝑏

varvar
𝑐H__ 𝑎

varvar
𝑏

varvar
𝑐H__

If the previous log surprises you, that might be because in ConTEXt we set up the engine differently:

curly braces don't create ordinary atoms. However, when we set \mathgroupingmode 0 we return to

what the engine normally does.

> \inlinemath=

\noad[ord][...]

.\nucleus

..\mathchar[ord][...], family "0, character "61

\noad[ord][...]

.\nucleus

..\mathchar[ord][...], family "0, character "62

\noad[ord][...]

.\nucleus

..\mathchar[ord][...], family "0, character "63

> \inlinemath=

\noad[ord][...]

.\nucleus

..\mathchar[ord][...], family "0, character "61

\noad[ord][...]

.\nucleus

..\submlist[0][...][tracing depth 5 reached]

> \inlinemath=

\noad[ord][...]

.\nucleus

..\submlist[0][...][tracing depth 5 reached]

A warning is in place: tracing in LuaMetaTEX gets extended when we feel the need to gat more feed

back from the engine. But it will only be more.

From the first example you can imagine what these sub lists look like: a list of ordinary atoms. The

final list that is mix of nodes and yet unprocessed noads get fed into the math-to-hlist function and

451

eventually the noads become glyphs, boxes, kerns, glue and whatever makes sense. A lot goes on

there: think scripts, fractions, fences, accents, radicals, spacing, break control.

An example of more tricky scanning is shown here:

a + 1 \over 2 + b

a + {1}\over{2} + b

a + {{1}\over{2}} + b

In this case the \over makes TEX reconsider the last noad, remove if from the current list and save

it for later, then scan for a following atom a single character turned atom or a braced sequence that

then is an ordinary noad. In the end a fraction noad is made. When that gets processed later specific

numerator and denominator styles get applied (explicitly entered style nodes of course overload this

for the content). The fact that this construct is all about (implicit) ordinary noads, themselves captured

in noads, combined with the wish for enforced consistent positioning of numerator and denominator,

plus style overload, color support and whatever comes to mind means that in practice one will use a

\frac macro that provides all that control.15

A similar tricky case is this:

(a + (b - c) + d)

\left (a + \left (b - c \right) + d \right)

Here the first line creates a list of noads but the second line create a fenced structure that is handled

as a whole in order to make the fences match.16 A fence noad will not break across lines as it is boxed

and that is the reason why macro packages have these \bigg macros: they explicitly force a size using

some trickery. In LuaMetaTEX a fence object can actually be unpacked when the class is configured

as such. It is one of the many extensions we have.

There are some peculiar cases that one can run into but that actually are mentioned in the TEX book.

Often these reasons for intentional side effects become clear when one thinks of the average usage but

unless one is willing to spend time on the ‘fine points of math’ they can also interfere with intentions.

The next bits of code are just for the reader to look at. Try to predict the outcome. Watch out: in

LMTX the outcome is not what one gets by default in LuaTEX, pdfTEX or regular TEX.17

$ 1 {\red +} 2$\par

$ 1 \color[red]{+} 2$\par

$ 1 \mathbin{\red +} 2$\par

$ a + - b + {- b} $

$ a \pm - b - {+ b} $

$ - b $

$ {- b} $

The message here is that when a user is coding the mindset with respect to grouping using curly

braces has to be switched to math mode too. And how many users really read the relevant chapters of

the TEX book a couple of times (as much makes only sense after playing with math in TEX)? Even if one

doesn't grasp everything it's a worthwhile read. Also consider this: did you really ask for an ordinary

15 There are now a \Uover primitives that look ahead and then of course still treat curly braces as math lists to be picked up.
16 Actually instead of such a structure there could have been delimiters with backlinks but one never knows what happens with

these links when processing passes are made so that fragility is avoided.
17 One can set \mathgroupingmode = 0 to get close.

452

atom when you uses curly braces where no lists were expected? And what would have happened when

ordinary related spacing had been set to non-zero?

All the above (and plenty more) is why in ConTEXt LMTX we make extensive use of some LuaMetaTEX

features, like: additional atom classes, configurable inter atom spacing and penalties, pairwise atom

rules that can change classes, class based rendering options, more font parameters, configurable

style instead of hard coded ones in constructs, more granular spacing, etc. That way we get quite

predictable results but also drop some older (un)expected behavior and side effects. It is also why

we cannot show many examples in the LuaMetaTEX manual: it uses ConTEXt and we see no reason to

complicate out lives (and spend energy on) turning off all the nicely cooperating features (and then

for sure forgetting one) just for the sake of demos. It also gave us the opportunity to improve existing

mechanisms and/or at least simplify their sometimes complex code.

One last word here about sequences of ordinary atoms: the traditional code path feeds ordinary atoms

into a ligature and kerning routine and does that when it encounters one. However, in OpenType we

don't have ligatures not (single) kerns so there that doesn't apply. As we're not aware of traditional

math fonts with ligatures and no one is likely to use these fonts with LuaMetaTEX the ligature code has

been disabled.18 The kerning has been redone a bit so that it permits us to fine tune spacing (which in

ConTEXt we control with goodie files). The mentioned routine can also add italic correction, but that

happens selectively because it is driven by specifications and circumstances. It is one of the places

where the approach differs from the original, if only for practical reasons.

In addition to what we explained above, we mention the \beginmathgroup and \endmathgroup prim

itives behave like \begingroup and \endgroup but restore a style change inside the group. Style

changes are actually injecting s special style noad which makes them sort of persistent till the next

explicit change which can be confusing. This additional grouping model compensates for that.

13.4 Unicode math characters

For various reasons we need to encode a math character in a 32 bit number and because we often

also need to keep track of families and classes the range of characters is limited to 20 bits. There are

upto 64 classes (which is a lot more than in LuaTEX) and 64 families (less than in LuaTEX). The upper

limit of characters is less that what Unicode offers but for math we're okay. If needed we can provide

less families.

The math primitives from TEX are kept as they are, except for the ones that convert from input to math

commands: mathcode, and delcode. These two now allow for the larger character codes argument

on the left hand side of the equals sign. The number variants of some primitives might be dropped in

favor of the primitives that read more than one separate value (class, family and code). All relevant

primitives are explained in the primitives chapter.

A delimiter in traditional TEX combines two definitions: the regular character and the way it can

become a larger (extensible) one. The small character is just like a math character but the larger one

can come from a different font (family). However, in OpenType math fonts the larger sizes (variants)

and extensibles (parts) come from the same font. For that reason LuaMetaTEX also accepts a math

character when a delimited specifier is expected. It basically means that we could remove delimiters

as such from the engine. After all, when we let Lua load a traditional font we can as well use virtual

fonts to handle the variants and extensibles, which is indeed the case when we support the jmh fonts.

18 It might show up in a different way if we feel the need in which case it's more related to runtime patches to fonts and class

bases ligature building.

453

13.5 Math classes

Most characters belong to a so called math class which can be set for each character if needed. There

are upto 64 classes of which at this moment about 20 are predefined so, taking some future usage by

the engine into account,you can assume 32 upto 60 to be available for any purpose. The number of

families has been reduced from 256 to 64 which is plenty for daily use in an OpenType setup. If we

ever need to expand the Unicode range there will be less families or we just go for a larger internal

record. The values of begin and end classes and the number of classes can be fetched from the Lua

status table. There are callbacks that makes it possible to report user classes when there is the need.

13.6 Setting up the engine

Rendering math has long been dominated by TEX but that changed when Microsoft came with Open

Type math: an implementation as well as a font. Some of that was modeled after TEX and some was

dictated (we think) by the way word processors deal with math. For instance, traditional TEX math

has a limited set of glyph properties and therefore has a somewhat complex interplay between width

and italic correction. There are no kerns, contrary to OpenType math fonts that provides staircase

kerns. Interestingly TEX does have some ligature building going on in the engine.

In traditional TEX italic correction gets added to the width and selectively removed later (or compen

sated by some shift and/or cheating with the box width). When we started with LuaTEX we had to

gamble quite a bit about how to apply parameters and glyph properties which resulted in different

code paths, heuristics, etc. That worked on the average but fonts are often not perfect and when

served as an example for another one the bad bits can be inherited. That said, over time the descrip

tions improved and this is what the OpenType specification has to say about italic correction now19:

1. When a run of slanted characters is followed by a straight character (such as an operator or a

delimiter), the italics correction of the last glyph is added to its advance width.

2. When positioning limits on an N-ary operator (e.g., integral sign), the horizontal position of the

upper limit is moved to the right by half the italics correction, while the position of the lower limit

is moved to the left by the same distance.

3. When positioning superscripts and subscripts, their default horizontal positions are also different

by the amount of the italics correction of the preceding glyph.

The first rule is complicated by the fact that ‘followed’ is vague: in TEX the sequence $ a b c def

$ results in six separate atoms, separated by inter atom spacing. The characters in these atoms are

the nucleus and there can be a super- and/or subscript attached and in LuaMetaTEX also a prime,

super-prescript and/or sub-prescript.

The second rule comes from TEX and one can wonder why the available top accent anchor is not used.

Maybe because bottom accent anchors are missing? Anyway, we're stuck with this now.

The third rule also seems to come from TEX. Take the ‘f’ character: in TEX fonts that one has a narrow

width and part sticks out (in some even at the left edge). That means that when the subscript gets at

tached it will move inwards relative to the real dimensions. Before the superscript an italic correction

is added so what that correction is non-zero the scripts are horizontally shifted relative to each other.

19 https://docs.microsoft.com/en-us/typography/opentype/spec/math

454

Now look at this specification of staircase kerns20:

The MathKernInfo table provides mathematical kerning values used for kerning of subscript

and superscript glyphs relative to a base glyph. Its purpose is to improve spacing in situations

such as omega with superscript f or capital V with subscript capital A.

Mathematical kerning is height dependent; that is, different kerning amounts can be specified

for different heights within a glyph’s vertical extent. For any given glyph, different values can be

specified for four corner positions, top-right, to-left, etc., allowing for different kerning adjust

ments according to whether the glyph occurs as a subscript, a superscript, a base being kerned

with a subscript, or a base being kerned with a superscript.

Again we're talking super- and subscripts and should we now look at the italic correction or assume

that the kerns do the job? This is a mixed bag because scripts are not always (single) characters. We

have to guess a bit here. After years of experimenting we came to the conclusion that it will never be

okay so that's why we settled on controls and runtime fixes to fonts.

This means that processing math is controlled by \mathfontcontrol, a numeric bitset parameter. The

recommended bits are marked with a star but it really depends on the macro package to set up the

machinery well. Of course one can just enable all and see what happens.21 A list of possible control

bits can be found in the primitives chapter where we discuss this parameter.

So, to summarize: the reason for this approach is that traditional and OpenType fonts have different

approaches (especially when it comes to dealing with the width and italic corrections) and is even

more complicated by the fact that the fonts are often inconsistent (within and between). In ConTEXt

we deal with this by runtime fixes to fonts. In any case the Cambria font is taken as reference.

It is important to notice that in ConTEXt we no longer use italic correction at all. After many experi

ments Mikael Sundvist and I settled on a different approach where we use true widths, proper anchors,

a new set of corner kerns, additional parameters and more. We tweak the fonts to match this model

which in our opinion gives better results and less interference. We could actually simplify the engine

and kick italics out of math but for the moment we keep it around so that we can show improvements

in manuals and articles.

13.7 Math styles

It is possible to discover the math style that will be used for a formula in an expandable fashion (while

the math list is still being read). To make this possible, LuaTEX adds the new primitive: \mathstyle.

This is a ‘convert command’ like e.g. \romannumeral: its value can only be read, not set. Beware

that contrary to LuaTEX this is now a proper number so you need to use \number or \the in order to

serialize it.

The returned value is between 0 and 7 (in math mode), or −1 (all other modes). For easy testing, the

eight math style commands have been altered so that they can be used as numeric values, so you can

write code like this:

\ifnum\mathstyle=\textstyle

\message{normal text style}

20 Idem.
21 This model was more granular and could even be font (and character) specific but that was dropped because fonts are too

inconsistent and an occasional fit is more robust that a generally applied rule.

455

\else \ifnum\mathstyle=\crampedtextstyle

\message{cramped text style}

\fi \fi

Sometimes you won't get what you expect so a bit of explanation might help to understand what

happens. When math is parsed and expanded it gets turned into a linked list. In a second pass the

formula will be build. This has to do with the fact that in order to determine the automatically chosen

sizes (in for instance fractions) following content can influence preceding sizes. A side effect of this

is for instance that one cannot change the definition of a font family (and thereby reusing numbers)

because the number that got used is stored and used in the second pass (so changing \fam 12 mid-

formula spoils over to preceding use of that family).

The style switching primitives like \textstyle are turned into nodes so the styles set there are frozen.

The \mathchoice primitive results in four lists being constructed of which one is used in the second

pass. The fact that some automatic styles are not yet known also means that the \mathstyle primitive

expands to the current style which can of course be different from the one really used. It's a snapshot

of the first pass state. As a consequence in the following example you get a style number (first pass)

typeset that can actually differ from the used style (second pass). In the case of a math choice used

ungrouped, the chosen style is used after the choice too, unless you group.

[a:\number\mathstyle]\quad

\bgroup

\mathchoice

{\bf \scriptstyle (x:d :\number\mathstyle)}

{\bf \scriptscriptstyle (x:t :\number\mathstyle)}

{\bf \scriptscriptstyle (x:s :\number\mathstyle)}

{\bf \scriptscriptstyle (x:ss:\number\mathstyle)}

\egroup

\quad[b:\number\mathstyle]\quad

\mathchoice

{\bf \scriptstyle (y:d :\number\mathstyle)}

{\bf \scriptscriptstyle (y:t :\number\mathstyle)}

{\bf \scriptscriptstyle (y:s :\number\mathstyle)}

{\bf \scriptscriptstyle (y:ss:\number\mathstyle)}

\quad[c:\number\mathstyle]\quad

\bgroup

\mathchoice

{\bf \scriptstyle (z:d :\number\mathstyle)}

{\bf \scriptscriptstyle (z:t :\number\mathstyle)}

{\bf \scriptscriptstyle (z:s :\number\mathstyle)}

{\bf \scriptscriptstyle (z:ss:\number\mathstyle)}

\egroup

\quad[d:\number\mathstyle]

This gives:

[𝑎 : 0] (𝐱:𝐝:𝟒) [𝑏:0] (𝐲:𝐬:𝟔) [𝑐:0] (𝐳:𝐬𝐬:𝟔) [𝑑:0]

[𝑎 : 2] (𝐱:𝐭:𝟔) [𝑏:2] (𝐲:𝐬𝐬:𝟔) [𝑐:2] (𝐳:𝐬𝐬:𝟔) [𝑑:2]

Using \begingroup . . . \endgroup instead gives:

456

[𝑎 : 0] (𝐱:𝐝:𝟒) [𝑏:0] (𝐲:𝐬:𝟔) [𝑐:0] (𝐳:𝐬𝐬:𝟔) [𝑑:0]

[𝑎 : 2] (𝐱:𝐭:𝟔) [𝑏:2] (𝐲:𝐬𝐬:𝟔) [𝑐:2] (𝐳:𝐬𝐬:𝟔) [𝑑:2]

This might look wrong but it's just a side effect of \mathstyle expanding to the current (first pass)

style and the number being injected in the list that gets converted in the second pass. It all makes

sense and it illustrates the importance of grouping. In fact, the math choice style being effective

afterwards has advantages. It would be hard to get it otherwise.

So far for the more LuaTEXish approach. One problem with \mathstyle is that when you got it, and

want to act upon it, you need to remap it onto say \scriptstyle which can be done with an eight

branched \ifcase. This is why we also have a more efficient alternative that you can use in macros:

\normalexpand{ ... \givenmathstyle\the\mathstyle ...}

\normalexpand{ ... \givenmathstyle\the\mathstackstyle ...}

This new primitive \givenmathstyle accepts a numeric value. The \mathstackstyle primitive is just

a bonus (it complements \mathstack).

The styles that the different math components and their sub components start out with are no longer

hard coded but can be set at runtime:

primitive name default

\Umathoverlinevariant cramped

\Umathunderlinevariant normal

\Umathoverdelimitervariant small

\Umathunderdelimitervariant small

\Umathdelimiterovervariant normal

\Umathdelimiterundervariant normal

\Umathhextensiblevariant normal

\Umathvextensiblevariant normal

\Umathfractionvariant cramped

\Umathradicalvariant cramped

\Umathdegreevariant doublesuperscript

\Umathaccentvariant cramped

\Umathtopaccentvariant cramped

\Umathbottomaccentvariant cramped

\Umathoverlayaccentvariant cramped

\Umathnumeratorvariant numerator

\Umathdenominatorvariant denominator

\Umathsuperscriptvariant superscript

\Umathsubscriptvariant subscript

\Umathprimevariant superscript

\Umathstackvariant numerator

These defaults remap styles are as follows:

default result mapping

cramped cramp the style D' D' T' T' S' S' SS' SS'

subscript smaller and cramped S' S' S' S' SS' SS' SS' SS'

small smaller S S S S SS SS SS SS

457

superscript smaller S S S S SS SS SS SS

smaller smaller unless already SS S S' S S' SS SS' SS SS'

numerator smaller unless already SS S S' S S' SS SS' SS SS'

denominator smaller, all cramped S' S' S' S' SS' SS' SS' SS'

doublesuperscript smaller, keep cramped S S' S S' SS SS' SS SS'

The main reason for opening this up was that it permits experiments and removed hard coded internal

values. But as these defaults served well for decades there are no real reasons to change them.

There are a few math commands in TEX where the style that will be used is not known straight from

the start. These commands (\over, \atop, \overwithdelims, \atopwithdelims) would therefore nor

mally return wrong values for \mathstyle. To fix this, LuaTEX introduces a special prefix command:

\mathstack:

$\mathstack {a \over b}$

The \mathstack command will scan the next brace and start a new math group with the correct

(numerator) math style. The \mathstackstyle primitive relates to this feature.

LuaTEX has four new primitives to set the cramped math styles directly:

\crampeddisplaystyle

\crampedtextstyle

\crampedscriptstyle

\crampedscriptscriptstyle

These additional commands are not all that valuable on their own, but they come in handy as argu

ments to the math parameter settings that will be added shortly.

Because internally the eight styles are represented as numbers some of the new primitives that relate

to them also work with numbers and often you can use them mixed. The \tomathstyle prefix converts

a symbolic style into a number so \number\tomathstyle\crampedscriptstyle gives 5.

In Eijkhouts “TEX by Topic” the rules for handling styles in scripts are described as follows:

• In any style superscripts and subscripts are taken from the next smaller style. Exception: in display

style they are in script style.

• Subscripts are always in the cramped variant of the style; superscripts are only cramped if the

original style was cramped.

• In an ..\over.. formula in any style the numerator and denominator are taken from the next

smaller style.

• The denominator is always in cramped style; the numerator is only in cramped style if the original

style was cramped.

• Formulas under a \sqrt or \overline are in cramped style.

In LuaTEX one can set the styles in more detail which means that you sometimes have to set both

normal and cramped styles to get the effect you want. (Even) if we force styles in the script using

\scriptstyle and \crampedscriptstyle we get this:

458

style example

default 𝑏𝑥=𝑥𝑥𝑥=𝑥𝑥
script 𝑏𝑥=𝑥𝑥𝑥=𝑥𝑥
crampedscript 𝑏𝑥=𝑥𝑥𝑥=𝑥𝑥

Now we set the following parameters using \setmathspacing that accepts two class identifier, a style

and a value.

\setmathspacing 0 3 \scriptstyle = 30mu

\setmathspacing 0 3 \scriptstyle = 30mu

This gives a different result:

style example

default 𝑏𝑥 =𝑥𝑥
𝑥=𝑥𝑥

script 𝑏𝑥 =𝑥𝑥
𝑥 =𝑥𝑥

crampedscript 𝑏𝑥=𝑥𝑥𝑥=𝑥𝑥

But, as this is not what is expected (visually) we should say:

\setmathspacing 0 3 \scriptstyle = 30mu

\setmathspacing 0 3 \scriptstyle = 30mu

\setmathspacing 0 3 \crampedscriptstyle = 30mu

\setmathspacing 0 3 \crampedscriptstyle = 30mu

Now we get:

style example

default 𝑏𝑥 =𝑥𝑥
𝑥 =𝑥𝑥

script 𝑏𝑥 =𝑥𝑥
𝑥 =𝑥𝑥

crampedscript 𝑏𝑥 =𝑥𝑥
𝑥 =𝑥𝑥

13.8 Math parameters

In LuaTEX, the font dimension parameters that TEX used in math typesetting are now accessible via

primitive commands. In fact, refactoring of the math engine has resulted in turning some hard codes

properties into parameters.

The next needs checking ...

primitive name description

\Umathquad the width of 18 mu's

\Umathaxis height of the vertical center axis of the math formula above the base

line

\Umathoperatorsize minimum size of large operators in display mode

\Umathoverbarkern vertical clearance above the rule

\Umathoverbarrule the width of the rule

\Umathoverbarvgap vertical clearance below the rule

459

\Umathunderbarkern vertical clearance below the rule

\Umathunderbarrule the width of the rule

\Umathunderbarvgap vertical clearance above the rule

\Umathradicalkern vertical clearance above the rule

\Umathradicalrule the width of the rule

\Umathradicalvgap vertical clearance below the rule

\Umathradicaldegreebefore the forward kern that takes place before placement of the radical de

gree

\Umathradicaldegreeafter the backward kern that takes place after placement of the radical de

gree

\Umathradicaldegreeraise this is the percentage of the total height and depth of the radical sign

that the degree is raised by; it is expressed in percents, so 60% is

expressed as the integer 60
\Umathstackvgap vertical clearance between the two elements in an \atop stack

\Umathstacknumup numerator shift upward in \atop stack

\Umathstackdenomdown denominator shift downward in \atop stack

\Umathfractionrule the width of the rule in a \over

\Umathfractionnumvgap vertical clearance between the numerator and the rule

\Umathfractionnumup numerator shift upward in \over

\Umathfractiondenomvgap vertical clearance between the denominator and the rule

\Umathfractiondenomdown denominator shift downward in \over

\Umathfractiondelsize minimum delimiter size for \...withdelims

\Umathlimitabovevgap vertical clearance for limits above operators

\Umathlimitabovebgap vertical baseline clearance for limits above operators

\Umathlimitabovekern space reserved at the top of the limit

\Umathlimitbelowvgap vertical clearance for limits below operators

\Umathlimitbelowbgap vertical baseline clearance for limits below operators

\Umathlimitbelowkern space reserved at the bottom of the limit

\Umathoverdelimitervgap vertical clearance for limits above delimiters

\Umathoverdelimiterbgap vertical baseline clearance for limits above delimiters

\Umathunderdelimitervgap vertical clearance for limits below delimiters

\Umathunderdelimiterbgap vertical baseline clearance for limits below delimiters

\Umathsubshiftdrop subscript drop for boxes and subformulas

\Umathsubshiftdown subscript drop for characters

\Umathsupshiftdrop superscript drop (raise, actually) for boxes and subformulas

\Umathsupshiftup superscript raise for characters

\Umathsubsupshiftdown subscript drop in the presence of a superscript

\Umathsubtopmax the top of standalone subscripts cannot be higher than this above the

baseline

\Umathsupbottommin the bottom of standalone superscripts cannot be less than this above

the baseline

\Umathsupsubbottommax the bottom of the superscript of a combined super- and subscript be

at least as high as this above the baseline

\Umathsubsupvgap vertical clearance between super- and subscript

\Umathspaceafterscript additional space added after a super- or subscript

\Umathconnectoroverlapmin minimum overlap between parts in an extensible recipe

In addition to the above official OpenType font parameters we have these (the undefined will get

presets, quite likely zero):

460

primitive name description

\Umathconnectoroverlapmin

\Umathsubsupshiftdown

\Umathfractiondelsize

\Umathnolimitsupfactor a multiplier for the way limits are shifted up and down

\Umathnolimitsubfactor a multiplier for the way limits are shifted up and down

\Umathaccentbasedepth the complement of \Umathaccentbaseheight

\Umathflattenedaccentbasedepth the complement of \Umathflattenedaccentbaseheight

\Umathspacebeforescript

\Umathprimeraise

\Umathprimeraisecomposed

\Umathprimeshiftup the prime variant of \Umathsupshiftup

\Umathprimespaceafter the prescript variant of \Umathspaceafterscript

\Umathprimeshiftdrop the prime variant of \Umathsupshiftdrop

\Umathskeweddelimitertolerance

\Umathaccenttopshiftup the amount that a top accent is shifted up

\Umathaccentbottomshiftdown the amount that a bottom accent is shifted down

\Umathaccenttopovershoot

\Umathaccentbottomovershoot

\Umathaccentsuperscriptdrop

\Umathaccentsuperscriptpercent

\Umathaccentextendmargin margins added to automatically extended accents

\Umathflattenedaccenttopshiftup the amount that a wide top accent is shifted up

\Umathflattenedaccentbottomshiftdown the amount that a wide bottom accent is shifted down

\Umathdelimiterpercent

\Umathdelimitershortfall

\Umathradicalextensiblebefore

\Umathradicalextensibleafter

These relate to the font parameters and in ConTEXt we assign some different defaults and tweak them

in the goodie files:

font parameter primitive name default

MinConnectorOverlap \Umathconnectoroverlapmin 0

SubscriptShiftDownWithSuperscript \Umathsubsupshiftdown inherited

FractionDelimiterSize \Umathfractiondelsize undefined

FractionDelimiterDisplayStyleSize \Umathfractiondelsize undefined

NoLimitSubFactor \Umathnolimitsupfactor 0

NoLimitSupFactor \Umathnolimitsubfactor 0

AccentBaseDepth \Umathaccentbasedepth reserved

FlattenedAccentBaseDepth \Umathflattenedaccentbasedepth reserved

SpaceBeforeScript \Umathspacebeforescript 0

PrimeRaisePercent \Umathprimeraise 0

PrimeRaiseComposedPercent \Umathprimeraisecomposed 0

PrimeShiftUp \Umathprimeshiftup 0

PrimeShiftUpCramped \Umathprimeshiftup 0

PrimeSpaceAfter \Umathprimespaceafter 0

PrimeBaselineDropMax \Umathprimeshiftdrop 0

461

SkewedDelimiterTolerance \Umathskeweddelimitertolerance 0

AccentTopShiftUp \Umathaccenttopshiftup undefined

AccentBottomShiftDown \Umathaccentbottomshiftdown undefined

AccentTopOvershoot \Umathaccenttopovershoot 0

AccentBottomOvershoot \Umathaccentbottomovershoot 0

AccentSuperscriptDrop \Umathaccentsuperscriptdrop 0

AccentSuperscriptPercent \Umathaccentsuperscriptpercent 0

AccentExtendMargin \Umathaccentextendmargin 0

FlattenedAccentTopShiftUp \Umathflattenedaccenttopshiftup undefined

FlattenedAccentBottomShiftDown \Umathflattenedaccentbottomshiftdown undefined

DelimiterPercent \Umathdelimiterpercent 0

DelimiterShortfall \Umathdelimitershortfall 0

These parameters not only provide a bit more control over rendering, they also can be used in com

pensating issues in font, because no font is perfect. Some are the side effects of experiments and they

have CamelCase companions in the MathConstants table. For historical reasons the names are a bit

inconsistent as some originate in TEX so we prefer to keep those names. Not many users will mess

around with these font parameters anyway.22

Each of the parameters in this section can be set by a command like this:

\Umathquad\displaystyle=1em

they obey grouping, and you can use \the\Umathquad\displaystyle if needed.

There are quite some parameters that can be set and there are eight styles, which means a lot of

keying in. For that reason is is possible to set parameters groupwise:

primitive name D D' T T' S S' SS SS'

\alldisplaystyles + +
\alltextstyles + +
\allscriptstyles + +
\allscriptscriptstyles + +
\allmathstyles + + + + + + + +
\allmainstyles

\allsplitstyles + + + + − − − −
\allunsplitstyles + + + +
\alluncrampedstyles + + + +
\allcrampedstyles + + + +

These groups are especially handy when you set up inter atom spacing, pre- and post atom penalties

and atom rules.

We already introduced the font specific math parameters but we tell abit more about them and how

they relate to the original TEX font dimensions.

While it is nice to have these math parameters available for tweaking, it would be tedious to have to

set each of them by hand. For this reason, LuaTEX initializes a bunch of these parameters whenever

you assign a font identifier to a math family based on either the traditional math font dimensions in

22 I wonder if some names should change, so that decision is pending.

462

the font (for assignments to math family 2 and 3 using tfm-based fonts like cmsy and cmex), or based

on the named values in a potential MathConstants table when the font is loaded via Lua. If there is

a MathConstants table, this takes precedence over font dimensions, and in that case no attention is

paid to which family is being assigned to: the MathConstants tables in the last assigned family sets

all parameters.

In the table below, the one-letter style abbreviations and symbolic tfm font dimension names match

those used in the TEXbook. Assignments to \textfont set the values for the cramped and un

cramped display and text styles, \scriptfont sets the script styles, and \scriptscriptfont sets

the scriptscript styles, so we have eight parameters for three font sizes. In the tfm case, assignments

only happen in family 2 and family 3 (and of course only for the parameters for which there are font

dimensions).

Besides the parameters below, LuaTEX also looks at the ‘space’ font dimension parameter. For math

fonts, this should be set to zero.

variable / style tfm / opentype

\Umathaxis axis_height

AxisHeight

\Umathaccentbaseheight xheight

AccentBaseHeight

\Umathflattenedaccentbaseheight xheight

FlattenedAccentBaseHeight

6 \Umathoperatorsize —

D, D' DisplayOperatorMinHeight

9 \Umathfractiondelsize delim1

D, D' FractionDelimiterDisplayStyleSize

9 \Umathfractiondelsize delim2

T, T', S, S', SS, SS' FractionDelimiterSize

\Umathfractiondenomdown denom1

D, D' FractionDenominatorDisplayStyleShiftDown

\Umathfractiondenomdown denom2

T, T', S, S', SS, SS' FractionDenominatorShiftDown

\Umathfractiondenomvgap 3*default_rule_thickness

D, D' FractionDenominatorDisplayStyleGapMin

\Umathfractiondenomvgap default_rule_thickness

T, T', S, S', SS, SS' FractionDenominatorGapMin

\Umathfractionnumup num1

D, D' FractionNumeratorDisplayStyleShiftUp

\Umathfractionnumup num2

T, T', S, S', SS, SS' FractionNumeratorShiftUp

463

\Umathfractionnumvgap 3*default_rule_thickness

D, D' FractionNumeratorDisplayStyleGapMin

\Umathfractionnumvgap default_rule_thickness

T, T', S, S', SS, SS' FractionNumeratorGapMin

\Umathfractionrule default_rule_thickness

FractionRuleThickness

\Umathskewedfractionhgap math_quad/2

SkewedFractionHorizontalGap

\Umathskewedfractionvgap math_x_height

SkewedFractionVerticalGap

\Umathlimitabovebgap big_op_spacing3

UpperLimitBaselineRiseMin

1 \Umathlimitabovekern big_op_spacing5

0

\Umathlimitabovevgap big_op_spacing1

UpperLimitGapMin

\Umathlimitbelowbgap big_op_spacing4

LowerLimitBaselineDropMin

1 \Umathlimitbelowkern big_op_spacing5

0

\Umathlimitbelowvgap big_op_spacing2

LowerLimitGapMin

\Umathoverdelimitervgap big_op_spacing1

StretchStackGapBelowMin

\Umathoverdelimiterbgap big_op_spacing3

StretchStackTopShiftUp

\Umathunderdelimitervgap big_op_spacing2

StretchStackGapAboveMin

\Umathunderdelimiterbgap big_op_spacing4

StretchStackBottomShiftDown

\Umathoverbarkern default_rule_thickness

OverbarExtraAscender

\Umathoverbarrule default_rule_thickness

OverbarRuleThickness

\Umathoverbarvgap 3*default_rule_thickness

OverbarVerticalGap

1 \Umathquad math_quad

464

<font_size(f)>

\Umathradicalkern default_rule_thickness

RadicalExtraAscender

2 \Umathradicalrule <not set>

RadicalRuleThickness

3 \Umathradicalvgap default_rule_thickness+abs(math_x_height)/4

D, D' RadicalDisplayStyleVerticalGap

3 \Umathradicalvgap default_rule_thickness+abs(default_rule_thickness)/4

T, T', S, S', SS, SS' RadicalVerticalGap

2 \Umathradicaldegreebefore <not set>

RadicalKernBeforeDegree

2 \Umathradicaldegreeafter <not set>

RadicalKernAfterDegree

2,7 \Umathradicaldegreeraise <not set>

RadicalDegreeBottomRaisePercent

4 \Umathspaceafterscript script_space

SpaceAfterScript

\Umathstackdenomdown denom1

D, D' StackBottomDisplayStyleShiftDown

\Umathstackdenomdown denom2

T, T', S, S', SS, SS' StackBottomShiftDown

\Umathstacknumup num1

D, D' StackTopDisplayStyleShiftUp

\Umathstacknumup num3

T, T', S, S', SS, SS' StackTopShiftUp

\Umathstackvgap 7*default_rule_thickness

D, D' StackDisplayStyleGapMin

\Umathstackvgap 3*default_rule_thickness

T, T', S, S', SS, SS' StackGapMin

\Umathsubshiftdown sub1

SubscriptShiftDown

\Umathsubshiftdrop sub_drop

SubscriptBaselineDropMin

8 \Umathsubsupshiftdown —

SubscriptShiftDownWithSuperscript

\Umathsubtopmax abs(math_x_height*4)/5

465

SubscriptTopMax

\Umathsubsupvgap 4*default_rule_thickness

SubSuperscriptGapMin

\Umathsupbottommin abs(math_x_height/4)

SuperscriptBottomMin

\Umathsupshiftdrop sup_drop

SuperscriptBaselineDropMax

\Umathsupshiftup sup1

D SuperscriptShiftUp

\Umathsupshiftup sup2

T, S, SS, SuperscriptShiftUp

\Umathsupshiftup sup3

D', T', S', SS' SuperscriptShiftUpCramped

\Umathsupsubbottommax abs(math_x_height*4)/5

SuperscriptBottomMaxWithSubscript

\Umathunderbarkern default_rule_thickness

UnderbarExtraDescender

\Umathunderbarrule default_rule_thickness

UnderbarRuleThickness

\Umathunderbarvgap 3*default_rule_thickness

UnderbarVerticalGap

5 \Umathconnectoroverlapmin 0

MinConnectorOverlap

A few notes:

1. OpenType fonts set \Umathlimitabovekern and \Umathlimitbelowkern to zero and set \Umath

quad to the font size of the used font, because these are not supported in the MATH table.

2. Traditional tfm fonts do not set \Umathradicalrule because TEX82 uses the height of the radical

instead. When this parameter is indeed not set when LuaTEX has to typeset a radical, a backward

compatibility mode will kick in that assumes that an oldstyle TEX font is used. Also, they do not

set \Umathradicaldegreebefore, \Umathradicaldegreeafter, and \Umathradicaldegreeraise.

These are then automatically initialized to 5/18quad, −10/18quad, and 60.

3. If tfm fonts are used, then the \Umathradicalvgap is not set until the first time LuaTEX has to

typeset a formula because this needs parameters from both family 2 and family 3. This provides a

partial backward compatibility with TEX82, but that compatibility is only partial: once the \Umath

radicalvgap is set, it will not be recalculated any more.

4. When tfm fonts are used a similar situation arises with respect to \Umathspaceafterscript: it is

not set until the first time LuaTEX has to typeset a formula. This provides some backward com

patibility with TEX82. But once the \Umathspaceafterscript is set, \scriptspace will never be

looked at again.

466

5. Traditional tfm fonts set \Umathconnectoroverlapmin to zero because TEX82 always stacks exten

sibles without any overlap.

6. The \Umathoperatorsize is only used in \displaystyle, and is only set in OpenType fonts. In tfm

font mode, it is artificially set to one scaled point more than the initial attempt's size, so that always

the ‘first next’ will be tried, just like in TEX82.

7. The \Umathradicaldegreeraise is a special case because it is the only parameter that is expressed

in a percentage instead of a number of scaled points.

8. SubscriptShiftDownWithSuperscript does not actually exist in the ‘standard’ OpenType math

font Cambria, but it is useful enough to be added.

9. FractionDelimiterDisplayStyleSize and FractionDelimiterSize do not actually exist in the

‘standard’ OpenType math font Cambria, but were useful enough to be added.

As this mostly refers to LuaTEX there is more to tell about how LuaMetaTEX deals with it. However, it

is enough to know that much more behavior is configurable.

You can let the engine ignore a parameter with \setmathignore, like:

\setmathignore \Umathspacebeforescript 1

\setmathignore \Umathspaceafterscript 1

Be aware of the fact that a global setting can get unnoticed by users because there is no warning that

some parameter is ignored.

There are a couple of parameters that don't relate to the font but are more generally influencing the

appearances. Some were added for experimenting.

