
Simulation of insurance data with actuar

Christophe Dutang
Université Paris Dauphine

Vincent Goulet
Université Laval

Mathieu Pigeon
Université du Québec à Montréal

Louis-Philippe Pouliot
Université Laval

1 Introduction

Package actuar provides functions to facilitate the generation of random vari-
ates from various probability models commonly used in actuarial applica-
tions. From the simplest to the most sophisticated, these functions are:

1. rmixture to simulate from discrete mixtures;

2. rcompound to simulate from compound models (and a simplified version,
rcompois to simulate from the very common compound Poisson model);

3. rcomphierarc1 to simulate from compound models where both the fre-
quency and the severity components can have a hierarchical structure.

2 Simulation from discrete mixtures

A random variable is said to be a discrete mixture of the random variables
with probability density functions f1, . . . , fn if its density can be written as

f (x) = p1 f1(x) + · · ·+ pn fn(x) =
n

∑
i=1

pi fi(x), (1)

where p1, . . . , pn are probabilities (or weights) such that pi ≥ 0 and ∑n
i=1 pi =

1.
1An alias for simul introduced in actuar 2.0-0.

1

Function rmixture makes it easy to generate random variates from such
mixtures. The arguments of the function are:

1. n the number of variates to generate;

2. probs a vector of values that will be normalized internally to create the
probabilities p1, . . . , pn;

3. models a vector of expressions specifying the simulation models corre-
sponding to the densities f1, . . . , fn.

The specification of simulation models follows the syntax of rcomphierarc
(explained in greater detail in section 4). In a nutshell, the models are ex-
pressed in a semi-symbolic fashion using an object of mode "expression"
where each element is a complete call to a random number generation func-
tion, with the number of variates omitted.

The following example should clarify this concept.

Example 1. Let X be a mixture between two exponentials: one with mean 1/3
and one with mean 1/7. The first exponential has twice as much weight as
the second one in the mixture. Therefore, the density of X is

f (x) =
2
3
(3e−3x) +

1
3
(7e−7x) = 2e−3x +

7
3

e−7x.

The following expression generates 10 random variates from this density us-
ing rmixture.

> rmixture(10, probs = c(2, 1),
+ models = expression(rexp(3), rexp(7)))

[1] 0.190470 0.857121 0.280091 0.023757 0.007941
[6] 0.114032 0.030532 0.116422 0.016465 0.582696

See also example 3 for a more involved application combining simulation
from a mixture and simulation from a compound Poisson model.

3 Simulation from compound models

Actuaries often need to simulate separately the frequency and the severity of
claims for compound models of the form

S = C1 + · · ·+ CN , (2)

where C1, C2, . . . are the mutually independent and identically distributed
random variables of the claim amounts, each independent of the frequency
random variable N.

Function rcompound generates variates from the random variable S when
the distribution of both random variables N and C is non hierarchical; for the

2

more general hierarchical case, see section 4. The function has three argu-
ments:

1. n the number of variates to generate;

2. model.freq the frequency model (random variable N);

3. model.sev the severity model (random variable C).

Arguments model.freq and model.sev are simple R expressions consisting
of calls to a random number generation function with the number of vari-
ates omitted. This is of course similar to argument models of rmixture, only
with a slightly simpler syntax since one does not need to wrap the calls in
expression.

Function rcomppois is a simplified interface for the common case where
N has a Poisson distribution and, therefore, S is compound Poisson. In this
function, argument model.freq is replaced by lambda that takes the value of
the Poisson parameter.

