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Abstract

The function bestglm selects the best subset of inputs for the GLM family. The selec-
tion methods available include a variety of information criteria as well as cross-validation.
Several examples are provided to show that this approach is sometimes more accurate than
using the built-in R function step. In the Gaussian case the leaps-and-bounds algorithm
in leaps is used provided that there are no factor variables with more than two levels. In
the non-Gaussian GLM case or when there are factor variables present with three or more
levels, a simple exhaustive enumeration approach is used. This vignette also explains how
the applications given in our article Xu and McLeod (2010) may easily be reproduced. A
separate vignette is available to provide more details about the simulation results reported
in Xu and McLeod (2010, Table 2) and to explain how the results may be reproduced.
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1. Introduction

We consider the GLM of Y on p inputs, Xi,...,X,. In many cases, ¥ can be more parsi-
moniously modelled and predicted using just a subset of m < p inputs, X;,,...,X;, . The
best subset problem is to find out of all the 2P subsets, the best subset according to some
goodness-of-fit criterion. The built-in R function step may be used to find a best subset
using a stepwise search. This method is expedient and often works well. When p is not too
large, step, may be used for a backward search and this typically yields a better result than
a forward search. But if p is large, then it may be that only a forward search is feasible due to
singularity or multicollinearity. In many everyday regression problems we have p < 50 and in
this case an optimization method known as leaps-and-bounds may be utilized to find the best
subset. More generally when p < 15 a simple direct lexicographic algorithm (Knuth 2005,
Algorithm L) may be used to enumerate all possible models. Some authors have criticized
the all subsets approach on the grounds that it is too computationally intensive. The term
data dredging has been used. This criticism is not without merit since it must be recognized
that the signficance level for the p-values of the coefficients in the model will be overstated —
perhaps even extremely so. Furthermore for prediction purposes, the LASSO or regulariza-
tion method may outperform the subset model’s prediction. Nevertheless there are several
important applications for subset selection methods. In many problems, it is of interest to
determine which are the most influential variables. For many data mining methods such as
neural nets or support vector machines, feature selection plays an important role and here
too subset selection can help. The idea of data-dredging is somewhat similar to the concern
about over-training with artifical neural nets. In both cases, there does not seem to be any
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rigorous justification of choosing a suboptimal solution. In the case of GLM and linear models
our package provides a variety of criterion for choosing a parsimonious subset or collection of
possible subsets.

In the case of linear regression, Miller (2002) provides a monograph length treatment of this
problem while Hastie, Tibshirani, and Friedman (2009, Ch. 3) discuss the subset approach
along with other recently developed methods such as LARS and LASSO. Consider the case
of linear regression with n observations, (x;1,...,%ip,¥i),? = 1,...,n we may write the
regression,

Yi = Bo+ Bixig + ...+ Bpzip + €. (1)
When n > p all possible 2P regressions could be fit and the best fit according to some criterion
could be found. When p < 25 or thereabouts, an efficient combinatorial algorithm, known
as branch-and-bound can be applied to determine the model with the lowest residual sum of
squares of size m for m = 1,...,p and more generally the k lowest subsets for each m may
also be found.

The leaps package (Lumley and Miller 2004) implements the branch-and-bound algorithm
as well as other subset selection algorithms. Using the leaps function, regsubsets, the best
model of size k,k = 1,...,p may be determined in a few seconds when p < 25 on a modern
personal computer. Even larger models are feasible but since, in the general case, the computer
time grows exponentially with p, problems with large enough p such as p > 100, can not be
solved by this method. An improved branch-and-bound algorithm is given by Gatu (2006)
but the problem with exponential time remains.

One well-known and widely used alternative to the best subset approach is the family of
stepwise and stagewise algorithms Hastie et al. (2009, Section 3.3). This is often feasible
for larger p although it may select a sub-optimal model as noted by Miller (2002). For very
large p Chen and Chen (2008) suggest a tournament algorithm while subselect (Cadima,
Cerdeira, Orestes, and Minhoto 2004; Cerdeira, Silva, Cadima, and Minhoto 2009) uses high
dimensional optimization algorithms such as genetic search and simulated annealing for such
problems.

Using subset selection algorithm necessarily involves a high degree of selection bias in the
fitted regression. This means that the p-values for the regression coefficients are overstated,
that is, coefficients may appear to be statistically signficant when they are not. (Wilkinson
and Gerard 1981) and the R? are also inflated Rencher and Fu (1980).

More generally for the family of GLM models similar considerations about selection bias and
computational complexity apply. Hosmer, Jovanovic, and Lemeshow (1989) discuss an ap-
proximate method for best subsets in logistic regression. No doubt there is scope for the
development of more efficient branch-and-bound algorithms for the problem of subset selec-
tion in GLM models. See Brusco and Stahl (2009) for a recent monograph of the statistical
applications of the branch-and-bound algorithm. We use the lexicographical method sug-
gested by Morgan and Tatar (1972) for the all subsets regression problem to enumerate the
loglikelihoods for all possible GLM model. Assuming there are p inputs, there are then 2P
possible subsets which may be enumerated by taking ¢ = 0,...,27 — 1 and using the base-2
representation of ¢ to determine the subset. This method is quite feasible on present PC
workstations for p not too large.

1.1. Prostate Cancer Example



As an illustrative example of the subset regression problem we consider the prostate data
discussed by Hastie et al. (2009). In this dataset there are 97 observations on men with
prostate cancer. The object is to predict and to find the inputs most closely related with the
outcome variable Prostate-Specific Antigen (psa). In the general male population, the higher
the psa, the greater the chance that prostate cancer is present.

To facilitate comparison with the results given in the textbook as well as with other techniques
such as LARS, we have standardized all inputs. The standardized prostate data is available
in zprostate in our bestglm package and is summarized below,

R> library(bestglm)
R> data(zprostate)

R> str(zprostate)

'data.frame':

$ lcavol : num
$ lweight: num
$ age ! num
$ 1bph  : num
$ svi ! num
$ lcp : num
$ gleason: num
$ pggd5 : num
$ 1lpsa : num
$ train : logi

The outcome is 1psa which is the logarithm of the psa. In Hastie et al. (2009, Table 3.3) only

A. I McLeod, C. Xu

97 obs. of 10 variables:

.637 -1.989 -1.579 -2.167 -0.508 ...
.006 -0.722 -2.189 -0.808 -0.459 ...
.862 -0.788 1.361 -0.788 -0.251 ...
.02 -1.02 -1.02 -1.02 -1.02 ...
.523 -0.523 -0.523 -0.523 -0.523 ...
.863 -0.863 -0.863 -0.863 -0.863 ...
.042 -1.042 0.343 -1.042 -1.042 ...
.864 -0.864 -0.155 -0.864 -0.864 ...
.431 -0.163 -0.163 -0.163 0.372 ...

TRUE TRUE TRUE TRUE TRUE TRUE ...

the training set portion is used. In the training portion there are n = 67 observations.

Using regsubsets in leaps we find subsets of size m = 1,...,8 which have the smallest

residual sum-of-squares.

R> train <- (zprostatel[zprostate[, 10], 1)[, -10]

R> X <- train/,
R> y <- trainl[,

1:8]
9]

R> out <- summary(regsubsets(x = X, y = y, nvmax = ncol(X)))
R> Subsets <- out$which

R> RSS <- out$rs

S

R> cbind(as.data.frame (Subsets), RSS = RSS)

(Intercept) lcavol lweight age 1lbph svi lcp gleason

TRUE
TRUE
TRUE
TRUE
TRUE

g W N

TRUE
TRUE
TRUE
TRUE
TRUE

FALSE FALSE FALSE FALSE FALSE
TRUE FALSE FALSE FALSE FALSE
TRUE FALSE FALSE TRUE FALSE
TRUE FALSE TRUE TRUE FALSE
TRUE FALSE TRUE TRUE FALSE

FALSE
FALSE
FALSE
FALSE
FALSE

pge4s
FALSE

FALSE
FALSE
FALSE

TRUE

RSS
44 .52858
37.09185
34.90775
32.81499
32.06945
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6 TRUE  TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE 30.53978
7 TRUE  TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE 29.43730
8 TRUE  TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 29.42638

The residual sum-of-squares decreases monotonically as the number of inputs increases.

1.2. Overview of bestglm Package

bestglm uses the simple exhaustive search algorithm (Morgan and Tatar 1972) for GLM and
the regsubsets function in the leaps package to find the GLM models with smallest sum
of squares or deviances for size £k = 0,1,...,p. Size k = 0 corresponds to intercept only.
The exhaustive search requires more computer time but this is usually not an issue when
p <= 10. For example, we found that a logistic regression with p = 10 requires about 12.47
seconds as compared with only 0.04 seconds for a comparably size linear regression. The
timing difference would not be important in typical data analysis applications but could be
a concern in simulation studies. In this case, if a multi-core PC or even better a computer
cluster is available, we may use the Rmpi package. Our vignette Xu and McLeod (2009)
provides an example of using Rmpi with bestglm.