This is not complete

primitive meaning

\Umathextrasubpreshift

\Umathextrasubprespace

\Umathextrasubshift

\Umathextrasubspace

\Umathextrasuppreshift

\Umathextrasupprespace

\Umathextrasupshift

\Umathextrasupspace

\Umathprimeshiftdrop

13.9 Math spacing

Besides the parameters mentioned in the previous sections, there are also primitives to control the

math spacing table (as explained in Chapter 18 of the TEXbook). This happens per class pair. Because

we have many possible classes, we no longer have the many primitives that LuaTEX has but you can

define then using the generic \setmathspacing primitive:

\def\Umathordordspacing {\setmathspacing 0 0 }

467

\def\Umathordordopenspacing {\setmathspacing 0 4 }

These parameters are (normally) of type \muskip, so setting a parameter can be done like this:

\setmathspacing 1 0 \displaystyle=4mu plus 2mu % op ord Umathopordspacing

The atom pairs known by the engine are all initialized by initex to the values mentioned in the table

in Chapter 18 of the TEXbook.

For ease of use as well as for backward compatibility, \thinmuskip, \medmuskip and \thickmuskip

are treated specially. In their case a pointer to the corresponding internal parameter is saved, not

the actual \muskip value. This means that any later changes to one of these three parameters will

be taken into account. As a bonus we also introduced the \tinymuskip and \pettymuskip primitives,

just because we consider these fundamental, but they are not assigned internally to atom spacing

combinations.

In LuaMetaTEX we go a bit further. Any named dimension, glue and mu glue register as well as the

constants with these properties can be bound to a pair by prefixing \setmathspacing by \inherited.

Careful readers will realize that there are also primitives for the items marked * in the TEXbook. These

will actually be used because we pose no restrictions. However, you can enforce the remapping rules

to conform to the rules of TEX (or yourself).

Every class has a set of spacing parameters and the more classes you define the more pairwise spacing

you need to define. However, you can default to an existing class. By default all spacing is zero and

you can get rid of the defaults inherited from good old TEX with \resetmathspacing. You can alias

class spacing to an exiting class with \letmathspacing:

\letmathspacing class displayclass textclass scriptclass scriptscriptclass

Instead you can copy spacing with \copymathspacing:

\copymathspacing class parentclass

Specific paring happens with \setmathspacing:

\setmathspacing leftclass rightclass style value

Unless we have a frozen parameter, the prefix \inherited makes it possible to have a more dynamic

relationship: the used value resolves to the current value of the given register. Possible values are

the usual mu skip register, a regular skip or dimension register, or just some mu skip value.

A similar set of primitives deals with rules. These remap pairs onto other pairs, so \setmathatomrule

looks like:

\setmathatomrule oldleftclass oldrightclass newleftclass newrightclass

The \letmathatomrule and \copymathatomrule primitives take two classes where the second is the

parent.

The \setmathprepenalty and \setmathpostpenalty primitives take a class and penalty (integer)

value. These are injected before and after atoms with the given class where a penalty of 10000 is a

signal to ignore it.

468

The engine control options for a class can be set with \setmathoptions. The possible options are

discussed elsewhere. This primitive takes a class number and an integer (bitset). For all these setters

the ConTEXt math setup gives examples.

Math is processed in two passes. The first pass is needed to intercept for instance \over, one of the

few TEX commands that actually has a preceding argument. There are often lots of curly braces used

in math and these can result in a nested run of the math sub engine. However, you need to be aware of

the fact that some properties are kind of global to a formula and the last setting (for instance a family

switch) wins. This also means that a change (or again, the last one) in math parameters affects the

whole formula. In LuaMetaTEX we have changed this model a bit. One can argue that this introduces

an incompatibility but it's hard to imagine a reason for setting the parameters at the end of a formula

run and assume that they also influence what goes in front.

$

x \subscript {-}

\frozen\Umathsubshiftdown\textstyle 0pt x \subscript {0}

{\frozen\Umathsubshiftdown\textstyle 5pt x \subscript {5}}

x \subscript {0}

{\frozen\Umathsubshiftdown\textstyle 15pt x \subscript {15}}

x \subscript {0}

{\frozen\Umathsubshiftdown\textstyle 20pt x \subscript {20}}

x \subscript {0}

\frozen\Umathsubshiftdown\textstyle 10pt x \subscript {10}

x \subscript {0}

$

The \frozen prefix does the magic: it injects information in the math list about the set parameter.

In LuaTEX 1.10+ the last setting, the 10pt drop wins, but in LuaMetaTEX you will see each local setting

taking effect. The implementation uses a new node type, parameters nodes, so you might encounter

these in an unprocessed math list. The result looks as follows:

𝑥
−
𝑥0𝑥5𝑥0𝑥

15

𝑥
0

𝑥

20

𝑥

0

𝑥
10
𝑥
0

The \mathatom primitive is the generic one and it accepts a couple of keywords:

to be checked

keyword argument meaning

attr int int attributes to be applied to this atom

leftclass class the left edge class that determines spacing etc

rightclass class the right edge class that determines spacing etc

class class the general class

unpack unpack this atom in inline math

source int a symbolic index of the resulting box

textfont use the current text font

mathfont use the current math font

limits put scripts on top and below

nolimits force scripts to be postscripts

nooverflow keep (extensible) within target dimensions

469

options int bitset with options

void discard content and ignore dimensions

phantom discard content but retain dimensions

To what extend the options kick in depends on the class as well where and how the atom is used.

The original TEX engines has three atom modifiers: \displaylimits, \limits, and \nolimits. These

look back to the last atom and set a limit related signal. Just to be consistent we have some more

of that: \Umathadapttoleft, \Umathadapttoright, \Umathuseaxis, \Umathnoaxis, \Umathphantom,

\Umathvoid, \Umathsource, \Umathopenupheight, \Umathopenupdepth, \Umathlimits, \Umathno

limits. The last two are equivalent to the lowercase ones with the similar names. Al these modifiers

are cheap primitives and one can wonder if they are needed but that also now also applies to the orig

inal three. We could stick to one modifier that takes an integer but let's not diverge too much from

the original concept.

The \nonscript primitive injects a glue node that signals that the next glue is to be ignored when we

are in script or scriptscript mode. The \noatomruling does the same but this time the signal is that

no inter-atom rules need to be applied.

13.10 Fonts

When we started with LuaTEX there was only Cambria as OpenType math font. However, as soon as we

could load a wide font, and basic math handling was adapted to handle a fonts passed via Lua, in Con-

TEXt we switched to OpenType math exclusively. This was possible because at the same time virtual

fonts were integrated in the engine. Because the way TEX approaches math differs from OpenType

we had code paths that could handle both and were somewhat complex. Later these code paths were

split more visible and detailed control over specific features was introduced. The reason for this came

from the fact that the Latin Modern Math as well as additional fonts were a mix of OpenType and

traditional (metric wise). Inconsistencies were handles by ConTEXt when loading and passing fonts

and runtime patching was our way out. There is also some juggling of math lists in Lua involved.

In LuaMetaTEX much more control was added alongside many new features in rendering math. Al

though by making decisions with respect to fonts in the end we could potentially use a much simpler

code base. However we keep what we have because we need to write articles, manuals, presentations

etc. that show the differences. We settled on the fact that fonts are what they are and won't change.

Font specific tweaks are dealt with in a math font goodie file: most tweaks are generic and applied to

all fonts, some are optional, and many can be tuned by parameters. In the end one can argue that we

render math a bit different due to different font and character properties; for instance we got rid of

italic correction and often deal with kerning, variants and extensibles a bit different.

A consequence of this is that we will not describe in detail what happens in the math engine, first of

all because we don't expect other macro packages to follow ConTEXt in the way it deals with rendering

math and the LuaTEX kind of hybrid approach is likely good enough because after all there was never

demand for more advanced math rendering nor attempts to extend the engines in that area. This

is why LuaMetaTEX tries to be LuaTEX compatible when it comes to the basics required by potential

other usage than ConTEXt. However, we might eventually drop some eight bit font related features,

simply because one can pass them wrapped in a Unicode and OpenType math disguise. This is to be

decided.

The process of upgrading math is described in manuals, articles and presentations by the authors.

There one can find a discussion about decisions made.

470

13.11 Scripts

The LuaMetaTEX engine has native support for prescripts and primes. Here we dive a bit into the

former. We start with a regular sub and superscript example:

\im { F _ {a} ^ {b} }

𝐹 𝑏
𝑎

Depending on how the font is set up, a subscript might get a (negative) kern. Kerning at the top left

of the nucleus is ignored, because one never sees it in for instance chemistry:

\im { F _ {a} ^ {b} ___ {c} ^^^ {d} }

𝐹𝑑 𝑏
𝑐 𝑎
There can be multiple pre- and postscripts. In traditional TEX one sometimes has to inject fake nuclei

but in LuaMetaTEX this is done automatically. These are called continuation atoms.

\im { F

_ {a} ^ {b}

_ {a} ^ {b}

} \quad

\im { F

_ {a} ^ {b} ___ {c} ^^^ {d}

_ {a} ^ {b} ___ {c} ^^^ {d}

}

𝐹 𝑏
𝑎

𝑏
𝑎

𝑑
𝑐 𝐹𝑑 𝑏

𝑐 𝑎
𝑏
𝑎

You will notice that the subscript no longer aligns, a feature that deals with rendering tensors. these

features are controlled by the (four byte) \mathdoublescriptmode parameter. In ConTEXt this one is

set up as follows:

\mathdoublescriptmode

"\tohexadecimal\numexpr

\inheritclassdoublescriptmodecode

+ \discardshapekerndoublescriptmodecode

+ \realignscriptsdoublescriptmodecode

+ \reorderprescriptsdoublescriptmodecode

\relax

\tohexadecimal\mathcontinuationcode % 2 bytes

\tohexadecimal\mathcontinuationcode % 2 bytes

\tohexadecimal\mathcontinuationcode % 2 bytes

The first byte set the options, the second the subtype of the continuation node and the last two set

the left and right class values. In ConTEXt we have a dedicated continuation class (0x2C). So, current

value of this parameter is 0xF2C2C2C, but we can do this:

471

\advance\mathdoublescriptmode

-"\tohexadecimal\discardshapekerndoublescriptmodecode 000000

and get:

𝐹 𝑏
𝑎

𝑏
𝑎

𝑑
𝑐 𝐹𝑑 𝑏

𝑐 𝑎
𝑏
𝑎

\im { F

_ {a} ^ {b}

___ {c}

___ {c}

}

𝑐 𝐹 𝑏
𝑐 𝑎

The next set of examples demonstrates that the \noscript injects a bogus atom that breaks the align

ment chain.

\im { F ^ {a}

___ {a} ___ {a} ___ {a}

} \quad

\im { F ^ {a}

\noscript ___ {a} ___ {a} ___ {a}

} \quad

\im { F ^ {a}

___ {a} \noscript ___ {a} ___ {a}

} \quad

\im { F ^ {a}

___ {a} ___ {a} \noscript ___ {a} ___ {a}

}

𝑎 𝑎 𝐹 𝑎
𝑎 𝑎 𝑎 𝑎𝐹 𝑎

𝑎 𝑎 𝐹 𝑎
𝑎 𝑎 𝑎 𝑎 𝐹 𝑎

𝑎
\im { F ^ {a} _{a}

___ {a} ___ {a} ___ {a}

} \quad

\im { F ^ {a} _{a}

\noscript ___ {a} ___ {a} ___ {a}

} \quad

\im { F ^ {a} _{a}

___ {a} \noscript ___ {a} ___ {a}

} \quad

\im { F ^ {a} _{a}

___ {a} ___ {a} \noscript ___ {a} ___ {a}

}

𝑎 𝑎 𝐹 𝑎
𝑎 𝑎 𝑎 𝑎 𝑎𝐹 𝑎

𝑎 𝑎 𝑎 𝐹 𝑎
𝑎 𝑎 𝑎 𝑎 𝑎 𝐹 𝑎

𝑎 𝑎

472

A more useful application of this is the following:

\im {F

__ {a} \noscript

^^ {b} \noscript

^^ {c} \noscript

__ {d}

}

𝐹 𝑎
𝑏𝑐

𝑑

473

474

475

14 PDF

14.1 Introduction

There is no backend, not even a dvi one. In ConTEXt the main backend is a pdf backend and it is

written in Lua. The pdf format makes it possible to embed jpeg and png encoded images as well as

pdf images. All these have to be dealt with in Lua. Although we can parse pdf files with Lua, the

engine has a dedicated pdf library on board written by Paweł Jackowski.

A pdf file is basically a tree of objects and one descends into the tree via dictionaries (key/value) and

arrays (index/value). There are a few topmost dictionaries that start at the document root and those

are accessed more directly.

Although everything in pdf is basically an object we have to wrap a few in so called userdata Lua

objects.

PDF Lua

null <t:nil>

boolean <t:boolean>

integer <t:integer>

float <t:number>

name <t:string>

string <t:string>

array <t:userdata>

dictionary <t:userdata>

stream <t:userdata>

reference <t:userdata>

The interface is rather limited to creating an instance and getting objects and values. Aspects like

compression and encryption are mostly dealt with automatically. In ConTEXt users use an interface

layer around these, if they use this kind of low level code at all as it assumes familiarity with how pdf

is constructed.

14.2 Lua interfaces

14.2.1 Opening and closing

There are two ways to open a pdf file:

function pdfe.open (<t:string> filename)

return <t:pdf> -- pdffile

end

function pdfe.openfile(<t:file> filehandle)

return <t:pdf> -- pdffile

end

Instead of from file, we can read from a string:

476

function pdfe.new (<t:string> somestring, <t:integer> somelength)

return <t:pdf> -- pdffile

end

Closing the instance is done with:

function pdfe.close (<t:pdf> pdffile)

-- no return values

end

When we used pdfe.open the library manages the file and closes it when done. You can check if a

document opened as expected by calling:

function pdfe.getstatus (<t:pdf> pdffile)

return <t:integer> -- status

end

A table of possible return codes can be queried with:

function pdfe.getstatusvalues ()

return <t:table> -- values

end

Currently we have these:

-2 is protected

-1 failed to open

0 not encrypted

1 is decrypted

An encrypted document can be decrypted by the next command where instead of either password you

can give nil and hope for the best:

function pdfe.unencrypt (

<t:pdf> pdffile,

<t:string> userpassword,

<t:string> ownerpassword

)

return <t:integer> -- status

end

14.2.2 Getting basic information

A successfully opened document can provide some information:

function pdfe.getsize(<t:pdf> pdffile)

return <t:integer> -- nofbytes

end

function pdfe.getversion(<t:pdf> pdffile)

return

<t:integer>, -- major

477

<t:integer> -- minor

end

function pdfe.getnofobjects (<t:pdf> pdffile)

return <t:integer> -- nofobjects

end

function pdfe.getnofpages (<t:pdf> pdffile)

return <t:integer> -- nofpages

end

function pdfe.memoryusage (<t:pdf> pdffile)

return

<t:integer>, -- bytes

<t:integer> -- waste

end

14.2.3 The main structure

For accessing the document structure you start with the so called catalog, a dictionary:

function pdfe.getcatalog(<t:pdf> pdffile)

return <t:userdata> -- dictionary

end

The other two root dictionaries are accessed with:

function pdfe.gettrailer (<t:pdf> pdffile)

return <t:userdata> -- dictionary

end

function pdfe.getinfo (<t:pdf> pdffile)

return <t:userdata> -- dictionary

end

14.2.4 Getting content

A specific page can conveniently be reached with the next command, which returns a dictionary.

function pdfe.getpage (<t:pdf> pdffile, <t:integer> pagenumber)

return <t:userdata> -- dictionary

end

Another convenience command gives you the (bounding) box of a (normally page) which can be inher

ited from the document itself. An example of a valid box name is MediaBox.

function pdfe.getbox (<t:pdf> pdffile, <t:string> boxname)

return <t:table> -- boundingbox

end

478

14.2.5 Getters

Common values in dictionaries and arrays are strings, integers, floats, booleans and names (which

are also strings) and these are also normal Lua objects. In some cases a value is a userdata object

and you can use this helper to get some more information:

function pdfe.type (<t:whatever> value)

return type -- string

end

Stings are special because internally they are delimited by parenthesis (often pdfdoc encoding) or

angle brackets (hexadecimal or 16 bit Unicode).

function pdfe.getstring (

<t:userdata> object,

<t:string> key | <t:integer> index

)

return

<t:string> -- decoded value

end

When you ask for more you get more:

function pdfe.getstring (

<t:userdata> object,

<t:string> key | <t:integer> index,

<t:boolean> more

)

return

<t:string>, -- original

<t:boolean> -- hexencoded

end

Basic types are fetched with:

function pdfe.getinteger (<t:userdata>, <t:string> key | <t:integer> index)

return <t:integer> -- value

end

function pdfe.getnumber (<t:userdata>, <t:string> key | <t:integer> index)

return <t:number> -- value

end

function pdfe.getboolean (<t:userdata>, <t:string> key | <t:integer> index)

return <t:boolean> -- value

end

A name is (in the pdf file) a string prefixed by a slash, like << /Type /Foo >>, for instance keys in a

dictionary or keywords in an array or constant values.

function pdfe.getname (<t:userdata>, <t:string> key | <t:integer> index)

return <t:string> -- value

end

479

Normally you will use an index in an array and key in a dictionary but dictionaries also accept an

index. The size of an array or dictionary is available with the usual # operator.

function pdfe.getdictionary (<t:userdata>, <t:string> key | <t:integer> index)

return <t:userdata> -- dictionary

end

function pdfe.getarray (<t:userdata>, <t:string> key | <t:integer> index)

return <t:userdata> -- array

end

function pdfe.getstream (<t:userdata>, <t:string> key | <t:integer> index)

return

<t:userdata> -- stream

<t:userdata> -- dictionary

end

These commands return dictionaries, arrays and streams, which are dictionaries with a blob of data

attached.

Before we come to an alternative access mode, we mention that the objects provide access in a differ

ent way too, for instance this is valid:

print(pdfe.open("foo.pdf").Catalog.Type)

At the topmost level there are Catalog, Info, Trailer and Pages, so this is also okay:

print(pdfe.open("foo.pdf").Pages[1])

14.2.6 Streams

Streams are sort of special. When your index or key hits a stream you get back a stream object and

dictionary object. The dictionary you can access in the usual way and for the stream there are the

following methods:

function pdfe.openstream (<t:userdata> stream, <t:boolean> decode)

return <t:boolean> okay

end

function pdfe.closestream (<t:userdata> stream)

-- no return values

end

function pdfe.readfromstream (<t:userdata> stream)

return

<t:string> str,

<t:integer> size

end

function pdfe.readwholestream (<t:userdata> stream, <t:boolean> decode)

return

<t:string> str,

480

<t:integer> size

end

You either read in chunks, or you ask for the whole. When reading in chunks, you need to open and

close the stream yourself. The decode parameter controls if the stream data gets uncompressed.

As with dictionaries, you can access fields in a stream dictionary in the usual Lua way too. You get

the content when you ‘call’ the stream. You can pass a boolean that indicates if the stream has to be

decompressed.

14.2.7 Low level getters

In addition to the getters described before, there is also a bit lower level interface available.

function pdfe.getfromdictionary (<t:userdata>, <t:integer> index)

return

<t:string> key,

<t:string> type,

<t:whatever> value,

<t:whatever> detail

end

function pdfe.getfromarray (<t:userdata>, <t:integer> index)

return

<t:integer> type,

<t:whatever> value,

<t:integerr> detail

end

The type is one of the following:

0 none 3 integer 6 string 9 stream

1 null 4 number 7 array 10 reference

2 boolean 5 name 8 dictionary

This list was acquired with:

function pdfe.getfieldtypes ()

return <t:table> -- types

end

Here detail is a bitset with possible bits:

0 plain 2 decoded 16 base85 64 utf16le

1 encoded 8 base16 32 utf16be

This time we used:

function pdfe.getencodingvalues ()

return <t:table> -- values

end

481

14.2.8 Getting tables

All entries in a dictionary or table can be fetched with the following commands where the return values

are a hashed or indexed table.

function pdfe.dictionarytotable (<t:userdata>)

return <t:table> -- hash

end

function pdfe.arraytotable (<t:userdata>)

return <t:table> -- array

end

You can get a list of pages with:

function pdfe.pagestotable(<t:pdf> pdffile)

return {

{

<t:userdata>, -- dictionary

<t:integer>, -- size

<t:integer>, -- objectnumber

},

...

}

end

14.2.9 References

In order to access a pdf file efficiently there is lazy evaluation of references so when you run into a

reference as value or array entry you have to resolve it explicitly. An unresolved references object can

be resolved with:

function pdfe.getfromreference(<t:integer> reference) -- NEEDS CHECKING

return

<t:integer>, -- type

<t:whatever>, -- value

<t:whatever> -- detail

So, as second value you can get back a new pdfe userdata object that you can query.

482

483

484

15 Nodes

15.1 Introduction

The (to be) typeset content is collected in a double linked list of so called nodes. A node is an ar

ray of values. When looked at from the Lua end you can either seen them as <t:userdata> or as

<t:integer>. In the case of userdata you access fields like this:

local width = foo.width -- foo is userdata

while the indexed variant uses:

local width = nodes.direct.getwidth(foo) -- foo is an integer

In ConTEXt we mostly use the second variant but it's a matter of taste so users can you whatever they

like most. When you print a userdata node you see something like this:

<node : nil <= 239453 => nil : glyph unset>

<node : nil <= 4276 => nil : hlist unknown>

<node : nil <= 375830 => nil : glue userskip>

The number in the middle is the one you would also see if you use the indexed approach and often

these numbers are kind of large. A number 13295 doesn't mean that we have that many nodes. The

engine has a large array of memory words (pairs of 32 bit integers) and a node is a slice of then with

the index pointing to where we start. So, if we have a node that has 5 value pairs, the slice runs from

13295 upto 13299 that consume 40 bytes.

In this chapter we introduce the nodes that are exposed to the user. We will discuss the relevant fields

as well as ways to access them. Because there are similar fields in different nodes, we can share

accessors.

It is important to notice that not all fields that can be accessed (set and get) are under full user

control. For instance, in math we have a noad type that is actually shared between several construct

(like atoms, accents and fences) and not all parameters make sense for each of them. Some properties

are set while the formula is assembled. It fits in the LuaMetaTEX concept to open up everything but

abusing this can lead to side effects. It makes no sense to add all kind of safeguards against wrong or

unintended usage because in the end only a few users will go that low level anyway.

Not all fields mentioned are accessible in the userdata variant. It is also good to notice that some

fields are fabricated, for instance total is the sum of height and depth.

15.2 Lua node representation

As mentioned, nodes are represented in Lua as user data objects with a variable set of fields or by a

numeric identifier when requested and we showed that when you print a node user data object you

will see these numbers.

0 hlist 3 insert 6 boundary 9 par

1 vlist 4 mark 7 disc 10 dir

2 rule 5 adjust 8 whatsit 11 math

485

12 glue 18 noad 24 mathtextchar 31 alignrecord

13 kern 19 radical 25 subbox 32 attribute

14 penalty 20 fraction 26 submlist 33 gluespec

15 style 21 accent 27 delimiter 34 temp

16 choice 22 fence 28 glyph 35 split

17 parameter 23 mathchar 29 unset

You can ask for a list of fields with node.fields and for valid subtypes with node.subtypes. There

are plenty specific field values and you can some idea about them by calling tex.get*values() which

returns a table if numbers (exclusive numbers or bits). We use these to get the tables that are shown

with each node type.

There are a lot of helpers and below we show them per node type. In later sections some will come back

organized by type of usage. Trivial getters and setters will not be discussed. It's good to know that

some getters take more arguments where the second one can for instance trigger more return values.

The number of arguments to a setter can also be more than a few. As with everything LuaMetaTEX

the ConTEXt sources can also be seen as a reference.

15.3 Main text nodes

These are the nodes that comprise actual typesetting commands. A few fields are present in all nodes

regardless of their type, these are: next, id and subtype. The subtype is sometimes just a dummy

entry because not all nodes actually use the subtype, but this way you can be sure that all nodes

accept it as a valid field name, and that is often handy in node list traversal. In the following tables

next and id are not explicitly mentioned. Besides these three fields, almost all nodes also have an

attr field, and there is a also a field called prev.

15.3.1 hlist and vlist, aka boxes

These lists share fields and subtypes although some subtypes can only occur in horizontal lists while

others are unique for vertical lists.

fields

anchor integer height dimension shift dimension

attr attribute hoffset dimension source integer

axis integer id integer state integer

depth dimension index integer subtype integer

direction integer list nodelist target integer

doffset dimension next node total integer

except nodelist orientation integer width dimension

exdepth integer post nodelist woffset dimension

geometry integer postadjust nodelist xoffset dimension

glueorder integer pre nodelist yoffset dimension

glueset integer preadjust nodelist

gluesign integer prev node

486

subtypes

0 unknown 16 overdelimiter 32 accent

1 line 17 underdelimiter 33 radical

2 box 18 numerator 34 fence

3 indent 19 denominator 35 rule

4 container 20 modifier 36 ghost

5 alignment 21 fraction 37 mathtext

6 cell 22 nucleus 38 insert

7 equation 23 sup 39 local

8 equationnumber 24 sub 40 left

9 math 25 prime 41 right

10 mathchar 26 prepostsup 42 middle

11 mathpack 27 prepostsub 43 balanceslot

12 hextensible 28 degree 44 balance

13 vextensible 29 scripts 45 spacing

14 hdelimiter 30 over

15 vdelimiter 31 under

directionvalues

0x00 lefttoright 0x01 righttoleft

listgeometryvalues

0x01 offset 0x04 anchor

0x02 orientation

listanchorvalues

0x01 leftorigin 0x08 centerheight

0x02 leftheight 0x09 centerdepth

0x03 leftdepth 0x0A halfwaytotal

0x04 rightorigin 0x0B halfwayheight

0x05 rightheight 0x0C halfwaydepth

0x06 rightdepth 0x0D halfwayleft

0x07 centerorigin 0x0E halfwayright

listsignvalues

0x0100 negatex 0x0200 negatey

The shift is a displacement perpendicular to the character (horizontal) or line (vertical) progression

direction.

The orientation, woffset, hoffset, doffset, xoffset and yoffset fields are special. They can be

used to make the backend rotate and shift boxes which can be handy in for instance vertical typeset

ting. Because they relate to (and depend on the) the backend they are not discussed here (yet). The

pre and post fields refer to migrated material in both list types, while the adjusted variants only make

sense in horizontal lists.

487

direct helpers

addxoffset addyoffset appendaftertail beginofmath checkdiscretionaries collapsing

copyonly count dimensions endofmath exchange findattribute findattributerange

findnode firstchar firstglyph firstglyphnode firstitalicglyph flattendiscretionaries

flattenleaders freeze getanchors getattributelist getattributes getboth getbox

getclass getdepth getdirection getexcept getgeometry getglue getheight getid

getidsubtype getidsubtypenext getindex getinputfields getlist getlistdimensions

getmvllist getnext getnodes getnormalizedline getoffsets getoptions getorientation

getpenalty getpost getpre getprev getshift getspeciallist getstate getsubtype

gettotal getwhd getwidth getwordrange hasdimensions hasgeometry hasglyph hasidsubtype

hpack hyphenating isboth ischar isdirect isglyph isloop isnext isnextchar isnextglyph

isprev isprevchar isprevglyph issimilarglyph isspeciallist isvalid iszeroglue kerning

lastnode length ligaturing migrate mlisttohlist naturalhsize naturalwidth

newcontinuationatom newmathglyph newtextglyph patchattributes prependbeforehead

protectglyphs protectglyphsnone protrusionskippable rangedimensions removefromlist

repack reverse setanchors setattributelist setattributes setboth setbox setclass

setdepth setdirection setexcept setgeometry setglue setheight setindex setinputfields

setlink setlist setnext setoffsets setoptions setorientation setpenalty setpost

setpre setprev setshift setspeciallist setsplit setstate setsubtype setwhd setwidth

showlist size slide softenhyphens startofpar tonode tovaliddirect traversechar

traversecontent traverseglyph traverseitalic traverseleader traverselist

unprotectglyphs unprotectglyphsnone unsetattributes usesfont vbalance verticalbreak

vpack

userdata helpers

instock inuse todirect

userdata helpers

no get: preadjust postadjust axis exdepth

no set: preadjust postadjust axis exdepth total

15.3.2 rule

Contrary to traditional TEX, LuaTEX has more subtypes subtypes because we also use rules to store

reuseable objects and images. However, in LuaMetaTEX these are gone but we reserve these subtypes.

Apart form the basic rules a lot is up to the backend.

fields

attr attribute left dimension subtype integer

char integer next node thickness integer

data integer off integer total dimension

depth dimension on integer width dimension

fam integer options integer xoffset dimension

font integer prev node yoffset dimension

id integer right dimension

488

subtypes

0 normal 5 user 10 box

1 empty 6 over 11 image

2 strut 7 under 12 spacing

3 virtual 8 fraction

4 outline 9 radical

ruleoptionvalues

0x01 horizontal 0x10 discardable

0x02 vertical 0x20 keepspacing

0x04 thickness 0x40 snapping

0x08 running 0x80 nosnapping

The width, height and depth of regular rules defaults to the special value of −1073741824 which

indicates a running rule that adapts its dimensions to the box that it sits in.

The left and type right keys are somewhat special (and experimental). When rules are auto adapting

to the surrounding box width you can enforce a shift to the right by setting left. The value is also

subtracted from the width which can be a value set by the engine itself and is not entirely under user

control. The right is also subtracted from the width. It all happens in the backend so these are not

affecting the calculations in the frontend (actually the auto settings also happen in the backend). For a

vertical rule left affects the height and right affects the depth. There is no matching interface at the

TEX end (although we can have more keywords for rules it would complicate matters and introduce a

speed penalty.) However, you can just construct a rule node with Lua and write it to the TEX input. The

outline subtype is just a convenient variant and the transform field specifies the width of the outline.

The xoffset and yoffset fields can be used to shift rules. Because they relate to (and depend on the)

the backend they are not discussed here (yet). Of course all this assumes that the backend deals

with it. Internally fields with different names can use the same variable, depending on the subtype;

dedicated names just make more sense.

direct helpers

addmargins addxoffset addyoffset appendaftertail beginofmath checkdiscretionaries

collapsing copyonly count dimensions endofmath exchange findattribute

findattributerange findnode firstchar firstglyph firstglyphnode firstitalicglyph

flattendiscretionaries flattenleaders freeze getattributelist getattributes getboth

getbox getchar getcharspec getdata getdepth getdiscpart getfam getheight getid

getidsubtype getidsubtypenext getmvllist getnext getnodes getoffsets getoptions

getpenalty getprev getruledimensions getspeciallist getsubtype gettotal getwhd

getwidth getwordrange hasdimensions hasglyph hasidsubtype hpack hyphenating isboth

ischar isdirect isglyph isloop isnext isnextchar isnextglyph isprev isprevchar

isprevglyph issimilarglyph isspeciallist isvalid kerning lastnode length ligaturing

mlisttohlist naturalhsize naturalwidth newcontinuationatom newmathglyph newtextglyph

patchattributes prependbeforehead protectglyphs protectglyphsnone protrusionskippable

rangedimensions removefromlist repack reverse setattributelist setattributes setboth

setbox setchar setcharspec setdata setdepth setdiscpart setfam setfont setheight

setlink setnext setoffsets setoptions setpenalty setprev setruledimensions

setruledimensions setspeciallist setsplit setsubtype setwhd setwidth showlist size

slide softenhyphens startofpar tonode tovaliddirect traversechar traversecontent

489

traverseglyph traverseitalic traverseleader traverselist unprotectglyphs

unprotectglyphsnone unsetattributes usesfont vbalance verticalbreak vpack

userdata helpers

instock inuse todirect

userdata helpers

no get: thickness

no set: total thickness

15.3.3 insert

This node relates to the \insert primitive and support the fields:

fields

attr attribute id integer prev node

cost integer index integer subtype integer

depth dimension list nodelist

height dimension next node

Here the subtype indicates the class of the insert and that number is also used to access the box,

dimen and skip registers that relate to the insert, if we use inserts in the traditional way.

direct helpers

appendaftertail beginofmath checkdiscretionaries collapsing copyonly count dimensions

endofmath exchange findattribute findattributerange findnode firstchar firstglyph

firstglyphnode firstitalicglyph flattendiscretionaries flattenleaders freeze

getattributelist getattributes getboth getbox getdepth getdiscpart getheight getid

getidsubtype getidsubtypenext getindex getlist getmvllist getnext getnodes getprev

getspeciallist getsubtype gettotal getwordrange hasglyph hasidsubtype hpack

hyphenating isboth ischar isdirect isglyph isloop isnext isnextchar isnextglyph

isprev isprevchar isprevglyph issimilarglyph isspeciallist isvalid kerning lastnode

length ligaturing migrate mlisttohlist naturalhsize naturalwidth newcontinuationatom

newmathglyph newtextglyph patchattributes prependbeforehead protectglyphs

protectglyphsnone protrusionskippable rangedimensions removefromlist repack reverse

setattributelist setattributes setboth setbox setdepth setdiscpart setheight setindex

setlink setlist setnext setprev setspeciallist setsplit setsubtype settotal showlist

size slide softenhyphens startofpar tonode tovaliddirect traversechar traversecontent

traverseglyph traverseitalic traverseleader traverselist unprotectglyphs

unprotectglyphsnone unsetattributes usesfont vbalance verticalbreak vpack

userdata helpers

instock inuse todirect

490

userdata helpers

no get: -

no set: -

15.3.4 mark

This one relates to the \marks primitive and only has a few fields, one being a token list as field which

is kind of rare.

fields

attr attribute mark tokenlist subtype integer

class integer next node

id integer prev node

subtypes

0 set 1 reset

direct helpers

appendaftertail beginofmath checkdiscretionaries collapsing copyonly count dimensions

endofmath exchange findattribute findattributerange findnode firstchar firstglyph

firstglyphnode firstitalicglyph flattendiscretionaries flattenleaders freeze

getattributelist getattributes getboth getbox getdata getid getidsubtype

getidsubtypenext getindex getmvllist getnext getnodes getprev getspeciallist

getsubtype getwordrange hasglyph hasidsubtype hpack hyphenating isboth ischar

isdirect isglyph isloop isnext isnextchar isnextglyph isprev isprevchar isprevglyph

issimilarglyph isspeciallist isvalid kerning lastnode length ligaturing mlisttohlist

naturalhsize naturalwidth newcontinuationatom newmathglyph newtextglyph

patchattributes prependbeforehead protectglyphs protectglyphsnone protrusionskippable

rangedimensions removefromlist repack reverse setattributelist setattributes setboth

setbox setdata setindex setlink setnext setprev setspeciallist setsplit setsubtype

showlist size slide softenhyphens startofpar tonode tovaliddirect traversechar

traversecontent traverseglyph traverseitalic traverseleader traverselist

unprotectglyphs unprotectglyphsnone unsetattributes usesfont vbalance verticalbreak

vpack

userdata helpers

instock inuse todirect

userdata helpers

no get: -

no set: -

15.3.5 adjust

This node results from \vadjust usage:

491

fields

attr attribute id integer prev node

depthafter dimension next node subtype integer

subtypes

0 pre 1 post 2 local

adjustoptionvalues

0x00 none 0x08 depthafter

0x01 before 0x10 depthcheck

0x02 baseline 0x20 depthlast

0x04 depthbefore 0x40 except

direct helpers

nothing (yet)

userdata helpers

nothing (yet)

userdata helpers

no get:

no set:

15.3.6 disc (discretionary)

The \discretionary, \explicitdiscretionary and \automaticdiscretionary primitives as well as

the discretionary that comes from hyphenation all have the pre, post and replace lists. Because these

lists have head and tail pointers the getters and setters handle this for you.

fields

attr attribute options integer prev node

class integer penalty integer replace nodelist

id integer post nodelist subtype integer

next node pre nodelist

subtypes

0 discretionary 2 automatic 4 regular

1 explicit 3 math

discoptionvalues

0x00000000 normalword 0x00000040 noitaliccorrection

0x00000001 preword 0x00000080 nozeroitaliccorrection

0x00000002 postword 0x00000100 standalone

0x00000010 preferbreak 0x00010000 userfirst

0x00000020 prefernobreak 0x40000000 userlast

492

direct helpers

appendaftertail beginofmath checkdiscretionaries checkdiscretionary collapsing

copyonly count dimensions endofmath exchange findattribute findattributerange

findnode firstchar firstglyph firstglyphnode firstitalicglyph flattendiscretionaries

flattenleaders freeze getattributelist getattributes getboth getbox getclass getdisc

getid getidsubtype getidsubtypenext getmvllist getnext getnodes getoptions getpenalty

getpost getpre getprev getreplace getspeciallist getsubtype getwordrange

hasdiscoption hasglyph hasidsubtype hpack hyphenating isboth ischar isdirect isglyph

isloop isnext isnextchar isnextglyph isprev isprevchar isprevglyph issimilarglyph

isspeciallist isvalid kerning lastnode length ligaturing mlisttohlist naturalhsize

naturalwidth newcontinuationatom newmathglyph newtextglyph patchattributes

prependbeforehead protectglyph protectglyphs protectglyphsnone protrusionskippable

rangedimensions removefromlist repack reverse setattributelist setattributes setboth

setbox setclass setdisc setlink setnext setoptions setpenalty setpost setpre setprev

setreplace setspeciallist setsplit setsubtype showlist size slide softenhyphens

startofpar tonode tovaliddirect traversechar traversecontent traverseglyph

traverseitalic traverseleader traverselist unprotectglyph unprotectglyphs

unprotectglyphsnone unsetattributes usesfont vbalance verticalbreak vpack

userdata helpers

instock inuse todirect

userdata helpers

no get: -

no set: -

15.3.7 math

Math nodes represent the boundaries of a math formula, normally wrapped between $ and $. The

glue fields are only used when the surround field is zero.

fields

attr attribute pretolerance integer stretchorder integer

id integer prev node subtype integer

next node shrink dimension surround integer

options integer shrinkorder integer tolerance integer

penalty integer stretch dimension width dimension

subtypes

0 beginmath 2 beginbrokenmath

1 endmath 3 endbrokenmath

493

direct helpers

appendaftertail beginofmath checkdiscretionaries collapsing copyonly count dimensions

effectiveglue endofmath exchange findattribute findattributerange findnode firstchar

firstglyph firstglyphnode firstitalicglyph flattendiscretionaries flattenleaders

freeze getattributelist getattributes getboth getbox getglue getid getidsubtype

getidsubtypenext getkern getmvllist getnext getnodes getoptions getprev

getspeciallist getsubtype getwidth getwordrange hasglyph hasidsubtype hpack

hyphenating ignoremathskip isboth ischar isdirect isglyph isloop isnext isnextchar

isnextglyph isprev isprevchar isprevglyph issimilarglyph isspeciallist isvalid

iszeroglue kerning lastnode length ligaturing mlisttohlist naturalhsize naturalwidth

newcontinuationatom newmathglyph newtextglyph patchattributes prependbeforehead

protectglyphs protectglyphsnone protrusionskippable rangedimensions removefromlist

repack reverse setattributelist setattributes setboth setbox setglue setkern setlink

setnext setoptions setprev setspeciallist setsplit setsubtype setwidth showlist size

slide softenhyphens startofpar tonode tovaliddirect traversechar traversecontent

traverseglyph traverseitalic traverseleader traverselist unprotectglyphs

unprotectglyphsnone unsetattributes usesfont vbalance verticalbreak vpack

userdata helpers

instock inuse todirect

userdata helpers

no get: tolerance pretolerance

no set: tolerance pretolerance

15.3.8 glue

Skips are about the only type of data objects in traditional TEX that are not a simple value. They

are inserted when TEX sees a space in the text flow but also by \hskip and skip. The structure that

represents the glue components of a skip internally is called a gluespec. In LuaMetaTEX we don't use

the spec itself but just its values.

fields

attr attribute leader nodelist shrinkorder integer

callback integer next node stretch dimension

data integer options integer stretchorder integer

font integer prev node subtype integer

id integer shrink dimension width dimension

subtypes

0 userskip 7 belowdisplayshortskip 14 spaceskip

1 lineskip 8 leftskip 15 xspaceskip

2 baselineskip 9 rightskip 16 zerospaceskip

3 parskip 10 topskip 17 parfillleftskip

4 abovedisplayskip 11 bottomskip 18 parfillskip

5 belowdisplayskip 12 splittopskip 19 parinitleftskip

6 abovedisplayshortskip 13 tabskip 20 parinitrightskip

494

21 indentskip 28 mathskip 35 leaders

22 lefthangskip 29 thinmuskip 36 cleaders

23 righthangskip 30 medmuskip 37 xleaders

24 correctionskip 31 thickmuskip 38 gleaders

25 intermathskip 32 conditionalmathskip 39 uleaders

26 ignored 33 rulebasedmathskip

27 page 34 muglue

glueoptionvalues

0x0000 normal 0x0010 uleadersline

0x0001 noautobreak 0x0020 setdiscardable

0x0002 hasfactor 0x0040 resetdiscardable

0x0004 islimited 0x0080 nondiscardable

0x0008 limit 0x0100 ininsert

Note that we use the key width in both horizontal and vertical glue. This suited the TEX internals well

so we decided to stick to that naming.

