
depmix: An R-package for fitting mixture models

on mixed multivariate data with Markov

dependencies

Ingmar Visser1

Department of Psychology, University of Amsterdam
i.visser@uva.nl

November 21, 2007

1Correspondence concerning this manual should be adressed to: Ingmar Visser,
Department of Psychology, University of Amsterdam, Roetersstraat 15, 1018 WB,
Amsterdam, The Netherlands

Abstract

depmix implements a general class of mixture models with Markovian depen-
dencies between them in the R programming language (R Development Core
Team, 2007). This includes standard Markov models, latent/hidden Markov
models, and latent class and finite mixture distribution models. The models
can be fitted on mixed multivariate data with multinomial and/or gaussian dis-
tributions. Parameters can be estimated subject to general linear constraints.
Parameter estimation is done through a direct optimization approach with gradi-
ents using the Rdonlp2 optimization routine. A number of illustrative examples
are included.

Contents

1 Introduction 2

2 Dependent mixture models 4
2.1 Likelihood . 5
2.2 Gradients . 6
2.3 Parameter estimation . 8

3 Using depmix 9
3.1 Creating data sets . 9

3.1.1 Example data: speed . 10
3.2 Defining models . 10

3.2.1 Generating data . 10
3.3 Fitting models . 10

4 Extending and constraining models 12
4.1 Fixing and constraining parameters 12
4.2 Multi group/case analysis . 13
4.3 Models with time-dependent covariates 14

5 Special topics 15
5.1 Starting values . 15
5.2 Finite mixtures and latent class models 15
5.3 Mixtures of latent Markov models 16

1

Chapter 1

Introduction

Markov and latent Markov models are frequently used in the social sciences,
in different areas and applications. In psychology, they are used for modelling
learning processes, see Wickens (1982), for an overview, and Schmittmann et al.
(2006) for a recent application. In economics, latent Markov models are com-
monly used as regime switching models, see e.g. Kim (1994) and Ghysels (1994).
Further applications include speech recognition (Rabiner, 1989), EEG analysis
(Rainer and Miller, 2000), and genetics (Krogh, 1998). In those latter areas
of application, latent Markov models are usually referred to as hidden Markov
models.

The depmix package was motivated by the fact that Markov models are used
commonly in the social sciences, but no comprehensive package was available for
fitting such models. Common programs for Markovian models include Panmark
(Van de Pol et al., 1996), and for latent class models Latent Gold (Vermunt and
Magidson, 2003). Those programs are lacking a number of important features,
besides not being freely available. In particular, depmix: 1) handles multiple
case, or multiple group, analyses; 2) handles arbitrarily long time series; 3) es-
timates models with general linear constraints between parameters; 4) analyzes
mixed distributions, i.e., combinations of categorical and continuous observed
variables; 5) fits mixtures of latent Markov models to deal with population het-
erogeneity; 6) can fit models with covariates. Although depmix is specifically
meant for dealing with longitudinal or time series data, for say T > 100, it
can also handle the limit case with T = 1. In those cases, there are no time
dependencies between observed data, and the model reduces to a finite mixture
model, or a latent class model. In the next chapter, an outline is provided of
the model and the likelihood equations. In the chapters after that a number of
examples are presented.

2

Acknowledgements

I am indebted to many people for providing help in writing this package. First
and foremost Maartje Raijmakers and Verena Schmittmann tested countless ear-
lier versions, spotted bugs and suggested many features. Moreover, Maartje Rai-
jmakers Raijmakers et al. (2001) provided the discrimination data set. Han van
der Maas provided the speed-accuracy data Maas et al. (2005) and thereby nec-
cessitated implementing models with time-dependent covariates. Conor Dolan
and Raoul Grasman both provided valuable advice on statistics in general and
optimization in particular.

3

Chapter 2

Dependent mixture models

The data considered here, has the general form O1
1, . . . , O

m
1 , O1

2, . . . , O
m
2 , . . . ,

O1
T , . . . , O

m
T for an m-variate time series of length T . As an example, consider

a time series of responses generated by a single subject in a reaction time ex-
periment. The data consists of three variables, reaction time, accuracy and a
covariate which is a pay-off factor which determines the reward for speed and ac-
curacy. These variables are measured at 168, 134 and 137 occasions respectively
(in Figure 2.1 the first part of this series is plotted).

