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Abstract

The statistical measurement of agreement—the most commonly used form of which is inter-coder
agreement (also called inter-rater reliability), i.e., consistency of scoring among two or more coders
for the same units of analysis—is important in a number of fields, e.g., content analysis, education,
computational linguistics, sports. We propose Sklar’s Omega, a Gaussian copula-based framework
for measuring not only inter-coder agreement but also intra-coder agreement, inter-method agree-
ment, and agreement relative to a gold standard. We demonstrate the efficacy and advantages of our
approach by applying both Sklar’s Omega and Krippendorff’s Alpha (a well-established nonparamet-
ric agreement coefficient) to simulated data, to nominal data previously analyzed by Krippendorff,
and to continuous data from an imaging study of hip cartilage in femoroacetabular impingement.
Application of our proposed methodology is supported by our open-source R package, sklarsomega,
which is available for download from the Comprehensive R Archive Network. The package per-
mits users to apply the Omega methodology to nominal scores, ordinal scores, percentages, counts,
amounts (i.e., non-negative real numbers), and balances (i.e., any real number); and can accommo-
date any number of units, any number of coders, and missingness. Classical inference is available
for all levels of measurement while Bayesian inference is available for continuous outcomes only.

Keywords: agreement coefficient, Bayesian, biomedical imaging, composite likelihood, distributional
transform, femoroacetabular impingement, Gaussian copula, Markov chain Monte Carlo

1 Introduction

By ‘agreement’ we mean consistency of scoring by
two or more coders for the same units of analysis.
Inter-coder agreement, which also goes by ‘inter-
rater reliability’ and various other names, is surely
the most commonly measured form of agreement
(see Gwet (2014) for a book-length treatment of
inter-rater reliability), but intra-coder agreement,
inter-method agreement (i.e., consistency of scor-
ing among two or more scoring systems), and/or
agreement with a gold standard may be of interest
in some contexts.

In 2007, Hayes and Krippendorff put forth
Krippendorff’s α as a standard measure of agree-
ment. Although Krippendorff’s α is intuitive,
flexible, and subsumes a number of other coef-
ficients of agreement, we argue that α can be
improved upon in a number of ways. To that end,
we develop a parametric alternative (α is nonpara-
metric). In keeping with the naming convention
that is evident in the literature on agreement
(e.g., Spearman’s ρ (1904), Cohen’s κ (1960),
Scott’s π (1955)), we call our approach Sklar’s ω
(after Sklar’s theorem (1959), which establishes
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the theoretical basis for the application of copu-
las). Sklar’s ω improves upon Krippendorff’s α in
(at least) the following ways. Sklar’s ω

• permits practitioners to simultaneously assess
intra-coder agreement, inter-coder agreement,
agreement with a gold standard, and, in the con-
text of multiple scoring methods, inter-method
agreement;

• identifies the above mentioned types of agree-
ment with intuitive, well-defined population
parameters;

• can accommodate any number of coders, any
number of methods, any number of replications
(per coder and/or per method), and missing
values;

• allows practitioners to use regression analysis to
reveal important predictors of agreement (e.g.,
coder experience level, or time effects such as
learning and fatigue);

• provides complete inference, i.e., point esti-
mation, interval estimation, diagnostics, model
selection; and

• performs more robustly in the presence of
unusual coders, units, or scores.

The rest of this article is organized as fol-
lows. In Section 2 we cover essential preliminaries.
In Section 3 we specify the flexible, fully para-
metric statistical model upon which Sklar’s ω is
based. In Section 4 we describe four approaches
to frequentist inference for ω. In Section 5 we
develop Bayesian inference for continuous scores.
In Section 6 we use an extensive simulation study
to assess the performance of Sklar’s ω relative
to Krippendorff’s α. In Sections 7.1 and 7.2 we
apply both Sklar’s ω and Krippendorff’s α to
nominal data previously considered by Krippen-
dorff and to continuous data from an imaging
study of cartilage in the context of femoroacetab-
ular impingement, a deformity of the human hip
joint. Finally, in Section 8 we point out potential
limitations of our methodology, and posit direc-
tions for future research. In an appendix we briefly
describe our open-source R (Ihaka and Gentleman,
1996) package, sklarsomega, which is available
for download from the Comprehensive R Archive
Network (R Core Team, 2021).

2 Preliminaries

In this section we briefly review the literature
on agreement coefficients, compare and contrast
Sklar’s ω and Krippendorff’s α, provide a well-
established scale according to which we interpret
values of ω and α, and describe the level-of-
measurement typology employed in this article
and supported by our R package.

2.1 Measuring agreement

An inter-coder agreement coefficient—which takes
a value in the unit interval, with 0 indicating no
agreement and 1 indicating perfect agreement—
is a statistical measure of the extent to which
two or more coders agree regarding the same
units of analysis. The agreement problem has a
long history and is important in many fields of
inquiry, and numerous agreement statistics have
been proposed.

Scott (1955) proposed the π coefficient for
measuring agreement between two coders. Cohen
(1960) criticized π and proposed the κ coefficient,
which is still widely used despite its well-known
shortcomings (Feinstein and Cicchetti, 1990; Cic-
chetti and Feinstein, 1990). Other oft-used mea-
sures of agreement are Gwet’s AC1 (Gwet, 2008)
and Krippendorff’s α (Hayes and Krippendorff,
2007), the latter of which is a contrast object for
the ω coefficient developed in this article. For more
comprehensive reviews of the literature on agree-
ment, we refer the interested reader to the article
by Banerjee et al. (1999), the article by Artstein
and Poesio (2008), and the book by Gwet (2014).

2.2 Sklar’s ω and Krippendorff’s α

We propose Sklar’s ω as an alternative to Krip-
pendorff’s α. Although Krippendorff’s α is non-
parametric, the method finds its genesis in a fully
parametric setting, namely, the one-way mixed-
effects ANOVA model, wherein agreement is mod-
eled as positive intraclass (Pearson) correlation.
Indeed, Krippendorff’s α is the intraclass corre-
lation coefficient (restricted to the unit interval)
for scores that conform to the one-way mixed-
effects ANOVA model. And the more general,
nonparametric formulation of Krippendorff’s α
can then be obtained by dropping the assumption
of Gaussianity and replacing squared Euclidean
distance with an abstract distance function. We
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refer the curious reader to a recent article by
Hughes (2021a), who carefully develops Krippen-
dorff’s α from first principles and situates α
among statistical procedures.

Sklar’s ω likewise generalizes the one-way
mixed-effects ANOVA model, but ω does so in
a fully parametric fashion. Specifically, Sklar’s ω
models agreement as positive within-unit correla-
tion/association, pairing a Gaussian copula for the
joint distribution with an appropriate marginal
distribution for the scores. We describe the Sklar’s
ω model in detail in Section 3.

2.3 Interpreting values of an

agreement coefficient

Although our understanding of the agreement
problem aligns with that of Krippendorff’s α and
other related measures, we adopt a subtler inter-
pretation of the results. According to Krippendorff
(2012), social scientists often feel justified in rely-
ing on data for which agreement is at or above
0.8, drawing tentative conclusions from data for
which agreement is at or above 2/3 but less than
0.8, and discarding data for which agreement is
less than 2/3. We use the agreement scale given
in Table 1 instead (Landis and Koch, 1977), and
suggest—as do Krippendorff and others (Artstein
and Poesio, 2008)—that an appropriate reliability
threshold may be context dependent.

Table 1 Guidelines for interpreting values of an
agreement coefficient.

