
AlleleRetain

A model for simulating allele retention, demography, and

inbreeding accumulation

User Guide

AlleleRetain version 2.0

11 January 2018

Emily L. Weiser

Work was completed at: Department of Zoology, University of Otago, Dunedin, New Zealand

Present affiliation: U.S. Geological Survey, La Crosse, WI USA

with many thanks to

I. Jamieson, C. Grueber, M. Efford, J. Scrimgeour, M. Reynolds, and G. Humphries

for helpful discussions on model development and function.

Funding for this work was generously provided by

New Zealand Department of Conservation, Landcare Research, Marsden Fund, University of

Otago, and Allan Wilson Centre for Molecular Ecology and Evolution.

DISCLAIMER: Although this model has been tested extensively and seems to perform

appropriately, I offer no guarantee that it works properly, as expected, or exactly as described.

My colleagues and I are not responsible for any errors or problems resulting from this program

or its documentation. Please use caution when using the results for your own work, especially

when there is some uncertainty in your input values.

2

Table of Contents

Introduction ... 3

Citation .. 3

Installation and Use... 4

Definition of Terms Used in this Manual ... 4

Input to aRetain .. 6

Model Output .. 11

aRetain.summary... 11

indiv.summary... 12

pedigree.summary... 12

LRS.summary... 13

agerepro.summary... 13

Troubleshooting .. 14

Model Flow ... 16

aRetain... 16

Summary functions ... 20

Internal functions created by AlleleRetain and called by aRetain or summary functions 20

References ... 22

Appendix 1: Example Code .. 23

Appendix 2: Example Output ... 27

3

Introduction

AlleleRetain is an individual-based model implemented in R (R Development Core Team 2011)

to simulate retention of selectively neutral alleles, demographics, and inbreeding accumulation in

bottlenecked or newly established populations of animals with overlapping generations.

AlleleRetain was originally intended to be an expansion of mohuasim (Efford 2010; see also

Tracy et al. 2011), but ended up being dramatically expanded and more flexible.

The user of AlleleRetain describes the individuals used to establish a new population (number,

age, sex, release period). Released individuals are assumed to be unrelated and are randomly

assigned genotypes (0-2 copies of a hypothetical neutral allele of the specified initial frequency).

Released individuals and their offspring mature, breed, and survive according to user-specified

options. Immigration can be simulated at regular user-specified intervals; emigration can be

simulated by reducing the survival rate of the appropriate age class, assuming emigrants and

their descendants do not return to the simulated population. The simulation is run for a specified

period of years and number of replicates.

The proportion of replicates in which the allele is retained to each year of the simulation is

interpreted as the probability of retaining the allele in the population over that period of time.

This is equivalent to the proportion of neutral alleles occurring at the given frequency in the

source population predicted to be retained in the new population.

The summary functions included in the package output a census of the simulated population

(adults, nonbreeders, breeding pairs, starting individuals, and migrants) each year, averaged

across replicates; a summary of information (e.g. probability of breeding) for the individuals of

different origin; and average simulated inbreeding coefficients (F).

Questions about the program or its use can be directed to AlleleRetainR@gmail.com; I will try to

respond to as many questions as my schedule allows. (Please carefully read this manual first.)

Citation

If you use AlleleRetain in your work, please cite the following paper that describes the package:

Weiser, E.L., Grueber, C. E., and I. G. Jamieson. 2012. AlleleRetain: A program

to assess management options for conserving allelic diversity in small, isolated

populations. Molecular Ecology Resources 12:1161-1167.

You might also be interested in these detailed examples using AlleleRetain:

Weiser, E.L., Grueber, C. E., and I. G. Jamieson. 2013. Simulating retention of

rare alleles in small populations: assessing management options for species with

different life histories. Conservation Biology 27:335-344.

mailto:AlleleRetainR@gmail.com

4

Changes for version 2.0

AlleleRetain version 2.0 was created on 21 Dec 2017 and replaces version 1.3.3 and all previous

versions. Most of the changes involved adding additional parameters; running old code should

still work, because the default values of the new parameters will not affect how your code runs.

The exception is that the argument exactSR must now be called exactSSR, and sex ratios for

supplementals and migrants must be specified separately as indicated below.

• Added option for harvesting individuals using new arguments harvN, harvAge, harvyrs.

• Allowed inisurv and sex ratios to vary among starters, supplementals, and migrants.

inisurv is now specified as a vector of three values, while sex ratios are specified using

startSR and exactSSR (starters), addSR and exactASR (supplementals), and migrSR and

exactMSR (migrants).

• Added new summary functions to output information about reproductive success of

individuals (LRS.summary) and age of reproductive individuals (agerepro.summary).