The effective width of some glue subtypes depends on the stretch or shrink needed to make the en

capsulating box fit its dimensions. For instance, in a paragraph lines normally have glue representing

spaces and these stretch or shrink to make the content fit in the available space. The effectiveglue

function that takes a glue node and a parent (hlist or vlist) returns the effective width of that glue

item. When you pass true as third argument the value will be rounded.

direct helpers

appendaftertail beginofmath checkdiscretionaries collapsing copyonly count dimensions

effectiveglue endofmath exchange findattribute findattributerange findnode firstchar

firstglyph firstglyphnode firstitalicglyph flattendiscretionaries flattenleaders

freeze getattributelist getattributes getboth getbox getdata getfont getglue getid

getidsubtype getidsubtypenext getleader getmvllist getnext getnodes getoptions

getprev getspeciallist getsubtype getwhd getwidth getwordrange getxscale getyscale

hasdimensions hasglyph hasidsubtype hpack hyphenating isboth ischar isdirect isglyph

isloop isnext isnextchar isnextglyph isprev isprevchar isprevglyph issimilarglyph

isspeciallist isvalid iszeroglue kerning lastnode length ligaturing mlisttohlist

naturalhsize naturalwidth newcontinuationatom newmathglyph newtextglyph

patchattributes prependbeforehead protectglyphs protectglyphsnone protrusionskippable

rangedimensions removefromlist repack reverse setattributelist setattributes setboth

setbox setdata setfont setglue setleader setlink setnext setoptions setprev

setspeciallist setsplit setsubtype setwhd setwidth showlist size slide softenhyphens

startofpar tonode tovaliddirect traversechar traversecontent traverseglyph

traverseitalic traverseleader traverselist unprotectglyphs unprotectglyphsnone

unsetattributes usesfont vbalance verticalbreak vpack

userdata helpers

instock inuse todirect

495

userdata helpers

no get: callback

no set: callback

15.3.9 gluespec

Internally LuaMetaTEX (like its ancestors) also uses nodes to store data that is not seen in node lists.

For instance the state of expression scanning (\dimexpr etc.) and conditionals (\ifcase etc.) is also

kept in lists of nodes. A glue, which has five components, is stored in a node as well, so, where most

registers store just a number, a skip register (of internal quantity) uses a pointer to a glue spec node.

It has similar fields as glue nodes, which is not surprising because in the past (and other engines than

LuaTEX) a glue node also has its values stored in a glue spec. This has some advantages because

often the values are the same, so for instance spacing related skips were not resolved immediately

but pointed to the current value of a space related internal register (like \spaceskip). But, in LuaTEX

and therefore LuaMetaTEX we do resolve these quantities immediately and we put the current values

in the glue nodes.

fields

id integer shrinkorder integer width dimension

next node stretch dimension

shrink dimension stretchorder integer

You will only find these nodes in a few places, for instance when you query an internal quantity. In

principle we could do without them as we have interfaces that use the five numbers instead. For

compatibility reasons we keep glue spec nodes exposed but this might change in the future. Of course

there are no subtypes here because it's just a data store.

direct helpers

appendaftertail beginofmath checkdiscretionaries collapsing copyonly count dimensions

endofmath exchange findattribute findattributerange findnode firstchar firstglyph

firstglyphnode firstitalicglyph flattendiscretionaries flattenleaders freeze

getattributelist getattributes getboth getbox getglue getid getidsubtype

getidsubtypenext getmvllist getnext getnodes getprev getspeciallist getsubtype

getwidth getwordrange hasglyph hasidsubtype hpack hyphenating isboth ischar isdirect

isglyph isloop isnext isnextchar isnextglyph isprev isprevchar isprevglyph

issimilarglyph isspeciallist isvalid iszeroglue kerning lastnode length ligaturing

mlisttohlist naturalhsize naturalwidth newcontinuationatom newmathglyph newtextglyph

patchattributes prependbeforehead protectglyphs protectglyphsnone protrusionskippable

rangedimensions removefromlist repack reverse setattributelist setattributes setboth

setbox setglue setlink setnext setprev setspeciallist setsplit setsubtype setwidth

showlist size slide softenhyphens startofpar tonode tovaliddirect traversechar

traversecontent traverseglyph traverseitalic traverseleader traverselist

unprotectglyphs unprotectglyphsnone unsetattributes usesfont vbalance verticalbreak

vpack

496

userdata helpers

instock inuse todirect

userdata helpers

no get: next

no set: next

15.3.10 kern

The \kern command creates such nodes but for instance the font and math machinery can also add

them.

fields

attr attribute kern dimension subtype integer

expansion integer next node

id integer prev node

subtypes

0 userkern 5 rightmarginkern 10 mathshapekern

1 accentkern 6 leftcorrectionkern 11 leftmathslackkern

2 fontkern 7 rightcorrectionkern 12 rightmathslackkern

3 italiccorrection 8 spacefontkern 13 horizontalmathkern

4 leftmarginkern 9 mathkern 14 verticalmathkern

direct helpers

appendaftertail beginofmath checkdiscretionaries collapsing copyonly count dimensions

endofmath exchange findattribute findattributerange findnode firstchar firstglyph

firstglyphnode firstitalicglyph flattendiscretionaries flattenleaders freeze

getattributelist getattributes getboth getbox getexpansion getid getidsubtype

getidsubtypenext getkern getkerndimension getmvllist getnext getnodes getprev

getspeciallist getsubtype getwidth getwordrange hasglyph hasidsubtype hpack

hyphenating isboth ischar isdirect isglyph isloop isnext isnextchar isnextglyph

isprev isprevchar isprevglyph issimilarglyph isspeciallist isvalid kerning lastnode

length ligaturing mlisttohlist naturalhsize naturalwidth newcontinuationatom

newmathglyph newtextglyph patchattributes prependbeforehead protectglyphs

protectglyphsnone protrusionskippable rangedimensions removefromlist repack reverse

setattributelist setattributes setboth setbox setexpansion setkern setlink setnext

setprev setspeciallist setsplit setsubtype setwidth showlist size slide softenhyphens

startofpar tonode tovaliddirect traversechar traversecontent traverseglyph

traverseitalic traverseleader traverselist unprotectglyphs unprotectglyphsnone

unsetattributes usesfont vbalance verticalbreak vpack

497

userdata helpers

instock inuse todirect

userdata helpers

no get: -

no set: -

15.3.11 penalty

The \penalty command is one that generates these nodes. There is not much to tell about them, apart

from that in LuaMetaTEX they have options and a possible spread related nepalty field that is used

internally.

fields

attr attribute next node prev node

id integer options integer subtype integer

nepalty integer penalty integer

subtypes

0 userpenalty 5 toddlerpenalty 10 beforedisplaypenalty

1 linebreakpenalty 6 singlelinepenalty 11 afterdisplaypenalty

2 linepenalty 7 finalpenalty 12 equationnumberpenalty

3 wordpenalty 8 mathprepenalty

4 orphanpenalty 9 mathpostpenalty

penaltyoptionvalues

0x0000 normal 0x0100 broken

0x0001 mathforward 0x0200 shaping

0x0002 mathbackward 0x0400 double

0x0004 orphaned 0x0800 doubleused

0x0008 widowed 0x1000 factorused

0x0010 clubbed 0x2000 endofpar

0x0020 toddlered 0x4000 ininsert

0x0040 widow 0x8000 finalbalance

0x0080 club

direct helpers

appendaftertail beginofmath checkdiscretionaries collapsing copyonly count dimensions

endofmath exchange findattribute findattributerange findnode firstchar firstglyph

firstglyphnode firstitalicglyph flattendiscretionaries flattenleaders freeze

getattributelist getattributes getboth getbox getid getidsubtype getidsubtypenext

getmvllist getnext getnodes getoptions getpenalty getprev getspeciallist getsubtype

getwordrange hasglyph hasidsubtype hpack hyphenating isboth ischar isdirect isglyph

isloop isnext isnextchar isnextglyph isprev isprevchar isprevglyph issimilarglyph

isspeciallist isvalid kerning lastnode length ligaturing mlisttohlist naturalhsize

naturalwidth newcontinuationatom newmathglyph newtextglyph patchattributes

498

prependbeforehead protectglyphs protectglyphsnone protrusionskippable rangedimensions

removefromlist repack reverse setattributelist setattributes setboth setbox setlink

setnext setoptions setpenalty setprev setspeciallist setsplit setsubtype showlist

size slide softenhyphens startofpar tonode tovaliddirect traversechar traversecontent

traverseglyph traverseitalic traverseleader traverselist unprotectglyphs

unprotectglyphsnone unsetattributes usesfont vbalance verticalbreak vpack

userdata helpers

instock inuse todirect

userdata helpers

no get: nepalty

no set: nepalty

15.3.12 glyph

These are probably the mostly used nodes and although you can push them in the current list with for

instance \char TEX will normally do it for you when it considers some input to be text. Glyph nodes

are relatively large and have many fields.

fields

attr attribute index integer scale dimension

char integer language integer script integer

control integer left dimension slant integer

data integer lhmin integer state integer

depth dimension next node subtype integer

discpart integer options integer total dimension

expansion integer prev node weight integer

font integer properties integer width dimension

group integer protected integer xoffset dimension

height dimension raise dimension xscale dimension

hyphenate integer rhmin integer yoffset dimension

id integer right dimension yscale dimension

subtypes

0 unset 8 relation 16 over

1 character 9 open 17 fraction

2 ligature 10 close 18 radical

3 delimiter 11 punctuation 19 middle

4 extensible 12 variable 20 prime

5 ordinary 13 active 21 accent

6 operator 14 inner

7 binary 15 under

499

glyphoptionvalues

0x00000000 normal 0x00000800 mathsitalicstoo

0x00000001 noleftligature 0x00001000 mathartifact

0x00000002 norightligature 0x00002000 weightless

0x00000004 noleftkern 0x00004000 spacefactoroverload

0x00000008 norightkern 0x00008000 checktoddler

0x00000010 noexpansion 0x00010000 checktwin

0x00000020 noprotrusion 0x00020000 istoddler

0x00000040 noitaliccorrection 0x00040000 iscontinuation

0x00000080 nozeroitaliccorrection 0x00080000 keepspacing

0x00000100 applyxoffset 0x01000000 userfirst

0x00000200 applyyoffset 0x40000000 userlast

0x00000400 mathdiscretionary

glyphdiscvalues

0x01 normal 0x04 mathematics

0x02 explicit 0x05 syllable

0x03 automatic

discpartvalues

0x00 unset 0x03 replace

0x01 pre 0x04 always

0x02 post

glyphprotectionvalues

0x00 unset 0x02 math

0x01 text

The width, height and depth values are read-only. In LuaTEX expansion has been introduced as part

of the separation between front- and backend. It is the result of extensive experiments with a more

efficient implementation of expansion. Early versions of LuaTEX already replaced multiple instances

of fonts in the backend by scaling but contrary to pdfTEX in LuaTEX we now also got rid of font copies

in the frontend and replaced them by expansion factors that travel with glyph nodes. Apart from a

cleaner approach this is also a step towards a better separation between front- and backend.

direct helpers

addmargins addxoffset addxymargins addyoffset appendaftertail beginofmath

checkdiscretionaries collapsing copyonly count dimensions endofmath exchange

findattribute findattributerange findnode firstchar firstglyph firstglyphnode

firstitalicglyph flattendiscretionaries flattenleaders freeze getattributelist

getattributes getboth getbox getchar getchardict getcharspec getclass getcontrol

getcornerkerns getdata getdepth getexpansion getfont getglyphdata getglyphdimensions

getheight getid getidsubtype getidsubtypenext getinputfields getlanguage getmvllist

getnext getnodes getoffsets getoptions getprev getscale getscales getscript getslant

getspeciallist getstate getsubtype gettotal getweight getwhd getwidth getwordrange

getxscale getxyscales getyscale hasdimensions hasglyph hasglyphoption hasidsubtype

hpack hyphenating isboth ischar isdirect isglyph isitalicglyph isloop isnext

500

isnextchar isnextglyph isprev isprevchar isprevglyph issimilarglyph isspeciallist

isvalid kerning lastnode length ligaturing mlisttohlist naturalhsize naturalwidth

newcontinuationatom newmathglyph newtextglyph patchattributes prependbeforehead

protectglyph protectglyphs protectglyphsnone protrusionskippable rangedimensions

removefromlist repack reverse setattributelist setattributes setboth setbox setchar

setchardict setcharspec setclass setcontrol setdata setexpansion setfont setglyphdata

setinputfields setlanguage setlink setnext setoffsets setoptions setprev setscale

setscales setscript setslant setspeciallist setsplit setstate setsubtype setweight

setwhd setxyscales showlist size slide softenhyphens startofpar tonode tovaliddirect

traversechar traversecontent traverseglyph traverseitalic traverseleader traverselist

unprotectglyph unprotectglyphs unprotectglyphsnone unsetattributes usesfont vbalance

verticalbreak vpack xscaled yscaled

userdata helpers

instock inuse todirect

userdata helpers

no get: raise

no set: total raise

15.3.13 boundary

This node relates to the \noboundary, \boundary, \protrusionboundary, \wordboundary etc. These

are relative small nodes that determine what happens before and after them.

fields

attr attribute id integer prev node

data integer next node subtype integer

subtypes

0 cancel 4 page 8 par

1 user 5 math 9 adjust

2 protrusion 6 optional 10 balance

3 word 7 lua

protrusionboundaryvalues

0x00 skipnone 0x02 skipprevious

0x01 skipnext 0x03 skipboth

direct helpers

appendaftertail beginofmath checkdiscretionaries collapsing copyonly count dimensions

endofmath exchange findattribute findattributerange findnode firstchar firstglyph

firstglyphnode firstitalicglyph flattendiscretionaries flattenleaders freeze

getattributelist getattributes getboth getbox getdata getid getidsubtype

getidsubtypenext getmvllist getnext getnodes getprev getspeciallist getsubtype

getwordrange hasglyph hasidsubtype hpack hyphenating isboth ischar isdirect isglyph

501

isloop isnext isnextchar isnextglyph isprev isprevchar isprevglyph issimilarglyph

isspeciallist isvalid kerning lastnode length ligaturing mlisttohlist naturalhsize

naturalwidth newcontinuationatom newmathglyph newtextglyph patchattributes

prependbeforehead protectglyphs protectglyphsnone protrusionskippable rangedimensions

removefromlist repack reverse setattributelist setattributes setboth setbox setdata

setlink setnext setprev setspeciallist setsplit setsubtype showlist size slide

softenhyphens startofpar tonode tovaliddirect traversechar traversecontent

traverseglyph traverseitalic traverseleader traverselist unprotectglyphs

unprotectglyphsnone unsetattributes usesfont vbalance verticalbreak vpack

userdata helpers

instock inuse todirect

userdata helpers

no get: -

no set: -

15.3.14 par

This node is inserted at the start of a paragraph. You should not mess too much with this one. They

are also inserted when \local... primitives are used that relate boxes to positions in the line and

overload certain parameters that play a role in the line break routine. There are many fields!

fields

adjacentdemerits node hangafter integer

adjdemerits integer hangindent dimension

adjustspacing integer hsize dimension

adjustspacingshrink integer hyphenationmode integer

adjustspacingstep integer hyphenpenalty integer

adjustspacingstretch integer id integer

attr attribute interlinepenalties node

baselineskip glue interlinepenalty integer

brokenpenalties node lastlinefit integer

brokenpenalty integer leftbox node

clubpenalties node leftboxwidth dimension

clubpenalty integer leftskip integer

dir integer lefttwindemerits integer

displaywidowpenalties node linebreakchecks integer

displaywidowpenalty integer linepenalty integer

doublehyphendemerits integer lineskip glue

emergencyextrastretch dimension lineskiplimit dimension

emergencyleftskip glue looseness integer

emergencyrightskip glue middlebox node

emergencystretch dimension next node

endpartokens tokenlist orphanpenalties node

exhyphenpenalty integer parfillleftskip glue

finalhyphendemerits integer parfillrightskip glue

fitnessclasses node parindent dimension

502

parinitleftskip glue righttwindemerits integer

parinitrightskip glue shapingpenaltiesmode integer

parpasses node shapingpenalty integer

parshape node singlelinepenalty integer

pretolerance integer state integer

prev node subtype integer

prevgraf integer toddlerpenalties node

protrudechars integer tolerance integer

rightbox node widowpenalties node

rightboxwidth dimension widowpenalty integer

rightskip integer

subtypes

0 vmodepar 2 hmodepar 4 localbreak

1 localbox 3 parameter 5 math

direct helpers

appendaftertail beginofmath checkdiscretionaries collapsing copyonly count dimensions

endofmath exchange findattribute findattributerange findnode firstchar firstglyph

firstglyphnode firstitalicglyph flattendiscretionaries flattenleaders freeze

getattributelist getattributes getboth getbox getdirection getid getidsubtype

getidsubtypenext getmvllist getnext getnodes getparstate getprev getspeciallist

getsubtype getwordrange hasglyph hasidsubtype hpack hyphenating isboth ischar

isdirect isglyph isloop isnext isnextchar isnextglyph isprev isprevchar isprevglyph

issimilarglyph isspeciallist isvalid kerning lastnode length ligaturing mlisttohlist

naturalhsize naturalwidth newcontinuationatom newmathglyph newtextglyph

patchattributes patchparshape prependbeforehead protectglyphs protectglyphsnone

protrusionskippable rangedimensions removefromlist repack reverse setattributelist

setattributes setboth setbox setdirection setlink setnext setprev setspeciallist

setsplit setsubtype showlist size slide softenhyphens startofpar tonode tovaliddirect

traversechar traversecontent traverseglyph traverseitalic traverseleader traverselist

unprotectglyphs unprotectglyphsnone unsetattributes usesfont validpar vbalance

verticalbreak vpack

userdata helpers

instock inuse todirect

userdata helpers

no get: dir parpasses linebreakchecks state prevgraf hsize leftskip rightskip hangin

dent hangafter parindent parfillleftskip parfillrightskip adjustspacing protrudechars

emergencystretch looseness lastlinefit linepenalty clubpenalty widowpenalty display

widowpenalty toddlerpenalties adjdemerits doublehyphendemerits finalhyphendemerits

parshape interlinepenalties clubpenalties widowpenalties displaywidowpenalties bro

kenpenalties orphanpenalties singlelinepenalty baselineskip lineskip lineskiplimit

adjustspacingstep adjustspacingshrink adjustspacingstretch endpartokens hyphenation

mode parinitleftskip parinitrightskip emergencyleftskip emergencyrightskip emergen

cyextrastretch fitnessclasses adjacentdemerits hyphenpenalty exhyphenpenalty left

twindemerits righttwindemerits

503

no set: dir parpasses linebreakchecks state prevgraf hsize leftskip rightskip hangin

dent hangafter parindent parfillleftskip parfillrightskip adjustspacing protrudechars

emergencystretch looseness lastlinefit linepenalty clubpenalty widowpenalty display

widowpenalty toddlerpenalties adjdemerits doublehyphendemerits finalhyphendemerits

parshape interlinepenalties clubpenalties widowpenalties displaywidowpenalties bro

kenpenalties orphanpenalties singlelinepenalty baselineskip lineskip lineskiplimit

adjustspacingstep adjustspacingshrink adjustspacingstretch endpartokens hyphenation

mode parinitleftskip parinitrightskip emergencyleftskip emergencyrightskip emergen

cyextrastretch fitnessclasses adjacentdemerits hyphenpenalty exhyphenpenalty left

twindemerits righttwindemerits

15.3.15 dir

Direction nodes mark parts of the running text that need a change of direction and the \textdirection

command generates them. Contrary to LuaTEX we only have two directions.

fields

attr attribute level integer subtype integer

dir integer next node

id integer prev node

subtypes

0 normal 1 cancel

direct helpers

appendaftertail beginofmath checkdiscretionaries collapsing copyonly count dimensions

endofmath exchange findattribute findattributerange findnode firstchar firstglyph

firstglyphnode firstitalicglyph flattendiscretionaries flattenleaders freeze

getattributelist getattributes getboth getbox getdirection getid getidsubtype

getidsubtypenext getmvllist getnext getnodes getprev getspeciallist getsubtype

getwordrange hasglyph hasidsubtype hpack hyphenating isboth ischar isdirect isglyph

isloop isnext isnextchar isnextglyph isprev isprevchar isprevglyph issimilarglyph

isspeciallist isvalid kerning lastnode length ligaturing mlisttohlist naturalhsize

naturalwidth newcontinuationatom newmathglyph newtextglyph patchattributes

prependbeforehead protectglyphs protectglyphsnone protrusionskippable rangedimensions

removefromlist repack reverse setattributelist setattributes setboth setbox

setdirection setlink setnext setprev setspeciallist setsplit setsubtype showlist size

slide softenhyphens startofpar tonode tovaliddirect traversechar traversecontent

traverseglyph traverseitalic traverseleader traverselist unprotectglyphs

unprotectglyphsnone unsetattributes usesfont vbalance verticalbreak vpack

userdata helpers

instock inuse todirect

504

userdata helpers

no get: dir

no set: dir

15.3.16 whatsit

A whatsit node is a real simple one and it only has a subtype. It is even less than a user node (which

it actually could be) and uses hardly any memory. What you do with it it entirely up to you: it's is real

minimalistic. You can assign a subtype and it has attributes. It is all up to the user (and the backend)

how they are handled.

fields

attr attribute next node subtype integer

id integer prev node

direct helpers

appendaftertail beginofmath checkdiscretionaries collapsing copyonly count dimensions

endofmath exchange findattribute findattributerange findnode firstchar firstglyph

firstglyphnode firstitalicglyph flattendiscretionaries flattenleaders freeze

getattributelist getattributes getboth getbox getid getidsubtype getidsubtypenext

getmvllist getnext getnodes getprev getspeciallist getsubtype getwordrange hasglyph

hasidsubtype hpack hyphenating isboth ischar isdirect isglyph isloop isnext

isnextchar isnextglyph isprev isprevchar isprevglyph issimilarglyph isspeciallist

isvalid kerning lastnode length ligaturing mlisttohlist naturalhsize naturalwidth

newcontinuationatom newmathglyph newtextglyph patchattributes prependbeforehead

protectglyphs protectglyphsnone protrusionskippable rangedimensions removefromlist

repack reverse setattributelist setattributes setboth setbox setlink setnext setprev

setspeciallist setsplit setsubtype showlist size slide softenhyphens startofpar

tonode tovaliddirect traversechar traversecontent traverseglyph traverseitalic

traverseleader traverselist unprotectglyphs unprotectglyphsnone unsetattributes

usesfont vbalance verticalbreak vpack

userdata helpers

instock inuse todirect

userdata helpers

no get: -

no set: -

15.3.17 attribute

This is a small node but used a lot. When an attribute is set and travels with a node, we actually have a

forward (only) linked list with a head node that keeps a reference count. These lists are (to be) sorted

by attribute index. Normally you will not mess directly with these list because you can get unwanted

side effects.

505

fields

count integer index integer value integer

data integer next node

id integer subtype integer

subtypes

0 list 1 value

direct helpers

appendaftertail beginofmath checkdiscretionaries collapsing copyonly count dimensions

endofmath exchange findattribute findattributerange findnode firstchar firstglyph

firstglyphnode firstitalicglyph flattendiscretionaries flattenleaders freeze

getattributelist getattributes getboth getbox getdata getid getidsubtype

getidsubtypenext getmvllist getnext getnodes getprev getspeciallist getsubtype

getwordrange hasglyph hasidsubtype hpack hyphenating isboth ischar isdirect isglyph

isloop isnext isnextchar isnextglyph isprev isprevchar isprevglyph issimilarglyph

isspeciallist isvalid kerning lastnode length ligaturing mlisttohlist naturalhsize

naturalwidth newcontinuationatom newmathglyph newtextglyph patchattributes

prependbeforehead protectglyphs protectglyphsnone protrusionskippable rangedimensions

removefromlist repack reverse setattributelist setattributes setboth setbox setdata

setlink setnext setprev setspeciallist setsplit setsubtype showlist size slide

softenhyphens startofpar tonode tovaliddirect traversechar traversecontent

traverseglyph traverseitalic traverseleader traverselist unprotectglyphs

unprotectglyphsnone unsetattributes usesfont vbalance verticalbreak vpack

userdata helpers

instock inuse todirect

userdata helpers

no get: index value

no set: data index value

15.3.18 alignrecord

This node can be encountered in alignments and will eventually become a hlist or vlist node. It

therefore has the same size and fields as those nodes. However, the following fields are overloaded

by other parameters: woffset, hoffset, doffset, xoffset, yoffset, orientation, pre and post. Be

careful!

fields

id integer prev node width dimension

list node size dimension

next node subtype integer

506

direct helpers

appendaftertail beginofmath checkdiscretionaries collapsing copyonly count dimensions

endofmath exchange findattribute findattributerange findnode firstchar firstglyph

firstglyphnode firstitalicglyph flattendiscretionaries flattenleaders freeze

getattributelist getattributes getboth getbox getid getidsubtype getidsubtypenext

getmvllist getnext getnodes getprev getspeciallist getsubtype getwidth getwordrange

hasglyph hasidsubtype hpack hyphenating isboth ischar isdirect isglyph isloop isnext

isnextchar isnextglyph isprev isprevchar isprevglyph issimilarglyph isspeciallist

isvalid kerning lastnode length ligaturing mlisttohlist naturalhsize naturalwidth

newcontinuationatom newmathglyph newtextglyph patchattributes prependbeforehead

protectglyphs protectglyphsnone protrusionskippable rangedimensions removefromlist

repack reverse setattributelist setattributes setboth setbox setlink setnext setprev

setspeciallist setsplit setsubtype setwidth showlist size slide softenhyphens

startofpar tonode tovaliddirect traversechar traversecontent traverseglyph

traverseitalic traverseleader traverselist unprotectglyphs unprotectglyphsnone

unsetattributes usesfont vbalance verticalbreak vpack

userdata helpers

instock inuse todirect

userdata helpers

no get: list width size

no set: list width size

15.3.19 unset

This node can be encountered in alignments and will eventually become a hlist or vlist node. It

therefore has the same size and fields as those nodes. However, the following fields are (at least

temporarily) there and they use the slots of woffset, hoffset, doffset and orientation. Be careful!

fields

attr attribute next node span integer

count integer prev node stretch dimension

id integer shrink dimension subtype integer

direct helpers

appendaftertail beginofmath checkdiscretionaries collapsing copyonly count dimensions

endofmath exchange findattribute findattributerange findnode firstchar firstglyph

firstglyphnode firstitalicglyph flattendiscretionaries flattenleaders freeze

getattributelist getattributes getboth getbox getdepth getexcept getglue getheight

getid getidsubtype getidsubtypenext getinputfields getlist getmvllist getnext

getnodes getprev getspeciallist getsubtype gettotal getwhd getwidth getwordrange

hasdimensions hasglyph hasidsubtype hpack hyphenating isboth ischar isdirect isglyph

isloop isnext isnextchar isnextglyph isprev isprevchar isprevglyph issimilarglyph

isspeciallist isvalid iszeroglue kerning lastnode length ligaturing mlisttohlist

naturalhsize naturalwidth newcontinuationatom newmathglyph newtextglyph

patchattributes prependbeforehead protectglyphs protectglyphsnone protrusionskippable

507

rangedimensions removefromlist repack reverse setattributelist setattributes setboth

setbox setdepth setexcept setglue setheight setinputfields setlink setlist setnext

setprev setspeciallist setsplit setsubtype setwhd setwidth showlist size slide

softenhyphens startofpar tonode tovaliddirect traversechar traversecontent

traverseglyph traverseitalic traverseleader traverselist unprotectglyphs

unprotectglyphsnone unsetattributes usesfont vbalance verticalbreak vpack

userdata helpers

instock inuse todirect

userdata helpers

no get: attr span

no set: attr span

15.4 Math nodes

15.4.1 The concept

Many object fields in math mode are either simple characters in a specific family or math lists or

node lists: mathchar, mathtextchar, subbox and submlist and delimiter. These are endpoints and

therefore the next and prev fields of these these subnodes are unused.

There is a subset of nodes dedicated to math called noads. These are used for simple atoms, fractions,

fences, accents and radicals. When you enter a formula, TEX creates a node list with regular (math)

nodes and noads. Then it hands over the list the math processing engine. The result of that is a nodelist

without noads. Most of the noads contain subnodes so that the list of possible fields is actually quite

small. Math formulas are both a linked list and a tree. For instance in 𝑒 = 𝑚𝑐2 there is a linked list e

= m c but the c has a superscript branch that itself can be a list with branches.

Eventually I might give a more detailed description of the differences between the five noad variants

but for now the following has to do. One will quite likely not set that many fields at the Lua end but

running over the many sub lists can make sense. One has to know what the engine is doing anyway.