Range of Agreement Interpretation

ω ≤ 0.2 Slight Agreement
0.2 < ω ≤ 0.4 Fair Agreement
0.4 < ω ≤ 0.6 Moderate Agreement
0.6 < ω ≤ 0.8 Substantial Agreement

ω > 0.8 Near-Perfect Agreement

2.4 The Mosteller–Tukey typology

It is important to note that we employ the
Mosteller–Tukey level-of-measurement typology
(Mosteller and Tukey, 1977) in this article and
in R package sklarsomega. Specifically, we sup-
port nominal scores, ordinal scores, percentages,
counts, amounts (i.e., non-negative real numbers),
and balances (i.e., any real number). These levels
of measurement map quite naturally to marginal

distributions for Sklar’s ω. The mapping is given
in Table 2. The table also defines our notation
for the distributions. Additionally, we will need to
refer to the chi-squared, lognormal, multinormal,
and uniform distributions. We denote these dis-
tributions, respectively, as χ2

q, Lognormal(µ, σ),
Normal(µ,Σ), and Uniform(a, b).

Table 2 Mapping between levels of measurement and
marginal distributions for Sklar’s ω. The second column
also defines our notation for these distributions.

Level Distribution

nominal, ordinal Categorical(p)

percentage
Beta(α, β)
Kumaraswamy(a, b)

count
Poisson(λ)
NegativeBinomial(µ, r)

amount Gamma(α, β)

balance
Normal(µ, σ)
Laplace(µ, σ)
T(ν, µ) with noncentrality

Alternative typologies exist—see, e.g., Stevens
(1946) and Chrisman (1998)—but are less well
suited for use with Sklar’s ω. In any case, the mat-
ter of typologies is still debated, and no typology
appears to be entirely satisfactory.

3 Our model

In this section we first specify the direct Gaussian
copula model, of which the Sklar’s ω model is a
special case. Then we discuss in more detail the
marginal distributions for Sklar’s ω. We conclude
the section by describing the various task-specific
forms of the copula correlation matrix that are
employed in ω analyses.

3.1 The direct Gaussian copula

model

The statistical model underpinning Sklar’s ω is
a Gaussian copula model (Xue-Kun Song, 2000).
We begin by specifying the model in full general-
ity. Then we consider special cases of the model
that speak to the tasks listed in Section 1 and the
assumptions and levels of measurement presented
in Section 2.
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The stochastic form of the direct—as opposed
to hierarchical (Musgrove et al., 2016; Han and
De Oliveira, 2016; Hughes, 2021b)—Gaussian cop-
ula model is given by

Z = (Z1, . . . , Zn)
′ ∼ Normal(0,Ω)

Ui = Φ(Zi) ∼ Uniform(0, 1)

Yi = F−1
i (Ui) ∼ Fi, (1)

where i = 1, . . . , n; Ω is a correlation matrix; Φ is
the standard Gaussian cdf; Fi is the cdf for the ith
outcome Yi; and F

−1
i is the quantile function for

Fi. Note that U = (U1, . . . , Un)
′ is a realization of

the Gaussian copula, which is to say that the Ui

are marginally standard uniform and exhibit the
Gaussian correlation structure defined byΩ. Since
Ui is standard uniform, applying the inverse prob-
ability integral transform to Ui produces outcome
Yi having the desired marginal distribution Fi.

3.2 Marginal distributions for ω

In the form of Sklar’s ω that most closely resem-
bles Krippendorff’s α, we assume that all of the
outcomes share the same marginal distribution
F . The choice of F is then determined by the
level of measurement. While Krippendorff’s α typ-
ically employs two different metrics for nominal
and ordinal outcomes, we assume the categorical
distribution

pk = P(Y = k) (k = 1, . . . ,K)
∑

k

pk = 1 (2)

for both levels of measurement, where K is the
number of categories. For K = 2, (2) is of course
the Bernoulli distribution.

Note that when the marginal distributions are
discrete (in our case, categorical, Poisson, or neg-
ative binomial), the joint distribution correspond-
ing to (1) is uniquely defined only on the support
of the marginals, and the dependence between a
pair of random variables depends on the marginal
distributions as well as on the copula. Genest and
Neslehova (2007) described the implications of this
and warned that, for discrete data, “modeling and
interpreting dependence through copulas is sub-
ject to caution.” But Genest and Neslehova go on
to say that copula parameters may still be inter-
preted as dependence parameters, and estimation

of copula parameters is often possible using fully
parametric methods. It is precisely such methods
that we recommend in Section 4, and evaluate
through simulation in Section 6.

For amounts, i.e., non-negative real numbers,
we support the gamma distribution. For balances,
i.e., any real number, F can be practically any con-
tinuous distribution supported on the reals. Our
R package supports the Gaussian, Laplace, and
noncentral t distributions. The Laplace and t dis-
tributions are useful for accommodating heavier-
than-Gaussian tails, and the t distribution can
also accommodate asymmetry. Finally, two nat-
ural choices for percentages are the beta and
Kumaraswamy distributions, the two-parameter
versions of which are supported by our package.

Perhaps the reader can envision more “exotic”
possibilities for continuous scores, e.g., mixture
distributions (to handle multimodality or excess
zeros, for example). Some such more complicated
marginal distributions can be accommodated by
first estimating F nonparametrically, and then
estimating the copula parameters in a second
stage. In Section 4 we will provide details regard-
ing this semiparametric approach.

3.3 The copula correlation matrix

Now we turn to the copula correlation matrix Ω,
the form of which is determined by the question(s)
we seek to answer. If we wish to measure only
inter-coder agreement, as is the case for Krippen-
dorff’s α, our copula correlation matrix has a very
simple structure: block diagonal, where the ith
block corresponds to the ith unit (i = 1, . . . , nu)
and has a compound symmetry structure. That is,

Ω = diag(Ωi),

where

Ωi =




c1 c2 . . . cnc

c1 1 ω . . . ω
c2 ω 1 . . . ω
...

...
...

. . .
...

cnc
ω ω . . . 1




for nc coders c1, . . . , cnc .
On the scale of the outcomes, ω’s interpreta-

tion depends on the marginal distribution. If the
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outcomes are Gaussian, ω is the Pearson corre-
lation between Yij and Yij′ (j 6= j′), and so the
outcomes carry exactly the correlation structure
codified in Ω. If the outcomes are non-Gaussian,
the interpretation of ω (still on the scale of the
outcomes) is more complicated. For example, if
the outcomes are Bernoulli, ω is often called
the tetrachoric correlation between those out-
comes. Tetrachoric correlation is constrained by
the marginal distributions. Specifically, the maxi-
mum correlation for two binary random variables
is

min

{√
p1(1− p2)

p2(1− p1)
,

√
p2(1− p1)

p1(1− p2)

}
,

where p1 and p2 are the expectations (Pren-
tice, 1988). More generally, the marginal distribu-
tions impose bounds, called the Fréchet–Hoeffding
bounds, on the achievable correlation (Nelsen,
2006). For most scenarios, the Fréchet–Hoeffding
bounds do not pose a problem for Sklar’s ω
because we typically assume that our outcomes are
identically distributed, in which case the bounds
are −1 and 1. (We do, however, impose our own
lower bound of 0 on ω since we aim to measure
agreement.)

In any case, ω has a uniform and intuitive
interpretation for suitably transformed outcomes,
irrespective of the marginal distribution. Specifi-
cally,

ω = ρ
[
Φ−1{F (Yij)}, Φ−1{F (Yij′)}

]
,

where ρ denotes Pearson’s correlation, Φ−1

denotes the quantile function for the standard nor-
mal distribution, and the second subscripts index
the scores within the ith unit (j, j′ ∈ {1, . . . , nc} :
j 6= j′).