5.
0

5.
5

6.
0

6.
5

7.
0

rt

0.
0

0.
4

0.
8

co
rr

0.
0

0.
2

0.
4

0.
6

0.
8

0 50 100 150

P
ac

c

Time

speed

Figure 2.1: Reaction times, accuracy and pay-off values for the first series of
responses in dataset speed.

The latent Markov model is commonly associated with data of this type,
albeit usually only multinomial variables are considered. However, common
estimation procedures, such as those implemented in Van de Pol et al. (1996)
are not suitable for long time series due to underflow problems. In contrast, the

4

hidden Markov model is typically only used for ‘long’ univariate time series. In
the next section, the likelihood and estimation procedure for the hidden Markov
model is described, given data of the above form.

The dependent mixture model is defined by the following elements:

1. a set S of latent classes or states Si, i = 1, . . . , n,

2. a matrix A of transition probabilities aij for the transition from state Si
to state Sj ,

3. a set B of observation functions bj(·) that provide the conditional proba-
bilities associated with latent state Sj ,

4. a vector πππ of latent state initial probabilities πi

When transitions are added to the latent class model, it is more appropriate to
refer to the classes as states. The word class is rather more associated with a
stable trait-like attribute whereas a state can change over time.

2.1 Likelihood

The loglikelihood of hidden Markov models is usually computed by the so-called
forward-backward algorithm (Baum and Petrie, 1966; Rabiner, 1989), or rather
by the forward part of this algorithm. Lystig and Hughes (2002) changed the
forward algorithm in such a way as to allow computing the gradients of the
loglikelihood at the same time. They start by rewriting the likelihood as follows
(for ease of exposition the dependence on the model parameters is dropped
here):

LT = Pr(O1, . . . ,OT) =
T∏
t=1

Pr(Ot|O1, . . . ,Ot−1), (2.1)

where Pr(O1|O0) := Pr(O1). Note that for a simple, i.e. observed, Markov
chain these probabilities reduce to Pr(Ot|O1, . . . ,Ot−1) = Pr(Ot|Ot−1). The
log-likelihood can now be expressed as:

lT =
T∑
t=1

log[Pr(Ot|O1, . . . ,Ot−1)]. (2.2)

To compute the log-likelihood, Lystig and Hughes (2002) define the following
(forward) recursion:

φ1(j) := Pr(O1, S1 = j) = πjbj(O1) (2.3)

φt(j) := Pr(Ot, St = j|O1, . . . ,Ot−1)

=
N∑
i=1

[φt−1(i)aijbj(Ot)]× (Φt−1)−1,
(2.4)

where Φt =
∑N
i=1 φt(i). Combining Φt = Pr(Ot|O1, . . . ,Ot−1), and equa-

tion (2.2) gives the following expression for the log-likelihood:

lT =
T∑
t=1

log Φt. (2.5)

5

The above forward recursion can readily be generalized to mixture models,
in which it is assumed that the data are realizations of a number of different
LMMs and the goal is to assign posterior probabilities to sequences of obser-
vations. This situation occurs, for example, in learning data where different
learning strategies may lead to different answer patterns. From an observed se-
quence of responses, it may not be immediately clear from which learning process
they stem. Hence, it is interesting to consider a mixture of latent Markov mod-
els which incorporate restrictions that are consistent with each of the learning
strategies.

To compute the likelihood of a mixture of K models, define the forward re-
cursion variables as follows (these variables now have an extra index k indicating
that observation and transition probabilities are from latent model k):

φ1(jk) = Pr(O1, S1 = jk) = pkπjkbjk(O1). (2.6)

φt(jk) = Pr(Ot, St = jk|O1, . . . ,Ot−1)

=

[
K∑
k=1

nk∑
i=1

φt−1(ik)aijkbjk(Ot)

]
× (Φt−1)−1,

(2.7)

where Φt =
∑K
k=1

∑nk

i=1 φt(jk). Note that the double sum over k and nk is
simply an enumeration of all the states of the model. Now, because aijk = 0
whenever Si is not part of component k, the sum over k can be dropped and
hence equation 2.7 reduces to:

φt(jk) =

[
nk∑
i=1

φt−1(ik)aijkbjk(Ot)

]
× (Φt−1)−1 (2.8)

The loglikelihood is computed by applying equation 2.5 on these terms. For
multiple cases, the log-likelihood is simply the sum over the individual log-
likelihoods.