15.4.2 noad

First, there are the objects (the TEXbook calls them ‘atoms’) that are associated with the simple math

objects: ord, op, bin, rel, open, close, punct, inner, over, under, vcenter. These all have the same fields,

and they are combined into a single node type with separate subtypes for differentiation. However,

before reading on you should realize that LuaMetaTEX has an extended math engine. We hale not only

more classes, we also have many more keys in the nodes. We won't cover these details here.

fields

analyzed integer height integer leftslack integer

attr attribute hlist nodelist mainclass integer

depth integer id integer next node

extraattr attribute italic integer nucleus nodelist

fam integer leftclass integer options integer

508

prev node scriptorder integer subshift integer

prime nodelist scriptstate integer subtype integer

primeshift integer source integer sup nodelist

rightclass integer style integer suppre nodelist

rightslack integer sub nodelist supshift integer

scriptkern integer subpre nodelist width integer

subtypes

0 ordinary 7 variable 14 middle

1 operator 8 active 15 prime

2 binary 9 inner 16 accent

3 relation 10 under 17 fenced

4 open 11 over 18 ghost

5 close 12 fraction 19 vcenter

6 punctuation 13 radical

noadoptionvalues

0x00000001 axis 0x40000000 followedbyspace

0x00000002 noaxis 0x80000000 proportional

0x00000004 exact 0x100000000 sourceonnucleus

0x00000008 left 0x200000000 fixedsuperorsubscript

0x00000010 middle 0x400000000 fixedsuperandsubscript

0x00000020 right 0x800000000 autobase

0x00000040 adapttoleftsize 0x1000000000 stretch

0x00000080 adapttorightsize 0x2000000000 shrink

0x00000100 nosubscript 0x4000000000 center

0x00000200 nosuperscript 0x8000000000 scale

0x00000400 nosubprescript 0x10000000000 keepbase

0x00000800 nosuperprescript 0x20000000000 single

0x00001000 noscript 0x40000000000 norule

0x00002000 nooverflow 0x80000000000 automiddle

0x00004000 void 0x100000000000 reflected

0x00008000 phantom 0x200000000000 continuation

0x00010000 openupheight 0x400000000000 inheritclass

0x00020000 openupdepth 0x800000000000 discardshapekern

0x00040000 limits 0x1000000000000 realignscripts

0x00080000 nolimits 0x2000000000000 ignoreemptysubscript

0x00100000 preferfontthickness 0x4000000000000 ignoreemptysuperscript

0x00200000 noruling 0x8000000000000 ignoreemptyprimescript

0x00400000 indexedsubscript 0x10000000000000 continuationhead

0x00800000 indexedsuperscript 0x20000000000000 continuationkernel

0x01000000 indexedsubprescript 0x40000000000000 reorderprescripts

0x02000000 indexedsuperprescript 0x80000000000000 ignore

0x04000000 unpacklist 0x100000000000000 nomorescripts

0x08000000 nocheck 0x200000000000000 carryoverclasses

0x10000000 auto 0x400000000000000 usecallback

0x20000000 unrolllist

509

In addition to the subtypes (related to classes) that the engines knows of, there can be user defined

subtypes. Not all fields make sense for every derives noad: accent, fence, fraction or radical but

there we (currently) only mention the additional ones. These additional fields are taken from a pool

of extra fields. Not all fields are always accessible for these nodes.

direct helpers

appendaftertail beginofmath checkdiscretionaries collapsing copyonly count dimensions

endofmath exchange findattribute findattributerange findnode firstchar firstglyph

firstglyphnode firstitalicglyph flattendiscretionaries flattenleaders freeze

getanchors getattributelist getattributes getboth getbox getcharspec getclass getfam

getid getidsubtype getidsubtypenext getmvllist getnext getnodes getnucleus getoptions

getprev getprime getscripts getspeciallist getsub getsubpre getsubtype getsup

getsuppre getwordrange hasglyph hasidsubtype hpack hyphenating isboth ischar isdirect

isglyph isloop isnext isnextchar isnextglyph isprev isprevchar isprevglyph

issimilarglyph isspeciallist isvalid kerning lastnode length ligaturing mlisttohlist

naturalhsize naturalwidth newcontinuationatom newmathglyph newtextglyph

patchattributes prependbeforehead protectglyphs protectglyphsnone protrusionskippable

rangedimensions removefromlist repack reverse setanchors setattributelist

setattributes setboth setbox setcharspec setclass setfam setlink setnext setnucleus

setoptions setprev setprime setscripts setspeciallist setsplit setsub setsubpre

setsubtype setsup setsuppre showlist size slide softenhyphens startofpar tonode

tovaliddirect traversechar traversecontent traverseglyph traverseitalic

traverseleader traverselist unprotectglyphs unprotectglyphsnone unsetattributes

usesfont vbalance verticalbreak vpack

userdata helpers

instock inuse todirect

userdata helpers

no get: hlist italic width height depth style scriptstate analyzed mainclass leftclass

rightclass leftslack rightslack subshift supshift primeshift scriptkern extraattr

no set: -

15.4.3 mathchar

The mathchar is the simplest subnode field, it contains the character and family for a single glyph

object. The family eventually resolves on a reference to a font. Internally this nodes is one of the math

kernel nodes.

fields

attr attribute id integer prev node

char integer index integer properties integer

fam integer next node subtype integer

group integer options integer

510

kerneloptionvalues

0x01 noitaliccorrection 0x10 fulldiscretionary

0x02 noleftpairkern 0x20 ignoredcharacter

0x04 norightpairkern 0x40 islargeoperator

0x08 autodiscretionary 0x80 hasitalicshape

direct helpers

appendaftertail beginofmath checkdiscretionaries collapsing copyonly count dimensions

endofmath exchange findattribute findattributerange findnode firstchar firstglyph

firstglyphnode firstitalicglyph flattendiscretionaries flattenleaders freeze

getattributelist getattributes getboth getbox getchar getchardict getcharspec getfam

getfont getid getidsubtype getidsubtypenext getmvllist getnext getnodes getoptions

getprev getspeciallist getsubtype getwordrange hasglyph hasidsubtype hpack

hyphenating isboth ischar isdirect isglyph isloop isnext isnextchar isnextglyph

isprev isprevchar isprevglyph issimilarglyph isspeciallist isvalid kerning lastnode

length ligaturing mlisttohlist naturalhsize naturalwidth newcontinuationatom

newmathglyph newtextglyph patchattributes prependbeforehead protectglyphs

protectglyphsnone protrusionskippable rangedimensions removefromlist repack reverse

setattributelist setattributes setboth setbox setchar setchardict setcharspec setfam

setlink setnext setoptions setprev setspeciallist setsplit setsubtype showlist size

slide softenhyphens startofpar tonode tovaliddirect traversechar traversecontent

traverseglyph traverseitalic traverseleader traverselist unprotectglyphs

unprotectglyphsnone unsetattributes usesfont vbalance verticalbreak vpack

userdata helpers

instock inuse todirect

userdata helpers

no get: -

no set: -

15.4.4 mathtextchar

The mathtextchar is a special case that you will not normally encounter, it arises temporarily during

math list conversion (its sole function is to suppress a following italic correction). Internally this nodes

is one of the math kernel nodes.

fields

attr attribute id integer prev node

char integer index integer properties integer

fam integer next node subtype integer

group integer options integer

511

kerneloptionvalues

0x01 noitaliccorrection 0x10 fulldiscretionary

0x02 noleftpairkern 0x20 ignoredcharacter

0x04 norightpairkern 0x40 islargeoperator

0x08 autodiscretionary 0x80 hasitalicshape

direct helpers

appendaftertail beginofmath checkdiscretionaries collapsing copyonly count dimensions

endofmath exchange findattribute findattributerange findnode firstchar firstglyph

firstglyphnode firstitalicglyph flattendiscretionaries flattenleaders freeze

getattributelist getattributes getboth getbox getchar getchardict getcharspec getfam

getfont getid getidsubtype getidsubtypenext getmvllist getnext getnodes getoptions

getprev getspeciallist getsubtype getwordrange hasglyph hasidsubtype hpack

hyphenating isboth ischar isdirect isglyph isloop isnext isnextchar isnextglyph

isprev isprevchar isprevglyph issimilarglyph isspeciallist isvalid kerning lastnode

length ligaturing mlisttohlist naturalhsize naturalwidth newcontinuationatom

newmathglyph newtextglyph patchattributes prependbeforehead protectglyphs

protectglyphsnone protrusionskippable rangedimensions removefromlist repack reverse

setattributelist setattributes setboth setbox setchar setchardict setcharspec setfam

setlink setnext setoptions setprev setspeciallist setsplit setsubtype showlist size

slide softenhyphens startofpar tonode tovaliddirect traversechar traversecontent

traverseglyph traverseitalic traverseleader traverselist unprotectglyphs

unprotectglyphsnone unsetattributes usesfont vbalance verticalbreak vpack

userdata helpers

instock inuse todirect

userdata helpers

no get: -

no set: -

15.4.5 subbox

These subbox subnode is used for subsidiary list items where the list points to a ‘normal’ vbox or

hbox.

fields

attr attribute list nodelist prev node

id integer next node subtype integer

direct helpers

appendaftertail beginofmath checkdiscretionaries collapsing copyonly count dimensions

endofmath exchange findattribute findattributerange findnode firstchar firstglyph

firstglyphnode firstitalicglyph flattendiscretionaries flattenleaders freeze

getattributelist getattributes getboth getbox getid getidsubtype getidsubtypenext

getlist getmvllist getnext getnodes getprev getspeciallist getsubtype getwordrange

512

hasglyph hasidsubtype hpack hyphenating isboth ischar isdirect isglyph isloop isnext

isnextchar isnextglyph isprev isprevchar isprevglyph issimilarglyph isspeciallist

isvalid kerning lastnode length ligaturing mlisttohlist naturalhsize naturalwidth

newcontinuationatom newmathglyph newtextglyph patchattributes prependbeforehead

protectglyphs protectglyphsnone protrusionskippable rangedimensions removefromlist

repack reverse setattributelist setattributes setboth setbox setlink setlist setnext

setprev setspeciallist setsplit setsubtype showlist size slide softenhyphens

startofpar tonode tovaliddirect traversechar traversecontent traverseglyph

traverseitalic traverseleader traverselist unprotectglyphs unprotectglyphsnone

unsetattributes usesfont vbalance verticalbreak vpack

userdata helpers

instock inuse todirect

userdata helpers

no get: -

no set: -

15.4.6 submlist

In submlist subnode the list points to a math list that is yet to be converted. Their fields

fields

attr attribute list nodelist prev node

id integer next node subtype integer

direct helpers

appendaftertail beginofmath checkdiscretionaries collapsing copyonly count dimensions

endofmath exchange findattribute findattributerange findnode firstchar firstglyph

firstglyphnode firstitalicglyph flattendiscretionaries flattenleaders freeze

getattributelist getattributes getboth getbox getid getidsubtype getidsubtypenext

getlist getmvllist getnext getnodes getprev getspeciallist getsubtype getwordrange

hasglyph hasidsubtype hpack hyphenating isboth ischar isdirect isglyph isloop isnext

isnextchar isnextglyph isprev isprevchar isprevglyph issimilarglyph isspeciallist

isvalid kerning lastnode length ligaturing mlisttohlist naturalhsize naturalwidth

newcontinuationatom newmathglyph newtextglyph patchattributes prependbeforehead

protectglyphs protectglyphsnone protrusionskippable rangedimensions removefromlist

repack reverse setattributelist setattributes setboth setbox setlink setlist setnext

setprev setspeciallist setsplit setsubtype showlist size slide softenhyphens

startofpar tonode tovaliddirect traversechar traversecontent traverseglyph

traverseitalic traverseleader traverselist unprotectglyphs unprotectglyphsnone

unsetattributes usesfont vbalance verticalbreak vpack

513

userdata helpers

instock inuse todirect

userdata helpers

no get: -

no set: -

15.4.7 delimiter

There is a fifth subnode type that is used exclusively for delimiter fields. As before, the next and prev

fields are unused, but we do have:

fields

attr attribute largefamily integer smallchar integer

id integer next node smallfamily integer

index integer prev node subtype integer

The fields largechar and largefamily can be zero, in that case the font that is set for the smallfamily

is expected to provide the large version as an extension to the smallchar.

direct helpers

appendaftertail beginofmath checkdiscretionaries collapsing copyonly count dimensions

endofmath exchange findattribute findattributerange findnode firstchar firstglyph

firstglyphnode firstitalicglyph flattendiscretionaries flattenleaders freeze

getattributelist getattributes getboth getbox getchar getchardict getcharspec

getclass getfont getid getidsubtype getidsubtypenext getmvllist getnext getnodes

getprev getspeciallist getsubtype getwordrange hasglyph hasidsubtype hpack

hyphenating isboth ischar isdirect isglyph isloop isnext isnextchar isnextglyph

isprev isprevchar isprevglyph issimilarglyph isspeciallist isvalid kerning lastnode

length ligaturing mlisttohlist naturalhsize naturalwidth newcontinuationatom

newmathglyph newtextglyph patchattributes prependbeforehead protectglyphs

protectglyphsnone protrusionskippable rangedimensions removefromlist repack reverse

setattributelist setattributes setboth setbox setchar setchardict setcharspec

setclass setlink setnext setprev setspeciallist setsplit setsubtype showlist size

slide softenhyphens startofpar tonode tovaliddirect traversechar traversecontent

traverseglyph traverseitalic traverseleader traverselist unprotectglyphs

unprotectglyphsnone unsetattributes usesfont vbalance verticalbreak vpack

userdata helpers

instock inuse todirect

userdata helpers

no get: index

no set: index

514

15.4.8 accent

Accent nodes deal with stuff on top or below a math constructs.

fields

attr attribute id integer subtype integer

bottomaccent nodelist next node topaccent nodelist

bottomovershoot nodelist overlayaccent nodelist topovershoot nodelist

fraction nodelist prev node

subtypes

0 bothflexible 2 fixedbottom

1 fixedtop 3 fixedboth

For more fields see noad. At some point we might move fields from that list to here but only when the

engine also gets that split.

direct helpers

appendaftertail beginofmath checkdiscretionaries collapsing copyonly count dimensions

endofmath exchange findattribute findattributerange findnode firstchar firstglyph

firstglyphnode firstitalicglyph flattendiscretionaries flattenleaders freeze

getanchors getattributelist getattributes getboth getbottom getbox getclass

getdelimiter getfam getid getidsubtype getidsubtypenext getmvllist getnext getnodes

getnucleus getoptions getprev getprime getscripts getspeciallist getsub getsubpre

getsubtype getsup getsuppre gettop getwordrange hasglyph hasidsubtype hpack

hyphenating isboth ischar isdirect isglyph isloop isnext isnextchar isnextglyph

isprev isprevchar isprevglyph issimilarglyph isspeciallist isvalid kerning lastnode

length ligaturing mlisttohlist naturalhsize naturalwidth newcontinuationatom

newmathglyph newtextglyph patchattributes prependbeforehead protectglyphs

protectglyphsnone protrusionskippable rangedimensions removefromlist repack reverse

setanchors setattributelist setattributes setboth setbottom setbox setclass

setdelimiter setfam setlink setnext setnucleus setoptions setprev setprime setscripts

setspeciallist setsplit setsub setsubpre setsubtype setsup setsuppre settop showlist

size slide softenhyphens startofpar tonode tovaliddirect traversechar traversecontent

traverseglyph traverseitalic traverseleader traverselist unprotectglyphs

unprotectglyphsnone unsetattributes usesfont vbalance verticalbreak vpack

userdata helpers

instock inuse todirect

userdata helpers

no get: topovershoot bottomovershoot

no set: topovershoot bottomovershoot

15.4.9 style

These nodes are signals to switch to another math style. Currently the subtype is actually used to

store the style but don't rely on that for the future.

515

fields

attr attribute prev node subtype integer

id integer scale integer

next node style integer

mathstylenamevalues

0x00 display 0x04 script

0x01 crampeddisplay 0x05 crampedscript

0x02 text 0x06 scriptscript

0x03 crampedtext 0x07 crampedscriptscript

mathstylevalues

0x00 display 0x04 script

0x01 crampeddisplay 0x05 crampedscript

0x02 text 0x06 scriptscript

0x03 crampedtext 0x07 crampedscriptscript

direct helpers

appendaftertail beginofmath checkdiscretionaries collapsing copyonly count dimensions

endofmath exchange findattribute findattributerange findnode firstchar firstglyph

firstglyphnode firstitalicglyph flattendiscretionaries flattenleaders freeze

getattributelist getattributes getboth getbox getid getidsubtype getidsubtypenext

getmvllist getnext getnodes getprev getspeciallist getsubtype getwordrange hasglyph

hasidsubtype hpack hyphenating isboth ischar isdirect isglyph isloop isnext

isnextchar isnextglyph isprev isprevchar isprevglyph issimilarglyph isspeciallist

isvalid kerning lastnode length ligaturing mlisttohlist naturalhsize naturalwidth

newcontinuationatom newmathglyph newtextglyph patchattributes prependbeforehead

protectglyphs protectglyphsnone protrusionskippable rangedimensions removefromlist

repack reverse setattributelist setattributes setboth setbox setlink setnext setprev

setspeciallist setsplit setsubtype showlist size slide softenhyphens startofpar

tonode tovaliddirect traversechar traversecontent traverseglyph traverseitalic

traverseleader traverselist unprotectglyphs unprotectglyphsnone unsetattributes

usesfont vbalance verticalbreak vpack

userdata helpers

instock inuse todirect

userdata helpers

no get: scale

no set: -

15.4.10 parameter

These nodes are used to (locally) set math parameters. The subtype reflects a math style.

516

fields

id integer prev node value integer

name integer style integer

next node subtype integer

direct helpers

appendaftertail beginofmath checkdiscretionaries collapsing copyonly count dimensions

endofmath exchange findattribute findattributerange findnode firstchar firstglyph

firstglyphnode firstitalicglyph flattendiscretionaries flattenleaders freeze

getattributelist getattributes getboth getbox getid getidsubtype getidsubtypenext

getmvllist getnext getnodes getprev getspeciallist getsubtype getwordrange hasglyph

hasidsubtype hpack hyphenating isboth ischar isdirect isglyph isloop isnext

isnextchar isnextglyph isprev isprevchar isprevglyph issimilarglyph isspeciallist

isvalid kerning lastnode length ligaturing mlisttohlist naturalhsize naturalwidth

newcontinuationatom newmathglyph newtextglyph patchattributes prependbeforehead

protectglyphs protectglyphsnone protrusionskippable rangedimensions removefromlist

repack reverse setattributelist setattributes setboth setbox setlink setnext setprev

setspeciallist setsplit setsubtype showlist size slide softenhyphens startofpar

tonode tovaliddirect traversechar traversecontent traverseglyph traverseitalic

traverseleader traverselist unprotectglyphs unprotectglyphsnone unsetattributes

usesfont vbalance verticalbreak vpack

userdata helpers

instock inuse todirect

userdata helpers

no get: -

no set: -

15.4.11 choice

Most of the fields of this node are lists. Depending on the subtype different field names are used.

fields

attr attribute post nodelist scriptscript nodelist

class integer pre nodelist subtype integer

display nodelist prev node text nodelist

id integer replace nodelist

next node script nodelist

subtypes

0 normal 1 discretionary

517

direct helpers

appendaftertail beginofmath checkdiscretionaries collapsing copyonly count dimensions

endofmath exchange findattribute findattributerange findnode firstchar firstglyph

firstglyphnode firstitalicglyph flattendiscretionaries flattenleaders freeze

getattributelist getattributes getboth getbox getchoice getdisc getid getidsubtype

getidsubtypenext getmvllist getnext getnodes getpost getpre getprev getreplace

getspeciallist getsubtype getwordrange hasglyph hasidsubtype hpack hyphenating isboth

ischar isdirect isglyph isloop isnext isnextchar isnextglyph isprev isprevchar

isprevglyph issimilarglyph isspeciallist isvalid kerning lastnode length ligaturing

mlisttohlist naturalhsize naturalwidth newcontinuationatom newmathglyph newtextglyph

patchattributes prependbeforehead protectglyphs protectglyphsnone protrusionskippable

rangedimensions removefromlist repack reverse setattributelist setattributes setboth

setbox setchoice setdisc setlink setnext setprev setspeciallist setsplit setsubtype

showlist size slide softenhyphens startofpar tonode tovaliddirect traversechar

traversecontent traverseglyph traverseitalic traverseleader traverselist

unprotectglyphs unprotectglyphsnone unsetattributes usesfont vbalance verticalbreak

vpack

userdata helpers

instock inuse todirect

userdata helpers

no get: class

no set: class pre post replace

15.4.12 radical

Radical nodes are the most complex as they deal with scripts as well as constructed large symbols.

Warning: never assign a node list to the nucleus, sub, sup, left, or degree field unless you are sure

its internal link structure is correct, otherwise an error can be triggered.

fields

attr attribute id integer size integer

bottom nodelist left nodelist subtype integer

degree nodelist next node top nodelist

depth dimension prev node

height dimension right nodelist

subtypes

0 normal 4 underdelimiter 8 delimited

1 radical 5 overdelimiter 9 hextensible

2 root 6 delimiterunder

3 rooted 7 delimiterover

For more fields see noad. At some point we might move fields from that list to here but only when the

engine also gets that split.

518

direct helpers

appendaftertail beginofmath checkdiscretionaries collapsing copyonly count dimensions

endofmath exchange findattribute findattributerange findnode firstchar firstglyph

firstglyphnode firstitalicglyph flattendiscretionaries flattenleaders freeze

getanchors getattributelist getattributes getboth getbottomdelimiter getbox getclass

getdegree getdelimiter getfam getid getidsubtype getidsubtypenext getleftdelimiter

getmvllist getnext getnodes getnucleus getoptions getprev getprime getrightdelimiter

getscripts getspeciallist getsub getsubpre getsubtype getsup getsuppre

gettopdelimiter getwordrange hasglyph hasidsubtype hpack hyphenating isboth ischar

isdirect isglyph isloop isnext isnextchar isnextglyph isprev isprevchar isprevglyph

issimilarglyph isspeciallist isvalid kerning lastnode length ligaturing mlisttohlist

naturalhsize naturalwidth newcontinuationatom newmathglyph newtextglyph

patchattributes prependbeforehead protectglyphs protectglyphsnone protrusionskippable

rangedimensions removefromlist repack reverse setanchors setattributelist

setattributes setboth setbottomdelimiter setbox setclass setdegree setdelimiter

setfam setleftdelimiter setlink setnext setnucleus setoptions setprev setprime

setrightdelimiter setscripts setspeciallist setsplit setsub setsubpre setsubtype

setsup setsuppre settopdelimiter showlist size slide softenhyphens startofpar tonode

tovaliddirect traversechar traversecontent traverseglyph traverseitalic

traverseleader traverselist unprotectglyphs unprotectglyphsnone unsetattributes

usesfont vbalance verticalbreak vpack

userdata helpers

instock inuse todirect

userdata helpers

no get: size height depth

no set: size height depth

15.4.13 fraction

Fraction nodes are also used for delimited cases, hence the left and right fields among.

fields

attr attribute middle nodelist rule dimension

denominator nodelist next node subtype integer

hfactor integer numerator nodelist vfactor integer

id integer prev node

left nodelist right nodelist

subtypes

0 over 2 above 4 stretched

1 atop 3 skewed

For more fields see noad. At some point we might move fields from that list to here but only when the

engine also gets that split.

519

direct helpers

appendaftertail beginofmath checkdiscretionaries collapsing copyonly count dimensions

endofmath exchange findattribute findattributerange findnode firstchar firstglyph

firstglyphnode firstitalicglyph flattendiscretionaries flattenleaders freeze

getanchors getattributelist getattributes getboth getbox getclass getdelimiter

getdenominator getfam getid getidsubtype getidsubtypenext getleftdelimiter getmvllist

getnext getnodes getnumerator getoptions getprev getrightdelimiter getspeciallist

getsubtype getwordrange hasglyph hasidsubtype hpack hyphenating isboth ischar

isdirect isglyph isloop isnext isnextchar isnextglyph isprev isprevchar isprevglyph

issimilarglyph isspeciallist isvalid kerning lastnode length ligaturing mlisttohlist

naturalhsize naturalwidth newcontinuationatom newmathglyph newtextglyph

patchattributes prependbeforehead protectglyphs protectglyphsnone protrusionskippable

rangedimensions removefromlist repack reverse setanchors setattributelist

setattributes setboth setbox setclass setdelimiter setdenominator setfam

setleftdelimiter setlink setnext setnumerator setoptions setprev setrightdelimiter

setspeciallist setsplit setsubtype showlist size slide softenhyphens startofpar

tonode tovaliddirect traversechar traversecontent traverseglyph traverseitalic

traverseleader traverselist unprotectglyphs unprotectglyphsnone unsetattributes

usesfont vbalance verticalbreak vpack

userdata helpers

instock inuse todirect

userdata helpers

no get: rule hfactor vfactor

no set: rule hfactor vfactor

15.4.14 fence

Fence nodes come in pairs but either one can be a dummy (this period driven empty fence). Some of

these fields are used by the renderer and might get adapted in the process.

fields

attr attribute id integer subtype integer

bottom integer nestingfactor integer top integer

bottomovershoot dimension next node topovershoot dimension

delimiter nodelist prev node variant integer

subtypes

0 unset 2 middle 4 operator

1 left 3 right 5 no

For more fields see noad. At some point we might move fields from that list to here but only when the

engine also gets that split.

520

direct helpers

appendaftertail beginofmath checkdiscretionaries collapsing copyonly count dimensions

endofmath exchange findattribute findattributerange findnode firstchar firstglyph

firstglyphnode firstitalicglyph flattendiscretionaries flattenleaders freeze

getanchors getattributelist getattributes getboth getbottom getbottomdelimiter getbox

getclass getdelimiter getdepth getfam getheight getid getidsubtype getidsubtypenext

getmvllist getnext getnodes getprev getspeciallist getsubtype gettop gettopdelimiter

gettotal getwordrange hasglyph hasidsubtype hpack hyphenating isboth ischar isdirect

isglyph isloop isnext isnextchar isnextglyph isprev isprevchar isprevglyph

issimilarglyph isspeciallist isvalid kerning lastnode length ligaturing mlisttohlist

naturalhsize naturalwidth newcontinuationatom newmathglyph newtextglyph

patchattributes prependbeforehead protectglyphs protectglyphsnone protrusionskippable

rangedimensions removefromlist repack reverse setanchors setattributelist

setattributes setboth setbottom setbottomdelimiter setbox setclass setdelimiter

setdepth setfam setheight setlink setnext setprev setspeciallist setsplit setsubtype

settop settopdelimiter showlist size slide softenhyphens startofpar tonode

tovaliddirect traversechar traversecontent traverseglyph traverseitalic

traverseleader traverselist unprotectglyphs unprotectglyphsnone unsetattributes

usesfont vbalance verticalbreak vpack

userdata helpers

instock inuse todirect

userdata helpers

no get: nestingfactor topovershoot bottomovershoot

no set: nestingfactor topovershoot bottomovershoot

15.5 Helpers

15.5.1 Introduction

The userdata node variant has accessors on that object but when we use the indexed variant we use

functions. As a consequence there are more helpers for direct nodes that for userdata nodes and

many of them accept more arguments or have multiple return values. When you use ConTEXt you will

notice that instead of the node.direct namespace we use nuts. Among the reasons is that we had

an intermediate variant in ConTEXt MkIV before we had these direct nodes. That variant was more

efficient than the userdata accessors and triggered the introduction of direct nodes after which we

dropped the intermediate variant. So, for ConTEXt users direct nodes are nuts.

15.5.2 Housekeeping

This function returns an array that maps node id numbers to node type strings, providing an overview

of the possible top-level id types.

function node.types ()

return <t:table> -- identifiers

end

521

This shows the names of the nodes and their internal numbers. Not all nodes are visible unless one

goes really deep down into lists. The next two convert a name to its internal numeric representation

and vise versa. The numbers don't relate to importance or some ordering; they just appear in the

order that is handy for the engine. Commands like this are rather optimized so performance should

be ok but you can of course always store the id in a Lua number.

function node.id (<t:string> name)

return <t:integer> -- identifier

end

function node.type (<t:integer> identifier)

return <t:string> -- name

end

This function returns an indexed table with valid field names for a particular type of node. Some fields

(like total) can be constructed from other fields.

function node.fields (<t:integer> identifier | <t:string> name)

return <t:table> -- fields

end

The hasfield function returns a boolean that is only true if n is actually a node, and it has the field.This

function probably is not that useful but some nodes don't have a subtype, attr or prev field and this

is a way to test for that.

function node.direct.hasfield (<t:direct> n | <t:string> name)

return <t:boolean> -- okay

end

The new function creates a new node. All its fields are initialized to either zero or nil except for id

and subtype. Instead of numbers you can also use strings (names). If you pass a second argument

the subtype will be set too.

function node.direct.new (

<t:number> id | <t:string> name

)

return <t:direct.> -- node

end

function node.direct.new (

<t:number> id | <t:string> name,

<t:number> | <t:string> subtype

)

return <t:direct.> -- node

end

As already has been mentioned, you are responsible for making sure that nodes created this way are

used only once, and are freed when you don't pass them back somehow.

The next one frees node n from TEX's memory. Be careful: no checks are done on whether this node

is still pointed to from a register or some next field: it is up to you to make sure that the internal data

structures remain correct. Fields that point to nodes or lists are flushed too. So, when you used their

content for something else you need to set them to nil first.

522

function node.direct.free (<t:direct> n)

return <t:direct> -- next

end

The free function returns the next field of the freed node, while the flushnode alternative returns

nothing.

function node.direct.flush (<t:direct> n)

-- no return values

end

A list starting with node n can be flushed from TEX's memory too. Be careful: no checks are done on

whether any of these nodes is still pointed to from a register or some next field: it is up to you to make

sure that the internal data structures remain correct.

function node.direct.flushlist (<t:direct> n)

-- no return values

end

When you free for instance a discretionary node, flushlist is applied to the pre, post, replace so

you don't need to do that yourself. Assigning them nil won't free those lists!

This creates a deep copy of node n, including all nested lists as in the case of a hlist or vlist node. Only

the next field is not copied.

function node.direct.copy (<t:direct> n)

return <t:direct> -- copy

end

A deep copy of the node list that starts at n can be created too. If m is also given, the copy stops just

before node m.

function node.direct.copylist (<t:direct> n)

return <t:direct> -- copy

end

function node.direct.copylist (<t:direct> n, <t:direct> m)

return <t:direct> -- copy

end

Note that you cannot copy attribute lists this way. However, there is normally no need to copy attribute

lists because when you do assignments to the attr field or make changes to specific attributes, the

needed copying and freeing takes place automatically. When you change a value of an attribute in a

list, it will affect all the nodes that share that list.

function node.direct.write (<t:direct> n)

-- no return values

end

This function will append a node list to TEX's ‘current list’. The node list is not deep-copied! There

is no error checking either! You might need to enforce horizontal mode in order for this to work as

expected.

523

15.5.3 Manipulating lists

Unless there is a bug or a callback messes up a node list is dual linked. In original TEX nodes had to

be small so nodes only had a next pointer. If you run into an issue you can use the next helper to sure

that the node list is double linked.

function node.direct.slide (<t:direct> n)

return <t:direct> -- tail

end

In most cases TEX itself only uses next pointers but your other callbacks might expect proper prev

pointers too. So, when you run into issues or are in doubt, apply the slide function before you return

the list. You can also get the tail without sliding:

function node.direct.tail (<t:direct> n)

return <t:direct> -- tail

end

For tracing purposes we have a few counters. The first one returns the number of nodes contained

in the node list that starts at n. If m is also supplied it stops at m instead of at the end of the list. The

node m is not counted.

function node.direct.length (

<t:direct> n

)

return <t:integer>

end

function node.direct.length (

<t:direct> n,

<t:direct> m

)

return <t:integer>

end

The second one the number of nodes contained in the node list that starts at n that have a matching

id field. If m is also supplied, counting stops at m instead of at the end of the list. The node m is not

counted. This function also accept string id's.

function node.direct.count (

<t:integer> id,

<t:direct> n

)

return <t:integer>

end

function node.direct.count (

<t:integer> id,

<t:direct> n,

<t:direct> m

)

return <t:integer>

524

end

This function removes the node current from the list following head. It is your responsibility to make

sure it is really part of that list. The return values are the new head and current nodes. The returned

current is the node following the current in the calling argument, and is only passed back as a

convenience (or nil, if there is no such node). The returned head is more important, because if the

function is called with current equal to head, it will be changed. When the third argument is passed,

the node is freed.

function node.direct.remove (<t:direct> head, <t:direct> current)

return

<t:direct> head,

<t:direct> current,

<t:direct> removed

end

function node.direct.remove (<t:direct> head, <t:direct> current, <t:boolean> free)

return

<t:direct> -- head,

<t:direct> -- current

end

This function inserts the node new before current into the list following head. It is your responsibility

to make sure that current is really part of that list. The return values are the (potentially mutated)

head and the node new, set up to be part of the list (with correct next field). If head is initially nil, it

will become new.

function node.direct.insertbefore (

<t:direct> head,

<t:direct> current,

<t:direct> new

)

return

<t:direct>, -- head

<t:direct> -- new

end

This function inserts the node new after current into the list following head. It is your responsibility

to make sure that current is really part of that list. The return values are the head and the node new,

set up to be part of the list (with correct next field). If head is initially nil, it will become new.

function node.direct.insertafter (

<t:direct> head,

<t:direct> current,

<t:direct> new

)

return

<t:direct>, -- head

<t:direct> -- new

end

You can also mess with the list by changing the next or prev fields, using:

525

function node.direct.setprev (<t:direct> n, <t:direct> prv) end

function node.direct.setnext (<t:direct> n, <t:direct> nxt) end

function node.direct.setboth (<t:direct> n, <t:direct> prv, <t:direct> nxt) end

The next function pops the last node from TEX's ‘current list’. It returns that node, or nil if the current

list is empty.

function node.direct.lastnode ()

return <t:direct> n

end

This helper returns the location of the first match at or after node n:

function node.direct.findnode (<t:direct> n, <t:integer> subtype)

return <t:direct> -- n

end

function node.direct.findnode (<t:direct> n)

return

<t:direct>, -- n

<t:integer> -- subtype

end

15.5.4 Traversing

The easiest do-it-yourself approach to run over a list of nodes is to use one of the following functions:

function node.direct.getnext (<t:direct> n)

return <t:direct> | <t:nil>

end

function node.direct.getprev (<t:direct> n)

return <t:direct> | <t:nil>

end

function node.direct.getboth (<t:direct> n)

return

<t:direct> | <t:nil>, -- prev

<t:direct> | <t:nil> -- next

end

Instead of using these you can use one of the iterators that loops over the node list that starts at n.

function node.direct.traverse (<t:direct> n)

return

<t:direct> t,

<t:integer> id,

<t:integer> subtype

end

Typically code looks like this:

for n in node.traverse(head) do

526

-- whatever

end

which is functionally equivalent to:

do

local n

local function f (head,var)

local t

if var == nil then

t = head

else

t = var.next

end

return t

end

while true do

n = f (head, n)

if n == nil then

break

end

-- whatever

end

end

It should be clear from the definition of the function f that even though it is possible to add or remove

nodes from the node list while traversing, you have to take great care to make sure all the next (and

prev) pointers remain valid.

If the above is unclear to you, see the section ‘For Statement’ in the Lua Reference Manual.

This is an iterator that loops over all the nodes in the list that starts at n that have a matching id field.

See the previous section for details. The change is in the local function f, which now does an extra

while loop checking against the upvalue id, kind of like:

local function f(head,var)

local t

if var == nil then

t = head

else

t = var.next

end

while not t.id == id do

t = t.next

end

return t

end

This and the previously discussed traverse are the only traverses provided for userdata nodes.

function node.direct.traverseid (<t:integer> id, <t:direct> n)

return

527

<t:direct> t,

<t:integer> subtype

end

The traversechar iterator loops over the glyph nodes in a list. Only nodes with a subtype less than

256 are seen.

NEEDS CHECKING: protected check

function node.direct.traversechar (<t:direct> n)

return

<t:direct>, -- n

<t:integer>, -- char

<t:integer> -- font

end

The traverseglyph iterator loops over a list and returns the list and filters all glyphs:

function node.direct.traverseglyph (<t:direct> n)

return

<t:direct>, -- n

<t:integer>, -- char

<t:integer> -- font

end

This iterator loops over the hlist and vlist nodes in a list. The four return values can save some

time compared to fetching these fields but in practice you seldom need them all.

function node.direct.traverselist (<t:direct> n)

return

<t:direct>, -- n

<t:integer>, -- identifier

<t:integer>, -- subtype

<t:direct> -- list

end

This iterator loops over nodes that have content: hlist, vlist, glue with leaders, glyph, disc and

rule nodes.

function node.direct.traversecontent (<t:direct> n)

return

<t:direct>, -- n

<t:integer>, -- identifier

<t:integer>, -- subtype

<t:direct> -- listorleader

end

The traversers also support backward traversal. An optional extra boolean triggers this. Yet another

optional boolean will automatically start at the end of the given list. So, if we want both we use:

function node.direct.traverse (

<t:direct> n,

528

<t:boolean> reverse,

<t:boolean> startatend

)

return

<t:direct> t,

<t:integer> id,

<t:integer> subtype

end

15.5.5 Glyphs

Glyphs have a lot of parameters and there are many setters and getters that can access them. Some

generic ones, like getwidth are discussed in other subsections, some are more specific to glyphs:

function node.direct.getslant (<t:direct> g) return <t:integer> end

function node.direct.getweight (<t:direct> g) return <t:integer> end

and

function node.direct.setslant (<t:direct> g, <t:integer> slant) end

function node.direct.setweight (<t:direct> g, <t:integer> weight) end

15.5.6 Glue

You can set the five properties of a glue in one go. If a non-numeric value is passed the property

becomes zero.

function node.direct.setglue (<t:direct> n)

-- no return values

end

function node.direct.setglue (

<t:direct> n,

<t:integer> width,

<t:integer> stretch,

<t:integer> shrink,

<t:integer> stretchorder,

<t:integer> shrinkorder

)

-- no return values

end

When you pass values, only arguments that are numbers are assigned so the next call will only adapt

the width and shrink.

node.direct.setglue(n,655360,false,65536)

When a list node is passed, you set the glue, order and sign instead. The next call will return five

values or nothing when no glue is passed.

function node.direct.getglue (<t:direct> n)

529

return

<t:integer>, -- width

<t:integer>, -- stretch

<t:integer>, -- shrink

<t:integer>, -- stretchorder

<t:integer> -- shrinkorder

When the second argument is false, only the width is returned (this is consistent with tex.get). When

a list node is passed, you get back the glue that is set, the order of that glue and the sign.

This function returns true when the width, stretch and shrink properties are all zero.

function node.direct.iszeroglue (<t:direct> n)

return <t:boolean> -- allzero

end

Glue is not only, well, glue. The to be filled space can also be occupied by a rule, boxes, glyphs and

what more. You can get the list that makes this with:

function node.direct.getleader (<t:direct> n)

return <t:direct> -- list

end

and set the list with

function node.direct.setleader (<t:direct> n, <t:direct> l | <t:nil>)

-- no return values

end

15.5.7 Attributes

Assignments to attributes registers result in assigning lists with set attributes to nodes and the im

plementation is non-trivial because the value that is attached to a node is essentially a (sorted) sparse

array of key-value pairs. It is generally easiest to deal with attribute lists and attributes by using the

dedicated functions in the node library.

An attribute comes in two variants, indicated by subtype. Because attributes are stored in a sorted

linked list, and because they are shared, the first node is a list reference node and the following ones

are value nodes. So, most attribute nodes are value nodes. These are forward linked lists. Because

there are assumptions to how these list are build you should rely on the helpers, also because details

might change.

This returns the currently active list of attributes, if there is one.

function node.direct.currentattr()

return <t:direct> -- list

end

The intended usage of currentattr is as follows (we use the userdata interface here):

local x1 = node.new("glyph")

x1.attr = node.currentattr()

530

local x2 = node.new("glyph")

x2.attr = node.currentattr()

or:

local x1 = node.new("glyph")

local x2 = node.new("glyph")

local ca = node.currentattr()

x1.attr = ca

x2.attr = ca

The attribute lists are reference counted and the assignment takes care of incrementing the count. You

cannot expect the value ca to be valid any more when you assign attributes (using tex.setattribute)

or when control has been passed back to TEX.

<number> v = node.hasattribute (<node> n, <number> id)

<number> v = node.hasattribute (<node> n, <number> id, <number> val)

Tests if a node has the attribute with number id set. If val is also supplied, also tests if the value

matches val. It returns the value, or, if no match is found, nil.

function node.direct.getattribute (<t:direct> n, <t:integer> id)

return <t:integer> -- value

end

The previous function tests if a node has an attribute with number id set. It returns the value, or, if

no match is found, nil. If no id is given then the zero attributes is assumed.

function node.direct.findattribute (<t:direct> n, <t:integer> id)

return

<t:integer>, -- value

<t:direct> -- node

end

Finds the first node that has attribute with number id set. It returns the value and the node if there

is a match and otherwise nothing.

function node.direct.setattribute (<t:direct> n, <t:integer> id, <t:integer> value)

-- no return values

end

Sets the attribute with number id to the value value. Duplicate assignments are ignored.

function node.direct.unsetattribute (<t:direct> n, <t:integer> id)

return <t:integer> -- value

end

function node.direct.unsetattribute (<t:direct> n, <t:integer> id, <t:integer> value

)

return <t:integer> -- value

end

Unsets the attribute with number id. If value is also supplied, it will only perform this operation if

the value matches value. Missing attributes or attribute-value pairs are ignored. If the attribute was

actually deleted, the function returns its old value, otherwise it returns nil.