1.3. Package Options

The arguments and their default values are:

R> args(bestglm)

function (Xy, family = gaussian, IC = "BIC", t = "default", CVArgs "default",
glevel = 0.99, TopModels = 5, method = "exhaustive", intercept TRUE,
weights = NULL, nvmax = "default", RequireFullEnumeration] = FALSE,

)

NULL

The argument Xy is usually a data-frame containing in the first p columns the design matrix
and in the last column the response. For binomial GLM, the last two columns may represent
counts S and F' as in the usual glm function when the family=binomial option is used.

When family is set to gaussian, the function regsubsets in leaps is used provided that all
inputs are quantitative or that there are no factor inputs with more than two levels. When
factor inputs at more than two levels are present, the exhaustive enumeration method is used
and in this case the R function 1m is used in the gaussian case. For all non-Gaussian models,
the R function glm is used with the exhaustive enumeration method.

The arguments IC, t, CVArgs, qLevel and TopModels are used with various model selection
methods. The model selection methods available are based on either an information criterion
or cross-validation. The information criteria and cross-validation methods are are discussed
in the Sections 2 and 3.

The argument method is simply passed on to the function regsubsets when this function
from the leaps package is used. The arguments intercept and nvmax are also passed on to
regsubsets or may be used in the exhaustive search with a non-Gaussian GLM model is fit.
These two arguments are discussed briefly in Sections 1.4 and 1.5.
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The argument RequireFullEnumerationQ is provided to force the use of the slower exhaustive
search algorithm when the faster algorithm in the leaps package would normally be used. This
is provided only for checking.

The output from bestglm is a list with named components

R> Xy <- cbind(as.data.frame(X), lpsa = y)
R> out <- bestglm(Xy)
R> names (out)

[1] "BestModel" "BestModels" "Bestq" "qTable" "Subsets"
[6] "Title" "ModelReport"

The components BestModel, BestModels, Subsets, qTable and Bestq are of interest and are
described in the following table.

name description

BestModel lm or glm object giving the best model
BestModels a T x p logical matrix showing which variables are included in the top T" models

Bestq matrix with 2 rows indicating the upper and lower ranges

Subsets a (p+ 1) x p logical matrix showing which variables are included for
subset sizes k = 0, ..., p have the smallest deviance

gTable a table showing all possible model choices for different intervals of q.

1.4. Intercept Term

Sometimes it may be desired not to include an intercept term in the model. Usually this
occurs when the response to the inputs is thought to be proportional. If the relationship is
multiplicative of the form Y = /1 X1+ +8Xp then a linear regression through the origin of
logY on Xi,...,X, may be appropriate.

Another, but not recommended use, of this option is to set intercept to FALSE and then
include a column of 1’s in the design matrix to represent the intercept term. This will enable
one to exclude the intercept term if it is not statistically significant. Usually the intercept
term is always included even if it is not statistically significant unless there are prior reasons
to suspect that the regression may pass through the origin.

Cross-validation methods are not available in the regression through the origin case.

1.5. Limiting the Number of Variables

The argument nvmax may be used to limit the number of possible explanatory variables that
are allowed to be included. This may be useful when p is quite large. Normally the information
criterion will eliminate unnecessary variables automatically and so when the default setting
is used for nvmax all models up to an including the full model with p inputs are considered.

Cross-validation methods are not available when nvmax is set to a value less than p.

1.6. Forcing Variables to be Included
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In some applications, the model builder may wish to require that some variables be included
in all models. This could be done by using the residuals from a regression with the required
variables as inputs with a design matrix formed from the optional variables. For this reason,
the optional argument force.in used in leaps is not implemented in bestglm.

2. Information criteria

Information criteria or cross-validation is used to select the best model out of these p + 1
model cases, k = 0,1,...,p. The information criteria include the usual AIC and BIC as well as
two types of extended BIC (Chen and Chen 2008; Xu and McLeod 2010). These information
criteria are discussed in the Section 2.

When the information criterion approach is used, it is possible to select the best T" models
out of all possible models by setting the optional argument TopModels = T.

All the information criteria we consider are based on a penalized form of the deviance or
minus twice the log-likelihood. In the multiple linear regression the deviance D = —2log L,
where £ is the maximized log-likelihood, log £ = —(n/2)log S /n, where S is the residual sum
of squares.

2.1. AIC

Akaike (1974) showed that AIC = D + 2k, where k is the number of parameters, provides an
estimate of the entropy. The model with the smallest AIC is preferred. Many other criteria
which are essentially equivalent to the AIC have also been suggested. Several other asymptot-
ically equivalent but more specialized criteria were suggested In the context of autoregressive
models, Akaike (1970) suggested the final prediction error criterion, FPE = 62(1 + 2k/n),
where 5,% is the estimated residual variance in a model with k parameters. and in the subset
regression problem, Mallows (1973) suggesed using Cy = Si/d2 + 2k — n, where Sy is the
residual sum-of-squares for a model with k£ inputs and &9 is the residual variance using all
p inputs. Nishii (1984) showed that minimizing C} or FPE is equivalent to minimizing the
AIC. In practice, with small n, these criteria often select the same model. From the results
of (Shibata 1981), the AIC is asympotically efficient but not consistent.

Best AIC Model for Prostate Data

R> bestglm(Xy, IC = "AIC")

AIC
BICq equivalent for q in (0.708764213288624, 0.889919748490004)
Best Model:

Estimate Std. Error t value Pr>ltl)
(Intercept) 2.4668675 0.08760022 28.160516 6.632457e-36
lcavol 0.6764486 0.12383666 5.462426 9.883880e-07
lweight 0.2652760 0.09363348 2.833132 6.298761e-03
age -0.1450300 0.09756540 -1.486490 1.424742e-01
1bph 0.2095349 0.10128348 2.068796 4.295574e-02
svi 0.3070936 0.12190105 2.519204 1.449125e-02
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lcp -0.2872242 0.15300241 -1.877253 6.543004e-02
pggéb 0.2522850 0.11562030 2.182013 3.310324e-02

The best subset model using AIC has 7 variables and two of them are not even significant at

5%.

2.2. BIC

The BIC criterion (Schwarz 1978) can be derived using Bayesian methods as discussed by
Chen and Chen (2008). If a uniform prior is assumed of all possible models, the usual BIC
criterion may be written, BIC = D+ klog(n). The model with the smallest BIC corresponds to
the model with maximum posterior probability. The difference between these criterion is in
the penalty. When n > 7, the BIC penalty is always larger than for the A1C and consequently
the BIC will never select models with more parameters than the AIC. In practice, the BIC
often selects more parsimonious models than the A1C. In time series forecasting experiments,
time series models selected using the BIC often outperform AIC selected models (Noakes,
McLeod, and Hipel 1985; Koehler and Murphree 1988; Granger and Jeon 2004). On the
other hand, sometimes the BIC underfits and so in some applications, such as autoregressive-
spectral density estimation and for generating synthetic riverflows and simulations of other
types of time series data, it may be preferable to use the A1C (Percival and Walden 1993).

Best BIC Model for Prostate Data

R> bestglm(Xy, IC = "BIC")

BIC
BICq equivalent for g in (0.0176493852011195, 0.512566675362627)
Best Model:

Estimate Std. Error t value Pr>ltl)
(Intercept) 2.4773573 0.09304738 26.624687 2.475214e-36
lcavol 0.7397137 0.09318316 7.938277 4.141615e-11
lweight 0.3163282 0.08830716 3.582135 6.576173e-04

Note that IC="BIC" is the default.

2.3. BICg

The notation BiCg and BIC, will be used interchangeably. In mathematical writing BIC,
is preferred but in our R code the parameter is denoted by BiCg. Chen and Chen (2008)
observed that in large p problems, the BIC tends to select models with too many parameters
and suggested that instead of a prior uniform of all possible models, a prior uniform of models
of fixed size. The general form of the BIC, criterion can be written,

BIC, = D + klog(n) + 2vlog <i> (2)

where v is an adjustable parameter, p in the number of possible input variables not counting
the bias or intercept term and k is the number of parameters in the model. Taking v = 0
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reduces to the BIC. Notice that mid-sized models have the largest models, while k& = 0,
corresponding to only an intercept term and k = p corresponding to using all parameters are
equally likely a priori. As pointed out in Xu and McLeod (2010) this prior is not reasonable
because it is symmetric, giving large models and small models equal prior probability.

Best BICg Model for Prostate Data

R> bestglm(Xy, IC = "BICg")

BICg(g = 1)
BICq equivalent for q in (0.0176493852011195, 0.512566675362627)
Best Model:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 2.4773573 0.09304738 26.624687 2.475214e-36
lcavol 0.7397137 0.09318316 7.938277 4.141615e-11
lweight 0.3163282 0.08830716 3.582135 6.576173e-04

2.4. BICq

As with the BIC, the notation BiCq and BIC, will be used interchangably.