Computational considerations From equations (2.3–2.4), it can be seen
that computing the forward variables, and hence the log-likelihood, takesO(Tn2)
computations, for an n-state model and a time series of length T . Consider a
mixture of two components, one with two states and the other with three states.
Using equations (2.3–2.4) to compute the log-likelihood of this model one needs
O(Tn2) = O(T × 25) computations whereas with the mixture equations (2.6–
2.7),

∑
ni
O(n2

iT) computations are needed, in this case O(T × 13). So, it can
be seen that in this easy example the computational cost is almost halved.

2.2 Gradients

See equations 10–12 in Lystig and Hughes (2002) for the score recursion func-
tions of the hidden Markov model for a univariate time series. Here the corre-
sponding score recursion for the multivariate mixture case are provided. The
t = 1 components of this score recursion are defined as (for an arbitrary param-

6

eter λ1):

ψ1(jk;λ1) :=
∂

∂λ1
Pr(O1|S1 = jk) (2.9)

=
[
∂

∂λ1
pk

]
πjkbjk(O1) + pk

[
∂

∂λ1
πjk

]
bjk(O1)

+ pkπjk

[
∂

∂λ1
bjk(O1)

]
,

(2.10)

and for t > 1 the definition is:

ψt(jk;λ1) =
∂
∂λ1

Pr(O1, . . . ,Ot, St = jk)
Pr(O1, . . . ,Ot−1)

(2.11)

=
nk∑
i=1

{
ψt−1(i;λ1)aijkbjk(Ot)

+ φt−1(i)
[
∂

∂λ1
aijk

]
bjk(Ot)

+ φt−1(i)aijk

[
∂

∂λ1
bjk(Ot)

]}
× (Φt−1)−1.

(2.12)

Using above equations, Lystig and Hughes (2002) derive the following equa-
tion for the partial derivative of the likelihood:

∂

∂λ1
lT =

ΨT (λ1)
ΦT

, (2.13)

where Ψt =
∑K
k=1

∑nk

i=1 ψt(jk;λ1). Starting from the equation from the loga-
rithm of the likelihood, this is easily seen to be correct:

∂

∂λ1
logPr(O1, . . . ,OT) = Pr(O1, . . . ,OT)−1 ∂

∂λ1
Pr(O1, . . . ,OT)

=
Pr(O1, . . . ,OT−1)
Pr(O1, . . . ,OT)

ΨT (λ1)

=
ΨT (λ1)

ΦT
.

Further, to actually compute the gradients, the partial derivatives of the
parameters and observation distribution functions are neccessary, i.e., ∂

∂λ1
pk,

∂
∂λ1

πi, ∂
∂λ1

aij , and ∂
∂λ1

bi(Ot). Only the latter case requires some attention. We
need the following derivatives ∂

∂λ1
bj(Ot) = ∂

∂λ1
bj(O1

t , . . . , O
m
t), for arbitrary

parameters λ1. To stress that bj is a vector of functions, we here used boldface.
First note that because of local independence we can write:

∂

∂λ1

[
bj(O1

t , . . . , O
m
t)
]

=
∂

∂λ1

[
bj(O1

t)
]
×
[
bj(O2

t)
]
, . . . , [bj(Omt)] .

Applying the chain rule for products we get:

∂

∂λ1
[bj(O1

t , . . . , O
m
t)] =

m∑
l=1

 ∏
i=1,...,l̂,...,m

bj(Oit)

× ∂

∂λ1
[bj(Olt)], (2.14)

7

where l̂ means that that term is left out of the product. These latter terms,
∂
∂λ1

[bj(Okt)], are easy to compute given either multinomial or gaussian observa-

tion densities bj()̇

2.3 Parameter estimation

Parameters are estimated in depmix using a direct optimization approach in-
stead of the EM algorithm which is frequently used for this type of model. The
EM algorithm however has some drawbacks. First, it can be slow to converge.
Second, applying constraints to parameters can be problmatic. Third, the EM
algorithm can sometimes lead to incorrect estimates when constraints are ap-
plied to parameters in the M-step of the algorithm.