By changing the structure of the blocks Ωi we
can use Sklar’s ω to measure not only inter-coder
agreement but also a number of other types of
agreement. For example, should we wish to mea-
sure agreement with a gold standard, we might
employ

Ωi =




g c1 c2 . . . cnc

g 1 ωg ωg . . . ωg

c1 ωg 1 ωc . . . ωc

c2 ωg ωc 1 . . . ωc

...
...

...
...

. . .
...

cnc
ωg ωc ωc . . . 1



.

In this scheme ωg captures agreement with the
gold standard, and ωc captures inter-coder agree-
ment. We note that large ωg implies large ωc, but
the converse is not necessarily true, i.e., the coders
may agree with one another yet perform poorly
relative to the gold standard.

In a more elaborate form of this scenario,
we could include a regression component in an
attempt to identify important predictors of agree-
ment with the gold standard. This could be
accomplished by using a cdf to link coder-specific
covariates with ωg. Then the blocks in Ω might
look like

Ωi =




g c1 c2 . . . cnc

g 1 ωg1 ωg2 . . . ωgnc

c1 ωg1 1 ωc . . . ωc

c2 ωg2 ωc 1 . . . ωc

...
...

...
...

. . .
...

cnc
ωgnc

ωc ωc . . . 1



,

where ωgj = H(x′
jβ), H being a cdf, xj being

a vector of covariates for coder j, and β being
regression coefficients.

For our final example we consider a complex
study involving a gold standard, multiple scor-
ing methods, multiple coders, and multiple scores
per coder. In the interest of concision, suppose we
have two methods, two coders per method, two
scores per coder for each method, and gold stan-
dard measurements for the first method. Then Ωi

is given by



























g1 c111 c112 c121 c122 c211 c212 c221 c222

g1 1 ωg1 ωg1 ωg1 ωg1 0 0 0 0

c111 ωg1 1 ω11• ω1•• ω1•• ω••• ω••• ω••• ω•••

c112 ωg1 ω11• 1 ω1•• ω1•• ω••• ω••• ω••• ω•••

c121 ωg1 ω1•• ω1•• 1 ω12• ω••• ω••• ω••• ω•••

c122 ωg1 ω1•• ω1•• ω12• 1 ω••• ω••• ω••• ω•••

c211 0 ω••• ω••• ω••• ω••• 1 ω21• ω2•• ω2••

c212 0 ω••• ω••• ω••• ω••• ω21• 1 ω2•• ω2••

c221 0 ω••• ω••• ω••• ω••• ω2•• ω2•• 1 ω22•

c222 0 ω••• ω••• ω••• ω••• ω2•• ω2•• ω22• 1



























,

where the subscript mcs denotes score s for coder
c of method m. Thus ωg1 represents agreement
with the gold standard for the first method,
ω11• represents intra-coder agreement for the first
coder of the first method, ω12• represents intra-
coder agreement for the second coder of the first
method, ω1•• represents inter-coder agreement for
the first method, and so on, with ω••• representing
inter-method agreement.

Note that, for a study involving multiple meth-
ods, it may be reasonable to assume a different
marginal distribution for each method. In this



Springer Nature 2021 LATEX template

case, the Fréchet–Hoeffding bounds may be rel-
evant, and, if some marginal distributions are
continuous and some are discrete, maximum like-
lihood inference may be infeasible (see the next
section for details).

4 Approaches to classical
inference for ω

When the response is continuous it is straightfor-
ward to do maximum likelihood (ML) inference
for Sklar’s ω since the likelihood (see (3) below)
is meta-Gaussian. When the marginal distribu-
tion is discrete, maximum likelihood inference is
infeasible because the log-likelihood, having Θ(2n)
terms, is intractable for most datasets. In this
case we recommend the distributional transform
(DT) approximation or composite marginal like-
lihood (CML), depending on the chosen marginal
distribution.

The DT-based approximate likelihood per-
forms very well for Poisson or negative binomial
outcomes, and is even practically exact when
the marginal variance is sufficiently large and
agreement is not too strong (Hughes, 2021b).
When the marginal distribution is categorical,
composite marginal likelihood is indicated since
the DT approach tends to perform poorly for
such data. Specifically, the DT estimator tends to
exhibit substantial bias, even for larger samples,
which leads to unacceptably low coverage rates
for confidence intervals. We demonstrate this by
simulation in Section 6.

4.1 The method of maximum

likelihood for Sklar’s ω

For correlation matrix Ω(ω) having parameters ω
and marginal distribution function F (y | ψ) and
density function f(y | ψ) having parameters ψ,
the log-likelihood of the parameters θ = (ω′,ψ′)′

given observations y is

ℓml(θ | y) = −1

2
log |Ω|

− 1

2
z′(Ω−1 − I)z

+
∑

i

log f(yi), (3)

where zi = Φ−1{F (yi)} and I denotes the n × n

identity matrix. We obtain θ̂ml by minimizing
−ℓml. For all three approaches to inference—ML,
DT, CML—we use the optimization algorithm
proposed by Byrd et al. (1995) so that ω, and
perhaps some elements of ψ, can be appropri-
ately constrained. Should the initial attempt at
optimization fail, we revert to the more sta-
ble bounded Hooke–Jeeves algorithm (Varadhan
et al., 2020; Hooke and Jeeves, 1961).

To estimate an asymptotic confidence ellipsoid
for the ML approach we of course use the observed
Fisher information matrix:

{θ : (θ̂ml − θ)′ Îml (θ̂ml − θ) ≤ χ2
1−α,q},

where Îml denotes the observed information, q =
dim(θ), and χ2

1−α,q denotes the 1 − α quantile of
the χ2 distribution with q degrees of freedom.

Optimization of ℓml is insensitive to the start-
ing value for ω, but it can be important to choose
an initial value ψ0 for ψ carefully. For example, if
the assumed marginal family is t, we recommend
ψ0 = (µ0, ν0)

′ = (medn,madn)
′ (Serfling and

Mazumder, 2009), where µ is the noncentrality
parameter, ν is the degrees of freedom, medn is the
sample median, and madn is the sample median
absolute deviation from the median. For the Gaus-
sian and Laplace distributions we use the sample
mean and standard deviation. For the gamma
distribution we recommend ψ0 = (α0, β0)

′, where

α0 = Ȳ 2/S2

β0 = Ȳ /S2,

for sample mean Ȳ and sample variance S2.
Similarly, we provide initial values

α0 = Ȳ

{
Ȳ (1− Ȳ )

S2
− 1

}

β0 = (1− Ȳ )

{
Ȳ (1− Ȳ )

S2
− 1

}

when the marginal distribution is beta.

4.2 The distributional transform

method

When the marginal distribution is discrete, the
log-likelihood does not have the simple form given
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above because zi = Φ−1{F (yi)} is not standard
Gaussian (since F (yi) is not standard uniform if F
has jumps). In this case the true log-likelihood has
on the order of 2n terms and is thus intractable
unless the sample is rather small. For some choices
of marginal distribution an appealing alternative
to the true log-likelihood is an approximation
based on the distributional transform.

It is well known that if Y ∼ F is continu-
ous, F (Y ) has a standard uniform distribution.
But if Y is discrete, F (Y ) tends to be stochas-
tically larger, and F (Y −) = limxրY F (x) tends
to be stochastically smaller, than a standard
uniform random variable. This can be remedied
by stochastically “smoothing” F ’s discontinuities.
This technique goes at least as far back as Fer-
guson (1967), who used it in connection with
hypothesis tests. More recently, the distributional
transform has been applied in a number of other
settings—see, e.g., Rüschendorf (1981), Burgert
and Rüschendorf (2006), and Rüschendorf (2009).