The BIC, criterion (Xu and McLeod 2010) is derived by assuming a Bernouilli prior for the
parameters. Each parameter has a priori probability of ¢ of being included, where ¢ € [0, 1].
With this prior, the resulting information criterion can be written,

BIC; =D + klog(n) — 2klogq/(1 — q). (3)

When g = 1/2, the BICq is equivalent to the BIC while ¢ = 0 and ¢ = 1 correspond to selecting
the models with & = p and k£ = 0 respectively. Moreover, ¢ can be chosen to give results
equivalent to the BICg for any « or the A1c Xu and McLeod (2010). When other information
criteria are used with bestglm, the range of the ¢ parameter that will produce the same result
is shown. For example in 2.3.1, we see that ¢ € (0.0176493852011195,0.512566675362627)
produces an equivalent result.

For ¢ = 0, the penalty is taken to be —oo and so no parameters are selected and similarly for

q = 1, the full model with all covariates is selected.

Xu and McLeod (2010) derive an interval estimate for ¢ that is based on a confidence proba-
bility o, 0 < o < 1. This parameter may be set by the optional argument qLevel = «. The
default setting is with o = 0.99.

Numerical Illustration q-Interval Computation
In Xu and McLeod (2010, Table 1) we provided a brief illustrations of the computation of the

intervals for ¢ given by our Theorem.

R> set.seed(1233211235)
R>p <-5
R> n <- 100



R>
R>
R>
R>
R>
R>
R>

o

(G20 I GV V)

(1,
(2,
[3,
(4,
(5,
(6,

X <- matrix(rnorm(n * p), ncol

err <- rnorm(n)
y <= 0.1 % (X[, 1] + X[, 2] + X[, 3]) + err
Xy <- as.data.frame(cbind(X, y))
names (Xy) <- c(paste("X", 1:p, sep = ""),

X1 X2
FALSE FALSE
FALSE FALSE
FALSE FALSE

TRUE FALSE
TRUE FALSE
TRUE TRUE

ql
.0000000
.2008406
.6268752
.6943933
.9040955

ans <- bestglm(Xy)
ans$Subsets
(Intercept)
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
ans$qTable
LogL
] -16.617205
] -12.933572
] -11.149821
1 -9.667975
1 -9.608972
1 -9.589967

O O O O OO

.9075080
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X3

q2
.2008406
.6268752
.6943933
.9040955
.9075080
.0000000

p)

X4
FALSE FALSE
FALSE FALSE
TRUE FALSE
TRUE FALSE
TRUE TRUE
TRUE TRUE

g WN - oW

X5
FALSE
TRUE
TRUE
TRUE
TRUE
TRUE

"yll)

loglikelihood

-16.
-12.
-11.
.667975
.608972
.589967

617205
933572
149821

33.
30.
31.
33.
37.
42,

BIC
23441
47231
50998
15146
63862
20578

In Xu and McLeod (2010, Table 1) we added 20 to the value of the log-likelihood.

Best BICq Model for Prostate Data

Using the BIC, with its default choice for the tuning parameter q = ¢,

R>
R>
R>
R>
R>
R>

Cross-validation approaches to model selection are widely used and are also available in the
bestglm function The old standard, leave-one-out cross-validation (LOOCV) is implemented

data(zprosta

te)

train <- (zprostatel[zprostate[, 10], ])[, -10]

X <- trainl,
y <- trainl[,

1:8]
9]

Xy <- cbind(as.data.frame(X), lpsa = y)
out <- bestglm(Xy, IC = "BICq")

3. Cross-Validation

along with the more modern methods: K-fold and delete-d cross-valiation (CV).
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All CV methods work by first narrowing the field to the best models of size k for k =0,1,...,p
and then comparing each of these models p+ 1 possible models using cross-validation to select
the best one. The best model of size k is chosen as the one with the smallest deviance.

3.1. Delete-d Cross-Validation

The delete-d method was suggested by Shao (1993). In the random sampling version of this
algorithm, random samples of size d are used as the validation set. Many validation sets
are generated in this way and the complementary part of the data is used each time as the
training set. Typically 1000 validation sets are used.
When d = 1, the delete-d is similar to LOOCYV (3.4) and should give the same result if enough
validation sets are used.
Shao (1997) shows that when d increases with n, this method will be consistent. Note that
K-fold cross-validation is approximately equivalent taking d ~ n/K. But Shao (1997) recom-
mends a much larger cross-validation sample than is customarily used in K-fold CV. Letting
An = logn as suggested Shao (1997, page 236, 4th line of last paragraph) and using Shao
(1997, eqn. 4.5), we obtain

d* =n(1 - (logn —1)71), (4)

where n is the number of observations.

Comparison of size of validation samples for various sample sizes n using
delete-d and K-fold cross-validation.

n ad K=10 K=5

50 33 5 10
100 73 10 20
200 154 20 40
500 405 50 100
1000 831 100 200

Best Delete-d Model for Prostate Data

The default cross-validation method is delete-d with 1000 replications, as with bestglm(Xy,
IC="CV". This takes about one minute to run, so in this vignette we set the optional tuning
parameter t=10 so only 10 replications are done.

The default for IC="CV" is delete-d with d as in eqn. (4) but in the example below, we set
the optional tuning parameter t=10

R> set.seed(123321123)
R> bestglm(Xy, IC = "cv", t = 10)

cvd(d = 47, REP = 10)
No BICq equivalent
Best Model:
Estimate Std. Error t value Pr(>|tl)
(Intercept) 2.4627121 0.08901202 27.667185 3.167240e-36
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lcavol 0.5566392 0.11360017 4.899985 7.408246e-06
lweight 0.2415963 0.09467037 2.551974 1.323253e-02
1bph 0.1989292 0.10187183 1.952740 5.544293e-02
svi 0.2393565 0.11734589 2.039752 4.571228e-02
pggés 0.1221447 0.10256941 1.190849 2.383261e-01

In practice though at least 1000 replications are usually needed to obtain convergence.

3.2. K-fold

Hastie et al. (2009) discuss K-fold CV. With this method, the data are divided, randomly,
into K folds of approximately equal size.

For the prostate training data with n = 67 and using K = 10 folds,

R> set.seed(2377723)
R> ind <- sample(rep(1:10, length = 67))

R> ind
[11 10 1 510 2 8 9 4 56 6 8 4 1 1 2 6 6 4 6 5 6 6 7 3 3
(26] 2 7 7 1 910 710 5 9 9 5 7 8 9 4 3 1 3 1 8 9 2 310
(611 4 1 8 4 4 2 2 310 7 8 3 7 5 2 6 5
We see that the observations in II; are,
R> (1:67)[1 == ind]
[1] 2 13 14 29 43 45 52
and the values of Ni,k=1,...,10 are:
R> tabulate(ind)
(A1 7777777666
These folds form a partition of the the observations 1,...,n. We will denote the set of elements

in the kth partition by IIj.

One fold is selected as the validation sample and the reamining to into the training sample.
The performance is calibrated on the validation sample. This is repeated for each fold. The
average performance over the K folds is determined.

Hastie et al. (2009) suggest using the one-standard-deviation rule with K-fold cross-validation.
This makes the model selection more stable than simply selecting the model model with the
best overall average performance. This rule was original defined in (Breiman, Freidman,
Olshen, and Stone 1984, p. 79, Definition 3.19)) and used for selecting the best prunned
CART.
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For subset selection, this approach is implemented as follows. The validation sum-of-squares
is computed for each of the K validation samples,

Se=>_ lim (6797, (5)

where ()i denotes the prediction error when the kth validation sample is removed, the
model fit to the remainder of the data and then used to predict the observations ¢ € II; in
the validation sample. The final cross-validation score is

| K
cv:n;Sk (6)

where n is the number of observations. In each validation sample we may obtain the estimate
of the cross-validation mean-square error, CVy = Si/Ng, where Ny is the number of obser-
vations in the kth validation sample. Let s2 be the sample variance of c¢vy,...,CVg. So an
estimate of the sample variance of CV, the mean of CVy,...,CV is s?/K. Then an interval
estimate for CV, using the one-standard-devation rule, is cv+s/v/K. When applied to model
selection, this suggests that instead of selecting the model with the smallest CV, the most
parsimonious adequate model will correspond to the model with the best CV score which is
still inside this interval. Using this rule greatly improves the stability of k-fold CV.

This rule is implemented when the HTF CV method is used in our bestglm function.

R> set.seed(2377723)

R> out <- bestglm(Xy, IC = "CV", CVArgs = list(Method = "HTF", K = 10,
+ REP = 1))

R> out

CV(K = 10, REP = 1)
BICq equivalent for q in (0.0176493852011195, 0.512566675362627)
Best Model:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 2.4773573 0.09304738 26.624687 2.475214e-36
lcavol 0.7397137 0.09318316 7.938277 4.141615e-11
lweight 0.3163282 0.08830716 3.582135 6.576173e-04

In Figure 1 below we reproduce one of the graphs shown in (Hastie et al. 2009, page 62, Figure
3.3) that illustrates how the one-standard deviation rule works for model selection.