These summaries might be of interest in situations such as a polygynous mating system

with unequal male reproductive success.

• Changed fecundity to draw from a binomial distribution limited to the indicated

maximum, rather than an artificially truncated Poisson. The new approach is cleaner but

should not substantially change results.

• Fixed bug so that if no starters/supplementals survive initially, the simulation continues.

Definition of Terms Used in this Manual

Source population The population from which individuals used to establish the new

(modeled) population are taken. q0 and sourceN (pg. 6) refer to this

population; all other input and output parameters refer to the new

(modeled) population.

Starters Individuals initially released to establish the population

Supplementals Individuals released to top up the newly established population

(usually in the first few years after establishment)

Migrants (immigrants) Individuals released at regular intervals to supplement the population

Nonbreeders Individuals that have not yet recruited to breeding vacancies in the

simulated population; includes subadults, helpers, and unpaired adults.

SD Standard deviation

SE Standard error

Input and output for R (arguments, objects) and functions are in Courier New font.

R package names are bolded.

5

Installation and Use

AlleleRetain and its supporting documentation can be freely downloaded from the

Comprehensive R Archive Network (CRAN: cran.r-project.org) or from its website:

https://sites.google.com/site/alleleretain/. You can access CRAN from R by choosing “Install

package…” from the “Packages” menu; or you can download the zip file from CRAN or from

the AlleleRetain website, then open R and choose “Install package from local zip file” in the

“Packages” menu. Be sure to load the package (with the command library(AlleleRetain))

each time you want to use it.

Package pedigree is needed for one of the summary functions; it and its dependencies (Matrix,

lattice, HaploSim, reshape) can be downloaded from CRAN. If you install AlleleRetain via

CRAN directly from your R console, pedigree (and its dependencies) will install automatically.

Before running your simulations, be sure to gather all of the input values needed (see “Input to

aRetain,” pg. 6). This is a daunting list of parameters, but enables flexibility to model a variety

of species. Some of these parameters strongly influence allele retention, so think carefully about

the values you use.

Because it is an individual-based simulation, AlleleRetain can be time-consuming and memory-

intensive to run. A 32-bit system may not be sufficient, but a 64-bit system and a modern

processor should be able to handle most simulations. Run your simulation first with <100

replicates (which could take several minutes) to ensure there are no errors and the demographic

output looks reasonable before running more lengthy simulations (which could take > 1 hr,

perhaps several hours, depending on the size of your population, number of years, and number of

replicates). A message will be displayed at regular intervals to enable you to gauge the progress

of the simulation. If your system does not have enough memory for the simulations you are

trying to run, you will get an error message from R to that effect; see “Troubleshooting,” pg. 14.

How many replicates to run? This will depend on your purpose in running the model. To assess

demographics, inbreeding coefficients, or individual data (e.g. probability of breeding for locals

vs. migrants), 50-100 replicates may be sufficient. For assessing the probability of retaining a

rare allele, 1000 replicates will usually give a reasonable confidence interval. More replicates

will be decreasingly effective in reducing the confidence interval.

How many years to simulate? For management purposes, the useful length of the simulation will

depend on how far ahead you can plan for the population. If feasible, think in terms of the

generation interval of your species (which can be derived from output from AlleleRetain; see

indiv.summary, pg. 12), and simulate at least 10 generations into the future.

The first thing the model does is to check your input values to make sure they follow certain

rules. If your values violate one of the rules, the simulation will stop and an error message will

be displayed. See “Troubleshooting,” pg. 14.

file:///C:/Users/Emily/Documents/School/Otago/PhD/Chapter%203%20-%20AlleleRetain/cran.r-project.org
https://sites.google.com/site/alleleretain/

6

Input to aRetain

aRetain is the main function in AlleleRetain. See Fig. 1 for an overview of the order in which

events occur, and the user-specified parameters called during each event. Standard R conventions

are required for input; for example, text input must be in quotes ("juvenile"), TRUE and FALSE

must be in all caps, and vectors are provided as c(1:5) or c(2,4,6,8). Be very cautious about

using the defaults, as these are unlikely to be appropriate for your species.

Source population

q0 Frequency of rare allele in the source population (range 0-1); defaults to 0.05.

sourceN Size of source population; must be > startN; defaults to Inf (infinite).