Let W ∼ Uniform(0, 1), and suppose that
Y ∼ F and is independent of W . Then the
distributional transform

G(W,Y ) =WF (Y −) + (1−W )F (Y )

follows a standard uniform distribution, and
F−1{G(W,Y )} follows the same distribution as Y .

Kazianka and Pilz (2010) suggested approxi-
mating G(W,Y ) by replacing it with its expecta-
tion with respect to W :

G(W,Y ) ≈ EWG(W,Y )

= EW {WF (Y −) + (1−W )F (Y )}
= EWWF (Y −) + EW (1−W )F (Y )

= F (Y −)EWW + F (Y )EW (1−W )

=
F (Y −) + F (Y )

2
.

To construct the approximate log-likelihood for
Sklar’s ω, we replace F (yi) in (3) with

F (y−i ) + F (yi)

2
.

If the distribution has integer support, this
becomes

F (yi − 1) + F (yi)

2
.

This approximation seems crude, but it per-
forms well in a wide variety of circumstances
(Kazianka, 2013) and is even practically exact for
some variants of the direct Gaussian copula model
(Hughes, 2021b). Moreover, the DT approach
is, for most marginal distributions, much more
efficient computationally than the composite like-
lihood method described in the next section. For
Sklar’s ω we recommend using the DT approach
for counts.

Since the DT-based objective function is, in
general, misspecified, using Îdt alone usually
leads to optimistic inference. This can be over-
come by using a sandwich estimator (Godambe,
1960) or by doing a bootstrap (Davison and Hink-
ley, 1997). Sandwich estimation is described below
in Section 4.4.

4.3 Composite marginal likelihood

For nominal or ordinal outcomes we recommend
a composite marginal likelihood (Lindsay, 1988;
Varin, 2008) approach to inference. Our objective
function comprises pairwise likelihoods (which
implies the assumption that any two pairs of out-
comes are independent). Specifically, we work with
log composite likelihood

ℓcml(θ | y) =
∑

i∈{1,...,n−1}

j∈{i+1,...,n}

Ωij 6=0

log

{
1∑

j1=0

1∑

j2=0

(−1)kΦΩij (zij1 , zjj2)

}
,

where k = j1 + j2, ΦΩij denotes the cdf for the
bivariate Gaussian distribution with mean zero
and correlation matrix

Ω
ij =

(
1 Ωij

Ωij 1

)
,

z•0 = Φ−1{F (y•)}, and z•1 = Φ−1{F (y• − 1)}.
Since this objective function, too, is misspecified,
bootstrapping or sandwich estimation is neces-
sary.

Note that we provide sensible starting values
for optimization of ℓdt and ℓcml. Specifically, we
supply the sample mean for Poisson scores, the
sample mean and 1 for negative binomial scores,
and empirical probabilities for categorical scores.
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4.4 Sandwich estimation for the DT

and CML procedures

As we mentioned above, the DT and CML objec-
tive functions are misspecified, and so the asymp-
totic covariance matrices of θ̂dt and θ̂cml have
sandwich forms (Godambe, 1960; Geyer, 2013).
Specifically, we have

√
n(θ̂cml − θ) ⇒n Normal{0, Vcml(θ)}
√
n(θ̂dt − θ) ⇒n Normal{0, Vdt(θ)},

where ⇒n denotes convergence in distribution
and V • = I

−1
• (θ)J •(θ)I−1

• (θ). Here I • is the
appropriate sensitivity matrix:

I •(θ) = −E∇2ℓ•(θ | Y ).

An estimate of this matrix can be produced as a
side effect of optimization. And J • is the variance
of the score:

J •(θ) = V∇ℓ•(θ | Y ).

We recommend that J • be estimated using a
parametric bootstrap, i.e, our estimator of J • is

Ĵ •(θ) =
1

nb

nb∑

j=1

∇∇′ℓ•(θ̂• | Y (j)),

where nb is the bootstrap sample size and the Y (j)

are datasets simulated from our model at θ = θ̂•.
This approach performs well for DT-based

inference but tends to lead to inflated standard
errors for the CML method. Consequently, our R
package supports sandwich estimation, as well as
“full” parametric bootstrap inference, for the DT
approach but not for the CML approach. For the
CML approach package sklarsomega supports
bootstrap inference only.

We note that sandwich estimation is consid-
erably more efficient computationally than boot-
strapping because it is much faster to approx-
imate the score using numerical differentiation
(Gilbert and Varadhan, 2019) than to optimize
the objective function. Both bootstrapping and
sandwich estimation can be made even more effi-
cient through embarrassing parallelization, which
is supported by our R package. Running-time
comparisons are provided below in Section 6.

4.5 A two-stage semiparametric

approach for amounts and

balances

For the amount and balance levels of measurement
our R package supports a two-stage semiparamet-
ric method (SMP). In the first stage one estimates
F nonparametrically. The empirical distribution
function F̂n(y) = n−1

∑
i 1{Yi ≤ y} is a natural

choice for our estimator of F , but other sensible
choices exist. For example, one might employ the
Winsorized estimator

F̃n(y) =





ǫn if F̂n(y) < ǫn

F̂n(y) if ǫn ≤ F̂n(y) ≤ 1− ǫn

1− ǫn if F̂n(y) > 1− ǫn,

where ǫn is a truncation parameter (Klaassen
et al., 1997; Liu et al., 2009). A third possibility
is a smoothed empirical distribution function

F̆n(y) =
1

n

∑

i

Kn(y − Yi),

where Kn is a kernel (Fernholz, 1991).
Armed with an estimate of F—F̂n, say—we

compute ẑ, where ẑi = Φ−1{F̂n(yi)}, and optimize

ℓml(ω | ẑ) = −1

2
log |Ω| − 1

2
ẑ
′
Ω

−1ẑ

to obtain ω̂. This approach is advantageous
when the marginal distribution is complicated,
but has the drawback that uncertainty regard-
ing the marginal distribution is not reflected in
the (ML) estimate of ω̂’s variance. This defi-
ciency can be avoided by using a bootstrap sample
{ω̂∗

1, . . . , ω̂
∗
nb
}, the jth element of which can be

generated by (1) simulating U∗
j from the copula

at ω = ω̂; (2) computing a new response Y ∗
j as

Y ∗
ji = F̂−1

n (U∗
ji) (i = 1, . . . , n), where F̂−1

n (p) is
the empirical quantile function; and (3) applying
the estimation procedure to Y ∗

j .
Although this approach may be necessary

when the marginal distribution does not appear
to take a familiar form, two-stage estimation can
have a significant drawback, even for larger sam-
ples. If agreement is high, dependence may be
sufficient to pull the empirical marginal distribu-
tion away from the true marginal distribution.
In such cases, simultaneous estimation of the
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marginal distribution and the copula should per-
form better. Development of such a method is
beyond the scope of this article.

5 Bayesian inference for
continuous scores

Since the Sklar’s ω likelihood is not available
in the case of discrete (i.e., nominal, ordinal, or
count) scores, true Bayesian inference is infeasi-
ble for those levels of measurement. It is possible,
however, to do pseudo-Bayesian inference for dis-
crete scores. This entails using the appropriate
CML or DT-based objective function in place of
the likelihood. Although sound theory supports
this approach (Ribatet et al., 2012), the per-
formance of which was recently investigated for
direct Gaussian copula models by Henn (2021),
package sklarsomega does not support pseudo-
Bayesian inference, for two reasons. First, pseudo-
Bayesian inference requires a curvature correction
because both the CML and the DT-based objec-
tive functions have too large a curvature relative
to the true likelihood; unfortunately, the curva-
ture adjustment is based on a time-consuming
frequentist procedure. Second, we have no reason
to suspect that the (curvature-adjusted) pseudo-
posterior will have (at least approximately) the
same shape as the true posterior.