R> cverrs <- out$Subsets[, "CV"]

R> sdCV <- out$Subsets[, "sdCV"]

R> CVLo <- cverrs - sdCV

R> CVHi <- cverrs + sdCV

R> ymax <- max(CVHi)

R> ymin <- min(CVLo)

R> k <- 0:(length(cverrs) - 1)

R> plot(k, cverrs, xlab = "Subset Size", ylab = "CV Error", ylim = c(ymin,
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+ ymax), type = "n", yaxt = "n")
R> points(k, cverrs, cex = 2, col = "red", pch = 16)
R> lines(k, cverrs, col = "red", lwd = 2)

R> axis(2, yaxp = c(0.6, 1.8, 6))

R> segments(k, CVLo, k, CVHi, col = "blue", lwd = 2)

R> eps <- 0.15

R> segments(k - eps, CVLo, k + eps, CVLo, col = "blue", lwd = 2)
R> segments(k - eps, CVHi, k + eps, CVHi, col = "blue", lwd 2)
R> indBest <- oneSdRule (out$Subsets[, c("CV", "sdCV")])

R> abline(v = indBest - 1, 1ty = 2)

R> indMin <- which.min(cverrs)

R> fmin <- sdCV[indMin]

R> cutOff <- fmin + cverrs[indMin]

R> abline(h = cutOff, 1ty = 2)

R> indMin <- which.min(cverrs)

R> fmin <- sdCV[indMin]

R> cutOff <- fmin + cverrs[indMin]

R> min(which(cverrs < cutOff))

(11 3

CV Error

Subset Size

Figure 1: Model selection with 10-fold cross-validation and 1-sd rule

3.3. Bias Correction

Davison and Hinkley (1997, Algorithm 6.5, p.295) suggested an adjusted CV statistic which
corrects for bias but this method has quite variable in small samples.
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Running the program 3 times produces 3 different results.

R> set.seed(2377723)
R> bestglm(Xy, IC = "CV", CVArgs = list(Method = "DH", K = 10, REP = 1))

CVAdj(K = 10, REP = 1)
No BICq equivalent

Best Model:

Estimate Std. Error t value Pr(>It])
(Intercept) 2.4627121 0.08901202 27.667185 3.167240e-36
lcavol 0.5566392 0.11360017 4.899985 7.408246e-06
lweight 0.2415963 0.09467037 2.551974 1.323253e-02
1bph 0.1989292 0.10187183 1.952740 5.544293e-02
svi 0.2393565 0.11734589 2.039752 4.571228e-02
pgg4s 0.1221447 0.10256941 1.190849 2.383261e-01

R> bestglm(Xy, IC "CV", CVArgs = list(Method = "DH", K = 10, REP = 1))

CVAdj(K = 10, REP = 1)
No BICq equivalent
Best Model:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 2.4511950 0.08783569 27.906596 4.589425e-36
lcavol 0.6479821 0.12357416 5.243670 2.153436e-06
lweight 0.2412408 0.09315188 2.589758 1.203646e-02
1bph 0.1827709 0.10067001 1.815545 7.443814e-02
svi 0.3131270 0.12305547 2.544601 1.353129e-02
lcp -0.2668206 0.15391392 -1.733570 8.813073e-02
pgg4s 0.2126933 0.11363923 1.871654 6.613158e-02

R> bestglm(Xy, IC

"CV", CVArgs = list(Method = "DH", K = 10, REP = 1))

CVAdj(K = 10, REP 1)
BICq equivalent for q in (0.708764213288624, 0.889919748490004)
Best Model:

Estimate Std. Error t value Pr>ltl)
(Intercept) 2.4668675 0.08760022 28.160516 6.632457e-36
lcavol 0.6764486 0.12383666 5.462426 9.883880e-07
lweight 0.2652760 0.09363348 2.833132 6.298761e-03
age -0.1450300 0.09756540 -1.486490 1.424742e-01
1bph 0.2095349 0.10128348 2.068796 4.295574e-02
svi 0.3070936 0.12190105 2.519204 1.449125e-02
lcp -0.2872242 0.15300241 -1.877253 6.543004e-02
pggébs 0.2522850 0.11562030 2.182013 3.310324e-02

The results obtained after 1000 simulations are summarized in the table below.
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Number of inputs selected 1 2 3 4 5 6 7 8
Frequency in 1000 simulations 0 0 23 61 64 289 448 115

When REP is increased to 100, the result converges the model with 7 inputs. It takes about
66 seconds. Using REP=100 many times, it was found that models with 7 inputs were selected
95

We conclude that if either this method (Davison and Hinkley 1997, Algorithm 6.5, p.295)

or the method of Hastie et al. (2009) is used, many replications are need to obtain a stable
result. In view of this, the delete-d of cross-validation is recommended.

3.4. Leave-one-out Cross-Validation

For completeness we include leave-one-out CV (LOOCV) but this method is not recommended
because the model selection is not usually as accurate as either of the other CV methods
discussed above. This is due to the high variance of this method (Hastie et al. 2009, Section
7.10).

In leave-one-out CV (LOOCV), one observation, say the i, is removed, the regression is refit
and the prediction error, é(;) for the missing observation is obtained. This process is repeated

for all observations ¢ = 1,...,n and the prediction error sum of squares is obtained,
n
PRESS = ) _ é(;). (7)
i=1

In the case of linear regression, leave-out-CV can be computed very efficiently using the
PRESS method (Allen 1971), €)= €i where ¢é; is the usual regression residual and h;; is the
i-th element on the diagonal of the hat matrix H = X X’X)~1X’. Stone (1977) showed that
asymptotically LOOCYV is equivalent to the AIC. The computation is very efficient.

Best LOOCV Model for Prostate Data

R> bestglm(Xy, IC = "LOOCV")

LOOCV
BICq equivalent for q in (0.708764213288624, 0.889919748490004)
Best Model:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 2.4668675 0.08760022 28.160516 6.632457e-36
lcavol 0.6764486 0.12383666 5.462426 9.883880e-07
lweight 0.2652760 0.09363348 2.833132 6.298761e-03
age -0.1450300 0.09756540 -1.486490 1.424742e-01
1lbph 0.2095349 0.10128348 2.068796 4.295574e-02
svi 0.3070936 0.12190105 2.519204 1.449125e-02
lcp -0.2872242 0.15300241 -1.877253 6.543004e-02
pgg4b 0.2522850 0.11562030 2.182013 3.310324e-02

4. Examples from our BICq Paper
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The following examples were briefly discussed in our paper “Improved Extended Bayesian
Information Criterion” (Xu and McLeod 2010).

4.1. Hospital Manpower Data

This dataset was used as an example in our paper (Xu and McLeod 2010, Example 1). We
commented on the fact that both the AIC and BIC select the same model with 3 variables
even though one of the variables is not even signficant at the 5% level and has the incorrect
sign.

R> data(manpower)
R> bestglm(manpower, IC = "AIC")

AIC
BICq equivalent for q in (0.258049145974038, 0.680450993834175)
Best Model:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 1523.38923568 786.89772473 1.935943 7.492387e-02
Xray 0.05298733 0.02009194 2.637243 2.050318e-02
BedDays 0.97848162 0.10515362 9.305258 4.121293e-07
Stay -320.95082518 153.19222065 -2.095086 5.631250e-02

R> bestglm(manpower, IC = "BIC")

BIC
BICq equivalent for q in (0.258049145974038, 0.680450993834175)
Best Model:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 1523.38923568 786.89772473 1.935943 7.492387e-02
Xray 0.05298733 0.02009194 2.637243 2.050318e-02
BedDays 0.97848162 0.10515362 9.305258 4.121293e-07
Stay -320.95082518 153.19222065 -2.095086 5.631250e-02

In this case the BIC, is completely useless selecting the full model when v =1 or v = 0.5.

R> bestglm(manpower, IC = "BICg")

BICg(g = 1)
BICq equivalent for q in (0.801591282573779, 1)
Best Model:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 1962.94815647 1.071362e+03 1.8321993 0.09410839
Load -15.85167473 9.765299e+01 -0.1623266 0.87399215
Xray 0.05593038 2.125828e-02 2.6309923 0.02336582
BedDays 1.58962370 3.092083e+00 0.5140947 0.61735574
AreaPop -4.21866799 7.176557e+00 -0.5878401 0.56851117
Stay -394.31411702 2.096395e+02 -1.8809148 0.08670281



A. I McLeod, C. Xu

R> bestglm(manpower, IC = "BICg", t = 0.5)

BICg(g = 0.5)

BICq equivalent for q in (0.258049145974038, 0.680450993834175)

Best Model:
Estimate Std. Error t value
(Intercept) 1523.38923568 786.89772473 1.935943

Xray 0.05298733  0.02009194 2.637243
BedDays 0.97848162  0.10515362 9.305258
Stay -320.95082518 153.19222065 -2.095086

Finally, with the BIC, with its default choice, ¢ = 0.25,

R> out <- bestglm(manpower, IC = "BICq")
R> out

BICq(q = 0.25)

BICq equivalent for q in (0.00764992882308291, O.