Example 2. Let S ∼ Compound Poisson(1.5, F), where 1.5 is the value of the
Poisson parameter and F is the cumulative distribution function of a gamma
distribution with shape parameter α = 3 and rate parameter λ = 2. We obtain
variates from the random variable S using rcompound or rcompois as follows:

> rcompound(10, rpois(1.5), rgamma(3, 2))

[1] 5.3463 1.1096 0.5507 2.6067 4.3295 4.6166
[7] 2.8998 6.5602 3.0080 0.4937

> rcomppois(10, 1.5, rgamma(3, 2))

[1] 0.0000 1.9195 8.6803 0.9658 1.1926 2.2369
[7] 2.5811 6.0519 3.4986 0.0000

Specifying argument SIMPLIFY = FALSE to either function will return not
only the variates from S, but also the underlying variates from the random
variables N and C1, . . . , CN :

> rcomppois(10, 1.5, rgamma(3, 2), SIMPLIFY = FALSE)

$aggregate
[1] 0.3390 2.4063 3.2524 0.0000 0.9328 2.9602
[7] 3.4868 6.6699 5.5490 2.0811

$frequency
[1] 1 1 1 0 1 1 3 3 4 1

$severity
[1] 0.3390 2.4063 3.2524 0.9328 2.9602 1.5141
[7] 1.0652 0.9075 1.8958 3.7835 0.9906 0.8698

[13] 1.4612 2.1398 1.0781 2.0811

3

Example 3. Theorem 9.7 of Klugman et al. (2012) states that the sum of com-
pound Poisson random variables is itself compound Poisson with Poisson pa-
rameter equal to the sum of the Poisson parameters and severity distribution
equal to the mixture of the severity models.

Let S = S1 + S2 + S3, where S1 is compound Poisson with mean frequency
λ = 2 and severity Gamma(3, 1); S2 is compound Poisson with λ = 1 and
severity Gamma(5, 4); S3 is compound Poisson with λ = 1/2 and severity
Lognormal(2, 1). By the aforementioned theorem, S is compound Poisson
with λ = 2 + 1 + 1/2 = 7/2 and severity density

f (x) =
4
7

(
1

Γ(3)
x2e−x

)
+

2
7

(
45

Γ(5)
x4e−4x

)
+

1
7

φ(ln x− 2).

Combining rcomppois and rmixture we can generate variates of S using
the following elegant expression.

> x <- rcomppois(1e5, 3.5,
+ rmixture(probs = c(2, 1, 0.5),
+ expression(rgamma(3),
+ rgamma(5, 4),
+ rlnorm(2, 1))))

One can verify that the theoretical mean of S is 6+ 5/4+ (e5/2)/2 = 13.34.
Now, the empirical mean based on the above sample of size 105 is:

> mean(x)

[1] 13.37

4 Simulation from compound hierarchical models

Hierarchical probability models are widely used for data classified in a tree-
like structure and in Bayesian inference. The main characteristic of such mod-
els is to have the probability law at some level in the classification structure
be conditional on the outcome in previous levels. For example, adopting a
bottom to top description of the model, a simple hierarchical model could be
written as

Xt|Λ, Θ ∼ Poisson(Λ)

Λ|Θ ∼ Gamma(3, Θ)

Θ ∼ Gamma(2, 2),
(3)

where Xt represents actual data. The random variables Θ and Λ are generally
seen as uncertainty, or risk, parameters in the actuarial literature; in the sequel,
we refer to them as mixing parameters.

The example above is merely a multi-level mixture of models, something
that is simple to simulate “by hand”. The following R expression will yield n
variates of the random variable Xt:

4

> rpois(n, rgamma(n, 3, rgamma(n, 2, 2)))

However, for categorical data common in actuarial applications there will
usually be many categories — or nodes — at each level. Simulation is then
complicated by the need to always use the correct parameters for each variate.
Furthermore, one may need to simulate both the frequency and the severity
of claims for compound models of the form (2).

This section briefly describes function rcomphierarc and its usage. Goulet
and Pouliot (2008) discuss in more details the models supported by the func-
tion and give more thorough examples.

4.1 Description of hierarchical models

We consider simulation of data from hierarchical models. We want a method
to describe these models in R that meets the following criteria:

1. simple and intuitive to go from the mathematical formulation of the model
to the R formulation and back;

2. allows for any number of levels and nodes;

3. at any level, allows for any use of parameters higher in the hierarchical
structure.