531

15.5.8 Glyph handling

Processing a character stream into a visual representation using glyphs is one of the important

processes in the engine. In TEX82 this happens in two places. When the text is read ligaturing and

kerning takes place and the list can, if needed, be packed into a box because the dimensions are now

known. When that list is to become a paragraph it might be that lines get split and when a word can

be hyphenated the ligaturing and kerning is reverted, the word gets hyphenated, ligatures and kerns

get reapplied and the process goes on.

In OpenType processing characters is way more complex. Even if we delegate this to a library, the

fact that we have a mix of text and whatever, potential hyphenation as well as spaces turned glue,

means that we need to do some juggling with nodes. For that reason hyphenation (of the whole list),

ligaturing and kerning has been split into clearly separates stages. One can still apply the original

TEX variants but in practice it is Lua that does the juggling of nodes in more complex situations. And

we're not only talking of font processing. For instance, additional inter-character kerning can be done

in Lua too.

This all means that we have quite a repertoire of helpers that deal with glyph processing efficiently.

We can locate the first node in the list starting at n that is a glyph node with a subtype indicating it is a

glyph, or nil. If m is given, processing stops at (but including) that node, otherwise processing stops

at the end of the list. The char and glyph variants check for the protected field being (yet) unset or

(already) set.

function node.direct.firstglyphnode (<t:direct> n)

return <t:direct> -- n

end

function node.direct.firstglyphnode (<t:direct> n, <t:direct> m)

return <t:direct> -- n

end

The next functions can be used to determine if processing is needed. We distinguish between a char

acter (unprocessed) and a glyph (processed or unprocessed). When we check for a glyph there are

three possible outcomes:

function node.direct.isglyph (<t:direct> n)

return

<t:nil>,

<t:nil>

end

function node.direct.isglyph (<t:direct> n)

return

<t:false>,

<t:integer> -- identifier

end

function node.direct.isglyph (<t:direct> n)

return

<t:integer>, -- character

<t:integer> -- font

532

end

Checking for a processed character is more complicated. If the glyph has been processed and the

protected property has been set, we get this:

function node.direct.ischar (<t:direct> n)

return <t:false>

end

If that's not the case additional arguments are checked. If we don't pass a valid integer, the character

value is returned:

function node.direct.ischar (<t:direct> n, <t:integer> font)

return <t:integer> -- character

end

btu when we passed a font identifier indeed we check if that one matches the one in the glyph and if

not again we get:

function node.direct.ischar (<t:direct> n, <t:integer> font)

return <t:false> --

end

From there on we check for more arguments to match the glyph fields:

function node.direct.ischar (

<t:direct> n,

<t:integer> font,

<t:integer> data

)

return <t:false> | <t:integer> -- character

end

function node.direct.ischar (

<t:direct> n,

<t:integer> font,

<t:integer> data,

<t:integer> state

)

return <t:false> | <t:integer> -- character

end

function node.direct.ischar (

<t:direct> n,

<t:integer> font,

<t:integer> scale,

<t:integer> xscale,

<t:integer> yscale,

)

return <t:false> | <t:integer> -- character

533

end

function node.direct.ischar (

<t:direct> n,

<t:integer> font,

<t:integer> data,

<t:integer> scale,

<t:integer> xscale,

<t:integer> yscale,

)

return <t:false> | <t:integer> -- character

end

There are reasons for these combined tests and they can be found in the ConTEXt font handler. A

related helper is one that compares the font, data, scale, xscale, yscale, slant and weight.

function node.direct.issimilarglyph (<t:direct> one, <t:direct> two)

return <t:boolean> -- similar

end

This function returns the first glyph or disc node in the given list:

function node.direct.hasglyph (<t:direct> n)

return <t:direct> -- n

end

Traditional TEX ligature processing can be achieved with the next helper. This assumes that the liga

ture information is present in the font. In ConTEXt we call this base mode processing.

function node.direct.ligaturing (<t:direct> first)

return

<t:direct>, -- head

<t:direct>, -- tail

<t:boolean> -- success

end

function node.direct.ligaturing (<t:direct> first, <t:direct> last)

return

<t:direct>, -- head

<t:direct>, -- tail

<t:boolean> -- success

end

Traditional TEX font kern processing can be achieved with the next helper. This assumes that the kern

information is present in the font. In ConTEXt we call this base mode processing.

function node.direct.kerning (<t:direct> first)

return

<t:direct>, -- head

<t:direct>, -- tail

<t:boolean> -- success

534

end

function node.direct.kerning (<t:direct> first, <t:direct> last)

return

<t:direct>, -- head

<t:direct>, -- tail

<t:boolean> -- success

end

When processing is done, you can mark the glyph nodes as protected in order to prevent redundant

processing, for instance because boxed material gets unboxed. Where in LuaTEX the subtype gets

changed by adding or subtracting 256, in LuaMetaTEX we have a dedicated (small) protection field.

function node.direct.protectglyph (<t:direct> n)

-- no return values

end

function node.direct.protectglyphs (<t:direct> first, <t:direct> last)

-- no return values

end

The opposite action can also be done.

function node.direct.unprotectglyph (<t:direct> n)

-- no return values

end

function node.direct.unprotectglyphs (<t:direct> first, <t:direct> last)

-- no return values

end

The next function checks if protrusion is active at a line boundary, in which case the glyph node can

be skipped. It's not that useful in the end.

function node.direct.protrusionskipable (<t:direct> n)

return <t:boolean> -- skippable

end

Once we're done we can freeze leaders: apply the glue to the leader and freeze the boxes or whatever

is at hand.

function node.direct.flattenleaders (<t:direct> n)

return

<t:direct>, -- head

<t:integer> -- count

end

15.5.9 Discretionaries

Discretionaries and glyphs are the carriers of text. Where the core of glyph nodes are the font and

char fields, in disc nodes we have to focus on the pre, post and replace fields. These point to linked

lists that are a mix of glyph, kerns and (in LuaMetaTEX fixed width) glue. here are the accessors:23

23 These are a bit more generic because they also return fields from choice nodes and possibly hlist and vlist nodes.

535

function node.direct.getpost (<t:direct> d, <t:boolean> tailtoo)

return

<t:direct>, -- head

<t:direct> -- tail

end

function node.direct.getpre (<t:direct> d, <t:boolean> tailtoo)

return

<t:direct>, -- head

<t:direct> -- tail

end

function node.direct.getreplace (<t:direct> d, <t:boolean> tailtoo)

return

<t:direct>, -- head

<t:direct> -- tail

end

function node.direct.getdisc (<t:direct> d, <t:boolean> tailtoo)

return

<t:direct>, -- prehead

<t:direct>, -- posthead

<t:direct>, -- replacehead

<t:direct>, -- pretail

<t:direct>, -- posttail

<t:direct> -- replacetail

end

We also have setters:

function node.direct.setpost (<t:direct> d, <t:direct> | <t:nil>) end

function node.direct.setpre (<t:direct> d, <t:direct> | <t:nil>) end

function node.direct.setreplace (<t:direct> d, <t:direct> | <t:nil>) end

A major update can be done with this one:

function node.direct.setdisc (

<t:direct>, -- discretionary

<t:direct> | <t:nil>, -- pre

<t:direct> | <t:nil>, -- post

<t:direct> | <t:nil>, -- replace

<t:subtype> | <t:nil>, -- subtype

<t:subtype> | <t:nil> -- penalty

)

-- no return values

end

From this you can deduce that we can also say:

function node.direct.getpenalty (<t:direct> d)

return <t:integer> -- penalty

end

536

function node.direct.setpenalty (<t:direct> d, <t:integer> penalty)

-- no return value

end

The next pair targets glyphs and normally you will not use the setter, because the engine takes care

of setting that state.

function node.direct.getdiscpart (<t:direct> g)

return

<t:integer>, -- part

<t:integer>, -- after

<t:integer> -- code

end

function node.direct.setdiscpart (

<t:direct> g,

<t:integer> part

<t:integer> after

<t:integer> code

)

-- no return value

end

The part and after properties relate to discretionary nodes that might have been flattened. The com

plication in (tracing) here is that information is lost so we store the states in the glyph node.

discpartvalues

0x00 unset 0x03 replace

0x01 pre 0x04 always

0x02 post

The code properties relate to where the (usually hyphen) character comes from:

glyphdiscvalues

0x01 normal 0x04 mathematics

0x02 explicit 0x05 syllable

0x03 automatic

When you fool around with disc nodes you need to be aware of the fact that they have a special internal

data structure. As long as you reassign the fields when you have extended the lists it's ok because

then the tail pointers get updated, but when you add to list without reassigning you might end up in

trouble when the linebreak routine kicks in. You can call this function to check the list for issues with

disc nodes.

function node.direct.checkdiscretionary (<t:direct> n)

-- no return values

end

The plural variant runs over all disc nodes in a list, the singular variant checks one node only (it also

checks if the node is a disc node).

537

function node.direct.checkdiscretionaries (<t:direct> head)

-- no return values

end

This function will remove the discretionaries in the list and inject the replace field when set.

function node.direct.flattendiscretionaries (<t:direct> n)

return

<t:direct>, -- head

<t:integer> -- count

end

15.5.10 Packaging and dimensions

At some point a node list has to be packed in either a horizontal or vertical box. There are restrictions

to what can get packed, for instance you cannot have glyphs in a vertical list.

The hpack function creates a new hlist by packaging the list that begins at node n into a horizontal

box. With only a single argument, this box is created using the natural width of its components. In

the three argument form, info must be either additional or exactly, and w is the additional (\hbox

spread) or exact (\hbox to) width to be used. The second return value is the badness of the generated

box.

function node.direct.hpack (

<t:direct> list

)

return

<t:direct>, -- box

<t:integer> -- badness

end

function node.direct.hpack (

<t:direct> list,

<t:integer> width,

<t:string> info -- "additional" | "exactly"

)

return

<t:direct>, -- box

<t:integer> -- badness

end

function node.direct.hpack (

<t:direct> list,

<t:integer> width,

<t:string> info, -- "additional" | "exactly"

<t:integer> direction

)

return

<t:direct>, -- box

<t:integer> -- badness

end

538

The vpack function creates a new vlist by packaging the list that begins at node n into a vertical box.

With only a single argument, this box is created using the natural height of its components. In the

three argument form, info must be either additional or exactly, and w is the additional (\vbox

spread) or exact (\vbox to) height to be used.

function node.direct.vpack (

<t:direct> list

)

return

<t:direct>, -- box

<t:integer> -- badness

end

function node.direct.vpack (

<t:direct> list,

<t:integer> height,

<t:string> info -- "additional" | "exactly"

)

return

<t:direct>, -- box

<t:integer> -- badness

end

function node.direct.vpack (

<t:direct> list,

<t:integer> height,

<t:string> info, -- "additional" | "exactly"

<t:integer> direction

)

return

<t:direct>, -- box

<t:integer> -- badness

end

This function calculates the natural in-line dimensions of the node list starting at node first and

terminating just before node last (or the end of the list, if there is no second argument). The return

values are scaled points.

function node.direct.dimensions (

<t:direct> first,

<t:direct> last

)

return

<t:integer>, -- width

<t:integer>, -- height

<t:integer> -- depth

end

This alternative calling method takes glue settings into account and is especially useful for finding the

actual width of a sublist of nodes that are already boxed, for example in code like this, which prints

the width of the space in between the a and b as it would be if \box0 was used as-is:

539

\setbox0 = \hbox to 20pt {a b}

\directlua{print (node.dimensions(

tex.box[0].glueset,

tex.box[0].gluesign,

tex.box[0].glueorder,

tex.box[0].head.next,

node.tail(tex.box[0].head)

)) }

You need to keep in mind that this is one of the few places in TEX where floats are used, which means

that you can get small differences in rounding when you compare the width reported by hpack with

dimensions.

function node.direct.dimensions (

<t:number> glueset,

<t:integer> gluesign

<t:integer> glueorder,

<t:direct> first,

<t:direct> last

)

return

<t:integer>, -- width

<t:integer>, -- height

<t:integer> -- depth

end

This alternative saves a few lookups and can be more convenient in some cases:

function node.direct.rangedimensions (

<t:direct> parent,

<t:direct> first,

<t:direct> last

)

return

<t:integer>, -- width

<t:integer>, -- height

<t:integer> -- depth

end

If you only need the width, a simple and somewhat more efficient variant is this, where again last is

optional:

function node.direct.naturalwidth (

<t:direct> first,

<t:direct> last

)

return <t:integer> -- width

end

More low level are the following helpers. They accept various kind of nodes hlist, vlist, unset,

rule, glyph or glue (because these can have a leader).

540

function node.direct.getwhd (<t:direct> n)

return

<t:dimension>, -- width

<t:dimension>, -- height

<t:dimension> -- depth

end

In case of as glyph you can also get the expansion:

function node.direct.getwhd (<t:direct> n, <t:true> expansion)

return

<t:dimension>, -- width

<t:dimension>, -- height

<t:dimension>, -- depth

<t:integer> -- expansion

end

The getwidth accepts even more node types: hlist, vlist, unset, align, rule, glue, gluespec,

glyph, kern and math (surround).

function node.direct.getwidth (<t:direct> n)

return <t:dimension> -- width

end

And for glyphs:

function node.direct.getwidth (<t:direct> n, <t:true> expansion)

return

<t:dimension>,-- width

<t:dimension> -- expansion

end

The getter for height operates on hlist, vlist, unset, rule, insert and fence.

function node.direct.getheight (<t:direct> n)

return <t:dimension> -- height

end

For the depth we have a different repertoire: hlist, vlist, unset, rule, insert, glyph and fence.

function node.direct.getdepth (<t:direct> n)

return <t:dimension> -- depth

end

For hlist, vlist, unset, rule, insert_node:, glyph and fence we can get the total of height and

depth:

function node.direct.gettotal (<t:direct> n)

return <t:dimension> -- height + depth

end

Only hlist and vlist have a (vertical or horizontal) shift:

function node.direct.getshift (<t:direct> n)

541

return <t:dimension> -- shift

end

This one is only valid for glyph and kern nodes:

function node.direct.getexpansion (<t:direct> n)

return <t:dimension> -- expansion

end

Before we move on we mention the setters:

function node.direct.setwidth (<t:direct> n, <t:dimension> width) end

function node.direct.setheight (<t:direct> n, <t:dimension> height) end

function node.direct.setdepth (<t:direct> n, <t:dimension> depth) end

function node.direct.setshift (<t:direct> n, <t:dimension> shift) end

function node.direct.setexpansion (<t:direct> n, <t:integer> expansion) end

The combined one ignores values that are no number, so passing (e.g.) nil or (nicer) false will retain

the value.

function nodedirect.setwhd (

<t:direct> node,

<t:dimension> width,

<t:dimension> height,

<t:dimension> depth,

-- no return values

end

These hlist and vlist nodes (but others as well have) a field called list:

function node.direct.getlist (<t:direct> b)

return <t:direct> -- list

end

function node.direct.setlist (<t:direct> b, <t:direct> list)

-- nothing to return

end

When a list is packages, glue is resolved and the list node gets its glue properties set so that the

backend can apply the stretch and shrink to the glue amount. There might be situations where you

want to do this explicitly, which is why we provide:

function node.direct.freeze (<t:direct> b)

-- nothing to return

end

In LuaMetaTEX we can handle nested marks, inserts and adjusts, and pre and post material can get

bound to a box. We can use these to access them:

function node.direct.getpost (<t:direct> b, <t:boolean> tailtoo)

return

<t:direct>, -- head

<t:direct> -- tail

542

end

function node.direct.getpre (<t:direct> b, <t:boolean> tailtoo)

return

<t:direct>, -- head

<t:direct> -- tail

end

and these to set them, although they are unlikely candidates for that.

function node.direct.setpost (<t:direct> b, <t:direct> | <t:nil>) end

function node.direct.setpre (<t:direct> b, <t:direct> | <t:nil>) end

15.5.11 Math

We start with the function that runs the internal ‘mlist to hlist’ conversion that turns a the yet un

processed math list into a horizontal list. The interface is the same as for the callback callback mlist

tohlist.

function node.direct.mlisttohlist (

<t:direct> list,

<t:string> displaytype,

<t:boolean> penalties

)

<t:direct> -- result

end

When you have a horizontal list with math you can locate the relevant portion with:

function node.direct.beginofmath (<t:direct> n) return <t:direct> end

function node.direct.endofmath (<t:direct> n) return <t:direct> end

You can for instance use these helpers to skip over math in case you're processing text.

The math noads have a nucleus and scripts. In LuaMetaTEX we have the usual super- and subscript

but also prescripts and a primescript, so five scripts in total so naturally we have getters for these:

function node.direct.getnucleus (<t:direct> n) return <t:direct> | <t:nil> end

function node.direct.getprime (<t:direct> n) return <t:direct> | <t:nil> end

function node.direct.getsup (<t:direct> n) return <t:direct> | <t:nil> end

function node.direct.getsub (<t:direct> n) return <t:direct> | <t:nil> end

function node.direct.getsuppre (<t:direct> n) return <t:direct> | <t:nil> end

function node.direct.getsubpre (<t:direct> n) return <t:direct> | <t:nil> end

plus:

function node.direct.getscripts (<t:direct> n)

return

<t:direct>, -- primescript

<t:direct>, -- superscript

<t:direct>, -- subscript

<t:direct>, -- superprescript

543

<t:direct> -- subprescript

end

These are complemented by setters. When the second argument is not passes (or nil) the field is reset.

function node.direct.setnucleus (<t:direct> n, <t:direct> nucleus) end

function node.direct.setprime (<t:direct> n, <t:direct> primescript) end

function node.direct.setsup (<t:direct> n, <t:direct> superscript) end

function node.direct.setsub (<t:direct> n, <t:direct> subscript) end

function node.direct.setsuppre (<t:direct> n, <t:direct> superprescript) end

function node.direct.setsubpre (<t:direct> n, <t:direct> subprescript) end

And of course:

function node.direct.getscripts (

<t:direct> primescript,

<t:direct> superscript,

<t:direct> subscript,

<t:direct> superprescript,

<t:direct> subprescript

)

-- no return values

end

In the discretionaries subsection we mention accessing pre, post and replace fields. These functions

can also be used for choice nodes. Discussing this is currently beyond this manual.

15.5.12 MVL

Some properties of the currently used main vertical list can be fetched with:

function node.direct.getmvllist (

-- currently no parameters

)

return

<t:direct>, -- head

<t:direct>, -- tail

<t:integer> -- mvl

end

15.5.13 Balancing

The node.direct.vbalance function will either disappear or get accompanied by related helpers (mir

roring primitives); it depends on what ConTEXt needs.

Updating marks is done with the following set of helpers, that just call the code that does the same

before handing over content to the output routine:

function nodes.direct.updatetopmarks ()

return <t:boolean> -- done

end

544

function nodes.direct.updatefirstmarks ()

return <t:boolean> -- done

end

function nodes.direct.updatefirstandbotmark (<t:direct> box)

-- no return value

end

function nodes.direct.updatemarks (<t:direct> box)

return <t:boolean> -- done

end

15.5.14 SyncTEX

You can set and query the SyncTEX fields, a file number aka tag and a line number, for a glue, kern,

hlist, vlist, rule and math nodes as well as glyph nodes (although this last one is not used in native

SyncTEX).

function node.direct.setsynctexfields (<t:integer> fileid, <t:integer> line)

-- no return values

end

function node.direct.getsynctexfields (<t:direct> n)

return

<t:integer>, -- fileid

<t:integer> -- line

end

Of course you need to know what you're doing as no checking on sane values takes place. Also, the

SyncTEX interpreter used in editors is rather peculiar and has some assumptions (heuristics) and there

are different incompatible versions floating around. Even more important to notice is that the engine

doesn't do anything with this so support is upto Lua.

15.5.15 Two access models

Deep down in TEX a node has a number which is a numeric entry in a memory table. In fact, this

model, where TEX manages memory is real fast and one of the reasons why plugging in callbacks that

operate on nodes is quite fast too. Each node gets a number that is in fact an index in the memory

table and that number often is reported when you print node related information. You go from user

data nodes and there numeric references and back with:

function node.todirect (<t:node> n) return <t:direct> end

function node.tonode (<t:direct> d) return <t:node> end

The user data model is rather robust as it is a virtual interface with some additional checking while the

more direct access which uses the node numbers directly. However, even with user data you can get

into troubles when you free nodes that are no longer allocated or mess up lists. If you apply tostring

to a node you see its internal (direct) number and id.

The userdata model provides key based access while the direct model always accesses fields via func

tions:

545

local c = nodeobject.char

local c = getfield(nodenumber,"char")

If you use the direct model, even if you know that you deal with numbers, you should not depend on

that property but treat it as an abstraction just like traditional nodes. In fact, the fact that we use a

simple basic datatype has the penalty that less checking can be done, but less checking is also the

reason why it's somewhat faster. An important aspect is that one cannot mix both methods, but you

can cast both models. So, multiplying a node number makes no sense.

So our advice is: use the indexed (table) approach when possible and investigate the direct one when

speed might be a real issue. For that reason LuaTEX also provide the get* and set* functions in the

top level node namespace. There is a limited set of getters. When implementing this direct approach

the regular index by key variant was also optimized, so direct access only makes sense when nodes

are accessed millions of times (which happens in some font processing for instance).

We're talking mostly of getters because setters are less important. Documents have not that many

content related nodes and setting many thousands of properties is hardly a burden contrary to millions

of consultations.

Normally you will access nodes like this:

local next = current.next

if next then

-- do something

end

Here next is not a real field, but a virtual one. Accessing it results in a metatable method being called.

In practice it boils down to looking up the node type and based on the node type checking for the field

name. In a worst case you have a node type that sits at the end of the lookup list and a field that is last

in the lookup chain. However, in successive versions of LuaTEX these lookups have been optimized

and the most frequently accessed nodes and fields have a higher priority.

In the direct namespace there are more helpers and most of them are accompanied by setters. The

getters and setters are clever enough to see what node is meant. We don't deal with whatsit nodes:

their fields are always accessed by name. It doesn't make sense to add getters for all fields, we just

identifier the most likely candidates. In complex documents, many node and fields types never get

seen, or seen only a few times, but for instance glyphs are candidates for such optimization.

In previous sections we only show the functions in the node.direct namespace. The following func

tions are available in both node and node.direct:

checkdiscretionaries flattendiscretionaries gluetostring

checkdiscretionary flushlist hasattribute

copy flushnode hasfield

copylist free hasglyph

count getattribute hpack

currentattributes getcachestate hyphenating

dimensions getfield id

effectiveglue getfielderror insertafter

endofmath getglue insertbefore

fields getpropertiestable isnode

findattribute getproperty iszeroglue

546

kerning setattribute traverse

lastnode setfield traverseid

length setfielderror type

ligaturing setglue types

makeextensible setproperty unprotectglyph

mlisttohlist show unprotectglyphs

new size unsetattribute

protectglyph slide usedlist

protectglyphs subtypes usesfont

protrusionskippable tail vpack

rangedimensions todirect write

remove tonode

serialized tostring

In ConTEXt these are duplicated in nodes.nuts so that is the reference. Quite some functions gets

mapped onto the nodes namespace. In addition we emulate some userdata functions and add some of

our own. We show them here because this manual takes ConTEXt as reference.

node.direct node nodes free ⋆
freeze

addmargins getanchors

addxoffset getattribute ⋆ ⋆
addxymargins getattributelist

addyoffset getattributes

appendaftertail getboth ⋆
beginofmath getbottom

checkdiscretionaries ⋆ getbottomdelimiter

checkdiscretionary ⋆ getbox ⋆
collapsing getcachestate ⋆
copy ⋆ ⋆ getchar ⋆
copylist ⋆ ⋆ getchardict

copyonly getcharspec

count ⋆ getchoice

currentattributes ⋆ ⋆ getclass

dimensions ⋆ getcontrol

effectiveglue ⋆ getcornerkerns

endofmath ⋆ getdata

exchange getdegree

fields ⋆ ⋆ getdelimiter

findattribute ⋆ getdenominator

findattributerange getdepth

findnode getdirection

firstchar getdisc

firstglyph getdiscpart

firstglyphnode getexcept

firstitalicglyph getexpansion

flattendiscretionaries ⋆ getfam

flattenleaders getfield ⋆ ⋆
flushlist ⋆ ⋆ getfielderror ⋆
flushnode ⋆ ⋆ getfont ⋆

547

getgeometry getsuppre

getglue ⋆ gettop

getglyphdata gettopdelimiter

getglyphdimensions gettotal

getheight getusage

getid ⋆ getusedattributes

getidsubtype getweight

getidsubtypenext getwhd

getindex getwidth

getinputfields getwordrange

getkern getxscale

getkerndimension getxyscales

getlanguage getyscale

getleader ⋆ gluetostring ⋆
getleftdelimiter hasattribute ⋆ ⋆
getlist ⋆ hasdimensions

getlistdimensions hasdiscoption

getmvllist hasfield ⋆ ⋆
getnext ⋆ hasgeometry

getnodes hasglyph ⋆
getnormalizedline hasglyphoption

getnucleus hasidsubtype

getnumerator hasusage

getoffsets hpack ⋆ ⋆
getoptions hyphenating ⋆
getorientation id ⋆
getparstate ignoremathskip

getpenalty insertafter ⋆ ⋆
getpost insertbefore ⋆ ⋆
getpre isboth

getprev ⋆ ischar

getprime isdirect ⋆
getpropertiestable ⋆ isglyph

getproperty ⋆ ⋆ isitalicglyph

getreplace isloop

getrightdelimiter isnext

getruledimensions isnextchar

getscale isnextglyph

getscales isnode ⋆ ⋆
getscript isprev

getscripts isprevchar

getshift isprevglyph

getslant issimilarglyph

getspeciallist isspeciallist

getstate isvalid

getsub iszeroglue ⋆
getsubpre kerning ⋆
getsubtype ⋆ lastnode ⋆
getsup length ⋆

548

ligaturing ⋆ setfielderror ⋆
makeextensible ⋆ setfont ⋆
migrate setgeometry

mlisttohlist ⋆ setglue ⋆
naturalhsize setglyphdata

naturalwidth setheight

new ⋆ ⋆ setindex

newcontinuationatom setinputfields

newmathglyph setkern

newtextglyph setlanguage

patchattributes setleader ⋆
patchparshape setleftdelimiter

prependbeforehead setlink ⋆
protectglyph ⋆ setlist ⋆
protectglyphs ⋆ setnext ⋆
protectglyphsbase setnucleus

protectglyphsnone setnumerator

protrusionskippable ⋆ setoffsets

rangedimensions ⋆ setoptions

remove ⋆ ⋆ setorientation

removefromlist setpenalty

repack setpost

reverse setpre

serialized ⋆ ⋆ setprev ⋆
setanchors setprime

setattribute ⋆ ⋆ setproperty ⋆ ⋆
setattributelist setreplace

setattributes setrightdelimiter

setboth ⋆ setruledimensions

setbottom setscale

setbottomdelimiter setscales

setbox ⋆ setscript

setchar ⋆ setscripts

setchardict setshift

setchoice setslant

setclass setspeciallist

setcontrol setsplit

setdata setstate

setdegree setsub

setdelimiter setsubpre

setdenominator setsubtype

setdepth setsup

setdirection setsuppre

setdisc settop

setdiscpart settopdelimiter

setexcept settotal

setexpansion setweight

setfam setwhd

setfield ⋆ ⋆ setwidth

549

show ⋆ type ⋆
size ⋆ types ⋆
slide ⋆ unprotectglyph ⋆
softenhyphens unprotectglyphs ⋆
startofpar ⋆ unsetattribute ⋆ ⋆
subtypes ⋆ ⋆ unsetattributes

tail ⋆ ⋆ updatefirstandbotmark

todirect ⋆ updatefirstmarks

tonode ⋆ ⋆ updatemarks

tostring ⋆ ⋆ updatetopmarks

tovaliddirect usedlist ⋆ ⋆
traverse ⋆ ⋆ usesfont ⋆
traversechar vbalance

traversecontent verticalbreak

traverseglyph vpack ⋆ ⋆
traverseid ⋆ ⋆ write ⋆ ⋆
traverseitalic xscaled

traverseleader yscaled

traverselist

The following functions are in the ConTEXt nodes namespace but don't come from the library. Again,

we show them here because ConTEXt is the reference.

nodes nodes.nuts node locate ⋆
maxboxwidth

aligned nopts

append ⋆ packlist

apply ⋆ points

applyvisuals ⋆ prepend ⋆
astable print

basepoints pts

concat ⋆ rehpack ⋆
copy_node repackhlist ⋆
countall ⋆ replace ⋆
delete ⋆ report

firstdirinbox rightmarginwidth

flush ⋆ serialize

fullhpack ⋆ serializebox

getattr ⋆ setattr ⋆
idsandsubtypes setattrlist ⋆
idstostring setboxtonaturalwd

insertlistafter ⋆ showboxes

installattributehandler showlist

is_display_math ⋆ showsimplelist

isnut ⋆ somepenalty ⋆
leftmarginwidth somespace ⋆
link ⋆ splitbox ⋆
linked ⋆ stripdiscretionaries

list takeattr ⋆
listtoutf takebox ⋆

550

tobasepoints topoints

tocentimeters toscaledpoints

tociceros tosequence ⋆
todidots totable

todimen totree

toinches toutf

tomillimeters upcomingproperties

tonodes ⋆ vianodes ⋆
tonut ⋆ vianuts ⋆
topicas visualizebox

We have quite some helpers and some accept different node types. Here is the repertoire:

15.5.16 Properties

Attributes are a convenient way to relate extra information to a node. You can assign them at the TEX

end as well as at the Lua end and consult them at the Lua end. One big advantage is that they obey

grouping. They are linked lists and normally checking for them is pretty efficient, even if you use a

lot of them. A macro package has to provide some way to manage these attributes at the TEX end

because otherwise clashes in their usage can occur.

Each node also can have a properties table and you can assign values to this table using the

setproperty function and get properties using the getproperty function. Managing properties is

way more demanding than managing attributes.

Take the following example:

\directlua {

local n = node.new("glyph")

node.setproperty(n,"foo")

print(node.getproperty(n))

node.setproperty(n,"bar")

print(node.getproperty(n))

node.free(n)

}

This will print foo and bar which in itself is not that useful when multiple mechanisms want to use

this feature. A variant is:

\directlua {

local n = node.new("glyph")

node.setproperty(n,{ one = "foo", two = "bar" })

print(node.getproperty(n).one)

print(node.getproperty(n).two)

node.free(n)

}

551

This time we store two properties with the node. It really makes sense to have a table as property

because that way we can store more. But in order for that to work well you need to do it this way:

\directlua {

local n = node.new("glyph")

local t = node.getproperty(n)

if not t then

t = { }

node.setproperty(n,t)

end

t.one = "foo"

t.two = "bar"

print(node.getproperty(n).one)

print(node.getproperty(n).two)

node.free(n)

}

Here our own properties will not overwrite other users properties unless of course they use the same

keys. So, eventually you will end up with something:

\directlua {

local n = node.new("glyph")

local t = node.getproperty(n)

if not t then

t = { }

node.setproperty(n,t)

end

t.myself = { one = "foo", two = "bar" }

print(node.getproperty(n).myself.one)

print(node.getproperty(n).myself.two)

node.free(n)

}

This assumes that only you use myself as subtable. The possibilities are endless but care is needed.

For instance, the generic font handler that ships with ConTEXt uses the injections subtable and you

should not mess with that one!

There are a few helper functions that you normally should not touch as user: getpropertiestable

and will give the table that stores properties (using direct entries) and you can best not mess too

much with that one either because LuaMetaTEX itself will make sure that entries related to nodes will

get wiped when nodes get freed, so that the Lua garbage collector can do its job. In fact, the main

reason why we have this mechanism is that it saves the user (or macro package) some work. One can

easily write a property mechanism in Lua where after a shipout properties gets cleaned up but it's not

entirely trivial to make sure that with each freed node also its properties get freed, due to the fact

552

that there can be nodes left over for a next page. And having a callback bound to the node deallocator

would add way to much overhead.

When we copy a node list that has a table as property, there are several possibilities: we do the same

as a new node, we copy the entry to the table in properties (a reference), we do a deep copy of a

table in the properties, we create a new table and give it the original one as a metatable. After some

experiments (that also included timing) with these scenarios we decided that a deep copy made no

sense, nor did nilling. In the end both the shallow copy and the metatable variant were both ok,

although the second one is slower. The most important aspect to keep in mind is that references to

other nodes in properties no longer can be valid for that copy. We could use two tables (one unique

and one shared) or metatables but that only complicates matters.

When defining a new node, we could already allocate a table but it is rather easy to do that at the

lua end e.g. using a metatable __index method. That way it is under macro package control. When

deleting a node, we could keep the slot (e.g. setting it to false) but it could make memory consumption

raise unneeded when we have temporary large node lists and after that only small lists. Both are not

done because in the end this is what happens now: when a node is copied, and it has a table as

property, the new node will share that table. The copy gets its own table with the original table as

metatable.

A few more experiments were done. For instance: copy attributes to the properties so that we have

fast access at the Lua end. In the end the overhead is not compensated by speed and convenience, in

fact, attributes are not that slow when it comes to accessing them. So this was rejected.

Another experiment concerned a bitset in the node but again the gain compared to attributes could

be neglected and given the small amount of available bits it also demands a pretty strong agreement

over what bit represents what, and this is unlikely to succeed in the TEX community. It doesn't pay off.

Just in case one wonders why properties make sense: it is not so much speed that we gain, but more

convenience: storing all kinds of (temporary) data in attributes is no fun and this mechanism makes

sure that properties are cleaned up when a node is freed. Also, the advantage of a more or less global

properties table is that we stay at the Lua end. An alternative is to store a reference in the node itself

but that is complicated by the fact that the register has some limitations (no numeric keys) and we

also don't want to mess with it too much.

553

554

555

16 Tokens

16.1 Introduction

If a TEX programmer talks tokens (and nodes) the average user can safely ignore it. Often it is enough

to now that your input is tokenized which means that one or more characters in the input got converted

into some efficient internal representation that then travels through the system and triggers actions.

When you see an error message with TEX code, the reverse happened: tokens were converted back

into commands that resemble the (often expanded) input.

There are not that many examples here because the functions discusses here are often not used di

rectly but instead integrated in a bit more convenient interfaces. However, in due time more examples

might show up here.

16.2 Lua token representation

A token is an 32 bit integer that encodes a command and a value, index, reference or whatever goes

with a command. The input is converted into a token and the body of macros are stored as linked list

of tokens. In the later case we combine a token and a next pointer in what is called a memory word.

If we see tokens in Lua we don't get the integer but a userdata object that comes with accessors.

Unless you're into very low level programming the likelihood of encountering tokens is low. But related

to tokens is scanning so that is what we cover here in more detail.

16.3 Helpers

16.3.1 Basics

References to macros are stored in a table along with some extra properties but in the end they travel

around as tokens. The same is true for characters, they are also encoded in a token. We have three

ways to create a token:

function token.create (<t:integer> value)

return <t:token> -- userdata

end

function token.create (<t:integer> value, <t:integer> command)

return <t:token> -- userdata

end

function token.create (<t:string> csname)

return <t:token> -- userdata

end

An example of the first variant is token.create(65). When we print (inspect) this in ConTEXt we get:

<lua token : 476151 == letter 65>={

["category"]="letter",

556

["character"]="A",

["id"]=476151,

}

If we say token.create(65,12) instead we get:

<lua token : 476151 == other_char 65>={

["category"]="other",

["character"]="A",

["id"]=476151,

}

An example of the third call is token.create("relax"). This time get:

<lua token : 580111 == relax : relax 0>={

["active"]=false,

["cmdname"]="relax",

["command"]=16,

["csname"]="relax",

["expandable"]=false,

["frozen"]=false,

["id"]=580111,

["immutable"]=false,

["index"]=0,

["instance"]=false,

["mutable"]=false,

["noaligned"]=false,

["permanent"]=false,

["primitive"]=true,

["protected"]=false,

["tolerant"]=false,

}

Another example is token.create("dimen"):

<lua token : 467905 == dimen : register 3>={

["active"]=false,

["cmdname"]="register",

["command"]=121,

["csname"]="dimen",

["expandable"]=false,

["frozen"]=false,

["id"]=467905,

["immutable"]=false,

["index"]=3,

["instance"]=false,

["mutable"]=false,

["noaligned"]=false,

["permanent"]=false,

["primitive"]=true,

["protected"]=false,

557

["tolerant"]=false,

}

The most important properties are command and index because the combination determines what it

does. The macros (here primitives) have a lot of extra properties. These are discusses in the low level

manuals.