Best Model:

Estimate Std. Error t value
(Intercept) -68.31395896 228.44597086 -0.2990377
Xray 0.07486591 0.01913019 3.9134953
BedDays 0.82287456 0.08295986 9.9189488

The optimal range of ¢ includes ¢ = 0.25,

R> out$Bestq

ql g2 selected k
BICql 0.007649929 0.2580491 2
BICq2 0.007649929 0.2580491 2

The calculations for the best ¢ may be checked using

R> out$Subsets

(Intercept) Load Xray BedDays AreaPop Stay
0 TRUE FALSE FALSE FALSE  FALSE FALSE
1 TRUE FALSE FALSE TRUE  FALSE FALSE
2% TRUE FALSE TRUE TRUE  FALSE FALSE
3 TRUE FALSE TRUE TRUE FALSE TRUE
4 TRUE FALSE TRUE TRUE TRUE TRUE
5 TRUE TRUE TRUE TRUE TRUE TRUE
and

R> out$qTable

Pr(>|tl)
7.492387e-02
2.050318e-02
4.121293e-07
5.631250e-02

258049145974038)

Pr(>1tl)
7.693043e-01
1.559779e-03
1.033117e-07

loglikelihood
-146.0833
-115.6360
-109.3540
-106.8812
-106.2205
-106.2001

292.
236.
228.
228.
232.
237.

BICq
1667
3024
7688
8538
5627
5525



LogL
0833
6360
3540
8812
2205
2001
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[1,] -146.
[2,] -115.
[3,]1 -109.
[4,] -106.
[5,]1 -106.
(6,1 -106.

0 OO N NN O

ql

.000000e+00
.466916e-13
.649929e-03
.580491e-01
.804510e-01
.015913e-01
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= 00 O N NN

q2

.466916e-13
.649929e-03
.580491e-01
.804510e-01
.015913e-01
.000000e+00

4.2. South African Heart Disease

g d W~ O R

The response variable, chd, indicates the presence or absence of coronary heart disease and
there are nine inputs. The sample size is 462. Logistic regression is used. The full model is,

R> data(SAheart)

R> out <- bestglm(SAheart, IC = "BICq", t =

Note: in this special case with BICq with t
With t=1, full model is fitted.

R> out

BICq(q = 1)
Best Model:

(Intercept)
sbp
tobacco
1d1l
adiposity

famhistPresent

typea
obesity
alcohol
age

Estimate
.1507208650
.0065040171
.0793764457
.1739238981
.0185865682
.9253704194
.0395950250
.0629098693
.0001216624
.0452253496

Std. Error
.308260018
.005730398
.026602843
.059661738
.029289409
.227894010
.012320227
.044247743
.004483218
.012129752

-4.
.13500273
.98375801
.91516648
.63458325
.06052980
.21382267
.42176449
.02713729
. 72846442

WP ONN -

o

1, family = binomial)

= 1 only fitted model

Zz value
70145138

R O~ P~ PD» 01T WND NN

Pr(>|zl)

.583188e-06
.563742e-01
.847319e-03
.554989e-03
.257003e-01
.896149e-05
.309805e-03
.550946e-01
.783502e-01
.926501e-04

is returned.

We find that the bounding interval for ¢ is 0.191 < ¢ < 0.901. For values of ¢ in this interval
a model with 5 inputs: tobacco, 1d1, famhist, typea and age and as expected all variables
have very low p-values. Using ¢ in the interval 0.094 < ¢ < 0.190 results in a subset of
the above model which excludes 1d1. Using cross-validation Hastie et al. (2009, §4.4.2) also
selected a model for this data with only four inputs but their subset excluded typea instead

of 141.

It is interesting that the subset chosen in Hastie et al. (2009, Section 4.4.2) may be found
using two other suboptimal procedures. First using the BIC, with ¢ = 0.25 and the R function

step,



R> ans <- glm(chd ~
R> q <- 0.25

*

R> n <- nrow(SAheart)
R> k <- log(n) - 2 * log(q/(1 - q))
R> step(ans, k = k)

Start: AIC=585.74
chd ~ sbp + tobacco + 1dl + adiposity + famhist + typea + obesity +
alcohol + age

- alcohol

- adiposity
- sbp

- obesity
<none>

- typea

- 1d1

- tobacco

- age

- famhist

1

1
1
1

N

Step: AIC=577.49
chd © sbp + tobacco + 1dl1 +

age

- adiposity
- sbp

- obesity
<none>

- typea

- 1ld1

- tobacco

- age

- famhist

1
1
1

N

Step: AIC=569.38
chd © sbp + tobacco

Df Deviance
79.
79.
80.
80.
79.
81.
81.
81.
82.
83.

919
945
187
350
904
480
612
962
002
025

Df Deviance
79.
80.
80.
79.
81.
81.
81.
82.
83.

957
192
362
919
483
677
979
035
025

+1

Df Deviance

- sbp

- obesity
<none>

- typea

- 1d1

- tobacco

1
1

[y

80.
80.
79.
81.
81.
82.

248 5
490 5
957 5
491 5
921 5
025 5

data

A
577.
577.
579.
579.
585.
586.
587.
589.
589.
595.

A
569.
570.
571.
577.
578.
579.
580.
581.
586.

dl +

AIC
62.73
64.12
69.38
69.83
72.26
72.84

A. I McLeod, C. Xu

= SAheart)

IC
49
64
04
98
74
43
18
15
38
11

adiposity + famhist + typea + obesity +

IC
38
73
71
49
11
21
92
23
78

famhist + typea + obesity + age

19
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- famhist 1 83.063 578.65
- age 1 83.232 579.59

Step: AIC=562.73
chd ~ tobacco + 1dl + famhist + typea + obesity + age

Df Deviance AIC
- obesity 1 80.686 556.91
<none> 80.248 562.73

- typea 1 81.736 562.88
- 1d1 1 82.223 565.62
- tobacco 1 82.396 566.59
- famhist 1 83.331 571.81
- age 1 84.416 577.78

Step: AIC=556.91
chd ~ tobacco + 1dl + famhist + typea + age

Df Deviance AIC
- typea 1 82.043 556.28
<none> 80.686 556.91

- 1d1 1 82.322 557.84
- tobacco 1 82.867 560.90
- famhist 1 83.725 565.66
- age 1 84.483 569.82

Step: AIC=556.28
chd ~ tobacco + 1dl + famhist + age

Df Deviance AIC

<none> 82.043 556.28

- 1ldl 1 83.914 558.36

- tobacco 1 84.351 560.76

- age 1 85.309 565.98
1

- famhist 85.368 566.30

Call: glm(formula = chd ~ tobacco + 1dl1 + famhist + age, data

Coefficients:
(Intercept) tobacco 1dl famhistPresent
-0.237407 0.017263 0.032533 0.178173

Degrees of Freedom: 461 Total (i.e. Null); 457 Residual
Null Deviance: 104.6
Residual Deviance: 82.04 AIC: 524.6

SAheart)

age
0.006836

Even with ¢ = 0.1 in the above script only tobacco, famhist and age are selected. And using
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q = 0.5 in the above script with step selects the same model the BiCselects when exhaustive
enumeration is done using bestglm. This example points out that using step for subset
selection may produce a suboptimal answer.

Yet another way that the four inputs selected by Hastie et al. (2009, Section 4.4.2) could be
obtained is to use least squares with bestglm to find the model with the best four inputs.

R> out <- bestglm(SAheart, IC = "BICq", t = 0.25)
Note: binary categorical variables converted to 0-1 so 'leaps' could be used.
R> out$Subsets

(Intercept) sbp tobacco 1d1l adiposity famhist typea obesity alcohol

0 TRUE FALSE  FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1 TRUE FALSE  FALSE FALSE FALSE  FALSE FALSE FALSE FALSE

2 TRUE FALSE  FALSE FALSE FALSE TRUE FALSE FALSE  FALSE

3 TRUE FALSE TRUE FALSE FALSE TRUE FALSE  FALSE  FALSE

4 TRUE FALSE TRUE TRUE FALSE TRUE FALSE FALSE  FALSE

5 TRUE FALSE TRUE TRUE FALSE TRUE TRUE FALSE  FALSE

6 TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE  FALSE

7 TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE  FALSE

8 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE  FALSE

9 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
age logLikelihood BICq

0 FALSE 343.1572 -686.3144

1 TRUE 377.7581 -747.1834

2 TRUE 387.4922 -758.3188

3  TRUE 394.0337 -763.0691

4% TRUE 399.2435 -765.1559

5 TRUE 403.0944 -764.5248

6 TRUE 404.3510 -758.7053

7  TRUE 405.1909 -752.0524

8 TRUE 405.3023 -743.9423

9 TRUE 405.3439 -735.6928

5. Other Illustrative Examples

5.1. Nuclear Power Plant Data

R> data(znuclear)
R> bestglm(znuclear, IC = "AIC")

AIC
BICq equivalent for q in (0.349204366418954, 0.716418902103358)
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Best Model:

Estimate Std. Error t value Pr(>ltl)
(Intercept) -38.7480703 7.91826983 -4.893502 4.910313e-05
date 0.5620284 0.11445901 4.910303 4.701224e-05
capacity 0.4759804 0.07818015 6.088252 2.310934e-06
NE 0.6588957 0.19616044 3.358963 2.510375e-03
CT 0.3714664 0.15987847 2.323430 2.858187e-02
N -0.2277672 0.10786682 -2.111560 4.489115e-02
PT -0.5982476 0.30044058 -1.991235 5.748951e-02

5.2. Detroit Homicide Data

Our analysis will use the six inputs which generate the lowest residual sum of squares. These
inputs are 1, 2, 4, 6, 7 and 11 as given in Miller (2002, Table 3.14). We have scaled the inputs,
although this is not necessary in this example. Using backward step-wise regression in R, no
variables are removed. But note that variables 1, 6 and 7 are all only significant at about 5%.
Bearing in mind the selection effect, the true significance is much less.