A hierarchical model is completely specified by the number of nodes at
each level and by the probability laws at each level. The number of nodes
is passed to rcomphierarc by means of a named list where each element is a
vector of the number of nodes at a given level. Vectors are recycled when the
number of nodes is the same throughout a level.

Probability models are expressed in a semi-symbolic fashion using an ob-
ject of mode "expression". Each element of the object must be named —
with names matching those of the number of nodes list — and should be a
complete call to an existing random number generation function, but with the
number of variates omitted. Hierarchical models are achieved by replacing
one or more parameters of a distribution at a given level by any combination
of the names of the levels above. If no mixing is to take place at a level, the
model for this level can be NULL.

Example 4. Consider the following expanded version of model (3):

Xijt|Λij, Θi ∼ Poisson(Λij), t = 1, . . . , nij

Λij|Θi ∼ Gamma(3, Θi), j = 1, . . . , Ji

Θi ∼ Gamma(2, 2), i = 1, . . . , I,

with I = 3, J1 = 4, J2 = 5, J3 = 6 and nij ≡ n = 10. Then the number of
nodes and the probability model are respectively specified by the following
expressions.

5

list(Theta = 3, Lambda = c(4, 5, 6), Data = 10)

expression(Theta = rgamma(2, 2),
Lambda = rgamma(3, Theta),
Data = rpois(Lambda))

Storing the probability model requires an expression object in order to
avoid evaluation of the incomplete calls to the random number generation
functions. Function rcomphierarc builds and executes the calls to the random
generation functions from the top of the hierarchical model to the bottom. At
each level, the function

1. infers the number of variates to generate from the number of nodes list,
and

2. appropriately recycles the mixing parameters simulated previously.

The actual names in the list and the expression object can be anything; they
merely serve to identify the mixing parameters. Furthermore, any random
generation function can be used. The only constraint is that the name of the
number of variates argument is n.

In addition, rcomphierarc supports usage of weights in models. These
usually modify the frequency parameters to take into account the “size” of an
entity. Weights are used in simulation wherever the name weights appears in
a model.

4.2 Usage of rcomphierarc

Function rcomphierarc can simulate data for structures where both the fre-
quency model and the severity model are hierarchical. It has four main argu-
ments:

1. nodes for the number of nodes list;

2. model.freq for the frequency model;

3. model.sev for the severity model;

4. weights for the vector of weights in lexicographic order, that is all weights
of entity 1, then all weights of entity 2, and so on.

The function returns the variates in a list of class "portfolio" with a dim
attribute of length two. The list contains all the individual claim amounts for
each entity. Since every element can be a vector, the object can be seen as a
three-dimension array with a third dimension of potentially varying length.
The function also returns a matrix of integers giving the classification indexes
of each entity in the portfolio.

The package also defines methods for four generic functions to easily ac-
cess key quantities for each entity of the simulated portfolio:

6

1. a method of aggregate to compute the aggregate claim amounts S;

2. a method of frequency to compute the number of claims N;

3. a method of severity (a generic function introduced by the package) to
return the individual claim amounts Cj;

4. a method of weights to extract the weights matrix.

In addition, all methods have a classification and a prefix argument.
When the first is FALSE, the classification index columns are omitted from the
result. The second argument overrides the default column name prefix; see
the rcomphierarc.summaries help page for details.

The following example illustrates these concepts in detail.

Example 5. Consider the following compound hierarchical model:

Sijt = Cijt1 + · · ·+ CijtNijt ,

for i = 1, . . . , I, j = 1, . . . , Ji, t = 1, . . . , nij and with

Nijt|Λij, Φi ∼ Poisson(wijtΛij) Cijtu|Θij, Ψi ∼ Lognormal(Θij, 1)

Λij|Φi ∼ Gamma(Φi, 1) Θij|Ψi ∼ N(Ψi, 1)

Φi ∼ Exponential(2) Ψi ∼ N(2, 0.1).

(Note how weights modify the Poisson parameter.) Using as convention
to number the data level 0, the above is a two-level compound hierarchical
model.