Package sklarsomega does support Bayesian
inference for continuous scores, however. As we
mentioned above, the package currently supports
beta, gamma, Gaussian, Kumaraswamy, Laplace,
and noncentral t marginal distributions for con-
tinuous outcomes.

The Sklar’s ω posterior is given by

π(θ | y) ∝ L(θ | y)p(θ),

where p(·) denotes a prior distribution and

L(θ | y) =
1

|Ω|1/2
exp[− 1

2z
′{Ω(ω)−1 − I}z]

∏
i f(yi | ψ)

.

In the interest of striking a sensible balance
between flexibility and usability, we do not
permit the user to specify p(θ). Instead, we
assign an independent, noninformative prior to
each element of θ—i.e., p(θ) = p(ω)p(ψ) =
{
∏m

k=1 p(ωk)}p(ψ1)p(ψ2). The prior for ωk (k =

1, . . . ,m) is standard uniform. Each of α, β, σ, ν,
a, and b is given a Gamma(0.01, 0.01) prior distri-
bution. And the prior for µ is Gaussian with mean
zero and standard deviation 1,000.

As for sampling, we use a Gaussian random
walk for each parameter, and transform when
necessary. The user can control the acceptance
rates by adjusting the standard deviations of the
perturbations. Consider parameter α, for exam-
ple. To generate a proposal for α, we begin by
drawing η∗ = η + Normal(0, σ1), where η was
obtained during the previous iteration. Then we
take α∗ = exp(η∗), which of course yields a log-
normal proposal (necessitating the inclusion of the
ratio

Lognormal{α; log(α∗), σ1}
Lognormal{α∗; log(α), σ1}

in the Metropolis–Hastings acceptance probabil-
ity). The proposal standard deviation σ1 can be
set using the syntax control = list(sigma.1

= 0.2), for example. This proposal scheme is
employed for all of the non-negative parameters,
with σ1 the tuning parameter for α, ν, and a; and
σ2 the tuning parameter for β, σ, and b. Again,
these standard deviations can be set straightfor-
wardly in the function call, or they can be omitted,
in which case they default to the value 0.1.

Updates for the µ chain take the form of a
Gaussian random walk: µ∗ = µ+Normal(0, σj),
where j = 1 if the marginal distribution is
Gaussian or Laplace, or j = 2 if the marginal dis-
tribution is T(ν, µ). The acceptance rate can be
modulated via control parameter sigma.1 (for a
Normal or Laplace marginal) or sigma.2 (for
a T marginal).

Although we propose values for the ωk inde-
pendently, we accept or reject those proposals
jointly so that |Ω| and Ω

−1 need not be computed
too frequently. Each proposal begins with a Gaus-
sian random step, η∗k = ηk + Normal(0, σωk

).
Then we apply the logistic function to map into
the unit interval: ω∗

k = exp(η∗k)/{1 + exp(η∗k)}.
This of course requires us to include the Jaco-
bian exp(η∗k)/{1 + exp(η∗k)}2 in the Metropolis–
Hastings acceptance probability. The acceptance
rates can be adjusted by passing a vector
of proposal standard deviations, e.g., control

= list(sigma.omega = c(0.1, 0.1, 0.3)) (in
the case of dim(ω) = 3).
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Since the Markov chain tends to mix well,
between 1,000 and 10,000 samples are usually suf-
ficient for obtaining stable estimates (of posterior
means and of DIC (Spiegelhalter et al., 2002)). We
recommend using the fixed-width method (Flegal
et al., 2008) for determining when to stop sam-
pling. In the fixed-width approach, one chooses
a small positive threshold ǫ and terminates sam-
pling when all estimated coefficients of variation
are smaller than said threshold, where the esti-
mated coefficient of variation for parameter θj is

ĉvj = mcse(θ̂j)/|θ̂j |, with ‘mcse’ denoting Monte
Carlo standard error. That is, sampling termi-
nates when ĉvj < ǫ for all j ∈ {1, . . . , dim(θ)}.
The user can set the threshold value via con-
trol parameter tol, which defaults to 0.1. In
the interest of computational efficiency, the sam-
pler computes Monte Carlo standard errors (using
package mcmcse (Flegal et al., 2021)) infrequently.

6 Application to simulated
data

To investigate the performance of Sklar’s ω, and
ω’s performance relative to Krippendorff’s α, we
applied both methods to simulated outcomes. The
study plan is shown in Table 3. We carried out
a study for each level of measurement, for vari-
ous realistic sample geometries (nu = 15, nc = 3;
nu = 30, nc = 3; and nu = 15, nc = 6), and
for a few consequential values of ω (0.6, 0.7, 0.8,
0.85, 0.9, and 0.95). The chosen sample geome-
tries allow us to reveal changes in performance as
both the number of units nu and the number of
coders nc vary. The values for ω were chosen at
random, but the dependence strength ranges from
substantial to strong, which makes inference chal-
lenging for all of the procedures. The values of the
marginal parameters also pose challenges. Specif-
ically, the marginal distributions for the count,
amount, and percentage levels of measurement are
skewed; the marginal distribution for the balance
level of measurement has heavier-than-Gaussian
tails; and the marginal distribution for the first
scenario has a small number of categories.

As we mentioned earlier, the first scenario
necessitates CML estimation owing to the small
number of categories, and our R package supports
only bootstrap inference for the CML method.
The purpose of the second scenario is to show

that DT-based inference tends to be poor for
categorical data even when the number of cate-
gories is larger. The DT approach performs very
well for counts, however, which are represented
in the third scenario. For the DT approach we
computed both bootstrap intervals and sandwich
intervals. For the fourth, fifth, and sixth scenar-
ios we applied the method of maximum likeli-
hood, and computed both bootstrap intervals and
asymptotic intervals. For the amount and balance
levels of measurement we also investigated the per-
formance of the semiparametric method described
in Section 4.5. For the SMP method only boot-
strap interval estimation is supported. We used a
bootstrap sample size of 1,000 throughout.

We applied Krippendorff’s α—using R package
krippendorffsalpha (Hughes, 2021a)—and our
procedure to each of 500 simulated datasets for
each of the three sample geometries within each
scenario, and so we analyzed 500 · 3 · 6 = 9,000
datasets in total.

It is important to note which distance func-
tions we chose for Krippendorff’s α. For the
nominal/ordinal levels of measurement we used
the discrete metric d(x, y) = 1{x 6= y}. For counts
and amounts we used the ratio metric

d2(x, y) =

(
x− y

x+ y

)2

.

For balances we used squared Euclidean distance:
d2(x, y) = (x − y)2. And for percentages we
employed the bipolar distance function

d2(x, y) =
(x− y)2

(x+ y + 2a)(2b− x− y)

with a = 0 and b = 1. Krippendorff (2013)
informed these choices.

The results are shown in Table 4. We report
the median estimate, the percent bias, the vari-
ance, the mean squared error (MSE), coverage
rates for 95% intervals, and average running times.
When two coverage rates or average running times
appear in a single cell of the table, the first value
is for bootstrapping, the second for asymptotic
inference. All of the intervals for α are bootstrap
intervals. The running times are for a 3.6 GHz
10-core Intel Core i9 CPU. We parallelized the
code (Tierney et al., 2018) for bootstrapping and
sandwich estimation.
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Table 3 Our simulation scenarios.