R> data(Detroit)

R> X <- as.data.frame(scale(Detroit[, c(1, 2, 4, 6, 7, 11)]))
R> y <- Detroit[, ncol(Detroit)]

R> Xy <- cbind(X, HOM = y)

R> out <- 1m(HOM ~ ., data = Xy)

R> step(out, k = log(nrow(Xy)))

Start: AIC=-11.34
HOM ~ FTP.1 + UEMP.2 + LIC.4 + CLEAR.6 + WM.7 + WE.11

Df Sum of Sq RSS AIC
<none> 1.3659 -11.3357
- WM.7 1 1.2724 2.6383 -5.3427
- CLEAR.6 1 1.3876 2.7535 -4.7871
- FTP.1 1 1.4376 2.8035 -4.5533
- WE.11 1 8.1170 9.4830 11.2888
- UEMP.2 1 16.3112 17.6771 19.3849
- LIC.4 1 20.6368 22.0027 22.2305
Call:
Im(formula = HOM ~ FTP.1 + UEMP.2 + LIC.4 + CLEAR.6 + WM.7 + WE.11, data = Xy)
Coefficients:
(Intercept) FTP.1 UEMP. 2 LIC.4 CLEAR.6 WM.7
25.127 1.724 2.570 5.757 -2.329 -2.452
WE.11
6.084

Same story with exhaustive search algorithm.
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R> out <- bestglm(Xy, IC = "BIC")

R> out
BIC
BICq equivalent for q in (0.115398370069662, 1)
Best Model:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 25.126923 0.1323333 189.875990 1.439772e-12
FTP.1 1.724110 0.6861084 2.512883 4.572467e-02
UEMP. 2 2.569527 0.3035648 8.464511 1.485656e-04
LIC.4 5.757015 0.6046682 9.520948 7.657697e-05
CLEAR.6 -2.329338 0.9435019 -2.468822 4.853518e-02
WM. 7 -2.452200 1.0372544 -2.364126 5.596776e-02
WE.11 6.083694 1.0188489 5.971144 9.892298e-04

We can use BICq to reduce the number of variables.
possible models.

The gTable let’s choose q for other

R> out$qTable

LogL ql q2 k
[1,] -35.832829 0.000000e+00 5.144759e-08 0
[2,] -17.767652 5.144759e-08 3.468452e-05 1
[3,] -6.215995 3.468452e-05 1.039797e-04 2
[4,] 4.237691 1.039797e-04 7.680569e-02 3
[5,] 8.006726 7.680569e-02 1.153984e-01 4
[6,] 14.645170 1.153984e-01 1.000000e+00 6

This suggest we try q=0.05

R> bestglm(Xy, IC = "BICq", t = 0.05)

BICq(q = 0.05)
BICq equivalent for q in (0.000103979673982901, 0.0768056921650389)
Best Model:

Estimate Std. Error
(Intercept) 25.12692 0.2406075

t value Pr(>|tl)
104.43119 3.435051e-15

UEMP. 2 3.38307 0.2601848 13.00257 3.876404e-07
LIC.4 8.20378 0.2802445 29.27365 3.090409e-10
WE.11 10.90084 0.2787164 39.11089 2.321501e-11
Or q=0.0005.

R> bestglm(Xy, IC = "BICqQ", t = 5e-05)
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BICq(q = 5e-05)
BICq equivalent for q in (3.46845195655643e-05, 0.000103979673982901)
Best Model:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 25.126923 0.5101048 49.258354 2.871539e-13
LIC.4 4.473245 0.6381795 7.009384 3.673796e-05
CLEAR.6 -13.386666 0.6381795 -20.976334 1.346067e-09

The above results agree with Miller (2002, Table 3.14). It is interesting that the subset model
of size 2 is not a subset itself of the size 3 model. It is clear that simply adding and/or
dropping one variable at a time as in the stepwise and stagewise algorithms will not work in
moving either from model 2 to model 3 or vice-versa.

Using delete-d CV with d=4 suggests variables 2,4,6,11

R> set.seed(1233211)
R> bestglm(Xy, IC = "CV", CVArgs = list(Method = "d", K = 4, REP = 50))

Cvd(d = 4, REP = 50)
BICq equivalent for q in (0.0768056921650389, 0.115398370069661)
Best Model:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 25.126923 0.1909731 131.573114 1.244969e-14
UEMP.2 2.571151 0.3840754 6.694391 1.535921e-04
LIC.4 7.270181 0.4337409 16.761574 1.624771e-07
CLEAR.6 -3.250371 1.2964006 -2.507227 3.652839e-02
WE.11 8.329213 1.0492726 7.938083 4.617821e-05

5.3. Air Quality Data

Here is an example of a dataset with categorical variables at more than 2 levels. First we look
at the full model,

R> data(AirQuality)
R> bestglm(AirQuality, IC = "BICq", t = 1)

Note: in this special case with BICq with t = 1 only fitted model is returned.
With t=1, full model is fitted.

BICq(q = 1)
Best Model:

Df Sum Sq Mean Sq F value Pr(>F)
Solar.R 1 14780 14780 31.9857 1.815e-07 **x*
Wind 1 39969 39969 86.5007 8.147e-15 *xx*
Temp 1 19050 19050 41.2273 6.239e-09 ***
month 11 3713 338 0.7305 0.7066
weekday 6 2703 451 0.9750 0.4469
Residuals 90 41586 462

Signif. codes: O '*xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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Next we find the best AIC model,

R> bestglm(AirQuality, IC = "AIC")

Morgan-Tatar search since factors present with more than 2 levels.
AIC

Best Model:
Df Sum Sq Mean Sq F value Pr (>F)
Solar.R 1 14780 14780 32.944 8.946e-08 *xx
Wind 1 39969 39969 89.094 9.509e-16 *x**
Temp 1 19050 19050 42.463 2.424e-09 x**x
Residuals 107 48003 449
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

5.4. Forest Fires

The forest fire data were collected during January 2000 to December 2003 for fires in the
Montesinho natural park located in the Northeast region of Portugal. The response variable
of interest was area burned in ha. When the area burned as less than one-tenth of a hectare,
the response variable as set to zero. In all there were 517 fires and 247 of them recorded as
Zero.

The dataset was provided by Cortez and Morais (2007) who also fit this data using neural
nets and support vector machines.

The region was divided into a 10-by-10 grid with coordinates X and Y running from 1 to 9
as shown in the diagram below. The categorical variable xyarea indicates the region in this
grid for the fire. There are 36 different regions so xyarea has 35 df.

_— K —

|
¥

Figure 2: Montesinho Park

Fitting the best-AIC regression,

R> data(Fires)
R> bestglm(Fires, IC = "AIC")
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Morgan-Tatar search since factors present with more than 2 levels.
AIC

Best Model:
Df Sum Sq Mean Sq F value Pr(>F)
month 11 37.37 3.3970 1.7958 0.05195 .
DMC 1 6.31 6.3145 3.3381 0.06829 .
DC 4.85 4.8468 2.5622 0.11008
temp 1 8.92 8.9165 4.7136 0.03039 *
wind 1 3.94 3.9384 2.0820 0.14967
Residuals 501 947.72 1.8917
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

6. Simulated Data

6.1. Null Regression Example

Here we check that our function handles the null regression case where there are no inputs to
include in the model. We assume an intercept term only.

R> set.seed(123312123)

R> X <- as.data.frame (matrix(rnorm(50), ncol = 2, nrow = 25))
R> y <- rnorm(25)

R> Xy <- cbind(X, y = y)

R> bestglm(Xy)

BIC
BICq equivalent for q in (0, 0.540989544689166)
Best Model:
Estimate Std. Error t value Pr(>|tl)
(Intercept) -0.3074955 0.2323344 -1.323504 0.1981378

6.2. Logistic Regression

As a check we simulate a logistic regression with K = 10 inputs. The inputs are all Gaussian
white noise with unit variance. So the model equation may be written, Y is IID Bernouilli
distribution with parameter p, p = E(Y) = h(By + 1 X1 + ... + BxXk) where h(z) =
(1 + e ®)~L. Note that h is the inverse of the logit transformation and it may coveniently
obtained in R using plogist. In the code below we set Sy = a = —1 and 1 = 3, B2 = 2,
s =4/3, bs = 2% and ; =0,i=25,...,10. Taking n = 500 as the sample size we find after
fit with glm.