Assuming that I = 2, J1 = 4, J2 = 3, n11 = · · · = n14 = 4 and n21 = n22 =
n23 = 5 and that weights are simply simulated from a uniform distribution
on (0.5, 2.5), then simulation of a data set with rcomphierarc is achieved with
the following expressions.

> nodes <- list(cohort = 2,
+ contract = c(4, 3),
+ year = c(4, 4, 4, 4, 5, 5, 5))
> mf <- expression(cohort = rexp(2),
+ contract = rgamma(cohort, 1),
+ year = rpois(weights * contract))
> ms <- expression(cohort = rnorm(2, sqrt(0.1)),
+ contract = rnorm(cohort, 1),
+ year = rlnorm(contract, 1))
> wijt <- runif(31, 0.5, 2.5)
> pf <- rcomphierarc(nodes = nodes,
+ model.freq = mf, model.sev = ms,
+ weights = wijt)

Object pf is a list of class "portfolio" containing, among other things,
the aforementioned two-dimension list as element data and the classification
matrix (subscripts i and j) as element classification:

7

> class(pf)

[1] "portfolio"

> pf$data

year.1 year.2 year.3 year.4
[1,] numeric,2 numeric,2 11.38 numeric,0
[2,] numeric,0 numeric,0 numeric,0 numeric,0
[3,] numeric,0 numeric,3 numeric,0 numeric,2
[4,] numeric,0 98.13 50.62 55.7
[5,] numeric,0 11.79 2.253 2.397
[6,] numeric,0 numeric,0 numeric,0 numeric,0
[7,] numeric,3 numeric,4 numeric,2 numeric,2

year.5
[1,] NA
[2,] NA
[3,] NA
[4,] NA
[5,] numeric,2
[6,] numeric,0
[7,] numeric,0

> pf$classification

cohort contract
[1,] 1 1
[2,] 1 2
[3,] 1 3
[4,] 1 4
[5,] 2 1
[6,] 2 2
[7,] 2 3

The output of pf$data is not much readable. If we were to print the results
of rcomphierarc this way, many users would wonder what Numeric,n means.
(It is actually R’s way to specify that a given element in the list is a numeric
vector of length n — the third dimension mentioned above.) To ease reading,
the print method for objects of class "portfolio" only prints the simulation
model and the number of claims in each node:

> pf

Portfolio of claim amounts

Frequency model
cohort ~ rexp(2)
contract ~ rgamma(cohort, 1)
year ~ rpois(weights * contract)

Severity model
cohort ~ rnorm(2, sqrt(0.1))

8

contract ~ rnorm(cohort, 1)
year ~ rlnorm(contract, 1)

Number of claims per node:

cohort contract year.1 year.2 year.3 year.4
[1,] 1 1 2 2 1 0
[2,] 1 2 0 0 0 0
[3,] 1 3 0 3 0 2
[4,] 1 4 0 1 1 1
[5,] 2 1 0 1 1 1
[6,] 2 2 0 0 0 0
[7,] 2 3 3 4 2 2

year.5
[1,] NA
[2,] NA
[3,] NA
[4,] NA
[5,] 2
[6,] 0
[7,] 0

By default, the method of aggregate returns the values of Sijt in a regular
matrix (subscripts i and j in the rows, subscript t in the columns). The method
has a by argument to get statistics for other groupings and a FUN argument to
get statistics other than the sum:

> aggregate(pf)

cohort contract year.1 year.2 year.3 year.4
[1,] 1 1 31.37 7.521 11.383 0.000
[2,] 1 2 0.00 0.000 0.000 0.000
[3,] 1 3 0.00 72.706 0.000 23.981
[4,] 1 4 0.00 98.130 50.622 55.705
[5,] 2 1 0.00 11.793 2.253 2.397
[6,] 2 2 0.00 0.000 0.000 0.000
[7,] 2 3 44.81 88.737 57.593 14.589

year.5
[1,] NA
[2,] NA
[3,] NA
[4,] NA
[5,] 10.48
[6,] 0.00
[7,] 0.00

> aggregate(pf, by = c("cohort", "year"), FUN = mean)

cohort year.1 year.2 year.3 year.4 year.5

9

[1,] 1 15.69 29.73 31.00 26.562 NA
[2,] 2 14.94 20.11 19.95 5.662 5.238

The method of frequency returns the values of Nijt. It is mostly a wrapper
for the aggregate method with the default sum statistic replaced by length.
Hence, arguments by and FUN remain available:

> frequency(pf)

cohort contract year.1 year.2 year.3 year.4
[1,] 1 1 2 2 1 0
[2,] 1 2 0 0 0 0
[3,] 1 3 0 3 0 2
[4,] 1 4 0 1 1 1
[5,] 2 1 0 1 1 1
[6,] 2 2 0 0 0 0
[7,] 2 3 3 4 2 2

year.5
[1,] NA
[2,] NA
[3,] NA
[4,] NA
[5,] 2
[6,] 0
[7,] 0

> frequency(pf, by = "cohort")

cohort freq
[1,] 1 13
[2,] 2 16

The method of severity returns the individual variates Cijtu in a matrix
similar to those above, but with a number of columns equal to the maximum
number of observations per entity,

max
i,j

nij

∑
t=1

Nijt.

Thus, the original period of observation (subscript t) and the identifier of
the severity within the period (subscript u) are lost and each variate now
constitute a “period” of observation. For this reason, the method provides an
argument splitcol in case one would like to extract separately the individual
severities of one or more periods:

> severity(pf)

$main
cohort contract claim.1 claim.2 claim.3

[1,] 1 1 7.974 23.401 3.153
[2,] 1 2 NA NA NA

10

[3,] 1 3 3.817 41.979 26.910
[4,] 1 4 98.130 50.622 55.705
[5,] 2 1 11.793 2.253 2.397
[6,] 2 2 NA NA NA
[7,] 2 3 14.322 11.522 18.966

claim.4 claim.5 claim.6 claim.7 claim.8
[1,] 4.368 11.383 NA NA NA
[2,] NA NA NA NA NA
[3,] 4.903 19.078 NA NA NA
[4,] NA NA NA NA NA
[5,] 9.472 1.004 NA NA NA
[6,] NA NA NA NA NA
[7,] 33.108 15.532 14.99 25.11 40.15

claim.9 claim.10 claim.11
[1,] NA NA NA
[2,] NA NA NA
[3,] NA NA NA
[4,] NA NA NA
[5,] NA NA NA
[6,] NA NA NA
[7,] 17.44 4.426 10.16

$split
NULL

> severity(pf, splitcol = 1)

$main
cohort contract claim.1 claim.2 claim.3

[1,] 1 1 3.153 4.368 11.383
[2,] 1 2 NA NA NA
[3,] 1 3 3.817 41.979 26.910
[4,] 1 4 98.130 50.622 55.705
[5,] 2 1 11.793 2.253 2.397
[6,] 2 2 NA NA NA
[7,] 2 3 33.108 15.532 14.990

claim.4 claim.5 claim.6 claim.7 claim.8
[1,] NA NA NA NA NA
[2,] NA NA NA NA NA
[3,] 4.903 19.078 NA NA NA
[4,] NA NA NA NA NA
[5,] 9.472 1.004 NA NA NA
[6,] NA NA NA NA NA
[7,] 25.107 40.150 17.44 4.426 10.16

$split
cohort contract claim.1 claim.2 claim.3

11

[1,] 1 1 7.974 23.40 NA
[2,] 1 2 NA NA NA
[3,] 1 3 NA NA NA
[4,] 1 4 NA NA NA
[5,] 2 1 NA NA NA
[6,] 2 2 NA NA NA
[7,] 2 3 14.322 11.52 18.97