Scenario Level of Measurement Marginal Distribution ω Inference Method Interval Type

1 nominal/ordinal Categorical(0.2, 0.5, 0.3) 0.8 CML bootstrap

2 nominal/ordinal Categorical(0.1, 0.3, 0.2, 0.05, 0.35) 0.7 DT bootstrap, sandwich

3 count Poisson(3) 0.9 DT bootstrap, sandwich

4 amount Gamma(2, 0.5) 0.85
ML bootstrap, asymptotic
SMP bootstrap

5 balance Laplace(12, 10) 0.95
ML bootstrap, asymptotic
SMP bootstrap

6 percentage Beta(4, 1) 0.6 ML bootstrap, asymptotic

For Scenario 1 we see that the CML approach
for Sklar’s ω performed very well and bested Krip-
pendorff’s α in every respect except running time.
It appears that Krippendorff’s α is too stringent
for categorical scores (when Sklar’s ω is the data-
generating mechanism). For ω = 0.8 we obtained
α̂ ≈ 0.5 for all three sample geometries. Thus α
analyses would lead us to conclude that agreement
was merely moderate when, in fact, agreement was
substantial or nearly perfect. This is not surprising
given that α employs the discrete metric for nomi-
nal outcomes and, being nonparametric, must take
the scores at face value, so to speak. Sklar’s ω,
by contrast, models agreement as a latent con-
struct and so is not unduly influenced by marginal
variation.

Neither procedure performed well in Scenario
2. Krippendorff’s α performed poorly in this sce-
nario for the same reasons as in Scenario 1. And
the DT approach for Sklar’s ω struggled to per-
form well because the marginal distribution was
categorical. Indeed, Scenario 2 was included in the
study precisely to show that DT-based inference,
although considerably better than α-based infer-
ence, is somewhat poor for categorical outcomes,
even for a larger number of categories. This is
why package sklarsomega supports only the CML
approach for categorical scores.

The DT approach shined in Scenario 3,
though, as expected. The DT-based approxima-
tion is known to perform well for counts, and
is even practically exact for some variants of
the direct Gaussian copula model with count
marginals (see Hughes (2021b) for details). The
DT approach did underperform in one respect
for this scenario, however: bootstrap confidence
intervals did not have the desired 95% coverage

rate. This is because the bootstrap distribution
is slightly biased downward. This deficiency can
be remedied by iterating the bootstrap or using
the Gaussian method to compute bootstrap inter-
vals. Alternatively, one can use sandwich intervals,
which have better than 95% coverage and permit
more efficient computation.

Krippendorff’s α performed much better for
counts than for nominal scores, yet α’s perfor-
mance still fell far short of ω’s for Scenario 3.
In this setting α tends to mistake near-perfect
agreement for merely substantial agreement.

The results for simulation Scenarios 4 and 5,
along with the analysis of the cartilage data pre-
sented in Section 7.2, allow us to draw an easy
conclusion about the two-stage semiparametric
procedure for Sklar’s ω: the SMP approach per-
forms well only for large samples, and is somewhat
inferior to Krippendorff’s α for small to medium
sized samples. Since the cartilage dataset con-
sidered later in Section 7.2 is large, we will see
that the SMP method produces plausible results
for those data. For the data sizes employed in
our simulation study, the SMP method clearly
underperformed.

Finally, the results for Scenarios 4, 5, and
6 show that the method of maximum likelihood
performs very well for amounts, balances, and per-
centages. For those levels of measurement the ML
method for Sklar’s ω clearly bested α in every
respect except running time. Nearly all of the
coverage rates for the ML approach were at or
near the desired 95%, with the asymptotic inter-
vals performing a bit better than the bootstrap
intervals overall.

The running time for Krippendorff’s α is con-
siderably shorter than the running time for ω,
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unless the ML method with asymptotic confi-
dence interval is used for ω. This is not surprising
since computation of α̂ does not require function
optimization.

The running time for the Bayesian procedure
described in Section 5 prohibited the procedure’s
inclusion in the simulation studies. But small
auxiliary simulation studies revealed that the
Bayesian method tends to yield inference that is
quite similar to ML inference owing to the use of
non-informative prior distributions.

7 Application to
experimentally observed
data

In this section we present two case studies. In
the first study we apply both Sklar’s ω and Krip-
pendorff’s α to nominal data previously analyzed
by Krippendorff. In the second study we apply
both methods to magnetic resonance imaging data
of human hip cartilage. These studies show that
Sklar’s ω permits more nuanced analyses than
does Krippendorff’s α, and may lead to more
plausible conclusions.

7.1 Application to nominal data

analyzed previously by

Krippendorff

Consider the data shown in Figure 1, which appear
in (Krippendorff, 2013). (We display the data
because visual inspection is necessary for under-
standing the analysis that follows.) These are
nominal values (in {1, . . . , 5}) for twelve units and
four coders. The dots represent missing values.

Note that the scores for all units save the
sixth are constant or nearly so. This suggests near-
perfect agreement, yet a Krippendorff’s α analysis
of these data leads to a weaker conclusion. Specifi-
cally, using the discrete metric d(x, y) = 1{x 6= y}
yields α̂ = 0.74 and bootstrap 95% confidence
interval α ∈ (0.39, 1.00) for a bootstrap sample
size of 1,000. This point estimate indicates merely
substantial agreement, and the interval implies
that these data are consistent with agreement
ranging from moderate to nearly perfect.

Our method produces ω̂ = 0.89 and ω ∈
(0.70, 0.98), which indicate near-perfect agreement
and at least substantial agreement, respectively.

And our approach, being model based, furnishes
us with estimated probabilities for the marginal
categorical distribution of the response:

p̂ = (p̂1, p̂2, p̂3, p̂4, p̂5)
′

= (0.25, 0.24, 0.23, 0.19, 0.09)′.

Because we estimated ω and p simultaneously, our
estimate of p differs substantially from the empir-
ical probabilities, which are 0.22, 0.32, 0.27, 0.12,
and 0.07, respectively.

The marked difference in these results is not
surprising in light of our simulation studies and
can be attributed largely to the codes for the sixth
unit. The relevant influence statistics are

δα(•,−6) =
|α̂•,−6 − α̂|

α̂
= 0.15

and

δω(•,−6) =
|ω̂•,−6 − ω̂|

ω̂
= 0.09,

where the notation “•,−6” indicates that all rows
are retained and column 6 is left out. And so we
see that column 6 exerts 2/3 more influence on α̂
than it does on ω̂. Since α̂•,−6 = 0.85, inclusion of
column 6 draws us away from what seems to be
the correct conclusion for these data.

7.2 Application to continuous data

from an imaging study of hip

cartilage

In this section we analyze experimentally observed
bioimaging data to demonstrate how Sklar’s ω
can permit richer and more nuanced analyses of
continuous data than Krippendorff’s α can. The
data for this application, which are included in R
package sklarsomega, are 323 pairs of T2* relax-
ation times (a magnetic resonance quantity) for
femoral cartilage (Nissi et al., 2015) in patients
with femoroacetabular impingement (Figure 2), a
hip condition that can lead to osteoarthritis. One
measurement was taken when a contrast agent
was present in the tissue, and the other measure-
ment was taken in the absence of the agent. The
aim of the study was to determine whether raw
and contrast-enhanced T2* measurements agree
closely enough to be interchangeable for the pur-
pose of quantitatively assessing cartilage health.
We note that two subsequent studies, both of
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u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

c1 1 2 3 3 2 1 4 1 2 • • •

c2 1 2 3 3 2 2 4 1 2 5 • 3
c3 • 3 3 3 2 3 4 2 2 5 1 •

c4 1 2 3 3 2 4 4 1 2 5 1 •

Fig. 1 Nominal scores previously analyzed by Krippendorff, for twelve units and four coders. The dots represent missing
values.

which compared T2* measurements to gold stan-
dard arthroscopic evaluations, established the use-
fulness of T2* for assessing cartilage health (Henn
et al., 2017; Morgan et al., 2018).