You can check if something is a token with the next function; when a token is passed the return value

is the string literal token.

function token.type (<t:whatever>)

return <t:string> "token" | <t:nil>

end

A maybe more natural test is:

function token.istoken (<t:whatever>)

return <t:boolean> -- success

end

Internally we can see variables like cmd, chr, tok and such, where the later is a combination of the first

two. The create variant that take two integers relate to this. Of course you need to know what the

magic numbers are. Passing weird numbers can give side effects so don't expect too much help with

that. You need to know what you're doing. The best way to explore the way these internals work is

to just look at how primitives or macros or \chardef'd commands are tokenized. Just create a known

one and inspect its fields. A variant that ignores the current catcode table is:

\protected\def\MyMacro#1{\dimen 0 = \numexpr #1 + 10 \relax}

A macro like this is actually a little program:

467922 19 49 match argument 1

580083 20 0 end match

467931 121 3 register dimen

580013 12 48 other char 0 (U+00030)

582314 10 32 spacer

582312 12 61 other char = (U+0003D)

580193 10 32 spacer

582783 81 75 some item numexpr

582310 21 1 parameter reference

190952 10 32 spacer

582785 12 43 other char + (U+0002B)

476151 10 32 spacer

580190 12 49 other char 1 (U+00031)

582265 12 48 other char 0 (U+00030)

467939 10 32 spacer

580045 16 0 relax relax

The first column shows indices in token memory where we have a token combined with a next pointer.

So, in slot 467931 we have both a token and a pointer to slot 580013.

There is another way to create a token.

558

function token.new (<t:string> command, <t:integer> value)

return <t:token>

end

function token.new (<t:integer> value, <t:integer> command)

return <t:token>

end

Watch the order of arguments. We not have four ways to create a token

<lua token : 580087 == letter 65>={

["category"]="letter",

["character"]="A",

["id"]=580087,

}

namely:

token.new("letter",65)

token.new(65,11)

token.create(65,11)

token.create(65)

You can test if a control sequence is defined with:

function token.isdefined (<t:string> t)

return <t:boolean> -- success

end

The engine was never meant to be this open which means that in various places the assumption is that

tokens are valid. However, it is possible to create tokens that make little sense in some context and

can even make the system crash. When possible we catch this but checking everywhere would bloat

the code and harm performance. Compare this to changing a few bytes in a binary that at some point

create can havoc.

16.3.2 Getters

The userdata objects have a virtual interface that permits access by fieldname. Instead you can use

one of the getters.

function token.getcommand (<t:token> t) return <t:integer> end

function token.getindex (<t:token> t) return <t:integer> end

function token.getcmdname (<t:token> t) return <t:string> end

function token.getcsname (<t:token> t) return <t:string> end

function token.getid (<t:token> t) return <t:integer> end

function token.getactive (<t:token> t) return <t:boolean> end

If you want to know what the possible values are, you can use:

function token.getrange (

<t:token> | <t:integer>

)

559

return

<t:integer>, -- first

<t:integer> -- last

end

We can also ask for the macro properties but instead you can just fetch the bit set that describes them.

function token.getexpandable (<t:token> t) return <t:boolean> end

function token.getprotected (<t:token> t) return <t:boolean> end

function token.getfrozen (<t:token> t) return <t:boolean> end

function token.gettolerant (<t:token> t) return <t:boolean> end

function token.getnoaligned (<t:token> t) return <t:boolean> end

function token.getprimitive (<t:token> t) return <t:boolean> end

function token.getpermanent (<t:token> t) return <t:boolean> end

function token.getimmutable (<t:token> t) return <t:boolean> end

function token.getinstance (<t:token> t) return <t:boolean> end

function token.getconstant (<t:token> t) return <t:boolean> end

The bit set can be fetched with:

function token.getflags (<t:token> t)

return <t:integer> -- bit set

end

The possible flags are:

0x000001 frozen 0x000080 untraced 0x004000 conditional

0x000002 permanent 0x000100 global 0x008000 value

0x000004 immutable 0x000200 tolerant 0x010000 semiprotected

0x000008 primitive 0x000400 protected 0x020000 inherited

0x000010 mutable 0x000800 overloaded 0x040000 constant

0x000020 noaligned 0x001000 aliased 0x080000 deferred

0x000040 instance 0x002000 immediate

The number of parameters of a macro can be queried with:

function token.getparameters (<t:token> t)

return <t:integer>

end

The three properties that are used to identify a token can be fetched with:

function token.getcmdchrcs (<t:token> t)

return

<t:integer>, -- command (cmd)

<t:integer>, -- value (chr)

<t:integer> -- index (cs)

end

A simpler call is:

function token.getcstoken (<t:string> csname)

return <t:integer> -- token number

560

end

A table with relevant properties of a token (or control sequence) can be fetched with:

function token.getfields (<t:token> token)

return <t:table> -- fields

end

function token.getfields (<t:string> csname)

return <t:table> -- fields

end

16.3.3 Setters

The setmacro function can be called with a different amount of arguments, where the prefix list comes

last. Examples of prefixes are global and protected.

function token.setmacro (

<t:string> csname

)

function token.setmacro (

<t:integer> catcodetable,

<t:string> csname

)

-- no return values

end

function token.setmacro (

<t:string> csname,

<t:string> content

)

-- no return values

end

function token.setmacro (

<t:integer> catcodetable,

<t:string> csname,

<t:string> content

)

-- no return values

end

function token.setmacro (

<t:string> csname,

<t:string> content,

<t:string> prefix

-- there can be more prefixes

)

-- no return values

end

561

function token.setmacro (

<t:integer> catcodetable,

<t:string> csname,

<t:string> content,

<t:string> prefix

-- there can be more prefixes

)

-- no return values

end

A macro can also be queried:

function token.getmacro (

<t:string> csname,

<t:boolean> preamble,

<t:boolean> onlypreamble

)

return <t:string>

end

The various arguments determine what you get:

\def\foo#1{foo: #1}

\ctxlua{context.type(token.getmacro("foo"))}

\ctxlua{context.type(token.getmacro("foo",true))}

\ctxlua{context.type(token.getmacro("foo",false,true))}

We get:

foo: #1

#1->foo:

#1

The meaning can be fetched as string or table:

function token.getmeaning (

<t:string> csname,

)

return <t:string>

end

function token.getmeaning (

<t:string> csname,

<t:true> astable,

<t:boolean> subtables,

<t:boolean> originalindices -- special usage

)

return <t:table>

end

The name says it:

562

function token.undefinemacro (<t:string> csname)

-- no return values

end

Expanding a macro happens in a ‘local control’ context which makes it immediate, that is, while run

ning Lua code.

function token.expandmacro (<t:string> csname)

-- no return values

end

This means that:

\def\foo{\scratchdimen100pt \edef\oof{\the\scratchdimen}}

% used in:

\startluacode

token.expandmacro("foo")

context(token.getmacro("oof"))

\stopluacode

gives: 100.0pt, because when getmacro is called the expansion has been performed. You can consider

this a sort of subrun (local to the main control loop).

The next helper creates a token that refers to a Lua function with an entry in the table that you

can access with lua.getfunctionstable. It is the companion to \luadef. When the first (and only)

argument is true the size will preset to the value of texconfig.functionsize.

function token.setlua (

<t:string> csname,

<t:integer> id,

<t:string> prefix

-- there can be more prefixes

)

return <t:token>

end

16.3.4 Writers

In the tex library we have various ways to print something back to the input and the these print

helpers in most cases also accept tokens. The token.putnext function is rather tolerant with respect

to its arguments and there can be multiple. As with most prints, a new input level is created.

function token.putnext (<t:string> | <t:number> | <t:token> | <t:table>)

-- no return values

end

Here are some examples. We save some scanned tokens and flush them

local t1 = token.scannext()

local t2 = token.scannext()

local t3 = token.scannext()

local t4 = token.scannext()

563

-- watch out, we flush in sequence

token.putnext { t1, t2 }

-- but this one gets pushed in front

token.putnext (t3, t4)

When we scan wxyz! we get yzwx! back. The argument is either a table with tokens or a list of tokens.

The token.expand function will trigger expansion but what happens really depends on what you're

doing where.

This putter is actually a bit more flexible because the following input also works out okay:

\def\foo#1{[#1]}

\directlua {

local list = { 101, 102, 103, token.create("foo"), "{abracadabra}" }

token.putnext("(the)")

token.putnext(list)

token.putnext("(order)")

token.putnext(unpack(list))

token.putnext("(is reversed)")

}

We get this:

(is reversed)efg[abracadabra](order)efg[abracadabra](the)

So, strings get converted to individual tokens according to the current catcode regime and numbers

become characters also according to this regime. A more low level, single token push back is the next

one, it does the same as when TEX itself puts a token back into the input, something that for instance

happens when an integer is scanned and the last scanned token is not a digit.

function token.putback (<t:token>)

-- no return values

end

You can force an ‘expand step’ with the following function. What happens depends on the input and

scanner states TEX is.

function token.expand ()

-- no return values

end

16.3.5 Scanning

The token library provides means to intercept the input and deal with it at the Lua level. The library

provides a basic scanner infrastructure that can be used to write macros that accept a wide range of

arguments. This interface is on purpose kept general and as performance is quite okay so one can

build additional parsers without too much overhead. It's up to macro package writers to see how they

can benefit from this as the main principle behind LuaMetaTEX is to provide a minimal set of tools and

no solutions. The scanner functions are probably the most intriguing.

564

We start with token scanners. The first one just reads the next token from the current input (file,

token list, Lua output) while the second variant expands the next token, which can push back results

and make us enter a new input level, and then reads a token from what is then the input.

function token.scannext ()

return <t:token>

end

function token.scannextexpanded ()

return <t:token>

end

This is a simple scanner that picks up a character:

function token.scannextchar ()

return <t:string>

end

We can look ahead, that is: pick up a token and push a copy back into the input. The second helper

first expands the upcoming token and the third one is the peek variant of scannextchar.

function token.peeknext ()

return <t:token>

end

function token.peeknextexpanded ()

return <t:token>

end

function token.peeknextchar ()

return <t:token>

end

We can skip tokens with the following two helpers where the second one first expands the upcoming

token

function token.skipnext ()

-- no return values

end

function token.skipnextexpanded ()

-- no return values

end

The next token can be converted into a combination of command and value. The second variant shown

below first expands the upcoming token.

function token.scancmdchr ()

return

<t:integer>, -- command a.k.a cmd

<t:integer>, -- value a.k.a chr

end

function token.scancmdchrexpanded ()

565

return

<t:integer>, -- command a.k.a cmd

<t:integer>, -- value a.k.a chr

end

We have two keywords scanners. The first scans how TEX does it: a mixture of lower- and uppercase.

The second is case sensitive.

function token.scankeyword (<t:string> keyword)

return <t:boolean> -- success

end

function token.scankeywordcs (<t:string> keyword)

return <t:boolean> -- success

end

The integer, dimension and glue scanners take an extra optional argument that signals that en optional

equal is permitted. The next function errors when the integer exceeds the maximum that TEX likes:

2147483647.

function token.scaninteger (<t:boolean> optionalequal)

return <t:integer>

end

Cardinals are unsigned integers:

function token.scancardinal (<t:boolean> optionalequal)

return <t:cardinal>

end

When an integer or dimension is wrapped in curly braces, like {123} and {4.5pt}, you can use one of

the next two. Of course unwrapped integers and dimensions are also read.

function token.scanintegerargument (<t:boolean> optionalequal)

return <t:integer>

end

function token.scandimensionargument (

<t:boolean> infinity,

<t:boolean> mu,

<t:boolean> optionalequal

)

return <t:integer>

end

When we scan for a float, we also accept an exponent, so 123.45 and -1.23e45 are valid:

function token.scanfloat ()

return <t:number>

end

Contrary to the previous scanner here we don't handle the exponent:

function token.scanreal ()

566

return <t:number>

end

In Lua a very precise representation of a float is the hexadecimal notation. In addition to regular

floating point, optionally with an exponent, you can also have 0x1.23p45.

function token.scanluanumber ()

return <t:number>

end

Integers can be signed:

function token.scanluainteger ()

return <t:integer>

end

while cardinals (Modula2 speak) are unsigned: unsigned

function token.scanluacardinal ()

return <t:cardinal>

end

122345

function token.scanscale ()

return <t:integer>

end

A posit is (in LuaMetaTEX) a float packed into an integer, but contrary to a scaled value it can have

exponents. Here 12.34 gives 1549208125 and Here 12.34e5 gives 2114670912. Because we have

integers we can store them in LuaMetaTEX float registers. Optionally you can return a float instead

of the integer that encodes the posit.

function token.scanposit (

<t:boolean> optionalqual,

<t:boolean> float

)

return <t:integer> | <t:float>

end

In (traditional) TEX we don't really have floats. If we enter for instance a dimension in point units, we

actually scan for two 16 bit integers that will be packed into a 32 bit integer. The next scanner expects

a number plus a unit, like pt, cm and em, but also handles user defined units, like in ConTEXt tw.

function token.scandimension (

<t:boolean> infinity,

<t:boolean> mu,

<t:boolean> optionalequal

)

return <t:integer>

end

A glue (spec) is a dimension with optional stretch and/or shrink, like 12pt plus 4pt minus 2pt or

10pt plus 1 fill. The glue scanner returns five values:

567

function token.scanglue (

<t:boolean> mu,

<t:boolean> optionalequal

)

return

<t:integer>, -- amount

<t:integer>, -- stretch

<t:integer>, -- shrink

<t:integer>, -- stretchorder

<t:integer> -- shrinkorder

end

function token.scanglue (

<t:boolean> mu,

<t:boolean> optionalequal,

<t:true>

)

return {

<t:integer>, -- amount

<t:integer>, -- stretch

<t:integer>, -- shrink

<t:integer>, -- stretchorder

<t:integer> -- shrinkorder

}

end

The skip scanner does the same but returns a gluespec node:

function token.scanskip (

<t:boolean> mu,

<t:boolean> optionalequal

)

return <t:node> -- gluespec

end

There are several token scanners, for instance one that returns a table:

function token.scantoks (

<t:boolean> macro,

<t:boolean> expand

)

-- return <t:table> -- tokens

end

Here token.scantoks() will return {123} as

{

"<lua token : 589866 == other_char 49>",

"<lua token : 589867 == other_char 50>",

"<lua token : 589870 == other_char 51>",

}

568

The next variant returns a token list:

function token.scantokenlist (

<t:boolean> macro,

<t:boolean> expand

)

return <t:token> -- tokenlist

end

Here we get the head of a token list:

<lua token : 590083 => 169324 : refcount>={

["active"]=false,

["cmdname"]="escape",

["command"]=0,

["expandable"]=false,

["frozen"]=false,

["id"]=590083,

["immutable"]=false,

["index"]=0,

}

This scans a single character token with specified catcode (bit) sets:

function token.scancode (<t:integer> catcodes)

return <t:string> -- character

end

This scans a single character token with catcode letter or other:

function token.scantokencode ()

-- return <t:token>

end

The difference between scanstring and scanargument is that the first returns a string given between

{}, as \macro or as sequence of characters with catcode 11 or 12 while the second also accepts a \cs

which then get expanded one level unless we force further expansion.

function token.scanstring (<t:boolean> expand)

return <t:string>

end

function token.scanargument (<t:boolean> expand)

return <t:string>

end

So the scanargument function expands the given argument. When a braced argument is scanned,

expansion can be prohibited by passing false (default is true). In case of a control sequence passing

false will result in a one-level expansion (the meaning of the macro).

The string scanner scans for something between curly braces and expands on the way, or when it sees

a control sequence it will return its meaning. Otherwise it will scan characters with catcode letter

or other. So, given the following definition:

569

\def\oof{oof}

\def\foo{foo-\oof}

we get:

name result

\directlua{token.scanstring()}{foo} foo full expansion

\directlua{token.scanstring()}foo foo letters and others

\directlua{token.scanstring()}\foo foo-oof meaning

The \foo case only gives the meaning, but one can pass an already expanded definition (\edef'd). In

the case of the braced variant one can of course use the \detokenize and \unexpanded primitives

since there we do expand.

A variant is the following which give a bit more control over what doesn't get expanded:

function token.scantokenstring (

<t:boolean> noexpand,

<t:boolean> noexpandconstant,

<t:boolean> noexpandparameters

)

return <t:string>

end

Here's one that can scan a delimited argument:

function token.scandelimited (

<t:integer> leftdelimiter,

<t:integer> rightdelimiter,

<t:boolean> expand

)

return <t:string>

end

A word is a sequence of what TEX calls letters and other characters. The optional keep argument

endures that trailing space and \relax tokens are pushed back into the input.

function token.scanword (<t:boolean> keep)

return <t:string>

end

Here we do the same but only accept letters:

function token.scanletters (<t:boolean> keep)

return <t:string>

end

function token.scankey ()

return <t:string>

end

We can pick up a string that stops at a specific character with the next function, which accepts two

such sentinels (think of a comma and closing bracket).

570

function token.scanvalue (<t:integer> one, <t:integer> two)

return <t:string>

end

This returns a single (utf) character. Special input like back slashes, hashes, etc. are interpreted as

characters.

function token.scanchar ()

return <t:string>

end

This scanner looks for a control sequence and if found returns the name. Optionally leading spaces

can be skipped.

function token.scancsname (<t:boolean> skipspaces)

return <t:string> | <t:nil>

end

The next one returns an integer instead:

function token.scancstoken (<t:boolean> skipspaces)

return <t:integer> | <t:nil>

end

This is a straightforward simple scanner that expands next token if needed:

function token.scantoken ()

return <t:token>

end

Then next scanner picks up a box specification and returns a [h|v]list node. There are two possible

calls. The first variant expects a \hbox, \vbox etc. The second variant scans for an explicitly passed

box type: hbox, vbox, vbox or dbox.

function token.scanbox ()

return <t:node> -- box

end

function token.scanbox (<t:string> boxtype)

return <t:node> -- box

end

This scans and returns a so called ‘detokenized’ string:

function token.scandetokened (<t:boolean> expand)

return <t:string>

end

In the next function we check if a specific character with catcode letter or other is picked up.

function token.isnextchar (<t:integer> charactercode)

return <t:boolean>

end

571

16.3.6 Gobbling

You can gobble up an integer or dimension with the following helpers. An error is silently ignored.

function token.gobbleinteger (<t:boolean> optionalequal)

-- no return values

end

function token.gobbledimension (<t:boolean> optionalequal)

-- no return values

end

This is a nested gobbler:

function token.gobble (<t:token> left, <t:token> right)

-- no return values

end

and this a nested grabber that returns a string:

function token.grab (<t:token> left, <t:token> right)

return <t:string>

end

16.3.7 Macros

This is a nasty one. It pick up two tokens. Then it checks if the next character matches the argument

and if so, it pushes the first token back into the input, otherwise the second.

function token.futureexpand (<t:integer> charactercode)

-- no return values

end

The pushmacro and popmacro function are still experimental and can be used to get and set an existing

macro. The push call returns a user data object and the pop takes such a userdata object. These object

have no accessors and are to be seen as abstractions.

function token.pushmacro (<t:string> csname)

return <t:userdata>

end

function token.pushmacro (<t:integer> token)

return <t:userdata> -- entry

end

function token.popmacro (<t:userdata> entry)

-- return todo

end

This saves a Lua function index on the save stack. When a group is closes the function will be called.

function token.savelua (<t:integer> functionindex, <t:boolean> backtrack)

-- no return values

572

end

The next function serializes a token list:

function token.serialize ()

return <t:string>

end

The function is somewhat picky so give van example in ConTEXt speak:

\startluacode

local t = token.scantokenlist()

local s = token.serialize(t)

context.type(tostring(t)) context.par()

context.type(s) context.par()

context(s) context.par()

\stopluacode {before\hskip10pt after}

The serialize expects a token list as scanned by scantokenlist which starts with token that points to

the list and maintains a reference count, which in this context is irrelevant but is used in the engine

to prevent duplicates; for instance the \let primitive just points to the original and bumps the count.

<lua token : 661000 => 659568 : refcount>

before\hskip 10pt after

before after

You can interpret a string as TEX input with embedded macros expanded, unless they are unexpand

able.

function token.getexpansion (<t:string> code)

return <t:string> -- result

end

Here is an example:

\def\foo{foo}

\protected\def\oof{oof}

\startluacode

context.type(token.getexpansion("test \relax"))

context.par()

context.type(token.getexpansion("test \\relax{!} \\foo\\oof"))

\stopluacode

Watch how the single backslash actually is a Lua escape that results in a newline:

test

elax

test \relax{!} foo\oof

You can also specify a catcode table identifier:

function token.getexpansion (

573

<t:integer> catcodetable,

<t:string> code

)

return <t:string> -- result

end

16.3.8 Information

In some cases you signal to Lua what data type is involved. The list of known types are available with:

function token.getfunctionvalues ()

return <t:table>

end

0x00 none 0x04 skip 0x08 node

0x01 integer 0x05 boolean 0x09 direct

0x02 cardinal 0x06 float 0x0A conditional

0x03 dimension 0x07 string

The names of command is made available with:

function token.getcommandvalues ()

return <t:table>

end

0x00 escape 0x19 char_number

0x01 left_brace 0x1A math_char_number

0x02 right_brace 0x1B mark

0x03 math_shift 0x1C node

0x04 alignment_tab 0x1D xray

0x05 end_line 0x1E mvl

0x06 parameter 0x1F make_box

0x07 superscript 0x20 hmove

0x08 subscript 0x21 vmove

0x09 ignore 0x22 un_hbox

0x0A spacer 0x23 un_vbox

0x0B letter 0x24 remove_item

0x0C other_char 0x25 hskip

0x0D active_char 0x26 vskip

0x0E comment 0x27 mskip

0x0F invalid_char 0x28 kern

0x10 relax 0x29 mkern

0x11 alignment 0x2A leader

0x12 end_template 0x2B legacy

0x13 match 0x2C local_box

0x14 end_match 0x2D halign

0x15 parameter_reference 0x2E valign

0x16 end_paragraph 0x2F vrule

0x17 end_job 0x30 hrule

0x18 delimiter_number 0x31 insert

574

0x32 vadjust 0x63 font_property

0x33 ignore_something 0x64 auxiliary

0x34 after_something 0x65 hyphenation

0x35 penalty 0x66 page_property

0x36 begin_paragraph 0x67 box_property

0x37 italic_correction 0x68 specification

0x38 accent 0x69 define_char_code

0x39 math_accent 0x6A define_family

0x3A discretionary 0x6B math_parameter

0x3B equation_number 0x6C math_style

0x3C math_fence 0x6D set_font

0x3D math_component 0x6E define_font

0x3E math_modifier 0x6F integer

0x3F math_fraction 0x70 posit

0x40 math_choice 0x71 dimension

0x41 vcenter 0x72 gluespec

0x42 case_shift 0x73 mugluespec

0x43 message 0x74 index

0x44 catcode_table 0x75 mathspec

0x45 end_local 0x76 fontspec

0x46 lua_function_call 0x77 specificationspec

0x47 lua_protected_call 0x78 association

0x48 lua_semiprotected_call 0x79 interaction

0x49 begin_group 0x7A register

0x4A end_group 0x7B combine_toks

0x4B explicit_space 0x7C arithmic

0x4C boundary 0x7D prefix

0x4D math_radical 0x7E let

0x4E math_script 0x7F shorthand_def

0x4F math_shift_cs 0x80 def

0x50 end_cs_name 0x81 set_box

0x51 char_given 0x82 undefined_cs

0x52 some_item 0x83 expand_after

0x53 internal_toks 0x84 no_expand

0x54 register_toks 0x85 input

0x55 internal_integer 0x86 lua_call

0x56 register_integer 0x87 lua_local_call

0x57 internal_attribute 0x88 begin_local

0x58 register_attribute 0x89 if_test

0x59 internal_posit 0x8A cs_name

0x5A register_posit 0x8B convert

0x5B internal_dimension 0x8C the

0x5C register_dimension 0x8D get_mark

0x5D internal_glue 0x8E call

0x5E register_glue 0x8F protected_call

0x5F internal_muglue 0x90 semi_protected_call

0x60 register_muglue 0x91 constant_call

0x61 lua_value 0x92 tolerant_call

0x62 iterator_value 0x93 tolerant_protected_call

575

0x94 tolerant_semi_protected_call 0x9F register_toks_reference

0x95 deep_frozen_end_template 0xA0 specification_reference

0x96 deep_frozen_dont_expand 0xA1 unit_reference

0x97 deep_frozen_keep_constant 0xA2 internal_integer_reference

0x98 internal_glue_reference 0xA3 register_integer_reference

0x99 register_glue_reference 0xA4 internal_attribute_reference

0x9A internal_muglue_reference 0xA5 register_attribute_reference

0x9B register_muglue_reference 0xA6 internal_posit_reference

0x9C specification_reference 0xA7 register_posit_reference

0x9D internal_box_reference 0xA8 internal_dimension_reference

0x9E internal_toks_reference 0xA9 register_dimension_reference

The complete list of primitives can be fetched with the next one:

function token.getprimitives ()

return {

{ <t:integer>, <t:integer>, <t:string> }, -- command, value, name

...

}

end

The numbers shown below can change if we add or reorganize primitives, although this seldom hap

pens. The list gives an impression how primitives are grouped.