Translocated individuals

startN Number of starters (or size of bottleneck); not all will become genetic

founders. Minimum 2.

startAge Age class ("juvenile", "young adult", or "adult") of starters,

supplementals, and migrants (see Model Flow 3.d.); defaults to "juvenile".

startSR Sex ratio (proportion male) of starters, supplementals, and migrants; defaults

to 0.5 (must be between 0 and 1).

exactSSR Whether startSR gives the exact sex ratio of individuals released (TRUE) or

sexes are assigned randomly based on the probability given by startSR

(FALSE); defaults to FALSE.

inisurv Initial survival rate, as a proportion (range 0-1), of individuals released. Given

as a vector, where the first value is for starters, the second is for additional

releases, and third is for migrants. Annual mortality applies after this value is

used. Defaults to 1 for all three groups.

addN Vector of numbers of individuals (supplementals) to release in years soon

after population establishment, e.g. c(10, 15); defaults to 0.

addyrs Vector of years in which to release supplemental, e.g. c(1, 2). Each year

corresponds to the number of individuals in the same position in the addN list.

Defaults to 0.

addSR Sex ratio (proportion male) of supplementals; defaults to 0.5 (must be between

0 and 1). This can be either a single value, or a vector, with each element in

the vector corresponding to each instance of supplementation (must be the

same length as addN).

exactASR Whether addSR gives the exact sex ratio of individuals released (TRUE) or

sexes are assigned randomly based on the probability given by addSR (FALSE);

defaults to FALSE. This can be either a single value, or a vector, with each

element in the vector corresponding to each instance of supplementation (must

be the same length as addN).

7

migrN Number of migrants to add (must be a whole number) at each interval given

by migrfreq; defaults to 0.

migrfreq Interval (number of years) at which to add migrN migrants; must be between 1

and nyears (below); defaults to 1.

migrSR Sex ratio (proportion male) of supplementals; defaults to 0.5 (must be between

0 and 1).

exactMSR Whether addSR gives the exact sex ratio of individuals released (TRUE) or

sexes are assigned randomly based on the probability given by migrSR

(FALSE); defaults to FALSE.

mpriority TRUE or FALSE: whether migrants are given priority over locally produced

offspring to recruit into any available breeding vacancies; defaults to FALSE.

removeL TRUE or FALSE: whether to remove the corresponding number of locally

produced adults to make room for migrants in the population; only necessary

if retainBreeders = "both"/"female"/"male"; will only come into play

when population is at K. Defaults to FALSE.

harvN Number to be removed in each harvest year

harvAge Age of individuals to be harvested (as for startAge). If not enough

individuals of this age are available, the harvest quota (harvN) will not be

filled.

harvyrs Vector of years in which harvest occurs

Characteristics of the established population

K Carrying capacity (population ceiling); defaults to 100.

Klag Number of years for which population is held at or below initial size (breeding

still occurs); indicates a prolonged bottleneck. Defaults to 0.

KAdults TRUE (K = number of adults) or FALSE (K = total individuals, including

subadults, nonbreeders, and helpers). Defaults to FALSE.

reprolag Number of years after establishment in which no reproduction occurs.

Defaults to 0.

Life history traits of the simulated species

mature Average age (in years) at sexual maturity (first breeding); defaults to 1.

matingSys Mating system: "monogamy", "polygyny", or "polygynandry". In any case,

pairs are formed and breed. With polygyny, each male can be part of more

than one pair. With polygynandry, females mate and reproduce multiple times

each year. To model a polyandrous system, set to "polygyny" and then input

female values for the “male” parameters (and male values for the “female”

parameters) in the model. Defaults to "monogamy".

matingLength "seasonal" or "lifelong". Determines whether individuals retain the same

mate from year to year or divorce. Note that if set to "lifelong" with

8

polygyny/polygynandry, males will not obtain any new mates until ALL of

their previous mates have died (probably not realistic for most species).

meanMLRS Mean lifetime reproductive success (LRS), in terms of number of matings that

produce young (NOT number of offspring) a male gets over his lifetime. This

is a population average for all males, including those that never reproduce,

and may be a fraction. Each male is assigned an individual average from a

gamma distribution with this mean and SD given by sdMLRS (see newinfo, pg.

21). The SD:mean ratio is more important than the magnitude of the mean.

The individual mean indicates the male's “quality” and will be used to assess

his chance of mating, relative to other males present, each year (does not

translate directly into actual LRS experienced by that male). Not used if

matingSys = "monogamy". Defaults to 1.

sdMLRS Among-male standard deviation in LRS. Used with meanMLRS as described

above. Not used if matingSys = "monogamy". Defaults to 0 (all males have

the same chance of breeding each year).

reproAgeM List of ages at which males can breed. If males breed at all ages, use

0:maximum possible lifespan. The maximum cannot be set to Inf, but you

can use a really high number if unsure of lifespan. Defaults to c(1:200).