Optimization in depmix is done using Rdonlp2 Tamura (ry.tamura@gmail.com);
Spellucci (2002) (and there is support for using NPSOL). These packages are pre-
ferred because they can deal with both general linear and non-linear constraints
between parameters.

8

Chapter 3

Using depmix

Three steps are involved in using depmix which are illustrated below with ex-
amples:

1. data specification with function markovdata

2. model specification with function dmm

3. model fitting with function fitdmm

To be able to fit models, data need to in a specific format created for this
package. Basically, data should be in the form of a matrix with each row
corresponding to measures taken at a single measurement occasion for a single
subject. The function markovdata further only requires one argument providing
the itemtypes, being one of categorical, continuous or covariate. A markovdata
object is a matrix with a number of attributes.

3.1 Creating data sets

As an example, a dataset is created in below code with two variables measured
at two times 50 occasions.

x=rnorm(100,10,2)
y=ifelse(runif(100)<0.5,0,1)
z=matrix(c(x,y),100,2)
md=markovdata(z,itemtypes=c("cont","cat"),ntimes=c(50,50))
md[1:10,]

In the example below, we split the dataset speed into three separate datasets,
which we later use as an example to do multi-group analysis.

data(speed)
r1=markovdata(dat=speed[1:168,],itemt=itemtypes(speed))
r2=markovdata(dat=speed[169:302,],itemt=itemtypes(speed))
r3=markovdata(dat=speed[303:439,],itemt=itemtypes(speed))

9

3.1.1 Example data: speed

Throughout this manual a data set called speed is used. It consists of three
time series with three variables: reaction time, accuracy, and a covariate Pacc
which defines the relative pay-off for speeded and accurate responding. The
participant in this experiment switches between fast responding at chance level
and relatively slower responding at a high level of accuracy.

Interesting hypotheses to test are: is the switching regime symmetric? Is
there evidence for two states or does one state suffice? Is the guessing state
actually a guessing state, i.e., is the probability correct at chance level of 0.5?

3.2 Defining models

A dependent mixture model is defined by the number of states, and by the item
distribution functions, and can be created with the dmm-function as follows:

mod <-dmm(nstates=2,itemtypes=c("gaus",2))

Here itemtypes is a vector of length the number of items measured at each
occasion specifying the desired distributions, in this case the first item is to fol-
low a normal distribution, and the second item follows a bernouilli distribution.
Allowable distributions are multinomial and gaussian. Multinomial items are
specified by the number of categories, i.e. 2 or higher, whereas gaussian items
are specified by either using “gaussian” or 1.

The function dmm returns an object of class dmm which has its own summary
function providing the parameter values of the model. See the help files for
further details. Except in simple cases, starting values can be a problem in
latent Markov models, and so in general it’s best to provide them if you have
a fairly good idea of what to expect. Providing starting values is done through
the stval argument:

st <- c(1,0.9,0.1,0.2,0.8,2,1,0.7,0.3,5,2,0.2,0.8,0.5,0.5)
mod <- dmm(nsta=2,itemt=c(1,2), stval=st)

3.2.1 Generating data

The dmm-class has a generate method that can be used to generate data ac-
cording to a specified model.

gen<-generate(c(100,50),mod)

3.3 Fitting models

Fitting models is done using the function fitdmm. The standard call only re-
quires a dataset and a model as in:

data(speed)
mod <- dmm(nstates=2,itemtypes=c(1,2))
fitex <- fitdmm(speed,mod)

10

Calling fitdmm produces some online ouput about the progress of the opti-
mization which can be controlled with the printlevel argument. Its default
value of 1 just prints the log-likelihood at each iteration of the optimization.
Printlevels starting from 15 and higher produce increasingly annoying output
from the C-routines that compute the log-likelihood.

