
LMX
TEMPLATES

H
A
N
S
H
A
G
E
N



1

Contents

1 Introduction 1

2 How it works 1

1 Introduction

This manual is not finished yet. The main reason is that what is described here is an after-

noon experiment resulting in a dozen lines of Lua glue code that builds upon an already

existingmechanism. When users like this, I will extend the basic lmx handler to suit the TEX

end better. There will also be also support for cache based and in--document templates.)

The acronym lmx stands for document that are a mix of Lua and xml and is just the three

letters xml reversed. Such documents showed up pretty soon inMkIV while I was exploring

ways to present debugging and error information to users using xml. As a consequence

this is one of the older mechanisms available, although I doubt if users start looking for it

when they start using ConTEXt.

Anyhow, because we also use lmx for populating web pages, at some point I wondered

if using the same approach for TEX files made sense. I’m still not sure about it but who

knows where this ends up. Currently code is shared but in the future we might end up

with a variant that adds some more flexibility.

2 How it works

First of all, using this mechanism involves yet another kind of mk, so now we have:

mkii The old version of ConTEXt, using pdfTEX,XƎTEX, etc.

mkiv The new version of ConTEXt, using LuaTEX.

mkvi Similar to MkIV but with named macro parameters.

mkix A MkIV file mixed with Lua wrapped in xml processing instructions.

mkxi Similar to MkIX but with named macro parameters.

The nice thing about sticking to wrapping in angle brackets is that it plays nice with syntax

highlighting. Before we show an example of such a mix, we first point out that loading (and

thereby conversion) happens automatically. A mkix or mkxi file is just a regular ConTEXt

file. In the test suite there is a demo file that can be included like this:

\input lmxlike-001.mkxi

This file is loaded and converted on the fly. No caching takes place, but in due time we can

use the cache built into the lmx handlers if needed. The template itself can be fed with

variables in the document namespace:

\starttext



2

\startluacode

document.variables.text = "set"

\stopluacode

\input lmxlike-001.mkxi

\stoptext

Instead of a special suffix, you can also force conversion with the macros directive:

% macros=mkix

Part of the mentioned looks as follows:

\bTABLE

<?lua for i=1,40 do ?>

\bTR

<?lua for j=1,5 do ?>

\bTD

cell (<?lua inject(i) ?>,<?lua inject(j)?>)

is <?lua inject(variables.text or "unset") ?>

\eTD

<?lua end ?>

\eTR

<?lua end ?>

\eTABLE

The <?lua ... ?> command is conceptually different from (say) \ctxlua in the sense that

the later executes some Lua code at that spot, while in a template a Lua function is con-

structed out of the whole that gets executed. In fact, we use Lua to construct an input

file.

For the moment we only mention the predefined inject command. There are some more

but they make more sense for xml and html and in due time this will be decoupled so that

we can have dedicated helpers. Even the xml and html part is somewhat in flux.

The previous example can of course also be done differently. It’s a matter of taste and

usage what method gets used:

\startluacode

context.bTABLE()

for i=1,40 do

context.bTR()

for j=1,5 do

context.bTD()

context("cell (%s,%s) is %s",i,j,document.variables.text or "unset")

context.eTD()

end



3

context.eTR()

end

context.eTABLE()

\stopluacode

The difference between a MkIX and MkXI file is the same as between a MkIV and MkVI

file: the way macros can be defined:

\def\testmacro#one#two{[#one,#two]}

\testmacro{1}{2}

\testmacro{one}{two}

\testmacro{second}{first}

In practice one will seldom need macro definitions in a template file but the possibility is

provided.

Colofon

author Hans Hagen, PRAGMA ADE, Hasselt NL

version March 22, 2013

website www.pragma-ade.nl – www.contextgarden.net

copyright
c b a n