4 0 \aligntab 27 2 \clearmarks

6 0 \alignmark 27 3 \flushmarks

6 0 \parametermark 29 0 \show

16 0 \relax 29 1 \showbox

16 1 \norelax 29 2 \showthe

18 1 \span 29 3 \showlists

18 2 \omit 29 4 \showgroups

18 3 \aligncontent 29 5 \showstack

18 4 \noalign 29 6 \showcodestack

18 5 \realign 29 7 \showtokens

18 6 \cr 29 8 \showifs

18 7 \crcr 30 0 \beginmvl

22 0 \par 30 1 \endmvl

22 3 \localbreakpar 31 0 \box

23 0 \end 31 1 \copy

23 1 \dump 31 3 \lastbox

24 0 \delimiter 31 4 \tsplit

24 1 \Udelimiter 31 5 \vsplit

25 0 \char 31 6 \dsplit

25 1 \glyph 31 7 \tpack

26 0 \mathchar 31 8 \vpack

26 1 \Umathchar 31 9 \dpack

26 2 \mathdictionary 31 10 \hpack

26 3 \mathclass 31 11 \vtop

26 4 \nomathchar 31 12 \vbox

27 0 \mark 31 13 \dbox

27 1 \marks 31 14 \hbox

576

31 15 \vbalance 42 1 \cleaders

31 16 \vbalancedbox 42 2 \xleaders

31 17 \vbalancedtop 42 3 \gleaders

31 18 \vbalancedinsert 42 4 \uleaders

31 19 \vbalanceddiscard 43 0 \shipout

31 20 \vbalanceddeinsert 44 0 \localleftbox

31 21 \vbalancedreinsert 44 1 \localrightbox

31 22 \flushmvl 44 2 \localmiddlebox

31 23 \insertbox 44 4 \resetlocalboxes

31 24 \insertcopy 45 0 \halign

31 25 \localleftboxbox 46 0 \valign

31 26 \localrightboxbox 47 0 \vrule

31 27 \localmiddleboxbox 47 1 \novrule

32 0 \moveright 47 2 \srule

32 1 \moveleft 47 3 \virtualvrule

33 0 \lower 48 0 \hrule

33 1 \raise 48 1 \nohrule

34 0 \unhbox 48 3 \virtualhrule

34 1 \unhcopy 49 0 \insert

34 2 \unhpack 50 0 \vadjust

35 0 \unvbox 51 0 \ignorespaces

35 1 \unvcopy 51 1 \ignorepars

35 2 \unvpack 51 2 \ignorearguments

35 23 \insertunbox 51 3 \ignoreupto

35 24 \insertuncopy 51 4 \ignorenestedupto

35 28 \pagediscards 51 5 \ignorerest

35 29 \splitdiscards 52 0 \aftergroup

35 30 \copysplitdiscards 52 1 \aftergrouped

36 0 \unkern 52 2 \afterassignment

36 1 \unpenalty 52 3 \afterassigned

36 2 \unskip 52 4 \atendofgroup

36 3 \unboundary 52 5 \atendofgrouped

37 0 \hfil 52 6 \atendoffile

37 1 \hfill 52 7 \atendoffiled

37 2 \hss 53 0 \penalty

37 3 \hfilneg 53 1 \hpenalty

37 4 \hskip 53 2 \vpenalty

38 0 \vfil 54 0 \noindent

38 1 \vfill 54 1 \indent

38 2 \vss 54 2 \quitvmode

38 3 \vfilneg 54 3 \undent

38 4 \vskip 54 4 \snapshotpar

39 0 \mskip 54 5 \parattribute

39 1 \mathatomskip 54 6 \paroptions

40 0 \kern 54 7 \wrapuppar

40 1 \hkern 55 0 \/

40 2 \vkern 55 0 \explicititaliccorrection

41 0 \mkern 55 1 \forcedleftcorrection

42 0 \leaders 55 2 \forcedrightcorrection

577

56 0 \accent 63 7 \Uabovewithdelims

57 0 \mathaccent 63 8 \Uover

57 1 \Umathaccent 63 9 \Uoverwithdelims

58 0 \discretionary 63 10 \Uatop

58 1 \explicitdiscretionary 63 11 \Uatopwithdelims

58 1 \- 63 12 \Uskewed

58 2 \automaticdiscretionary 63 13 \Uskewedwithdelims

59 0 \leqno 63 14 \Ustretched

59 1 \eqno 63 15 \Ustretchedwithdelims

60 1 \left 64 0 \mathchoice

60 2 \middle 64 1 \mathdiscretionary

60 3 \right 64 2 \mathstack

60 4 \Uoperator 65 0 \vcenter

60 5 \Uvextensible 66 0 \lowercase

60 6 \Uleft 66 1 \uppercase

60 7 \Umiddle 67 0 \message

60 8 \Uright 67 1 \errmessage

61 0 \mathord 68 0 \savecatcodetable

61 1 \mathop 68 1 \restorecatcodetable

61 2 \mathbin 68 2 \initcatcodetable

61 3 \mathrel 69 0 \endlocalcontrol

61 4 \mathopen 70 0 \luafunctioncall

61 5 \mathclose 70 1 \luabytecodecall

61 6 \mathpunct 73 0 \begingroup

61 8 \mathinner 73 1 \beginsimplegroup

61 9 \underline 73 2 \beginmathgroup

61 10 \overline 74 0 \endgroup

61 18 \mathatom 74 1 \endsimplegroup

62 0 \displaylimits 74 2 \endmathgroup

62 1 \limits 75 0 \explicitspace

62 1 \Umathlimits 75 0 \

62 2 \nolimits 76 0 \noboundary

62 2 \Umathnolimits 76 1 \boundary

62 3 \Umathadapttoleft 76 2 \protrusionboundary

62 4 \Umathadapttoright 76 3 \wordboundary

62 5 \Umathuseaxis 76 4 \pageboundary

62 6 \Umathnoaxis 76 5 \mathboundary

62 7 \Umathphantom 76 6 \optionalboundary

62 8 \Umathvoid 76 7 \luaboundary

62 9 \Umathsource 76 10 \balanceboundary

62 10 \Umathopenupheight 77 0 \radical

62 11 \Umathopenupdepth 77 1 \Uradical

63 0 \above 77 2 \Uroot

63 1 \abovewithdelims 77 3 \Urooted

63 2 \over 77 4 \Uunderdelimiter

63 3 \overwithdelims 77 5 \Uoverdelimiter

63 4 \atop 77 6 \Udelimiterunder

63 5 \atopwithdelims 77 7 \Udelimiterover

63 6 \Uabove 77 8 \Udelimited

578

77 9 \Uhextensible 82 25 \fontcharwd

78 0 \nonscript 82 26 \fontcharht

78 1 \noatomruling 82 27 \fontchardp

78 2 \subscript 82 28 \fontcharic

78 3 \superscript 82 29 \fontcharta

78 4 \superprescript 82 30 \fontcharba

78 5 \subprescript 82 31 \scaledfontcharwd

78 6 \nosubscript 82 32 \scaledfontcharht

78 7 \nosuperscript 82 33 \scaledfontchardp

78 8 \nosubprescript 82 34 \scaledfontcharic

78 9 \nosuperprescript 82 35 \scaledfontcharta

78 10 \indexedsubscript 82 36 \scaledfontcharba

78 11 \indexedsuperscript 82 37 \fontspecid

78 12 \indexedsubprescript 82 38 \fontspecscale

78 13 \indexedsuperprescript 82 39 \fontspecxscale

78 14 \primescript 82 40 \fontspecyscale

78 15 \noscript 82 41 \fontspecslant

79 0 \Ustartmath 82 42 \fontspecweight

79 1 \Ustopmath 82 43 \fontspecifiedsize

79 2 \Ustartdisplaymath 82 44 \fontmathcontrol

79 3 \Ustopdisplaymath 82 45 \fonttextcontrol

79 4 \Ustartmathmode 82 46 \mathscale

79 5 \Ustopmathmode 82 47 \mathstyle

80 0 \endcsname 82 48 \mathmainstyle

82 0 \lastpenalty 82 49 \mathparentstyle

82 1 \lastkern 82 50 \mathstylefontid

82 2 \lastskip 82 51 \mathstackstyle

82 3 \lastboundary 82 52 \mathcharclass

82 4 \lastnodetype 82 53 \mathcharfam

82 5 \lastnodesubtype 82 54 \mathcharslot

82 6 \inputlineno 82 55 \scaledslantperpoint

82 7 \badness 82 56 \scaledinterwordspace

82 8 \overshoot 82 57 \scaledinterwordstretch

82 9 \luametatexmajorversion 82 58 \scaledinterwordshrink

82 10 \luametatexminorversion 82 59 \scaledexheight

82 11 \luametatexrelease 82 60 \scaledemwidth

82 12 \luatexversion 82 61 \scaledextraspace

82 13 \luatexrevision 82 62 \scaledmathaxis

82 14 \currentgrouplevel 82 63 \scaledmathexheight

82 15 \currentgrouptype 82 64 \scaledmathemwidth

82 16 \currentstacksize 82 65 \lastarguments

82 17 \currentiflevel 82 66 \parametercount

82 18 \currentiftype 82 67 \parameterindex

82 19 \currentifbranch 82 68 \insertprogress

82 20 \gluestretchorder 82 69 \leftmarginkern

82 21 \glueshrinkorder 82 70 \rightmarginkern

82 22 \fontid 82 71 \parshapelength

82 23 \glyphxscaled 82 72 \parshapeindent

82 24 \glyphyscaled 82 73 \parshapedimen

579

82 73 \parshapewidth 85 39 \relpenalty

82 74 \balanceshapevsize 85 39 \protrudechars

82 75 \balanceshapetopspace 85 39 \prebinoppenalty

82 76 \balanceshapebottomspace 85 39 \glyphscriptscale

82 77 \gluestretch 85 39 \setfontid

82 78 \glueshrink 85 39 \textdirection

82 79 \mutoglue 85 39 \uchyph

82 80 \gluetomu 85 39 \mathendclass

82 81 \numexpr 85 39 \binoppenalty

82 82 \floatexpr 85 39 \pardirection

82 83 \dimexpr 85 39 \prerelpenalty

82 84 \glueexpr 85 39 \pretolerance

82 85 \muexpr 85 39 \glyphyscale

82 86 \numexpression 85 39 \glyphscale

82 87 \dimexpression 85 39 \setlanguage

82 88 \numexperimental 85 39 \language

82 89 \dimexperimental 85 39 \eufactor

82 90 \lastchknumber 85 39 \linedirection

82 91 \lastchkdimension 85 39 \glyphslant

82 92 \numericscale 85 39 \mathrightclass

82 93 \numericscaled 85 39 \localinterlinepenalty

82 94 \indexofregister 85 39 \glyphscriptscriptscale

82 95 \indexofcharacter 85 39 \glyphoptions

82 96 \mathatomglue 85 39 \endlinechar

82 97 \lastleftclass 85 39 \glyphxscale

82 98 \lastrightclass 85 39 \localpretolerance

82 99 \lastatomclass 85 39 \nooutputboxerror

82 100 \nestedloopiterator 85 39 \hyphenationmode

82 101 \previousloopiterator 85 39 \adjustspacing

82 102 \currentloopiterator 85 39 \outputbox

82 103 \currentloopnesting 85 39 \mathdirection

82 104 \lastloopiterator 85 39 \glyphtextscale

82 105 \lastpartrigger 85 39 \localtolerance

82 106 \lastparcontext 85 39 \discretionaryoptions

82 107 \lastpageextra 85 39 \overloadmode

83 0 \output 85 39 \glyphweight

83 1 \everypar 85 39 \localbrokenpenalty

83 2 \everymath 85 39 \catcodetable

83 3 \everydisplay 85 39 \newlinechar

83 4 \everyhbox 85 39 \mathleftclass

83 5 \everyvbox 85 40 \tolerance

83 6 \everymathatom 85 41 \linepenalty

83 7 \everyjob 85 42 \hyphenpenalty

83 8 \everycr 85 43 \exhyphenpenalty

83 9 \everytab 85 44 \clubpenalty

83 10 \errhelp 85 45 \widowpenalty

83 11 \everybeforepar 85 46 \displaywidowpenalty

83 12 \everyeof 85 47 \brokenpenalty

85 39 \mathbeginclass 85 48 \predisplaypenalty

580

85 49 \postdisplaypenalty 85 98 \tracingfullboxes

85 50 \preinlinepenalty 85 99 \tracingpenalties

85 51 \postinlinepenalty 85 100 \tracinglooseness

85 52 \preshortinlinepenalty 85 101 \tracinglists

85 53 \postshortinlinepenalty 85 102 \tracingpasses

85 54 \shortinlineorphanpenalty 85 103 \tracingfitness

85 55 \interlinepenalty 85 104 \tracingtoddlers

85 56 \doublehyphendemerits 85 105 \tracingorphans

85 57 \finalhyphendemerits 85 106 \tracingloners

85 58 \adjdemerits 85 107 \outputpenalty

85 59 \doublepenaltymode 85 108 \maxdeadcycles

85 60 \delimiterfactor 85 109 \hangafter

85 61 \looseness 85 110 \floatingpenalty

85 62 \time 85 111 \globaldefs

85 63 \day 85 112 \fam

85 64 \month 85 113 \escapechar

85 65 \year 85 114 \spacechar

85 66 \showboxbreadth 85 115 \defaulthyphenchar

85 67 \showboxdepth 85 116 \defaultskewchar

85 68 \shownodedetails 85 117 \lefthyphenmin

85 69 \hbadness 85 118 \righthyphenmin

85 70 \vbadness 85 119 \holdinginserts

85 71 \hbadnessmode 85 120 \holdingmigrations

85 72 \vbadnessmode 85 121 \errorcontextlines

85 73 \pausing 85 122 \nospaces

85 74 \tracingonline 85 123 \parametermode

85 75 \tracingmacros 85 124 \glyphdatafield

85 76 \tracingstats 85 125 \glyphstatefield

85 77 \tracingparagraphs 85 126 \glyphscriptfield

85 78 \tracingpages 85 127 \exhyphenchar

85 79 \tracingbalancing 85 128 \exapostrophechar

85 80 \tracingoutput 85 129 \adjustspacingstep

85 81 \tracinglostchars 85 130 \adjustspacingstretch

85 82 \tracingcommands 85 131 \adjustspacingshrink

85 83 \tracingrestores 85 132 \predisplaydirection

85 84 \tracingassigns 85 133 \lastlinefit

85 85 \tracinggroups 85 134 \savingvdiscards

85 86 \tracingifs 85 135 \savinghyphcodes

85 87 \tracingmath 85 136 \matheqnogapstep

85 88 \tracingmvl 85 137 \mathdisplayskipmode

85 89 \tracinglevels 85 138 \mathscriptsmode

85 90 \tracingnesting 85 139 \mathlimitsmode

85 91 \tracingalignments 85 140 \mathoptions

85 92 \tracinginserts 85 141 \mathrulesmode

85 93 \tracingmarks 85 142 \mathrulesfam

85 94 \tracingadjusts 85 143 \mathpenaltiesmode

85 95 \tracinghyphenation 85 144 \mathcheckfencesmode

85 96 \tracingexpressions 85 145 \mathslackmode

85 97 \tracingnodes 85 146 \mathsurroundmode

581

85 147 \mathdoublescriptmode 85 197 \scriptspacebetweenfactor

85 148 \mathfontcontrol 85 198 \scriptspaceafterfactor

85 149 \mathdisplaymode 91 0 \parindent

85 150 \mathdictgroup 91 1 \mathsurround

85 151 \mathdictproperties 91 2 \lineskiplimit

85 152 \predisplaygapfactor 91 3 \hsize

85 153 \firstvalidlanguage 91 4 \vsize

85 154 \automatichyphenpenalty 91 5 \maxdepth

85 155 \explicithyphenpenalty 91 6 \splitmaxdepth

85 156 \exceptionpenalty 91 7 \boxmaxdepth

85 157 \luacopyinputnodes 91 8 \hfuzz

85 158 \automigrationmode 91 9 \vfuzz

85 159 \normalizelinemode 91 10 \delimitershortfall

85 160 \normalizeparmode 91 11 \nulldelimiterspace

85 161 \mathspacingmode 91 12 \scriptspace

85 162 \mathgroupingmode 91 13 \predisplaysize

85 163 \mathgluemode 91 14 \displaywidth

85 164 \mathinlinepenaltyfactor 91 15 \displayindent

85 165 \mathdisplaypenaltyfactor 91 16 \overfullrule

85 166 \supmarkmode 91 17 \hangindent

85 167 \autoparagraphmode 91 18 \emergencystretch

85 168 \shapingpenaltiesmode 91 19 \emergencyextrastretch

85 169 \shapingpenalty 91 20 \glyphxoffset

85 170 \singlelinepenalty 91 21 \glyphyoffset

85 171 \lefttwindemerits 91 22 \pxdimen

85 172 \righttwindemerits 91 23 \tabsize

85 173 \alignmentcellsource 91 24 \pageextragoal

85 174 \alignmentwrapsource 91 25 \ignoredepthcriterion

85 175 \linebreakpasses 91 26 \shortinlinemaththreshold

85 176 \linebreakoptional 91 27 \splitextraheight

85 177 \linebreakchecks 91 28 \balanceemergencystretch

85 178 \balancechecks 91 29 \balanceemergencyshrink

85 179 \balancebreakpasses 91 30 \balancevsize

85 180 \balancetolerance 91 31 \balancelineheight

85 181 \balancepenalty 93 3 \initialtopskip

85 182 \balanceadjdemerits 93 3 \initialpageskip

85 183 \balancelooseness 93 3 \additionalpageskip

85 184 \vsplitchecks 93 3 \lineskip

85 185 \etexexprmode 93 4 \baselineskip

85 187 \variablefam 93 5 \parskip

85 188 \mathpretolerance 93 6 \abovedisplayskip

85 189 \mathtolerance 93 7 \belowdisplayskip

85 190 \emptyparagraphmode 93 8 \abovedisplayshortskip

85 191 \spacefactormode 93 9 \belowdisplayshortskip

85 192 \spacefactorshrinklimit 93 10 \leftskip

85 193 \spacefactorstretchlimit 93 11 \rightskip

85 194 \spacefactoroverload 93 12 \topskip

85 195 \boxlimitmode 93 13 \bottomskip

85 196 \scriptspacebeforefactor 93 14 \splittopskip

582

93 15 \balancetopskip 102 9 \insertheights

93 16 \balancebottomskip 102 10 \insertstoring

93 17 \tabskip 102 11 \insertdistance

93 18 \spaceskip 102 12 \insertmultiplier

93 19 \xspaceskip 102 13 \insertlimit

93 20 \parfillleftskip 102 14 \insertstorage

93 21 \parfillskip 102 15 \insertpenalty

93 21 \parfillrightskip 102 16 \insertmaxdepth

93 22 \parinitleftskip 102 17 \insertheight

93 23 \parinitrightskip 102 18 \insertdepth

93 24 \emergencyleftskip 102 19 \insertwidth

93 25 \emergencyrightskip 102 20 \insertlineheight

93 26 \mathsurroundskip 102 21 \insertlinedepth

93 27 \maththreshold 102 22 \insertstretch

95 1 \pettymuskip 102 23 \insertshrink

95 2 \tinymuskip 102 24 \pagestretch

95 3 \thinmuskip 102 25 \pagefistretch

95 4 \medmuskip 102 26 \pagefilstretch

95 5 \thickmuskip 102 27 \pagefillstretch

99 0 \hyphenchar 102 28 \pagefilllstretch

99 1 \skewchar 102 29 \pageshrink

99 2 \lpcode 102 30 \pagelaststretch

99 3 \rpcode 102 31 \pagelastfistretch

99 4 \efcode 102 32 \pagelastfilstretch

99 5 \cfcode 102 33 \pagelastfillstretch

99 6 \fontdimen 102 34 \pagelastfilllstretch

99 7 \scaledfontdimen 102 35 \pagelastshrink

100 0 \spacefactor 102 36 \splitlastdepth

100 1 \prevdepth 102 37 \splitlastheight

100 2 \prevgraf 102 38 \splitlastshrink

100 3 \interactionmode 102 39 \splitlaststretch

100 4 \insertmode 102 40 \mvlcurrentlyactive

101 0 \hyphenation 103 0 \wd

101 1 \patterns 103 1 \ht

101 2 \prehyphenchar 103 2 \dp

101 3 \posthyphenchar 103 3 \boxdirection

101 4 \preexhyphenchar 103 4 \boxgeometry

101 5 \postexhyphenchar 103 5 \boxorientation

101 6 \hyphenationmin 103 6 \boxanchor

101 7 \hjcode 103 7 \boxanchors

102 0 \pagegoal 103 8 \boxsource

102 1 \pagevsize 103 9 \boxtarget

102 2 \pagetotal 103 10 \boxxoffset

102 3 \pagedepth 103 11 \boxyoffset

102 4 \pageexcess 103 12 \boxxmove

102 5 \pagelastheight 103 13 \boxymove

102 6 \pagelastdepth 103 14 \boxtotal

102 7 \deadcycles 103 15 \boxshift

102 8 \insertpenalties 103 16 \boxadapt

583

103 17 \boxrepack 107 6 \Umathflattenedaccentbasedepth

103 18 \boxfreeze 107 7 \Umathxscale

103 19 \boxmigrate 107 8 \Umathyscale

103 20 \boxlimitate 107 9 \Umathoperatorsize

103 21 \boxfinalize 107 10 \Umathoverbarkern

103 22 \boxlimit 107 11 \Umathoverbarrule

103 23 \boxstretch 107 12 \Umathoverbarvgap

103 24 \boxshrink 107 13 \Umathunderbarkern

103 25 \boxsubtype 107 14 \Umathunderbarrule

103 26 \boxattribute 107 15 \Umathunderbarvgap

103 27 \boxvadjust 107 16 \Umathradicalkern

103 28 \boxinserts 107 17 \Umathradicalrule

104 0 \parshape 107 18 \Umathradicalvgap

104 0 \orphanlinefactors 107 19 \Umathradicaldegreebefore

104 0 \mathbackwardpenalties 107 20 \Umathradicaldegreeafter

104 0 \interlinepenalties 107 21 \Umathradicaldegreeraise

104 0 \toddlerpenalties 107 22 \Umathradicalextensibleafter

104 0 \orphanpenalties 107 23 \Umathradicalextensiblebefore

104 0 \brokenpenalties 107 24 \Umathstackvgap

104 0 \fitnessclasses 107 25 \Umathstacknumup

104 0 \balancepasses 107 26 \Umathstackdenomdown

104 0 \balanceshape 107 27 \Umathfractionrule

104 0 \balancefinalpenalties 107 28 \Umathfractionnumvgap

104 0 \adjacentdemerits 107 29 \Umathfractionnumup

104 0 \parpasses 107 30 \Umathfractiondenomvgap

104 0 \parpassesexception 107 31 \Umathfractiondenomdown

104 0 \clubpenalties 107 32 \Umathfractiondelsize

104 0 \widowpenalties 107 33 \Umathskewedfractionhgap

104 0 \mathforwardpenalties 107 34 \Umathskewedfractionvgap

104 0 \displaywidowpenalties 107 35 \Umathlimitabovevgap

105 0 \catcode 107 36 \Umathlimitabovebgap

105 1 \lccode 107 37 \Umathlimitabovekern

105 2 \uccode 107 38 \Umathlimitbelowvgap

105 3 \sfcode 107 39 \Umathlimitbelowbgap

105 4 \hccode 107 40 \Umathlimitbelowkern

105 5 \hmcode 107 41 \Umathnolimitsubfactor

105 6 \amcode 107 42 \Umathnolimitsupfactor

105 7 \cccode 107 43 \Umathunderdelimitervgap

105 8 \mathcode 107 44 \Umathunderdelimiterbgap

105 9 \Umathcode 107 45 \Umathoverdelimitervgap

105 10 \delcode 107 46 \Umathoverdelimiterbgap

105 11 \Udelcode 107 47 \Umathsubshiftdrop

106 \Umath... 107 48 \Umathsupshiftdrop

107 0 \Umathquad 107 49 \Umathsubshiftdown

107 1 \Umathexheight 107 50 \Umathsubsupshiftdown

107 2 \Umathaxis 107 51 \Umathsubtopmax

107 3 \Umathaccentbaseheight 107 52 \Umathsupshiftup

107 4 \Umathaccentbasedepth 107 53 \Umathsupbottommin

107 5 \Umathflattenedaccentbaseheight 107 54 \Umathsupsubbottommax

584

107 55 \Umathsubsupvgap 107 104 \Umathoverlayaccentvariant

107 56 \Umathspacebeforescript 107 105 \Umathnumeratorvariant

107 57 \Umathspacebetweenscript 107 106 \Umathdenominatorvariant

107 58 \Umathspaceafterscript 107 107 \Umathsuperscriptvariant

107 59 \Umathconnectoroverlapmin 107 108 \Umathsubscriptvariant

107 60 \Umathsuperscriptsnap 107 109 \Umathprimevariant

107 61 \Umathsubscriptsnap 107 110 \Umathstackvariant

107 62 \Umathextrasupshift 107 8450 \resetmathspacing

107 63 \Umathextrasubshift 107 8451 \setmathspacing

107 64 \Umathextrasuppreshift 107 8452 \letmathspacing

107 65 \Umathextrasubpreshift 107 8453 \copymathspacing

107 66 \Umathprimeraise 107 8454 \setmathatomrule

107 67 \Umathprimeraisecomposed 107 8455 \letmathatomrule

107 68 \Umathprimeshiftup 107 8456 \copymathatomrule

107 69 \Umathprimeshiftdrop 107 8457 \letmathparent

107 70 \Umathprimespaceafter 107 8458 \copymathparent

107 71 \Umathruleheight 107 8459 \setmathprepenalty

107 72 \Umathruledepth 107 8460 \setmathpostpenalty

107 73 \Umathextrasupspace 107 8461 \setmathdisplayprepenalty

107 74 \Umathextrasubspace 107 8462 \setmathdisplaypostpenalty

107 75 \Umathextrasupprespace 107 8463 \setmathignore

107 76 \Umathextrasubprespace 107 8464 \setmathoptions

107 77 \Umathskeweddelimitertolerance 107 8465 \setdefaultmathcodes

107 78 \Umathaccenttopshiftup 108 0 \displaystyle

107 79 \Umathaccentbottomshiftdown 108 1 \crampeddisplaystyle

107 80 \Umathaccenttopovershoot 108 2 \textstyle

107 81 \Umathaccentbottomovershoot 108 3 \crampedtextstyle

107 82 \Umathaccentsuperscriptdrop 108 4 \scriptstyle

107 83 \Umathaccentsuperscriptpercent 108 5 \crampedscriptstyle

107 84 \Umathaccentextendmargin 108 6 \scriptscriptstyle

107 85 \Umathflattenedaccenttopshiftup 108 7 \crampedscriptscriptstyle

107 86 \Umathflattenedaccentbottomshiftdown108 8 \alldisplaystyles

107 87 \Umathdelimiterpercent 108 9 \alltextstyles

107 88 \Umathdelimitershortfall 108 10 \allscriptstyles

107 89 \Umathdelimiterextendmargin 108 11 \allscriptscriptstyles

107 90 \Umathoverlinevariant 108 12 \allmathstyles

107 91 \Umathunderlinevariant 108 13 \allmainstyles

107 92 \Umathoverdelimitervariant 108 14 \allsplitstyles

107 93 \Umathunderdelimitervariant 108 15 \allunsplitstyles

107 94 \Umathdelimiterovervariant 108 16 \alluncrampedstyles

107 95 \Umathdelimiterundervariant 108 17 \allcrampedstyles

107 96 \Umathhextensiblevariant 108 18 \currentlysetmathstyle

107 97 \Umathvextensiblevariant 108 19 \givenmathstyle

107 98 \Umathfractionvariant 108 20 \scaledmathstyle

107 99 \Umathradicalvariant 109 0 \nullfont

107 100 \Umathdegreevariant 110 0 \font

107 101 \Umathaccentvariant 120 0 \associateunit

107 102 \Umathtopaccentvariant 121 0 \batchmode

107 103 \Umathbottomaccentvariant 121 1 \nonstopmode

585

121 2 \scrollmode 125 21 \long

121 3 \errorstopmode 125 22 \outer

122 0 \float 126 0 \glet

122 1 \count 126 1 \let

122 2 \attribute 126 2 \futurelet

122 3 \dimen 126 3 \futuredef

122 4 \skip 126 4 \letcharcode

122 5 \muskip 126 5 \swapcsvalues

122 6 \toks 126 6 \letprotected

123 0 \etoks 126 7 \unletprotected

123 1 \toksapp 126 8 \letfrozen

123 2 \etoksapp 126 9 \unletfrozen

123 3 \tokspre 126 10 \gletcsname

123 4 \etokspre 126 11 \letcsname

123 5 \xtoks 126 12 \glettonothing

123 6 \gtoksapp 126 13 \lettonothing

123 7 \xtoksapp 126 14 \lettolastnamedcs

123 8 \gtokspre 127 0 \chardef

123 9 \xtokspre 127 1 \mathchardef

124 0 \advance 127 2 \Umathchardef

124 1 \advanceby 127 3 \Umathdictdef

124 2 \multiply 127 4 \countdef

124 3 \multiplyby 127 5 \attributedef

124 4 \divide 127 6 \dimendef

124 5 \edivide 127 7 \skipdef

124 6 \rdivide 127 8 \muskipdef

124 7 \divideby 127 9 \toksdef

124 8 \edivideby 127 10 \floatdef

124 9 \rdivideby 127 11 \luadef

125 0 \frozen 127 12 \integerdef

125 1 \permanent 127 13 \dimensiondef

125 2 \immutable 127 14 \gluespecdef

125 3 \mutable 127 15 \mugluespecdef

125 4 \noaligned 127 16 \positdef

125 5 \instance 127 17 \parameterdef

125 6 \untraced 127 18 \fontspecdef

125 7 \global 127 19 \specificationdef

125 8 \tolerant 128 0 \edef

125 9 \protected 128 1 \def

125 10 \overloaded 128 2 \xdef

125 11 \aliased 128 3 \gdef

125 12 \immediate 128 4 \edefcsname

125 13 \deferred 128 5 \defcsname

125 14 \semiprotected 128 6 \xdefcsname

125 15 \enforced 128 7 \gdefcsname

125 17 \inherited 128 8 \cdef

125 18 \constant 128 9 \cdefcsname

125 19 \retained 129 0 \setbox

125 20 \constrained 131 0 \expandafter

586

131 1 \unless 137 15 \ifzerofloat

131 2 \futureexpand 137 16 \ifintervalfloat

131 3 \futureexpandis 137 17 \ifdim

131 4 \futureexpandisap 137 18 \ifabsdim

131 5 \expandafterspaces 137 19 \ifzerodim

131 6 \expandafterpars 137 20 \ifintervaldim

131 7 \expandtoken 137 21 \ifodd

131 8 \expandcstoken 137 22 \ifvmode

131 9 \expand 137 23 \ifhmode

131 10 \expandtoks 137 24 \ifmmode

131 11 \expandactive 137 25 \ifinner

131 12 \semiexpand 137 26 \ifvoid

131 13 \expandedafter 137 27 \ifhbox

131 14 \expandparameter 137 28 \ifvbox

132 0 \noexpand 137 29 \iftok

133 0 \input 137 30 \ifcstok

133 1 \eofinput 137 31 \ifx

133 2 \endinput 137 32 \iftrue

133 3 \scantokens 137 33 \iffalse

133 4 \scantextokens 137 34 \ifchknum

133 5 \tokenized 137 35 \ifchknumber

133 6 \retokenized 137 36 \ifchknumexpr

133 7 \quitloop 137 37 \ifnumval

133 8 \quitloopnow 137 38 \ifcmpnum

136 0 \beginlocalcontrol 137 39 \ifchkdim

136 1 \localcontrol 137 40 \ifchkdimension

136 2 \localcontrolled 137 41 \ifchkdimexpr

136 3 \localcontrolledloop 137 42 \ifdimval

136 4 \expandedloop 137 43 \ifcmpdim

136 5 \unexpandedloop 137 44 \ifcase

136 6 \localcontrolledrepeat 137 45 \ifdefined

136 7 \expandedrepeat 137 46 \ifcsname

136 8 \unexpandedrepeat 137 47 \ifincsname

136 9 \localcontrolledendless 137 48 \iffontchar

136 10 \expandedendless 137 49 \ifcondition

136 11 \unexpandedendless 137 50 \ifflags

137 2 \fi 137 51 \ifempty

137 3 \else 137 52 \ifrelax

137 4 \or 137 53 \ifboolean

137 5 \orelse 137 54 \ifnumexpression

137 6 \orunless 137 55 \ifdimexpression

137 7 \if 137 56 \iflastnamedcs

137 8 \ifcat 137 57 \ifmathparameter

137 9 \ifnum 137 58 \ifmathstyle

137 10 \ifabsnum 137 59 \ifarguments

137 11 \ifzeronum 137 60 \ifparameters

137 12 \ifintervalnum 137 61 \ifparameter

137 13 \iffloat 137 62 \ifhastok

137 14 \ifabsfloat 137 63 \ifhastoks

587

137 64 \ifhasxtoks 139 22 \meaningfull

137 65 \ifhaschar 139 23 \meaningless

137 66 \ifinsert 139 24 \meaningasis

137 67 \ifinalignment 139 25 \meaningful

137 68 \ifcramped 139 26 \meaningles

137 69 \iflist 139 27 \tocharacter

138 0 \csname 139 28 \luaescapestring

138 1 \lastnamedcs 139 29 \fontname

138 2 \begincsname 139 30 \fontspecifiedname

138 3 \futurecsname 139 31 \jobname

139 0 \number 139 32 \formatname

139 1 \tointeger 139 33 \luatexbanner

139 2 \tohexadecimal 139 34 \fontidentifier

139 3 \toscaled 140 0 \the

139 4 \tosparsescaled 140 1 \thewithoutunit

139 5 \todimension 140 2 \detokenize

139 6 \tosparsedimension 140 3 \expandeddetokenize

139 7 \tolimitedfloat 140 4 \protecteddetokenize

139 8 \tomathstyle 140 5 \protectedexpandeddetokenize

139 9 \directlua 140 6 \unexpanded

139 10 \luafunction 141 0 \currentmarks

139 11 \luabytecode 141 1 \topmarks

139 12 \expanded 141 2 \firstmarks

139 13 \semiexpanded 141 3 \botmarks

139 14 \string 141 4 \splitfirstmarks

139 15 \csstring 141 5 \splitbotmarks

139 16 \csactive 141 6 \topmark

139 17 \csnamestring 141 7 \firstmark

139 18 \detokenized 141 8 \botmark

139 19 \detokened 141 9 \splitfirstmark

139 20 \romannumeral 141 10 \splitbotmark

139 21 \meaning

This is a curious one: it returns the number of steps that a hash lookup took:

function token.locatemacro (<t:string> name)

return <t:integer> - steps

end

We used this helper when deciding on a reasonable hash size. Of the many primitives there are a few

that need more than one lookup step:

steps total macros

1 1180 ...

2 14 boxshrink dsplit dump everytab fontcharic fontmathcontrol glet glueshrink if

lower number pagestretch tabskip vfil

3 3 cr etoksapp gluestretch

588

589

590

17 Libraries

17.1 Introduction

The engines has quite some libraries built in of which some are discussed in dedicated chapters. Not

all libraries will be detailed here, for instance, so called optional libraries depend on system libraries

and usage is wrapped in modules because we delegate as much as possible to Lua.

17.2 Third party

There is not much to tell here other than it depends on the Lua symbols being visible and the Lua

version matching. We don't use this in ConTEXt and have a different mechanism instead: optional

libraries.

17.3 Core

The core libraries are those that interface with TEX and MetaPost, these are discussed in dedicated

chapters:

chapter library

Lua lua luac

TEX status tex texio

MetaPost mp

Nodes node

Tokens token

Callbacks callback

Fonts font

Languages language

Libraries library

Some, like node, token and tex provide a lot of functions but most are used in more higher level Con-

TEXt specific functions and interfaces. This means that in the code you will more often font nodes and

tokens being used as well as functions that the macro package adds to the various built-in libraries.

17.4 Auxiliary

17.4.1 Extensions

These are the libraries that are needed to implement various subsystems, like for instance the backend

and image inclusion. Although much can be done in pure Lua for performance reasons helpers make

sense. However, we try to minimize this, which means that for instance the zip library provides what

we need for (de)compressing for instance pdf streams but that unzipping files is done with Lua code

wrapped around the core zip routines. The same is true for png inclusion: all that was done in pure

Lua but a few critical helpers were translated to C.

Some libraries extend existing ones, like for instance file, io and os and string.

591

17.4.2 Extra file helpers

The original lfs module has been adapted a bit to our needs but for practical reasons we kept the

namespace. In LuaMetaTEX we operate in utf8 so for MS Windows system interfaces we convert from

and to Unicode16.

The attributes checker returns a table with details.

function lfs.attributes (<t:string> name)

return <t:table> -- details

end

The table has the following fields:

field type meaning

mode string file directory link other

size integer bytes

modification integer time

access integer time

change integer time

permissions string rwxrwxrwx

nlink integer number of links

If you're not interested in details, then the next calls are more efficient:

function lfs.isdir (<t:string> name) return <t:boolean> end

function lfs.isfile (<t:string> name) return <t:boolean> end

function lfs.iswriteabledir (<t:string> name) return <t:boolean> end

function lfs.iswriteablefile (<t:string> name) return <t:boolean> end

function lfs.isreadabledir (<t:string> name) return <t:boolean> end

function lfs.isreadablefile (<t:string> name) return <t:boolean> end

The current (working) directory is fetch with:

function lfs.currentdir ()

return <t:string> -- directory

end

These three return true is the action was a success:

function lfs.chdir (<t:string> name) return <t:boolean> end

function lfs.mkdir (<t:string> name) return <t:boolean> end

function lfs.rmdir (<t:string> name) return <t:boolean> end

Here the second and third argument are optional:

function lfs.touch (

<t:string> name,

<t:integer> accesstime,

<t:integer> modificationtime

)

return <t:boolean> -- success

592

end

The dir function is a traverser which in addition to the name returns some more properties. Keep in

mind that the traverser loops over a directory and that it doesn't run well when used nested. This is

a side effect of the operating system. It is also the reason why we return some properties because

querying them via attributes would interfere badly. The directory iterator has two variants:

for

<t:string> name,

<t:string> mode

in lfs.dir (

<t:string> name

)

-- actions

end

This one provides more details:

for

<t:string> name,

<t:string> mode,

<t:integer> size,

<t:integer> mtime

in lfs.dir (

<t:string> name,

<t:true>

)

-- actions

end

Here the boolean indicates if we want a symlink (true) or hard link (false).

function lfs.link (

<t:string> source,

<t:string> target,

<t:boolean> symlink

)

return <t:boolean> -- success

end

The next one is sort of redundant but explicit:

function lfs.symlink (

<t:string> source,

<t:string> target,

)

return <t:boolean> -- success

end

Helpers like these are a bit operating system and user permission dependent:

function lfs.setexecutable (<t:string> name)

593

return <t:boolean> -- success

end

function lfs.symlinktarget (<t:string> name)

return <t:string> -- target

end

17.4.3 Reading from a file

Because we load fonts in Lua and because these are binary files we have some helpers that can read

integers of various kind and some more. Originally we did this in pure Lua, which actually didn't

perform that bad but this is of course more efficient.

We have readers for signed and unsigned, little and big endian. All return a (64 bit) Lua integer.

function fio.readcardinal1 (<t:file> handle) return <t:integer> end

function fio.readcardinal2 (<t:file> handle) return <t:integer> end

function fio.readcardinal3 (<t:file> handle) return <t:integer> end

function fio.readcardinal4 (<t:file> handle) return <t:integer> end

function fio.readcardinal1le (<t:file> handle) return <t:integer> end

function fio.readcardinal2le (<t:file> handle) return <t:integer> end

function fio.readcardinal3le (<t:file> handle) return <t:integer> end

function fio.readcardinal4le (<t:file> handle) return <t:integer> end

function fio.readinteger1 (<t:file> handle) return <t:integer> end

function fio.readinteger2 (<t:file> handle) return <t:integer> end

function fio.readinteger3 (<t:file> handle) return <t:integer> end

function fio.readinteger4 (<t:file> handle) return <t:integer> end

function fio.readinteger1le (<t:file> handle) return <t:integer> end

function fio.readinteger2le (<t:file> handle) return <t:integer> end

function fio.readinteger3le (<t:file> handle) return <t:integer> end

function fio.readinteger4le (<t:file> handle) return <t:integer> end

These float readers are rather specific for fonts:

function fio.readfixed2 (<t:file> handle) return <t:number> end

function fio.readfixed4 (<t:file> handle) return <t:number> end

function fio.read2dot14 (<t:file> handle) return <t:number> end

Of these two the first reads a line and the second a string the C way, so ending with a newline and null

character:

function fio.readcline (<t:file> handle) return <t:string> end

function fio.readcstring (<t:file> handle) return <t:string> end

The next set of readers reads multiple integers in one call:

function fio.readbytes (

<t:file> handle

)

594

return <t:integer> -- one or more

end

function fio.readintegertable (

<t:file> handle,

<t:integer> size,

<t:integer> bytes

)

return <t:table>

end

function fio.readcardinaltable (

<t:file> handle,

<t:integer> size,

<t:integer> bytes

)

return <t:table>

end

function fio.readbytetable (

<t:file> handle

)

return <t:table>

end

In case we need a random access the following have to be used:

function fio.setposition (<t:file> handle, <t:integer>) return <t:integer> end

function fio.getposition (<t:file> handle) return <t:integer> end

function fio.skipposition (<t:file> handle, <t:integer>) return <t:integer> end

The library also provide a few writers:

function fio.writecardinal1 (<t:file> handle, <t:integer> value) end

function fio.writecardinal2 (<t:file> handle, <t:integer> value) end

function fio.writecardinal3 (<t:file> handle, <t:integer> value) end

function fio.writecardinal4 (<t:file> handle, <t:integer> value) end

function fio.writecardinal1le (<t:file> handle, <t:integer> value) end

function fio.writecardinal2le (<t:file> handle, <t:integer> value) end

function fio.writecardinal3le (<t:file> handle, <t:integer> value) end

function fio.writecardinal4le (<t:file> handle, <t:integer> value) end

17.4.4 Reading from a string

These readers take a string and position. We could have used a userdata approach but it saves little.

(Nowadays we can more easily store the position with the userdata so maybe some day . . .).

function sio.readcardinal1 (<t:string> s, <t:integer> p) return <t:integer> end

function sio.readcardinal2 (<t:string> s, <t:integer> p) return <t:integer> end

function sio.readcardinal3 (<t:string> s, <t:integer> p) return <t:integer> end

function sio.readcardinal4 (<t:string> s, <t:integer> p) return <t:integer> end

595

function sio.readcardinal1le (<t:string> s, <t:integer> p) return <t:integer> end

function sio.readcardinal2le (<t:string> s, <t:integer> p) return <t:integer> end

function sio.readcardinal3le (<t:string> s, <t:integer> p) return <t:integer> end

function sio.readcardinal4le (<t:string> s, <t:integer> p) return <t:integer> end

function sio.readinteger1 (<t:string> s, <t:integer> p) return <t:integer> end

function sio.readinteger2 (<t:string> s, <t:integer> p) return <t:integer> end

function sio.readinteger3 (<t:string> s, <t:integer> p) return <t:integer> end

function sio.readinteger4 (<t:string> s, <t:integer> p) return <t:integer> end

function sio.readinteger1le (<t:string> s, <t:integer> p) return <t:integer> end

function sio.readinteger2le (<t:string> s, <t:integer> p) return <t:integer> end

function sio.readinteger3le (<t:string> s, <t:integer> p) return <t:integer> end

function sio.readinteger4le (<t:string> s, <t:integer> p) return <t:integer> end

Here are the (handy for fonts) float readers:

function sio.readfixed2 (<t:string> s, <t:integer> p) return <t:number> end

function sio.readfixed4 (<t:string> s, <t:integer> p) return <t:number> end

function sio.read2dot14 (<t:string> s, <t:integer> p) return <t:number> end

A C line (terminated by a newline) and string (terminated by null) are read by:

function sio.readcline (<t:string> s, <t:integer> p) return <t:string> end

function sio.readcstring (<t:string> s, <t:integer> p) return <t:string> end

function sio.readbytes (

<t:string> str,

<t:integer> pos

)

return <t:integer> -- one or more

end

function sio.readintegertable (

<t:string> str,

<t:integer> pos,

<t:integer> size,

<t:integer> bytes

)

return <t:table>

end

function sio.readcardinaltable (

<t:string> str,

<t:integer> pos,

<t:integer> size,

<t:integer> bytes

)

return <t:table>

end

function sio.readbytetable (

596

<t:string> str,

<t:integer> pos

)

return <t:table>

end

Here are a few straightforward converters:

function sio.tocardinal1 (<t:string>) return <t:integer> end

function sio.tocardinal2 (<t:string>) return <t:integer> end

function sio.tocardinal3 (<t:string>) return <t:integer> end

function sio.tocardinal4 (<t:string>) return <t:integer> end

function sio.tocardinal1le (<t:string>) return <t:integer> end

function sio.tocardinal2le (<t:string>) return <t:integer> end

function sio.tocardinal3le (<t:string>) return <t:integer> end

function sio.tocardinal4le (<t:string>) return <t:integer> end

17.4.5 Extra file helpers

This function gobble characters upto a newline. When characters are gobbled. true is returned when

we end up at a newline or when something is gobbled before the file ends, other wise we get false.

A nil return value indicates a bad handle.

function io.gobble(<t:file>)

return <t:boolean> | <t:nil>

end

Function like type io.open io.popen are patched to support files on MS Windows that use wide Uni-

code.

17.4.6 Extra operating system helpers

The os library has a few extra functions and variables so for complete overview you need to look in

the Lua manual.

We can sleep for the given number of seconds. When the optional units arguments is (for instance)

1000 we assume milliseconds.

function os.sleep (

<t:integer> seconds,

<t:integers> units

)

-- no return values

end

The os.uname function returns a table with specific operating system information acquired at runtime.

The fields in the returned table are: machine, nodename, release, sysname, version.

function os.uname ()

return <t:table>

597

The os.gettimeofday function returns the current ‘Unix time’, but as a float. Keep in mind that there

might be platforms where this function is not available.

function os.gettimeofday ()

return <t:number>

end

When we execute a command the return code is returned. Interpretation is up to the caller.

function os.execute (<t:string>)

return <t:integer> -- return code

end

This one enable interpreting ansi escape sequences in the console. It is only implemented for MS Win

dows. In ConTEXt you can run with --ansi.

function os.enableansi ()

return <t:boolean>

end

This one only returns something useful for MS Windows. One can of course just set your the system

for utf8. It's just a reporter meant for debugging issues.

function os.getcodepage ()

return

<t:integer> oemcodepage,

<t:integer> applicationcodepage

end

The os.setenv function sets a variable in the environment. Passing nil instead of a value string will

remove the variable.

function os.setenv (

<t:string> key,

<t:string> value

)

-- no return values

end

The possible values of os.type are: unix, windows.

local currenttype = os.type

The os.name string gives a more precise indication of the operating system. The possible values are:

bsd, freebsd, generic, gnu, linux, macosx, windows.

local currentname = os.name

On MS Windows the original os.rename, os.remove and os.getenv functions are replaced by variants

that interface to and convert from Unicode16 to utf8.

17.4.7 Extra string helpers

The string library has gotten a couple of extra functions too, some of which are iterators. There are

some Unicode related helpers too. When we started Lua had no utf8 function, now it has a few, but

598

we keep using our own, if only because they were there before. We also add plenty extra functions in

the string name space at the Lua end.

This first function runs over a string and pick sup single characters:

for <t:string> c in string.characters (<t:string> s) do

-- some action

end

\startluacode

for c in string.characters("τεχ") do

context("[%02X]",string.byte(c))

end

\stopluacode

gives: [CF][84][CE][B5][CF][87].

for <t:string> l, <t:string> r in string.characterpairs (<t:string> s) do

-- some action

end

\startluacode

for l, r in string.characterpairs("τεχ") do

context("[%02X %02X]",string.byte(l),string.byte(r))

end

\stopluacode

gives: [CF 84][CE B5][CF 87].

for <t:string> c in string.utfcharacters(<t:string> s) do

-- some action

end

\startluacode

for c in string.utfcharacters("τεχ") do

context("[%s]",c)

end

\stopluacode

gives: [τ][ε][χ].

Instead of getting strings back we can also get integers.

for <t:integer> c in string.bytes (<t:string> s) do

-- some action

end

\startluacode

for b in string.bytes("τεχ") do

context("[%02X]",b)

end

\stopluacode

gives: [CF][84][CE][B5][CF][87].

599

for <t:integer> l, <t:integer> r in string.bytepairs (<t:string> s) do

-- some action

end

\startluacode

for l, r in string.bytepairs("τεχ") do

context("[%02X %02X]",l,r)

end

\stopluacode

gives: [CF 84][CE B5][CF 87].

for <t:integer> u in string.utfvalues(<t:string> s) do

-- some action

end

\startluacode

for c in string.utfvalues("τεχ") do

context("[%U]",c)

end

\stopluacode

gives: [U+003C4][U+003B5][U+003C7].