R> set.seed(231231)
R> n <- 500
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R> K <- 10
R> a <- -1
R> b <- c(c(9, 6, 4, 8)/3, rep(0, K - 4))
R> X <- matrix(rnorm(n * K), ncol = K)
R>L <-a+ X /*x) b
R> p <- plogis(L)
R> Y <- rbinom(n = n, size = 1, prob = p)
R> X <- as.data.frame(X)
R> out <- glm(Y = ., data = X, family = binomial)
R> summary (out)
Call:
glm(formula = Y ~ ., family = binomial, data = X)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.80409 -0.28120 -0.02809 0.25338 2.53513
Coefficients:

Estimate Std.
(Intercept) -0.882814 0.

Vi 3.186252 O
V2 1.874106 O
V3 1.500606 O
\'ES 2.491092 O
V5 0.029539 O
V6 -0.179920 O
V7 -0.047183 O
V8 -0.121629 O
Vo -0.229848 O
V10 -0.002419 O

Signif. codes: 0O '**x' 0.
(Dispersion parameter for
Null deviance: 685.93

Residual deviance: 243.86
AIC: 265.86

Error z value Pr(>|z]|)
182554 -4.836 1.33e-06 *x*xx*

.325376 9.793 < 2e-16 **x*
.242864  7.717 1.19e-14 %%
.215321 6.969 3.19e-12 *x*x*
.281585  8.847 < 2e-16 **x*
.165162  0.179 0.858
.176994 -1.017 0.309
.172862 -0.273 0.785
.168903 -0.720 0.471
.161735 -1.421 0.155
.177972 -0.014 0.989

001 'xx' 0.01 'x' 0.05 '.' 0.1

binomial family taken to be 1)

on 499 degrees of freedom
on 489 degrees of freedom

Number of Fisher Scoring iterations: 7

6.3. Binomial Regression

1

27

As a further check we fit a binomial regression taking n = 500 with K = 10 inputs and
with Bernouilli number of trials m = 100. So in this case the model equation may be
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written, Y is IID binomially distributed with number of trials m = 10 and parameter p,
p=EY)=h(Bo+ 1 X1+...+BxXk) where h(x) = (1+e~%)~. We used the same ’s as
in Section 6.2.

R> set.seed(231231)

R> n <- 500

R> K <- 8

R> m <- 100

R> a <- 2

R> b <~ c(c(9, 6, 4, 8)/10, rep(0, K - 4))

R> X <- matrix(rnorm(n * K), ncol = K)

R>L <-a+ X J/*x) b

R> p <- plogis(L)

R> Y <- rbinom(n = n, size = m, prob = p)
Y

R> <- cbind(Y, m - Y)

R> dimnames(Y)[[2]] <- c("S", "F")

R> X <- as.data.frame(X)

R> out <- glm(Y = ., data = X, family = binomial)
R> summary (out)

Call:
glm(formula = Y

., family = binomial, data = X)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.77988 -0.70691 0.07858 0.75158 2.70323

Coefficients:

Estimate Std. Error z value Pr(>|zl|)
(Intercept) 2.025629 0.016967 119.383 <2e-16 ***
Vi 0.898334 0.015175 59.197 <2e-16 **x*
V2 0.607897 0.012987 46.809 <2e-16 **x
V3 0.429355 0.013609 31.551 <2e-16 **x*
V4 0.835002 0.014962 55.807 <2e-16 **x
V5 -0.006607 0.013867 -0.476 0.634
V6 -0.011497 0.013596 -0.846 0.398
V7 0.022112  0.013660 1.619 0.105
V8 0.000238 0.013480 0.018 0.986
Signif. codes: 0O '#%x' 0.001 '*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 10752.23 on 499 degrees of freedom
Residual deviance: 507.19 on 491 degrees of freedom
AIC: 2451.8
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Number of Fisher Scoring iterations: 4

In this example, one input V6 is signficant at level 0.03 even though its correct coefficient is
Zero.

R> Xy <- cbind(X, Y)
R> bestglm(Xy, family = binomial)

Morgan-Tatar search since family is non-gaussian.

BIC
BICq equivalent for q in (0, 0.870630550022155)
Best Model:

Estimate Std. Error z value Pr(>lzl)
(Intercept) 2.0247237 0.01689493 119.84211 0.000000e+00
Vi 0.8995804 0.01513694 59.42948 0.000000e+00
V2 0.6063199 0.01287612 47.08872 0.000000e+00
V3 0.4290062 0.01360140 31.54132 2.358219e-218
V4 0.8349437 0.01485556 56.20412 0.000000e+00

Using the default selection method, BIC, the correct model is selected.

6.4. Binomial Regression With Factor Variable

An additional check was done to incorporate a factor variable. We include a factor input
representing the day-of-week effect. The usual corner-point method was used to parameterize
this variable and large coefficients chosen, so that this factor would have a strong effect. Using
the corner-point method, means that the model matrix will have six additional columns of
indicator variables. We used four more columns of numeric variables and then added the six
columns for the indicators to simulate the model.

R> set.seed(33344111)

R> n <- 500
R> K <- 4
R> m <- 100
R> a <- 2

R> dayNames <- c("Sunday", "Monday", "Tuesday", "Wednesday", "Friday",
+ "Saturday")

R> Days <- data.frame(d = factor (rep(dayNames, n))[1:n])

R> Xdays <- model.matrix(~d, data = Days)

R> bdays <- c¢(7, 2, -7, 0, 2, 7)/10

R> Ldays <- Xdays /*J, bdays

R> b <= c(c(9, 6)/10, rep(0, K - 2))

R> X <- matrix(rnorm(n * K), ncol = K)
R>L <-a+ X J/*x) b

R> L <- L + Ldays

R> p <- plogis(L)
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R> Y <- rbinom(n = n, size = m, prob = p)

R> Y <- cbind(Y, m - Y)

R> dimnames(Y)[[2]] <- c("S", "F")

R> X <- as.data.frame (X)

R> X <- data.frame(X, days = Days)

R> out <- glm(Y ~ ., data = X, family = binomial)
R> anova(out, test = "Chisq")

Analysis of Deviance Table
Model: binomial, link: logit
Response: Y

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chil)

NULL 499 5609.2

Vi 1 2992.36 498 2616.9 <2e-16 *x*x

V2 1 1253.89 497 1363.0 <2e-16 *x*xx

V3 1 2.49 496 1360.5 0.1145

V4 1 1.91 495 1358.6 0.1668

d 5 797.44 490 561.1 <2e-16 *xx*

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

After fitting with glm we find the results as expected. The factor variable is highly signficant
as well as the first two quantiative variables.

Using bestglm, we find it selects the correct model.

R> Xy <- cbind(X, Y)
R> out <- bestglm(Xy, IC = "BICq", family = binomial)

Morgan-Tatar search since family is non-gaussian.
Note: factors present with more than 2 levels.

R> out

BICq(q = 0.25)
Best Model:
Response S :

Df Sum Sq Mean Sq F value Pr (>F)
V1 1 24841.5 24841.5 792.61 < 2.2e-16 *xx
V2 1 9110.0 9110.0 290.67 < 2.2e-16 *xx
d 5 7473.4 1494.7  47.69 < 2.2e-16 **x*
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Residuals 492 15419.9 31.3

Signif. codes: O '*xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Response F :
Df Sum Sq Mean Sq F value Pr (>F)

Vi 1 24841.5 24841.5 792.61 < 2.2e-16 *x*x
V2 1 9110.0 9110.0 290.67 < 2.2e-16 *x*x
d 5 T7473.4 1494.7 47.69 < 2.2e-16 **x*

Residuals 492 15419.9 31.3

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

6.5. Poisson Regression

R> set.seed(231231)

R> n <- 500

R> K <- 4

R> a <- -1

R> b <- c(c(1, 0.5), rep(0, K - 2))
R> X <- matrix(rnorm(n * K), ncol = K)
R>L <-a+ X J*} b

R> lambda <- exp(L)

R> Y <- rpois(n = n, lambda = lambda)

R> X <- as.data.frame(X)

R> out <- glm(Y ~ ., data = X, family = poisson)
R> summary (out)

Call:
glm(formula = Y ~ ., family = poisson, data = X)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.1330 -0.8084 -0.4853 0.4236 2.6320

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.92423 0.07933 -11.650  <2e-16 ***
Vi 0.97841 0.05400 18.119 <2e-16 *xx*
V2 0.51967 0.05707 9.107 <2e-16 *xx*
V3 0.03773 0.05525 0.683 0.495
V4 0.03085 0.04646 0.664 0.507

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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(Dispersion parameter for poisson family taken to be 1)
Null deviance: 880.73 on 499 degrees of freedom

Residual deviance: 427.49 on 495 degrees of freedom

AIC: 913.41

Number of Fisher Scoring iterations: 5

As expected the first two variables are highly signficant and the next two are not.

R> Xy <- data.frame(X, y = Y)
R> bestglm(Xy, family = poisson)

Morgan-Tatar search since family is non-gaussian.

BIC
BICq equivalent for q in (0, 0.947443940310683)
Best Model:

Estimate Std. Error z value Pr(>lzl)
(Intercept) -0.9292265 0.07955966 -11.679619 1.620199e-31
Vi 0.9897770 0.05284046 18.731421 2.744893e-78
V2 0.5302822 0.05588287 9.489171 2.328782e-21

Our function bestglm selects the correct model.