Fitdmm returns an object of class fit which has a summary method showing
the estimated parameter values, along with standard errors, and t-ratios when-
ever those are available. Along with the log-likelihood, the AIC and BIC values
are provided. Apart from the printed values (see summary below), a fit-object
has a number of other fields. Most importantly, it contains a copy of the fitted
model in mod and it has a field post containing posterior state estimates. That
is, for each group g, post$states[[g]] is a matrix with dimensions the number
of states of the model + 2, and the sum of the lengths of the time series as rows.
The first column contains the a posteriori component model (see the section
on mixtures of latent Markov models), the second column has the state num-
ber within the component, and the other columns are used for the a posteriori
probabilities of each of the states.

11

Chapter 4

Extending and constraining
models

4.1 Fixing and constraining parameters

Continuing the example from above, it can be seen that in one of the states, the
probability of a correct answer is about .5, as is the probability of an incorrect
answer, i.e., these are parameters Item2,p1 and Item2,p2. This latent state, is
supposed to be a guessing state, and hence it makes sense to constrain these
parameters to their theoretical values of .5. Similarly, the initial state proba-
bility for the slow state is one, and zero for the other state, and hence it makes
sense to fix these parameters. The third constraint that we consider here is an
equality constraint between the transition parameters. Using this constraint,
we can test the hypothesis whether the switching between states is a symmetric
process or not. Hence, we constrain the transition parameters a11 and a22.

Constraining and fixing parameters is done in a similar fashion as the pa com-
mand that is used in LISREL (Jöreskog and Sörbom, 1999). The conpat argu-
ment to the fitdmm-function specifies for each parameter in the model whether
it’s fixed (0) or free (1 or higher). Equality constraints can be imposed by having
two parameters have the same number in the conpat vector. When only fixed
values are required the fixed argument can be used instead of conpat, with ze-
roes for fixed parameters and other values (ones e.g.) for non-fixed parameters.
Fitting the models subject to these constraints is handled by the optimization
routine donlp2.

Parameter numbering When using the conpat and fixed arguments, com-
plete vectors should be supplied, i.e., these vectors should have length of the
number of parameters of the model. Parameters are numbered in the following
order:

1. the mixing proportions of a mixture of latent Markov models, i.e., just one
parameter for a single component model which has value 1 and is fixed

2. the component parameters for each component consisting of the following:

(a) transition parameters in row major order, a11, a12, a13, . . . , a21, a22, a23, . . .

12

(b) the observation parameters per state and per item; the per item pa-
rameters for multinomials are just the probabilities for each category;
the per item parameters for the gaussian are µ first and then σ

(c) the initial state probabilities per state

conpat=rep(1,15)
conpat[1]=0
conpat[14:15]=0
conpat[8:9]=0
conpat[2]=conpat[5]=2
stv=c(1,.896,.104,.084,.916,5.52,.20,.5,.5,6.39,.24,.098,.902,0,1)
mod=dmm(nstates=2,itemt=c("n",2),stval=stv,conpat=conpat)

In the example above conpat is used to specify a number of constraints.
First, conpat[1]=0 specifies that the mixing proportion of the model should
be fixed (at its starting value of 1), which is always the case for single compo-
nent models. Second, conpat[14:15]=0 fixes the initial state probabilities to
zero and one respectively. Similarly, for conpat[8:9]=0, which are the guess-
ing state parameters for the accuracy scores. They are both fixed at 0.5 so
as to make the guessing state an actual guessing state. Finally, by invoking
conpat[2]=conpat[5]=2, transition parameters a11 and a22 are set to be equal.
Whenever equality constraints are not sufficient, general linear constraints can
be specified using the conrows argument.