Prior to analyzing the T2* data we produced
the Bland–Altman plot (Altman and Bland, 1983)
shown in Figure 3. The plot suggests good agree-
ment: small bias, no trend, consistent variability.

Fig. 2 An illustration of femoroacetabular impingement
(FAI). Top left: normal hip joint. Top right: cam type FAI
(deformed femoral head). Bottom left: pincer type FAI
(deformed acetabular rim). Bottom right: mixed type (both
deformities).

Because T2* is a relaxation time, the amount
level of measurement is most appropriate for the
cartilage data. This implies a gamma marginal
distribution for Sklar’s ω and the ratio distance
function for Krippendorff’s α. Since the data are
continuous and the sample is large, we also applied
the semiparametric version of Sklar’s ω. For the
gamma model we computed both asymptotic and
bootstrap intervals. For the semiparametric model
and Krippendorff’s α we computed bootstrap
intervals. The bootstrap sample size was 1,000 for
all procedures.
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Fig. 3 A Bland–Altman plot for the femoral cartilage
data.

Although T2* values are amounts rather than
balances, we also applied Sklar’s ω with a non-
central t marginal distribution, for the sake of
comparison with the gamma fit. Since the T2* out-
comes are noticeably right skewed (see Figure 4),
we did not apply either the Gaussian model or the
Laplace model.

The results are shown in Table 5, where the
fourth column provides values of Akaike’s informa-
tion criterion (AIC) (Akaike, 1974) for the gamma
and t fits, and the final column shows model
probabilities (Burnham et al., 2011).

We see that the estimates and intervals are
roughly comparable for all of these methods
because the sample size is large and the marginal
distribution is not too far from Gaussian. Yet the
gamma distribution is far superior to the t distri-
bution in terms of model probabilities. Figure 4
provides visual corroboration: it is clear that the
gamma fit (with estimated shape parameters of
22.1 and 0.885) proves more compelling than the t
fit (with estimated degrees of freedom of 11.2 and
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estimated noncentrality parameter 23.3), as the
estimated gamma pdf is quite close to the kernel
density estimate while the fitted t density imposes
too much asymmetry.

In any case, we must conclude that there
is near-perfect agreement between raw T2* and
contrast-enhanced T2*. This finding has clini-
cal significance since the use of gadolinium-based
contrast agents (GBCAs) is not free of risk
to patients, particularly pregnant women and
patients having impaired kidney function. For
additional information regarding the potential
risks associated with the use of GBCAs, we refer
the interested reader to the University of Califor-
nia, San Francisco’s policy on contrast-enhanced
magnetic resonance imaging: https://tinyurl.com/
rwnes6ku.
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Fig. 4 For the T2* data: histogram, kernel density esti-
mate, and fitted gamma and t densities. The solid (gray)
curve is the kernel density estimate, the dashed (orange)
curve is the fitted gamma density, and the dotted (blue)
curve is the fitted t density. The fitted gamma density and
the kernel density estimate are very close.

8 Conclusion

Sklar’s ω offers a flexible, principled, complete
framework for doing statistical inference regarding

agreement. In this article we developed various fre-
quentist approaches for Sklar’s ω, namely, maxi-
mum likelihood, distributional-transform approxi-
mation, composite marginal likelihood, and a two-
stage semiparametric method. This was necessary
because a single, unified frequentist approach does
not exist for the form of Sklar’s ω presented in
Section 3, wherein the copula is applied directly
to the outcomes. We also developed Bayesian
inference for continuous outcomes.

We demonstrated the advantages of Sklar’s
ω by pitting it against Krippendorff’s α in an
extensive simulation study. We also applied both
approaches to previously analyzed nominal data
and to magnetic resonance imaging data of hip
cartilage. We envision ω’s use in many other fields,
e.g., sports, medical triage, social media.

As we mentioned in Section 4.5, when the out-
comes are continuous, the marginal distribution
is complicated, and dependence is strong, it may
be desirable to estimate the marginal distribu-
tion and the copula parameter(s) simultaneously
instead of applying a two-stage procedure. For
example, Chen et al. (2004) developed a sieve
maximum likelihood method for semiparametric
copula models. Chen et al. (2004) studied two
cases, one of which applies to Sklar’s ω, namely,
models for which the marginal distributions are
equal but otherwise unspecified.

In addition to a sieve approach, other promis-
ing possibilities exist for continuous outcomes.
For example, Szabó et al. (2007) described an
approach they called “Gaussianization.” In the
first stage of this two-stage approach the outcomes
for a given coder are ranked and then transformed
as

Z̃ij = Φ−1

(
Rij

nu + 1

)
(i = 1, . . . , nu),

where Rij is the rank of the ith unit for coder j.
In the second stage one optimizes

ℓml(ω | z̃) = −1

2
log |Ω| − 1

2
z̃′Ω−1z̃

to obtain ω̂. Clearly, this approach is similar to the
SMP method described in Section 4.5. And addi-
tional, similar approaches, based on Spearman’s
ρ (1904) and Kendall’s τ (1938), were explored
by Singh and Póczos (2017). These approaches

https://tinyurl.com/rwnes6ku
https://tinyurl.com/rwnes6ku
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may be supported by future versions of package
sklarsomega.

Another potential addition to package
sklarsomega is support for Conway–Maxwell–
Poisson (Huang, 2017; Sellers et al., 2012; Shmueli
et al., 2005; Conway and Maxwell, 1962) marginal
distributions for the count level of measurement.
This would allow Sklar’s ω to accommodate
underdispersed as well as equidispersed and
overdispersed counts.

Here we briefly introduce our R package,
sklarsomega, version 3.0 of which is available
for download from the Comprehensive R Archive
Network.

Appendix A R package
sklarsomega

We introduce our R package by way of a brief
usage example. Additional examples are provided
in the package documentation.

We apply our Bayesian methodology to a
subset of the cartilage data, assuming first a
Laplace(µ, σ) and then a T(ν, µ) marginal dis-
tribution. First we load the cartilage data, which
are included in the package.

R> data(cartilage)
R> data = as.matrix(cartilage)[1:100, ]
R> colnames(data) = c("c.1.1", "c.2.1")
R> fit1 = sklars.omega.bayes(data, verbose = FALSE,
+ control = list(dist = "laplace",
+ minit = 1000, maxit = 5000,
+ tol = 0.01, sigma.1 = 1,
+ sigma.2 = 0.1,
+ sigma.omega = 0.2))
R> summary(fit1)

Call:

sklars.omega.bayes(data = data, verbose = FALSE,
control = list(dist = "laplace", minit = 1000,
maxit = 5000, tol = 0.01, sigma.1 = 1,
sigma.2 = 0.1, sigma.omega = 0.2))

Number of posterior samples: 4000

Control parameters:

dist laplace
minit 1000
maxit 5000
tol 0.01
sigma.1 1
sigma.2 0.1
sigma.omega 0.2

Coefficients:

Estimate Lower Upper MCSE
inter 0.8079 0.7366 0.8695 0.002111
mu 26.4600 25.7100 27.1400 0.011310
sigma 4.7990 3.9730 5.6970 0.025410

DIC: 1193

We see that sampling terminated when 4,000
samples had been drawn, since that sample size
yielded ĉvj < 0.01 for j ∈ {1, 2, 3}. As a second
check we examine the plot given in Figure A1,
which shows the estimated posterior mean for ω as
a function of sample size. The estimate evidently
stabilized after approximately 2,500 samples had
been drawn.
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Fig. A1 A plot of estimated posterior mean versus sample
size for ω, having assumed a Laplace marginal distribution.