6.6. Gamma Regression

To simulate a Gamma regression we first write a function GetGammaParameters that translates
mean and standard deviation into the shape and scale parameters for the function rgamma.

R> GetGammaParameters <- function(muz, sdz) {

+ phi <- (sdz/muz) "2

+ nu <- 1/phi

+ lambda <- muz/nu

+ list(shape = nu, scale = lambda)
+ }

R> set.seed(321123)
R> test <- rnorm(20)

R> n <- 500
R> b <- ¢(0.25, 0.5, 0, 0)
R> b0 <- 0.3

R> K <- length(b)

R> sdz <- 1

R> X <- matrix(rnorm(n * K), ncol = K)

R>L <- b0 + X J}*/ b

R> muHat <- exp(L)

R> gp <- GetGammaParameters (muHat, sdz)

R> zsim <- rgamma(n, shape = gp$shape, scale = gp$scale)



A. I McLeod, C. Xu 33

R> Xy <- data.frame(as.data.frame.matrix(X), y = zsim)
R> out <- gim(y ~ ., data = Xy, family = Gamma(link = log))
R> summary (out)

Call:
glm(formula = y ~ ., family = Gamma(link = log), data = Xy)

Deviance Residuals:
Min 1Q Median 3Q Max
-5.6371 -0.7417 -0.1968 0.2237 3.2105

Coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept) 0.313964 0.044124 7.115 3.93e-12 *x*x*

Vi 0.191957 0.040983 4.684 3.64e-06 ***

V2 0.558321 0.042485 13.142 < 2e-16 **x*

V3 0.018709  0.044939 0.416 0.677

V4 0.004252  0.043367 0.098 0.922

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Gamma family taken to be 0.944972)

Null deviance: 792.56 on 499 degrees of freedom
Residual deviance: 621.67 on 495 degrees of freedom
AIC: 1315.9

Number of Fisher Scoring iterations: 9

R> bestglm(Xy, family = Gamma(link = log))
Morgan-Tatar search since family is non-gaussian.
BIC

BICq equivalent for q in (0.000599916119599198, 0.953871171759292)
Best Model:

Estimate Std. Error t value Pr>ltl)
(Intercept) 0.3110431 0.04353445 7.144757 3.229210e-12
Vi 0.1931868 0.04098936 4.713096 3.172312e-06
V2 0.5560244 0.04226866 13.154531 4.011556e-34

As expected, bestglm selects the correct model.

7. Simulation Experiment

Please see the separate vignette Xu and McLeod (2009) for a discussion of how the simulation
experiment reported in Xu and McLeod (2010, Table 2) was carried out as well for more



34 bestglm: Best Subset GLM

detailed results of the simulation results themselves. The purpose of the simulation exper-
iment reported on in Xu and McLeod (2010, Table 2) and described in more detail in the
accompanying vignette Xu and McLeod (2009) was to compare different information criteria
used in model selection.

Similar simulation experiments were used by Shao (1993) to compare cross-valiation criteria
for linear model selection. In the simulation experiment reported by Shao (1993), the per-
formance of various CV methods for linear model selection were investigated for the linear
regression,

y =2+ Baxo + P3x3 + Bazs + B525 + e, (8)

where e NID(0, 1). A fixed sample size of n = 40 was used and the design matrix used is given
in (Shao 1993, Table 1) and the four different values of the /’s are shown in the table below,

Experiment (2 (3 B4 PBs

1 0O 0 4 O
2 0 0 4 8
3 9 0 4 8
4 9 6 4 8

The table below summarizes the probability of correct model selection in the experiment
reported by Shao (1993, Table 2). Three model selection methods are compared: LOOCV
(leave-one-out CV), CV(d=25) or the delete-d method with d=25 and APCV which is a very
efficient computation CV method but specialized to the case of linear regression.

Experiment LOOCV CV(d=25) APCV

1 0.484 0.934 0.501
2 0.641 0.947 0.651
3 0.801 0.965 0.818
4 0.985 0.948 0.999

The CV(d=25) outperforms LOOCYV in all cases and it also outforms APCV by a large margin
in Experiments 1, 2 and 3 but in case 4 APCV is slightly better.

In the code below we show how to do our own experiments to compare model selection using
the BIC, BIC, and BIC, criteria.

R> testCorrect <- function(ans, NB) {

+ NBfit <- names(coef (ans)) [-1]

+ ans <- ifelse(length(NBfit) == length(NB) & (!any(is.na(match(NBfit,
+ NB)))), 1, 0)

+ ans

+ }

R> NSIM <- 5

R> data(Shao)

R> set.seed(123321123)

R> X <- as.matrix.data.frame (Shao)

R> BETA <- list(bl = c¢(0, 0, 4, 0), b2 = c(0, 0, 4, 8), b3 = c(9,

+ 0, 4, 8), b4 = c(9, 6, 4, 8))
R> NamesBeta <- list(bl = c("x4"), b2 = c("x4", "x5"), b3 = c("x2",
+ "X4", "X5”), b4 = C(”XQ", ”X3“, HX4II’ HX5II))

R> hitsBIC <- hitsEBIC <- hits(BIC <- numeric(4)
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startTime <- proc.time()[1]
for (iB in 1:4) {
b <- BETA[[iB]]
NB <- NamesBeta[[iB]]
for (iSIM in 1:NSIM) {
y <= 2 + X 7*} b + rnorm(40)
Xy <- cbind(Shao, y)
hitsBIC[iB] <- hitsBIC[iB] + testCorrect(bestglm(Xy,
IC = "BIC")$BestModel, NB)
hitsEBIC[iB] <- hitsEBIC[iB] + testCorrect(bestglm(Xy,
IC = "BICg")$BestModel, NB)
hits@QBIC[iB] <- hitsQBIC[iB] + testCorrect(bestglm(Xy,
IC = "BICq")$BestModel, NB)
}

endTime <- proc.time() [1]

totalTime <- endTime - startTime

ans <- matrix(c(hitsBIC, hitsEBIC, hits{BIC), byrow = TRUE, ncol = 4)
dimnames (ans) <- list(c("BIC", "BICg", "BICq"), 1:4)

ans <- t(ans)/NSIM

ans

IC BICg BICq
0.8 0.8
0.8 1.0
0.8 1.0
1.0 1.0

totalTime

r.self
1.01

Increasing the number of simulations so NSIM=10000, the following result was obtained,

10
20
30
40

BIC BICg BICq
.8168 0.8666 0.9384
.8699 0.7741 0.9566
.9314 0.6312 0.9761
.9995 0.9998 0.9974

8. Controlling Type 1 Error Rate

Consider the case where there are p input variables and it we wish to test the null hypothesis

Ho:

the output is not related to any inputs. By adjusting ¢ in the BIC, criterion, we can

control the Type 1 error rate. Using simulation, we can determine for any particular n and

35
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p, what value of ¢ is needed to achieve a Type 1 error rate for a particular level, such as
a = 0.05.

We compare the performance of information selection criteria in the case of a null model with
p = 25 inputs and n = 30 observations. Using 50 simulations takes about 30 seconds. Since
there is no relation between the inputs and the output, the correct choice is the null model
with no parameters. Using the BICq criterion with ¢ = 0.05 works better than AIC, BIC or
BICg. We may consider the number of parameters selected as the frequency of Type 1 errors
in an hypothesis testing framework. By adjusting ¢ we may adjust the Type 1 error rate to
any desired level. This suggests a possible bootstrapping approach to the problem of variable
selection.

R> set.seed(123321123)

R> startTime <- proc.time()[1]

R> NSIM <- 5

R> p <- 25

R> n <- 30

R> ans <- numeric(4)

R> names(ans) <- c("AIC", "BIC", "BICg", "BICq")
for (iSim in 1:NSIM) {

v ]
v

X <- matrix(rnorm(n * p), ncol = p)

y <- rnorm(n)

Xy <- as.data.frame(cbind(X, y))

names (Xy) <- c(paste("X", 1:p, sep = ""), "y")
bestAIC <- bestglm(Xy, IC = "AIC")

bestBIC <- bestglm(Xy, IC = "BIC")

bestEBIC <- bestglm(Xy, IC = "BICg")

bestQBIC <- bestglm(Xy, IC = "BICq", t = 0.05)

ans[1] <- ans[1] + length(coef (bestAIC$BestModel)) - 1
ans[2] <- ans[2] + length(coef(bestBIC$BestModel)) - 1
ans[3] <- ans[3] + length(coef(bestEBIC$BestModel)) - 1
ans[4] <- ans[4] + length(coef (bestQBIC$BestModel)) - 1

+ + + + + + + + + + + + 4+

}

R> endTime <- proc.time() [1]

R> totalTime <- endTime - startTime
R> totalTime

user.self
4.52

R> ans

AIC BIC BICg BICq
588 13 0 0

9. Concluding Remarks
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The subset regression problem is related to the subset autoregression problem that as been
discussed by McLeod and Zhang (2006, 2008) and implemented in the FitAR R package
available on CRAN. The FitAR has been updated to include the new BIC, criterion.
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