4.2 Multi group/case analysis

conpat=rep(1,15)
conpat[1]=0
conpat[8:9]=0
conpat[14:15]=0
stv=c(1,0.9,0.1,0.1,0.9,5.5,0.2,0.5,0.5,6.4,0.25,0.9,0.1,0.5,0.5)
mod<-dmm(nstates=2,itemt=c("n",2),stval=stv,conpat=conpat)

depmix can handle multiple cases or multiple groups. A multigroup model
is specified using the function mgdmm as follows:

mgr <- mgdmm(dmm=mod,ng=3,trans=TRUE,obser=FALSE)
mgrfree <- mgdmm(dmm=mod,ng=3,trans=FALSE)

The ng argument specifies the number of groups, and the dmm argument
specifies the model for each group. dmm can be either a single model or list of
models oflength ng. If it is a single model, each group has an identical struc-
tural model (same fixed and constrained parameters). Three further arguments
can be used to constrain parameters between groups, trans, obser, and init
respectively. By setting either of these to TRUE, the corresponding transition,
observation, and initial state parameters are estimated equal between groups1.

1There is at this moment no way of fine-tuning this to restrict equalities to individual
parameters. However, this can be accomplished by manually changing the linear constraint
matrix, and the corresponding upper and lower boundaries.

13

In this example, the model from above was used and fitted on the three
observed series, and the trans=TRUE ensures that the transition matrix param-
eters are constrained to be equal between the models for these series, whereas
the observation parameters are freely estimated, i.e. to capture learning effects.

The loglikelihood ratio statistic can be used to test whether constrain-
ing these transition parameters significantly reduces the goodness-of-fit of the
model. The statistic has an approximate χ2 distribution with df = 4 because in
each but the first model, two transition matrix parameters were estimated equal
to the parameters in the first model (note that the other two transition param-
eters already had to be constrained to ensure that the rows of the transition
matrices sum to 1).

4.3 Models with time-dependent covariates

Specifying a model with covariates is done by including two arguments in a
call to dmm called tdfix and tdst, where td means time dependent. tdfix is a
logical vector of length the number of parameters of the model, specifying which
parameters are to be estimated time-dependent. For an arbitrary parameter λ,
the model that is estimated has the form:

λt = λ0 + βxt, (4.1)

where λ0 is the intercept of the parameter, β is the regression coefficient, and xt
is the time-dependent covariate. The covariate has to be scaled to lie between 0
and 1; this is neccessary to be able to impose the right constraints on β in order
to ensure that λt is always appropriate, ie within its lower and upper bounds
(mostly 0 and 1 for multinomial item parameters and transition parameters etc).
The current version of depmix does not have non-time-dependent covariates,
which can simply be faked by having xt be constant, and there is only support
for a single covariate.

In the example below, the transition parameters (numbers 2–5) are defined
to depend on the covariate which is the pay-off for accuracy. Providing starting
values for the covariates is optional. If not provided they are chosen at random
around 0 which usually works just fine.

conpat=rep(1,15)
conpat[1]=0
conpat[8:9]=0
conpat[14:15]=0
conpat[2]=2
conpat[5]=2
stv=c(1,0.9,0.1,0.1,0.9,5.5,0.2,0.5,0.5,6.4,0.25,0.9,0.1,0,1)
tdfix=rep(0,15)
tdfix[2:5]=1
tdst=rep(0,15)
tdst[2:5]=c(-0.4,0.4,0.15,-0.15)

mod<-dmm(nstates=2,itemt=c("n",2),stval=stv,conpat=conpat,
tdfix=tdfix,tdst=tdst,modname="twoboth+cov")

14

Chapter 5

Special topics

5.1 Starting values

Although providing your own starting values is preferable, depmix has a rou-
tine for generating starting values using the kmeans-function from the stats-
package. This will usually provide reasonable starting values, but can be way off
in a number of cases. First, for univariate categorical time series, kmeans does
not work at all, and depmix will provide a warning. Second, for multivariate
series with unordered categorical items with more than 2 categories, kmeans
may provide good starting values, but they may similarly be completely off, due
to the implicit assumption in kmeans that the categories are indicating an un-
derlying continuum. Starting values using kmeans are automatically provided
when a model is specified without starting values. The argument kmst to the
fitdmm-function can be used to control this behavior.

Starting values of the parameters, either user provided or generated, can
be further boosted by using posterior estimates using the Viterbi algorithm
Rabiner (1989). That is, first the a posteriori latent states are generated from
the current parameter values for the data at hand. Next, from the a posteriori
latent states, new parameter estimates are derived. This is done by default
and can be controlled by the postst argument. Provided that the starting
values were close to their true values, using this procedure further pushes those
parameters in the right direction. If however the original values were bad, this
procedure may result in bad estimates, i.e., optimization will lead to some non-
optimal local maximum of the loglikelihood.