The bytetable function splits a string in bytes.

function string.bytetable (<s:string> s) do

return <t:table> -- with bytes

end

Here is a line splitter:

function string.linetable (<s:string> s) do

return <t:table> -- with lines

end

This one converts an integer (code point) into an utf string:

function string.utfcharacter (<t:string> s)

return <t:string>

end

We also have a variant that takes a table. The table can have integers, strings, and subtables.

function string.utfcharacter (<t:table> s)

return <t:string>

end

This an utf8 variant of string.byte and it returns the code points of the split on the stack.

function string.utfvalue (<t:string> s)

return <t:integer> -- zero or more

end

600

Instead of a list on the stack you can get a table:

function string.utfvaluetable (<t:string> s)

return <t:table> -- indexed

end

The name says it all:

function string.utflength (<tr:string> s)

return <t:integer>

end

Here we split a string in characters that are collected in an indexed table:

function string.utfcharactertable (<t:string> s)

return <t:table> -- indexed

end

In ConTEXt we mostly use string.formatters which is often more efficient then string.format and

also has additional formatting options, one being for instance N which is like f but strips trailing zero

and returns efficient zeros and ones. Here is a similar low level formatter:

function string.f6 (<t:number> n)

return <t:string>

end

function string.f6 (<t:number> n, <t:string> f)

return <t:string>

end

In the first case it returns a string with at most 6 digits while the second one uses given format but

tail strips the result.

function string.tounicode16 (<t:integer> code) return <t:string> end

function string.toutf8 (<t:table> codes) return <t:string> end

-------- string.toutf16 (<t:table> codes) return <t:string> end

function string.toutf32 (<t:table> codes) return <t:string> end

The next one has quite some variation in calling:

function string.utf16toutf8 (<t:string> str, <t:true>)

return <t:string> -- big endian

end

function string.utf16toutf8 (<t:string> str, <t:false>)

return <t:string> -- little endian

end

function string.utf16toutf8 (<t:string> str, <t:nil>, <t:true>)

return <t:string> -- check bom, default to big endian

end

function string.utf16toutf8 (<t:string> str, <t:nil>, <t:false>)

601

return <t:string> end -- check bom, default to little endian

end

function string.utf16toutf8 (<t:string> str, <t:nil>, <t:nil>)

return <t:string> end -- check bom, default to little endian

end

The next packer is used for creating bitmaps:

function string.packrowscolumns (<t:table> data)

return <t:string>

end

For example:

\startluacode

local t = {

{ 65, 66, 67 },

{ 68, 69, 70 },

}

context(string.packrowscolumns(t))

\stopluacode

gives: ABCDEF

While:

\startluacode

local t = {

{ { 114, 103, 98 }, { 114, 103, 98 } },

{ { 114, 103, 98 }, { 114, 103, 98 } },

}

context(string.packrowscolumns(t))

\stopluacode

gives: rgbrgbrgbrgb

A string with hexadecimals can be converted with the following. Spaces are ignored. We use this for

instance in the MetaPost potrace interface to permits nice input.

function string.hextocharacters (<t:string> data)

return <t:string>

end

So:

\startluacode

local t = [[

414243 44 4546 47

414243 44 4546 47

]]

context(string.hextocharacters(t))

602

\stopluacode

gives: ABCDEFGABCDEFG

These take strings and return integers:

function string.octtointeger (<t:string> octstr) return <t:integer> end

function string.dectointeger (<t:string> decstr) return <t:integer> end

function string.hextointeger (<t:string> hexstr) return <t:integer> end

function string.chrtointeger (<t:string> chrstr) return <t:integer> end

17.4.8 Extra table helpers

This returns the keys of the given table:

function table.getkeys (< t:table>)

return <t:table>

end

17.4.9 Byte encoding and decoding

We use some helpers from pplib.

function basexx.encode16 (<t:string> str, <t:boolean> newline)

return <t:string>

end

function basexx.encode64 (<t:string> str, <t:boolean> newline)

return <t:string>

end

function basexx.encode85 (<t:string> str, <t:boolean> newline)

return <t:string>

end

function basexx.decode16 (<t:string> str) return <t:string> end

function basexx.decode64 (<t:string> str) return <t:string> end

function basexx.decode85 (<t:string> str) return <t:string> end

function basexx.encodeRL (<t:string> str) return <t:string> end

function basexx.decodeRL (<t:string> str) return <t:string> end

function basexx.encodeLZW (<t:string> str) return <t:string> end

function basexx.decodeLZW (<t:string> str) return <t:string> end

The last two functions accept an optional bitset with coder flags that we leave for the user to ponder

about. The newline directive in the first three is optional.

17.4.10 png decoding

These function started out as pure Lua functions (extrapolated from the descriptions in the standard)

but eventually became library helpers. It is worth noticing that pdf supports jpeg directly so there we

603

can just use Lua to interpret the file and pass relevant data. Support for png is actually just support

for png compression, so there we need to do more work and filter the content:

function decode.applyfilter (

<t:string> data,

<t:integer> nx,

<t:integer> ny,

<t:integer> slice

)

return <t:string>

end

We also need to split off the mask as ie becomes a separate object:

function decode.splitmask (

<t:string> data,

<t:integer> nx,

<t:integer> ny,

<t:integer> bpp,

<t:integer> bytes

)

return

<t:string>, -- bitmap

<t:string> -- mask

end

If present we have to deinterlace:

function decode.interlace (

<t:string> data,

<t:integer> nx,

<t:integer> ny,

<t:integer> slice,

<t:integer> pass

)

return <t:string>

end

And maybe expand compressed:

function decode.expand (

<t:string> data,

<t:integer> nx,

<t:integer> ny,

<t:integer> parts,

<t:integer> xline,

<t:integer> factor

)

return <t:string>

end

These are just helpers that permit integration in the ConTEXt graphic ecosystem (including MetaPost):

604

function decode.tocmyk (<t:string data)

return <t:string>

end

For usage see the ConTEXt sources.

function decode.tomask (

<t:string> content,

<t:string> mapping,

<t:integer> xsize,

<t:integer> ysize,

<t:integer> colordepth

)

return <t:string>

end

There are to variants:

function decode.makemask (

<t:string> content,

<t:integer> mapping

)

return <t:string>

end

function decode.makemask (

<t:string> content,

<t:table> mapping

)

return <t:string>

end

17.4.11 MD5 hashing

In the meantime we use some helpers from pplib because we have that anyway. These are useful

when we need a reasonable unique hash of limited length:

function md5.sum (<t:string>) return <t:string> end

function md5.hex (<t:string>) return <t:string> end

function md5.HEX (<t:string>) return <t:string> end

Using a hexadecimal representation of the 16 byte calculated checksum is less sensitive for escaping.

This:

\startluacode

context.type(md5.HEX("normally this is unique enough"))

\stopluacode

gives: 3C1F10E596B1D1972CF5D1078796C97D.

605

17.4.12 SHA2 hashing

Because pplib comes with some SHA2 support we can borrow its helpers instead of the Lua code we

used before (which was anyway fun to write).

function sha2.digest256 (<t:string> data) return <t:string> end

function sha2.digest384 (<t:string> data) return <t:string> end

function sha2.digest512 (<t:string> data) return <t:string> end

function sha2.sum256 (<t:string> data) return <t:string> end

function sha2.sum384 (<t:string> data) return <t:string> end

function sha2.sum512 (<t:string> data) return <t:string> end

function sha2.hex256 (<t:string> data) return <t:string> end

function sha2.hex384 (<t:string> data) return <t:string> end

function sha2.hex512 (<t:string> data) return <t:string> end

function sha2.HEX256 (<t:string> data) return <t:string> end

function sha2.HEX384 (<t:string> data) return <t:string> end

function sha2.HEX512 (<t:string> data) return <t:string> end

The number refers to bytes, so with 256 we get a 32 byte hash that we show in hexadecimal because

that is less sensitive for escaping:

\startluacode

context.type(sha2.HEX256("normally this is unique enough"))

\stopluacode

gives: D1F1E826197E80BB3860BA279C2D46652C37D4D56B5B7CFD7881450FCF0161F4.

17.4.13 AES encryption

In the next encryption functions the key should be 16, 24 or 32 bytes long.

function aes.encode (

<t:string> data,

<t:string> key

)

return <t:string>

end

function aes.decode (

<t:string> data,

<t:string> key

)

return <t:string>

end

This returns a string. The default length is 16; the optional length is limited to 32.

function aes.random (<t:integer> length)

return <t:string>

end

Here is an example:

606

\startluacode

context.type (basexx.encode16 (aes.encode (

"normally this is unique enough",

"The key of live!"

)))

\stopluacode

This gives: 6A19333F6D2D25B4FF47C5B5631D825696454361601673C1ADFFE7161C7F00C3, where we

hexed the result because it is unlikely to be valid utf8.

17.4.14 ZIP (de)compression

We provide the minimum needed to support compression in the backend but even this limited set

makes it possible to implement a zip file compression utility which is indeed what we do in ConTEXt.

We use minizip as codebase, without the zip utility code. The meaning and application of the various

arguments can be found (and are better explained) on the internet.

function xzip.compress (

<t:string> data,

<t:integer> compresslevel,

<t:integer> method,

<t:integer> window,

<t:integer> memory,

<t:integer> strategy

)

return <t:string>

end

function xzip.compresssize (

<t:string> data,

<t:integer> buffersize,

<t:integer> compresslevel,

<t:integer> window

)

return <t:string>

end

function xzip.decompress (

<t:string> data,

<t:integer> window

)

return <t:string>

end

function xzip.decompresssize (

<t:string> data,

<t:integer> targetsize,

<t:integer> window

)

return <t:string>

end

607

function xzip.adler32 (

<t:string> buffer,

<t:integer> checksum

)

return <t:integer>

end

function xzip.crc32 (

<t:string> buffer,

<t:integer> checksum

)

return <t:integer>

end

17.4.15 Potrace

The excellent potrace manual explains everything about this library therefore here we just show the

interface. Possible fields in specification are: bytes, height, negate, nx, ny, swap, value, width

function potrace.new (<t:table> specification)

return <t:userdata> -- instance

end

function potrace.free (<t:userdata> instance)

-- no return values

end

The process is controlled by the specification: negate, optimize, policy, size, threshold, toler

ance, value, where permitted policy values are black, left, majority, minority, random, right,

white.

function potrace.process (<t:userdata> instance, <t:table> specification)

return <t:boolean> -- success

end

Results are collected in a table that we can feed into MetaPost, The table has subtables per traced

shape and these contain indexed tables with two (pair) or six (curve) entries. There is a boolean sign

field and an integer index field. In the next function only the first argument is mandate.

function potrace.totable (

<t:userdata> instance,

<t:boolean> debug,

<t:integer> first,

<t:integer> last

)

return <t:table>

end

608

17.4.16 Sparse hashes

The sparse library is just there because we use similar code to store all these character related codes

that way (\lccode) and such). The entries can be 1 (0xFF), 2 (0xFFFF) or 4 (0xFFFFFFFF) bytes wide.

When 0 is used as width then nibbles (0xF) are assumed.

function sparse.new (

<t:integer> bytes,

<t:integer> default

)

return <t:userdata>

end

You set a value by index. Optionally there can be the "global" keyword before the second argument.

function sparse.set (

<t:userdata> instance,

<t:integer> index,

<t:integer> value

)

return <t:integer>

end

We get back integers as that is what we store:

function sparse.get (<t:userdata> instance) return <t:integer> end

function sparse.min (<t:userdata> instance) return <t:integer> end

function sparse.max (<t:userdata> instance) return <t:integer> end

The range is fetched with:

function sparse.range (<t:userdata> instance)

return

<t:integer>, -- min

<t:integer> -- max

end

We can iterate over the hash:

for

<t:integer> index,

<t:integer> value

in sparse.traverse (

<t:userdata> instance

) do

-- actions

end

This is a somewhat strange one but it permits packing all values in a string. It's another way to create

bitmaps.

function sparse.concat (

<t:userdata> instance

609

<t:integer> min,

<t:integer> max,

<t:integer> how -- 0=byte, 1=lsb 2=msb

)

return <t:string>

end

Setting values obeys grouping in TEX, but we can restore any time:

function sparse.restore (<t:userdata> instance)

-- nothing to return

end

We can also wipe all values:

function sparse.wipe (<t:userdata> instance)

-- nothing to return

end

17.4.17 Posits

We implement posits as userdata . We use the library from the posit team, although it is not complete

so we might roll out our own variant (as we need less anyway). The advance of userdata is that we

can use the binary and relation operators.

Here are the housekeeping functions. Some are more tolerant with respect to arguments, take the

allocator:

function posit.new () return <t:posit> end

function posit.new (<t:string> s) return <t:posit> end

function posit.new (<t:number> n) return <t:posit> end

When a posit is expected a number or string is also accepted which is then converted to a posit.

function posit.copy (<t:posit> p) return <t:posit> end

function posit.tostring (<t:posit> p) return <t:string> end

function posit.tonumber (<t:posit> p) return <t:number> end

function posit.integer (<t:posit> p) return <t:integer end

function posit.rounded (<t:posit> p) return <t:integer> end

function posit.toposit (<t:number> n) return <t:posit> end

function posit.fromposit (<t:posit> p) return <t:number> end

function posit.NaN (<t:posit> p) return <t:boolean> end

function posit.NaR (<t:posit> p) return <t:boolean> end

Here are the logical operators:

function posit.bor (<t:posit> p1, <t:posit> p2) return <t:posit> end

function posit.bxor (<t:posit> p1, <t:posit> p2) return <t:posit> end

function posit.band (<t:posit> p1, <t:posit> p2) return <t:posit> end

Ans shifters:

610

function posit.shift (<t:posit> p1, <t:integer> n) return <t:posit> end

function posit.rotate (<t:posit> p, <t:integer> n) return <t:posit> end

There is a limited repertoire of math functions (basically what we needed for MetaPost):

function posit.abs (<t:posit> p) return <t:posit> end

function posit.conj (<t:posit> p) return <t:posit> end

function posit.acos (<t:posit> p) return <t:posit> end

function posit.asin (<t:posit> p) return <t:posit> end

function posit.atan (<t:posit> p) return <t:posit> end

function posit.ceil (<t:posit> p) return <t:posit> end

function posit.cos (<t:posit> p) return <t:posit> end

function posit.exp (<t:posit> p) return <t:posit> end

function posit.exp2 (<t:posit> p) return <t:posit> end

function posit.floor (<t:posit> p) return <t:posit> end

function posit.log (<t:posit> p) return <t:posit> end

function posit.log10 (<t:posit> p) return <t:posit> end

function posit.log1p (<t:posit> p) return <t:posit> end

function posit.log2 (<t:posit> p) return <t:posit> end

function posit.logb (<t:posit> p) return <t:posit> end

function posit.round (<t:posit> p) return <t:posit> end

function posit.sin (<t:posit> p) return <t:posit> end

function posit.sqrt (<t:posit> p) return <t:posit> end

function posit.tan (<t:posit> p) return <t:posit> end

function posit.modf (<t:posit> p)

return

<t:posit>,

<t:posit>

end

function posit.min (<t:posit> p1, <t:posit> p2) return <t:posit> end

function posit.max (<t:posit> p1, <t:posit> p2) return <t:posit> end

function posit.pow (<t:posit> p1, <t:posit> p2) return <t:posit> end

17.4.18 Complex numbers

function xcomplex.new ()

return <t:complex>

end

function xcomplex.new (

<t:number> re,

<t:number> im

)

return <t:complex>

end

function xcomplex.tostring (<t:complex> z)

return <t:string>

end

611

function xcomplex.topair (<t:complex> z)

return

<t:number>, -- re

<t:number> -- im

end

There is a bunch of functions that take a complex number:

function xcomplex.abs (<t:complex> z) return <t:complex> end

function xcomplex.arg (<t:complex> z) return <t:complex> end

function xcomplex.imag (<t:complex> z) return <t:complex> end

function xcomplex.real (<t:complex> z) return <t:complex> end

function xcomplex.onj (<t:complex> z) return <t:complex> end

function xcomplex.proj (<t:complex> z) return <t:complex> end

function xcomplex.exp (<t:complex> z) return <t:complex> end

function xcomplex.log (<t:complex> z) return <t:complex> end

function xcomplex.sqrt (<t:complex> z) return <t:complex> end

function xcomplex.sin (<t:complex> z) return <t:complex> end

function xcomplex.cos (<t:complex> z) return <t:complex> end

function xcomplex.tan (<t:complex> z) return <t:complex> end

function xcomplex.asin (<t:complex> z) return <t:complex> end

function xcomplex.acos (<t:complex> z) return <t:complex> end

function xcomplex.atan (<t:complex> z) return <t:complex> end

function xcomplex.sinh (<t:complex> z) return <t:complex> end

function xcomplex.cosh (<t:complex> z) return <t:complex> end

function xcomplex.tanh (<t:complex> z) return <t:complex> end

function xcomplex.asinh (<t:complex> z) return <t:complex> end

function xcomplex.acosh (<t:complex> z) return <t:complex> end

function xcomplex.atanh (<t:complex> z) return <t:complex> end

function xcomplex.pow (<t:complex> z1, <t:complex> z2) return <t:complex> end

We added the cerf functions but none can wonder if we should carry that burden around (instead of

just assuming a library to be used).

The complex error function erf(z):

function cerf.erf (<t:complex> z)

return <t:complex>

end

The complex complementary error function erfc(z) = 1 - erf(z):

function cerf.erfc (<t:complex> z)

return <t:complex>

end

The underflow-compensating function erfcx(z) = exp(z^2) erfc(z):

function cerf.erfcx (<t:complex> z)

return <t:complex>

end

612

The imaginary error function erfi(z) = -i erf(iz):

function cerf.erfi (<t:complex> z)

return <t:complex>

end

Dawson's integral D(z) = sqrt(pi)/2 * exp(-z^2) * erfi(z):

function cerf.dawson (<t:complex> z)

return <t:complex>

end

The convolution of a Gaussian and a Lorentzian:

function cerf.voigt (

<t:number> n1,

<t:number> n2,

<t:number> n3

)

return <t:number>

end

The half width at half maximum of the Voigt profile:

function cerf.voigt_hwhm (

<t:number> n1,

<t:number> n2

)

return <t:number>

end

17.4.19 Decimal numbers

Because in MetaPost we support the decimal number system, we also provide this at the TEX end Apart

from the usual support for operators there are some functions available.

function xdecimal.new () return <t:decimal> end

function xdecimal.new (<t:number> n) return <t:decimal> end

function xdecimal.new (<t:string> s) return <t:decimal> end

function xdecimal.copy (<t:decimal> a) return <t:decimal> end

function xdecimal.tostring (<t:decimal> a) return <t:string> end

function xdecimal.tonumber (<t:decimal> a) return <t:number> end

function xdecimal.setprecision (<t:integer> digits)

--nothing to return

end

function xdecimal.getprecision ()

return <t:integer>

end

function xdecimal.bor (<t:decimal> a, <t:decimal> b) return <t:decimal> end

613

function xdecimal.bxor (<t:decimal> a, <t:decimal> b) return <t:decimal> end

function xdecimal.band (<t:decimal> a, <t:decimal> b) return <t:decimal> end

function xdecimal.shift (<t:decimal> a, <t:integer> n) return <t:decimal> end

function xdecimal.rotate (<t:decimal> a, <t:integer> n) return <t:decimal> end

function xdecimal.abs (<t:decimal> a) return <t:decimal> end

function xdecimal.trim (<t:decimal> a) return <t:decimal> end

function xdecimal.conj (<t:decimal> a) return <t:decimal> end

function xdecimal.abs (<t:decimal> a) return <t:decimal> end

function xdecimal.sqrt (<t:decimal> a) return <t:decimal> end

function xdecimal.ln (<t:decimal> a) return <t:decimal> end

function xdecimal.log (<t:decimal> a) return <t:decimal> end

function xdecimal.exp (<t:decimal> a) return <t:decimal> end

function xdecimal.minus (<t:decimal> a) return <t:decimal> end

function xdecimal.plus (<t:decimal> a) return <t:decimal> end

function xdecimal.min (<t:decimal> a, <t:decimal> b) return <t:decimal> end

function xdecimal.max (<t:decimal> a, <t:decimal> b) return <t:decimal> end

function xdecimal.pow (<t:decimal> a, <t:decimal> b) return <t:decimal> end

17.4.20 Math helpers

The xmath library provides function and a few constants:

local infinty = xmath.inf

local notanumber = xmath.nan

local pi = xmath.pi

There are more helpers than the average used needs. We also use these to extend the MetaPost

repertoire.

function xmath.acos (<t:number> a) return <t:number> end

function xmath.acosh (<t:number> a) return <t:number> end

function xmath.asin (<t:number> a) return <t:number> end

function xmath.asinh (<t:number> a) return <t:number> end

function xmath.atan (<t:number> a) return <t:number> end

function xmath.atan (<t:number> a, <t:number> b) return <t:number> end

function xmath.atan2 (<t:number> a) return <t:number> end

function xmath.atan2 (<t:number> a, <t:number> b) return <t:number> end

function xmath.atanh (<t:number> a) return <t:number> end

function xmath.cbrt (<t:number> a) return <t:number> end

function xmath.ceil (<t:number> a) return <t:number> end

function xmath.copysign (<t:number> a, <t:number> b) return <t:number> end

function xmath.cos (<t:number> a) return <t:number> end

function xmath.cosh (<t:number> a) return <t:number> end

function xmath.deg (<t:number> a) return <t:number> end

function xmath.erf (<t:number> a) return <t:number> end

function xmath.erfc (<t:number> a) return <t:number> end

function xmath.exp (<t:number> a) return <t:number> end

function xmath.exp2 (<t:number> a) return <t:number> end

614

function xmath.expm1 (<t:number> a) return <t:number> end

function xmath.fabs (<t:number> a) return <t:number> end

function xmath.fdim (<t:number> a, <t:number> b) return <t:number> end

function xmath.floor (<t:number> a) return <t:number> end

function xmath.fmax (...) return <t:number> end

function xmath.fmin (...) return <t:number> end

function xmath.fmod (<t:number> a, <t:number> b) return <t:number> end

function xmath.frexp (<t:number> a, <t:number> b) return <t:number> end

function xmath.gamma (<t:number> a) return <t:number> end

function xmath.hypot (<t:number> a, <t:number> b) return <t:number> end

function xmath.isfinite (<t:number> a) return <t:number> end

function xmath.isinf (<t:number> a) return <t:number> end

function xmath.isnan (<t:number> a) return <t:number> end

function xmath.isnormal (<t:number> a) return <t:number> end

function xmath.j0 (<t:number> a) return <t:number> end

function xmath.j1 (<t:number> a) return <t:number> end

function xmath.jn (<t:number> a, <t:number> b) return <t:number> end

function xmath.ldexp (<t:number> a, <t:number> b) return <t:number> end

function xmath.lgamma (<t:number> a) return <t:number> end

function xmath.l0 (<t:number> a) return <t:number> end

function xmath.l1 (<t:number> a) return <t:number> end

function xmath.ln (<t:number> a, <t:number> b) return <t:number> end

function xmath.log (<t:number> a [,b]) return <t:number> end

function xmath.log10 (<t:number> a) return <t:number> end

function xmath.log1p (<t:number> a) return <t:number> end

function xmath.log2 (<t:number> a) return <t:number> end

function xmath.logb (<t:number> a) return <t:number> end

function xmath.modf (<t:number> a, <t:number> b) return <t:number> end

function xmath.nearbyint (<t:number> a) return <t:number> end

function xmath.nextafter (<t:number> a, <t:number> b) return <t:number> end

function xmath.pow (<t:number> a, <t:number> b) return <t:number> end

function xmath.rad (<t:number> a) return <t:number> end

function xmath.remainder (<t:number> a, <t:number> b) return <t:number> end

function xmath.remquo (<t:number> a, <t:number> b) return <t:number> end

function xmath.round (<t:number> a) return <t:number> end

function xmath.scalbn (<t:number> a, <t:number> b) return <t:number> end

function xmath.sin (<t:number> a) return <t:number> end

function xmath.sinh (<t:number> a) return <t:number> end

function xmath.sqrt (<t:number> a) return <t:number> end

function xmath.tan (<t:number> a) return <t:number> end

function xmath.tanh (<t:number> a) return <t:number> end

function xmath.tgamma (<t:number> a) return <t:number> end

function xmath.trunc (<t:number> a) return <t:number> end

function xmath.y0 (<t:number> a) return <t:number> end

function xmath.y1 (<t:number> a) return <t:number> end

function xmath.yn (<t:number> a) return <t:number> end

function xmath.fma (

<t:number> a,

<t:number> b,

615

<t:number> c

)

return <t:number>

end

17.5 Optional

17.5.1 Loading

The optional libraries are (indeed) optional. Compilation of LuaMetaTEX doesn't depend on them

being present. Loading (and binding) is delayed. In practice we only see a few being of interest and

used, like zint for barcodes, mysql for database processing and graphicmagick for an occasional

runtime conversion. Some are just there to show the principles and were used to test the interfaces

and loading.

A library can be loaded, and thereby registered in the ‘optional’ namespace, assuming that

--permitloadlib is given with:

function library.load (

<t:string> filename,

<t:string> openname,

)

return

<t:function>, -- target

<t:string> -- foundname

end

but there are no guarantees that it will work.

17.5.2 Management

Todo: something about how optionals are implemented and are supposed to work.

17.5.3 TDS (kpse)

The optional kpse library deals with lookups in the TEX Directory Structure and before it can be used

it has to be initialized:

function optional.kpse.initialize (<t:string> filename)

return <t:boolean>

end

By setting the program name the library knows in what namespace to resolve filenames and variables.

function optional.kpse.set_program_name (

<t:string> binaryname,

<t:string> programname

)

-- no return values

616

end

The main finder has one or more arguments. When the second and later arguments can be a boolean,

string or number. The boolean indicates if the file must exist. A string sets the file type and a number

does the same.

function optional.kpse.find_file(

<t:string> filename,

<t:string> filetype.

<t:boolean> mustexist

)

return <t:string>

end

You can also ask for a list of found files:

function optional.kpse.find_files (

<t:string> userpath,

<t:string> filename

)

return <t:table>

end

These return variables, values and paths:

function optional.kpse.expand_path (<t:string> name) return <t:string> end

function optional.kpse.expand_var (<t:string> name) return <t:string> end

function optional.kpse.expand_braces (<t:string> name) return <t:string> end

function optional.kpse.var_value (<t:string> name) return <t:string> end

If possible this returns the (first found) filename that is readable:

function optional.kpse.readable_file (<t:string> filename)

return <t:string>

end

The list of supported file types can be fetched with:

function optional.kpse.get_file_types ()

return <t:table>

end

17.5.4 Graphics

ghostscript

The ghostscript library has to be initialized:

function optional.ghostscript.initialize (<t:string> filename)

return <t:boolean>

end

617

A conversion is executed with the following command. Here the table is a mixed list of strings and

numbers that represent the otherwise command like arguments.

function optional.ghostscript.execute (<t:table>)

return

<t:boolean>, -- success

<t:string>, -- result

<t:string> -- message

end

graphicsmagick

The graphicsmagick library has to be initialized:

function optional.graphicsmagick.initialize (<t:string> filename)

return <t:boolean>

end

A conversion is executed with the following command.

function optional.graphicsmagick.execute (

{

inputfilename = <t:string>,

outputfilename = <t:string>,

blur = {

radius = <t:number>,

sigma = <t:number>,

},

noise - {

type = <t:integer>,

},

}

)

return <t:boolean>

end

The noise types can be fetched with:

function optional.graphicsmagick.noisetypes ()

return <t:table>

end

imagemagick

The imagemagick library is initialized with:

function optional.imagemagick.initialize (<t:string> filename)

return <t:boolean>

end

After that you can execute convert commands. The options table is a sequence of strings, numbers

and booleans that gets passes, in the same order, but where a boolean becomes one of the strings

true or false.

618

function optional.imagemagick.execute (

{

inputfilename = <t:string>,

outputfilename = <t:string>,

options = <t:table>,

}

)

return <t:boolean>

end

zint

The zint library is initialized with:

function optional.zint.initialize (<t:string> filename)

return <t:boolean>

end

As with the other graphic libraries we execute a command but here we implement a converter a bit

more specific because we want back a result that we can handle in a combination of TEX and MetaPost.

function optional.zint.execute (

{

code = <t:integer>,

text = <t:string>,

option = <t:string>, -- "square"

}

)

return <t:table>

end

We get back a table that has graphic components, where each components table can zero or more

subtables.

result = {

rectangles = {

{ <t:integer> x, <t:integer> y, <t:integer> w, <t:integer> h }, ...

},

hexagons = {

{ <t:integer> x, <t:integer> y, <t:integer> d }, ...

},

circles = {

{ <t:integer> x, <t:integer> y, <t:nteger> d }, ...

},

strings = {

{ <t:integer> x, <t:integer> y, <t:integer> s, <t:string> t }, ...

}

}

619

17.5.5 Compression

lz4

The library is initialized with:

function optional.lz4.initialize ()

return <t:boolean> -- success

end

There are compressors and decompressors. If you want the more efficient decompressor, make sure

to save the size with the compressed stream and pass that when decompressing.

function optional.lz4.compress (

<t:string> data,

<t:integer> acceleration -- default 1

)

return <t:string>

end

function optional.lz4.decompresssize (

<t:string> data,

<t:integer> size

)

return <t:string>

end

These are the frame based variants:

function optional.lz4.framecompress (<t:string> data)

return <t:string>

end

function optional.lz4.framedecompress (return <t:string>)

return <t:string>

end

lzma

The library is initialized with:

function optional.lzma.initialize ()

return <t:boolean> -- success

end

The compressor can take an estimated size which makes it possible to preallocate a buffer.

function optional.lzma.compress (

<t:string> data,

<t:integer> level,

<t:integer> size -- estimated

620

)

return <t:string>

end

The decompressor can be told what the final size is which is more efficient.

function optional.lzma.decompress (

<t:string> data,

<t:integer> size -- estimated

)

return <t:string>

end

lzo

The library is initialized with:

function optional.lzo.initialize ()

return <t:boolean> -- success

end

There is not much to tell about:

function optional.lzo.compress (<t:string> data)

return <t:string>

end

and

function optional.lzo.decompresssize (

<t:string> data,

<t:integer> size

)

return <t:string>

end

zstd

The library is initialized with:

function optional.zstd.initialize ()

return <t:boolean> -- success

end

The compressor:

function optional.zstd.compress (

<t:string> data,

<t:integer> level

)

return <t:string>

end

621

The decompressor:

function optional.zstd.decompress (<t:string> data)

return <t:string>

end

17.5.6 Databases

mysql

We start with the usual initializer:

function optional.mysql.initialize ()

return <t:boolean> -- success

end

Opening the database is done with:

function optional.mysql.open (

<t:string> database,

<t:string> username,

<t:string> password,

<t:string> host,

<t:integer> port -- optional

)

return <t:userdata> -- instance

end

The database is kept ‘open’ but can be closed with:

function optional.mysql.close (<t:userdata> instance)

-- no return values

end

A query is executed with:

function optional.mysql.execute (

<t:userdata> instance,

<t:string> query,

<t:function> callback

)

return <t:boolean> -- success

end

The callback is a Lua function that looks like this:

function callback(nofcolumns,values,fields)

...

end

It gets called for every row of the result. The fields table is only filled the first time, if at all.

622

This interface is rather minimalistic but in ConTEXt we wrap all in a more advanced setup. It's among

the oldest Lua code in the distribution and evolved with the possibilities (client as well as external

libraries) and is quite performing also due to the use of templates, caching, built-in conversions etc.

If there is an error we can fetch the message with:

function optional.mysql.getmessage (<t:userdata> instance)

return <t:string> | <t:nil> -- last error message

end

postgress

This library has the same interface as the mysql interface, so it can be used instead.

sqlite

This library has the same interface as the mysql interface, so it can be used instead. The only function

that differs is the opener:

function optional.sqlite.open (<t:string> filename)

return <t:userdata> -- instance

end

17.5.7 Whatever

cerf

This library is plugged in the xcomplex so there is no need to discuss it here unless we decide to move

it to an optional loaded library, which might happen eventually (depends on need).

curl

The library is initialized with:

function optional.curl.initialize ()

return <t:boolean> -- success

end

The fetcher stays kind of close to how the library wants it so we have no fancy interface. We have pairs

where the first member is an integer indicating the option. The library only has string and integer

options so booleans are effective zeros or ones. A Lua boolean therefore becomes an integer.

function optional.curl.fetch (

{

<t:integer>, <t:string> | <t:integer> | <t:boolean>,

...

}

)

end

623

A url can be (un)escaped:

function optional.curl.escape (<t:string> data)

return <t:string>

end

function optional.curl.unescape (<t:string> data)

return <t:string>

end

The current version of the library:

function optional.curl.getversion ()

return <t:string>

end

hb

This module is mostly there to help Idris Hamid (The Oriental TEX Project develop his fonts in such

away that they work with other libraries (also uniscribe). We need to initialize this library with the

following function. Best have the library in the TEX tree because either more are present or the

operating system updates them. As we don't use this in ConTEXt we're also not sure of things work ok

but we can assume stable interfaces anyway. See the plugin module for more info.

function optional.hb.initialize ()

return <t:boolean> -- success

end

It probably makes sense to check for the version because (in the TEXLive code base) it is one of the

most frequently updated code bases and for TEX stability and predictability (when working on a specific

project) is important. When you initialize

function optional.hb.getversion ()

return <t:string>

end

function optional.hb.getshapers ()

return <t:table> -- strings

end

function optional.hb.loadfont (

<t:integer> id,

<t:string> name

)

return <t:userdata> -- instance

end

A run over characters happens with the next one. You get back a list of tables that specify to be

handled glyphs. The interface is pretty much the same as what Kai Eigner came up with at the time

he wanted to compare the results with the regular font loader, for which the LuaTEX and LuajitTEX) ffi

interfaces were used.

function optional.hb.shapestring (

624

<t:userdata> font,

<t:string> script,

<t:string> language,

<t:string> direction,

<t:table> shapers,

<t:table> features,

<t:string> text

<t:boolean> reverse

<t:integer> utfbits, -- default 8

)

return {

{

<t:integer>, -- codepoint

<t:integer>, -- cluster

<t:integer>, -- xoffset

<t:integer>, -- yoffset

<t:integer>, -- xadvance

<t:integer>, -- uadvance

},

...

}

end

mujs

This is just a fun experiment that permits JavaScript code to be used instead of Lua. It was actually

one of the first optional libraries I played with and as with the other optionals there is a module that

wraps it. The library is initialized with:

function optional.mujs.initialize ()

return <t:boolean> -- success

end

There are a few ‘mandate’ callbacks than need to be implemented:

function optional.mujs.setfindfile (

function (<t:string> name)

return <t:string>

end

)

-- no return values

end

function optional.mujs.setopenfile (

function (<t:string> name)

return <t:integer> id

end

)

-- no return values

end

625

function optional.mujs.setclosefile (

function (<t:integer> id)

-- no return values

end

)

-- no return values

end

function optional.mujs.setreadfile (

function (<t:integer> id)

return <t:string> | <t:nil>

end

)

-- no return values

end

function optional.mujs.setseekfile (

function (<t:integer> id, <t:integer> position)

return <t:integer>

end

)

-- no return values

end

function optional.mujs.setconsole ()

function (<t:string> category, <t:string> message)

-- no return values

end

)

-- no return values

end

The library implements a few JavaScript functions, like the ones printing to TEX, they take an optional

catcodes reference:

texprint (catcodes, ...)

texsprint(catcodes, ...)

and a reporter:

console (category, message)

The next function resets the interpreter:

function optional.mujs.reset ()

-- no return value

end

A snippet of JavaScript can be executed with:

function optional.mujs.execute (<t:string> filename)

-- no return value

626

end

This loads a JavaScript file:

function optional.mujs.dofile (<t:string> filename)

-- no return value

end

openssl

We use this module for some pdf features. Given the frequent updates to the (external) code base,

it's for sure not something one wants in the engine. We use only a small subset of functionality. The

library is initialized with:

function optional.openssl.initialize ()

return <t:boolean> -- success

end

When signing succeeds the first return value is true and possibly there is a string as second return

value. When false is returned the second argument is an error code.

function optional.openssl.sign (

{

certfile = <t:string>,

datafile = <t:string>,

data = <t:string>,

password = <t:string>,

resultfile = <t:string>,

}

)

return

<t:boolean>, -- success

<t:string> | <t:integer> | <t:nil>

end

Verifying needs similar data:

function optional.openssl.verify (

{

certfile - <t:string>,

datafile - <t:string>,

data - <t:string>,

signature- <t:string>,

password - <t:string>,

}

)

return

<t:boolean>, -- success

<t:integer> | <t:nil>

end

This needs no explanation:

627

function optional.openssl.getversion ()

return <t:integer>

end

17.5.8 Foreign

Todo: something about how the foreign interface can be used (inspired by alien). Also see libs-imp-

foreign.mkxl.