The proposal standard deviations (1 for µ, 0.1
for σ, and 0.2 for ω) led to sensible acceptance
rates of 40%, 60%, and 67%.

R> fit1$accept

inter mu sigma
0.6694174 0.4013503 0.5951488

For a t marginal distribution only 3,000 sam-
ples were required.

R> fit2 = sklars.omega.bayes(data, verbose = FALSE,
+ control = list(dist = "t",
+ minit = 1000, maxit = 5000,
+ tol = 0.01, sigma.1 = 0.2,
+ sigma.2 = 2, sigma.omega = 0.2))
R> summary(fit2)

Call:

sklars.omega.bayes(data = data, verbose = FALSE,
control = list(dist = "t", minit = 1000, maxit = 5000,
tol = 0.01, sigma.1 = 0.2, sigma.2 = 2,
sigma.omega = 0.2))

Number of posterior samples: 3000

Control parameters:

dist t
minit 1000
maxit 5000
tol 0.01
sigma.1 0.2
sigma.2 2
sigma.omega 0.2

Coefficients:

Estimate Lower Upper MCSE
inter 0.874 0.8283 0.919 0.002054
nu 6.720 5.0210 8.424 0.053200
mu 23.450 22.2600 24.690 0.028070

DIC: 1224

Note that the Laplace model yielded a much
smaller value of DIC, and hence a very small
relative likelihood for the t model.

R> dic = c(fit1$DIC, fit2$DIC)
R> (pr = exp((min(dic) - max(dic)) / 2))

[1] 1.852924e-07

Much additional functionality is supported by
package sklarsomega, e.g., plotting, simulation,
influence statistics. And we note that compu-
tational efficiency is supported by our use of
sparse-matrix routines (Furrer and Sain, 2010)
and a clever bit of Fortran code (Genz, 1992) for
the CML method. Future versions of the pack-
age will employ C++ (Eddelbuettel and Francois,
2011).
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Table 4 Results from our simulation study.

Scenario nu nc Inference Method Median Estimate Bias Variance MSE Coverage Rate Average Time

1

15 3
CML ω̂ = 0.792 −3.8% 0.0160 0.0169 95% 132.6 s
α α̂ = 0.476 −40.2% 0.0218 0.1254 34% 1.6 s

30 3
CML ω̂ = 0.795 −1.9% 0.0073 0.0075 95% 253.0 s
α α̂ = 0.482 −39.7% 0.0099 0.1107 7% 1.6 s

15 6
CML ω̂ = 0.763 −5.5% 0.0113 0.0133 94% 328.5 s
α α̂ = 0.454 −42.9% 0.0130 0.1307 9% 1.6 s

2

15 3
DT ω̂ = 0.740 2.9% 0.0133 0.0138 93%, 90% 138.7 s, 25.3 s
α α̂ = 0.269 −59.9% 0.0134 0.1894 11% 1.6 s

30 3
DT ω̂ = 0.742 4.9% 0.0054 0.0065 88%, 90% 261.3 s, 43.7 s
α α̂ = 0.291 −58.3% 0.0066 0.1732 1% 1.7 s

15 6
DT ω̂ = 0.768 8.3% 0.0060 0.0094 77%, 83% 296.2 s, 43.3 s
α α̂ = 0.287 −59.1% 0.0073 0.1782 1% 1.6 s

3

15 3
DT ω̂ = 0.885 −2.2% 0.0011 0.0014 91%, 99% 12.6 s, 2.9 s
α α̂ = 0.706 −22.9% 0.0225 0.0648 65% 1.5 s

30 3
DT ω̂ = 0.881 −2.3% 0.0006 0.0010 70%, 98% 19.1 s, 4.5 s
α α̂ = 0.695 −22.9% 0.0122 0.0545 43% 1.6 s

15 6
DT ω̂ = 0.880 −2.4% 0.0005 0.0010 62%, 97% 18.8 s, 4.7 s
α α̂ = 0.697 −23.2% 0.0140 0.0576 45% 1.6 s

4

15 3
ML ω̂ = 0.845 −2.6% 0.0054 0.0058 92%, 96% 21.5 s, 0.2 s
SMP ω̂ = 0.716 −17.0% 0.0064 0.0273 0% 7.4 s
α α̂ = 0.782 −9.9% 0.0063 0.0133 70% 1.6 s

30 3
ML ω̂ = 0.847 −1.5% 0.0023 0.0024 94%, 95% 33.9 s, 0.4 s
SMP ω̂ = 0.789 −8.1% 0.0030 0.0077 23% 11.4 s
α α̂ = 0.778 −9.5% 0.0028 0.0093 52% 1.7 s

15 6
ML ω̂ = 0.837 −2.8% 0.0043 0.0048 90%, 94% 34.6 s, 0.4 s
SMP ω̂ = 0.758 −11.8% 0.0047 0.0148 3% 10.3 s
α α̂ = 0.767 −10.6% 0.0043 0.0123 44% 1.7 s

5

15 3
ML ω̂ = 0.948 −0.7% 0.0006 0.0007 95%, 95% 47.8 s, 0.4 s
SMP ω̂ = 0.827 −14.0% 0.0022 0.0198 0% 7.8 s
α α̂ = 0.941 −1.7% 0.0010 0.0012 77% 1.6 s

30 3
ML ω̂ = 0.948 −0.4% 0.0003 0.0003 95%, 95% 68.8 s, 0.6 s
SMP ω̂ = 0.895 −6.1% 0.0006 0.0039 0% 12.0 s
α α̂ = 0.944 −1.1% 0.0004 0.0005 77% 1.7 s

15 6
ML ω̂ = 0.946 −0.9% 0.0005 0.0006 93%, 95% 76.8 s, 0.6 s
SMP ω̂ = 0.866 −9.6% 0.0015 0.0099 0% 11.7 s
α α̂ = 0.937 −2.1% 0.0009 0.0013 68% 1.7 s

6

15 3
ML ω̂ = 0.583 −6.2% 0.0200 0.0213 93%, 92% 16.6 s, 0.1 s
α α̂ = 0.549 −11.8% 0.0197 0.0247 84% 1.6 s

30 3
ML ω̂ = 0.592 −3.2% 0.0097 0.0101 94%, 93% 24.1 s, 0.3 s
α α̂ = 0.548 −9.6% 0.0100 0.0133 85% 1.7 s

15 6
ML ω̂ = 0.566 −7.1% 0.0123 0.0141 90%, 93% 25.6 s, 0.3 s
α α̂ = 0.524 −13.3% 0.0122 0.0185 73% 1.7 s
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Table 5 Results from applying Sklar’s ω and Krippendorff’s α to the femoral-cartilage data.

Marginal Model Agreement Interval AIC Model Probability

Gamma ω̂ = 0.849
bootstrap: ω ∈ (0.815, 0.878)

3,564 ≈ 1
ML: ω ∈ (0.819, 0.880)

Noncentral t ω̂ = 0.862
bootstrap: ω ∈ (0.831, 0.888)

3,588 ≈ 0
ML: ω ∈ (0.834, 0.890)

Empirical ω̂ = 0.846 ω ∈ (0.810, 0.870) − −

α Ratio α̂ = 0.850 α ∈ (0.822, 0.874) − −

α Interval α̂ = 0.837 α ∈ (0.806, 0.864) − −
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