5.2 Finite mixtures and latent class models

The function lca can be used to specify latent class models and/or finite mixture
models. It is simply a wrapper for the dmm function, and all it does is adding
appropriate numbers of zeroes and ones to the parameter specification vectors
for starting values, fixed values and linear constraints. When a model has class
lca the summary function does not print the transition matrix (because it is
fixed and/or not estimated).

15

5.3 Mixtures of latent Markov models

depmix provides support for fitting mixtures of latent Markov models using the
mixdmm function; it takes a list of dmm’s as argument, possibly together with the
starting values for the mixing proportions for each component model. There’s
an example in the helpfiles. It fits the model to data from a discrimination
learning experiment which is provided as data set discrimination Raijmakers
et al. (2001).

16

Bibliography

L. E. Baum and T. Petrie. Statistical inference for probabilistic functions of
finite state Markov chains. Annals of Mathematical Statistics, 67:1554–40,
1966.

Eric Ghysels. On the periodic structure of the business cycle. Journal of Busi-
ness and Economic Statistics, 12(3):289–298, 1994.

K.G. Jöreskog and D. Sörbom. LISREL 8 [Computer program]. Scientific Soft-
ware International., Chicago, 1999.

Chang-Jin Kim. Dynamic linear models with Markov-switching. Journal of
Econometrics, 60:1–22, 1994.

Anders Krogh. An introduction to hidden Markov models for biological se-
quences. In S. L. Salzberg, D. B. Searls, and S. Kasif, editors, Computational
methods in molecular biology, chapter 4, pages 45–63. Elsevier, Amsterdam,
1998.

Theodore C. Lystig and James P. Hughes. Exact computation of the observed
information matrix for hidden markov models. Journal of Computational and
Graphical Statistics, 2002.

Han L. J. van der Maas, Conor V. Dolan, and Peter C. M. Molenaar. Phase
transitions in the trade-off between speed and accuracy in choice reaction
time tasks. Manuscript in revision, 2005.

A. L. McCutcheon. Latent class analysis. Number 07-064 in Sage University
Paper series on Quantitative Applications in the Social Sciences. Beverly Hills:
Sage Publications, 1987.

R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2007.
URL http://www.R-project.org. ISBN 3-900051-07-0.

Lawrence R. Rabiner. A tutorial on hidden Markov models and selected appli-
cations in speech recognition. Proceedings of IEEE, 77(2):267–295, 1989.

Maartje E. J. Raijmakers, Conor V. Dolan, and Peter C. M. Molenaar. Finite
mixture distribution models of simple discrimination learning. Memory &
Cognition, 29(5):659–677, 2001.

17

Gregor Rainer and Earl K. Miller. Neural ensemble states in prefrontal cor-
tex identified using a hidden Markov model with a modified em algorithm.
Neurocomputing, 32–33:961–966, 2000.

Verena D. Schmittmann, Ingmar Visser, and Maartje E. J. Raijmakers. Mul-
tiple learning modes in the development of rule-based category-learning task
performance. Neuropsychologia, 44(11):2079–2091, 2006.

Peter Spellucci. Donlp2. 2002. URL
http://www.netlib.org/ampl/solvers/donlp2/.

Ryuichi Tamura(ry.tamura@gmail.com). Rdonlp2: an R extension li-
brary to use Peter Spelluci’s DONLP2 from R., 2007. URL
http://arumat.net/Rdonlp2/. R package version 0.3-1.

Frank Van de Pol, Rolf Langeheine, and W. De Jong. PANMARK 3. Panel
analysis using Markov chains. A latent class analysis program [User manual].
Voorburg: The Netherlands, 1996.

Jeroen K. Vermunt and Jay Magidson. Latent Gold 3.0 [Computer program and
User’s Guide]. Belmont (MA), USA, 2003.

Thomas D. Wickens. Models for Behavior: Stochastic processes in psychology.
W. H. Freeman and Company, San Francisco, 1982.

18