Finally, the weights matrix corresponding to the data in object pf is

> weights(pf)

cohort contract year.1 year.2 year.3 year.4
[1,] 1 1 0.8361 2.115 1.2699 1.1555
[2,] 1 2 1.7042 1.709 0.7493 1.0892
[3,] 1 3 1.6552 1.762 1.5240 1.5100
[4,] 1 4 1.5681 1.614 2.2358 2.1594
[5,] 2 1 0.7229 1.907 2.2950 1.0595
[6,] 2 2 0.5307 0.758 0.6868 0.9738
[7,] 2 3 1.6995 2.320 1.6208 2.0114

year.5
[1,] NA
[2,] NA
[3,] NA
[4,] NA
[5,] 0.9564
[6,] 2.0823
[7,] 1.2583

Combined with the argument classification = FALSE, the above methods
can be used to easily compute loss ratios:

> aggregate(pf, classif = FALSE) / weights(pf, classif = FALSE)

year.1 year.2 year.3 year.4 year.5
[1,] 37.53 3.556 8.9638 0.000 NA
[2,] 0.00 0.000 0.0000 0.000 NA
[3,] 0.00 41.264 0.0000 15.881 NA
[4,] 0.00 60.781 22.6412 25.796 NA
[5,] 0.00 6.183 0.9818 2.263 10.95
[6,] 0.00 0.000 0.0000 0.000 0.00
[7,] 26.37 38.244 35.5328 7.253 0.00

Example 6. Scollnik (2001) considers the following model for the simulation

12

of claims frequency data in a Markov Chain Monte Carlo (MCMC) context:

Sit|Λi, α, β ∼ Poisson(wijΛi)

Λi|α, β ∼ Gamma(α, β)

α ∼ Gamma(5, 5)
β ∼ Gamma(25, 1)

for i = 1, 2, 3, j = 1, . . . , 5 and with weights wit simulated from

wit|ai, bi ∼ Gamma(ai, bi)

ai ∼ U(0, 100)
bi ∼ U(0, 100).

Strictly speaking, this is not a hierarchical model since the random variables α
and β are parallel rather than nested. Nevertheless, with some minor manual
intervention, function rcomphierarc can simulate data from this model.

First, one simulates the weights (in lexicographic order) with

> wit <- rgamma(15, rep(runif(3, 0, 100), each = 5),
+ rep(runif(3, 0, 100), each = 5))

Second, one calls rcomphierarc to simulate the frequency data. The key
here consists in manually inserting the simulation of the shape and rate pa-
rameters of the gamma distribution in the model for Λi. Finally, wrapping
the call to rcomphierarc in frequency will immediately yield the matrix of
observations:

> frequency(rcomphierarc(list(entity = 3, year = 5),
+ expression(entity = rgamma(rgamma(1, 5, 5),
+ rgamma(1, 25, 1)),
+ year = rpois(weights * entity)),
+ weights = wit))

entity year.1 year.2 year.3 year.4 year.5
[1,] 1 0 0 0 0 0
[2,] 2 0 0 0 0 0
[3,] 3 0 1 0 1 1

One will find more examples of rcomphierarc usage in the simulation
demo file. The function was used to simulate the data in Forgues et al. (2006).

References

A. Forgues, V. Goulet, and J. Lu. Credibility for severity revisited. North
American Actuarial Journal, 10(1):49–62, 2006.

13

V. Goulet and L.-P. Pouliot. Simulation of compound hierarchical models in
R. North American Actuarial Journal, 12:401–412, 2008.

S. A. Klugman, H. H. Panjer, and G. Willmot. Loss Models: From Data to Deci-
sions. Wiley, New York, 4 edition, 2012. ISBN 978-1-118-31532-3.

D. P. M. Scollnik. Actuarial modeling with MCMC and BUGS. North American
Actuarial Journal, 5(2):96–124, 2001.

14

	1 Introduction
	2 Simulation from discrete mixtures
	3 Simulation from compound models
	4 Simulation from compound hierarchical models
	4.1 Description of hierarchical models
	4.2 Usage of rcomphierarc