AgeOnMLRS Expression describing the proportion of LRS achieved by a male at a

particular age (for ages contained within reproAgeM). The user specifies the

form of this expression; it must include age (the individual's current age) and

no other undefined variables. Example: "-5.4 + 1.5*age - 0.08*age^2"

describes a parabolic relationship between age and mating success (proportion

of LRS achieved at each age). If there is no effect of age, use the default value

of "age/age" (equals 1 so all ages will be assigned the same average, given

by meanMLRS). If a given age is not included in reproAgeM, reproductive

output at that age will be set to 0 regardless of the value calculated by this

equation.

nMatings Average number of matings per female each year. Only used when matingSys

= "polygynandry". Each female mates and breeds the corresponding

number of times each year. Repeat matings with the same male are not

prohibited and may occur by chance. Defaults to 1; must be a whole number.

retainBreeders Should established breeders retain their breeding status from year to year, and

prevent young individuals from recruiting if the population is at K? Specify

which sex should be retained: "none", "both", "male", or "female". Only

used when matingSys = "monogamy." When "none", all mature individuals

recruit; then individuals are randomly removed from that pool to truncate the

population at K (new recruits may randomly replace established breeders).

When adults will likely survive and prevent new individuals from recruiting,

e.g. with territorial species, set this at one of the other values as appropriate

for your species. When pairing off widowed or divorced individuals, those of

the retained sex(es) that bred previously will stay in the breeding population

and obtain a new mate; non-retained adults will compete with new recruits to

obtain a mate. When retainBreeders is set to a value other than "none", if

9

the population is at K, new recruits will only fill vacancies left by adults that

died (they will not replace any surviving adults, including females when

retainBreeders = "male" and vice versa; i.e. "both" functions the same

as "male" and "female" in this part of the model). Defaults to "male".

MaxAge Maximum allowable lifespan (in years); can be Inf.

SenesAge Age (in years) after which annual survival will be reduced by senescence.

Through this age, adult survival values are set according to adsurvivalF and

adsurvivalM (below); after this age, annual survival decreases linearly to 0 at

MaxAge (see Model Flow 4.d.i., pg. 16). Can be Inf.

Expected demography of the new population

adsurvivalF Annual survival rate of adult females. All survival rates are given as a

proportion (e.g. 0.85).

adsurvivalM Annual survival rate of adult males.

nonbrsurv Annual survival rate of nonbreeders (subadults or adults that have not

recruited to breed).

nonbrsurvK Annual survival rate of nonbreeders when population is at K (used instead of

nonbrsurv). Survival probability in each year depends on density of the

population at the beginning of that year (see Model Flow 4.d.ii., pg. 16).

juvsurv First year survival (from the stage described by youngperF, below, to the

beginning of the next breeding season) when population is below K.

juvsurvK First year survival when population is at K (used instead of juvsurv). Can be

equal to juvsurv. Otherwise, juvenile survival is density-dependent as for

nonbrsurvK (see Model Flow 4.d.ii.-iii., pg. 16).

youngperF Average number of offspring produced per mating each year (averaged over

all females in the population). For a polyandrous female, this is the average

number of offspring produced each time she mates: youngperF * nMatings =

total average offspring per year. youngperF can be calculated for any

reproductive stage (eggs, chicks, independent juveniles) as long as juvsurv

indicates the proportion of individuals that survive from this stage to the

beginning of the following breeding season. Given as offspring per pair, e.g.

1.5 or 0.75.

SDypF Among-individual standard deviation of youngperF, e.g. 0.50 or 2.

ypF1 Where younger breeders have reduced reproductive rates, this can be used to

define the reproductive success for the first reproductive stage (length of that

stage is determined by ypF1yr, below). Given as a proportion of youngperF;

e.g. if youngperF = 2 and ypF1 = 0.5, mean reproductive success during the

first stage will be 1 offspring per female. Can be < 1 if inexperienced females

experience lower reproductive success than older females; or > 1 to indicate

higher reproductive success for younger females than for older females

(youngperF always applies after the age indicated by ypF1yr, below).

Defaults to 1.

10

ypF1yr Max age at which ypF1 applies; e.g. 1 if ypF1 applies to one-year-olds only,

or 5 if youngperF applies from age 6 onward.

MAXypF Maximum annual number of offspring per individual (e.g. based on biological

constraints such as clutch size/renesting). Note that if ypF1 > 1, this value may

be exceeded by some individuals.

MAXypFK Maximum annual number of offspring per individual when population is at K

(if different from MAXypF).

ypFsex Which member of a pair limits the female’s reproductive output for the year,

based on the biology of the species of interest. Can be "female", "male"

(e.g. if the father cares for the young, his quality may be more important than

the female’s), or "both" (which will average the male’s and female’s values).

youngSR Proportion of offspring that are male (range 0-1, defaults to 0.5).

Simulation and output specifications

trackall Whether to track all individuals from the population through the whole

simulation (TRUE or FALSE). Must be TRUE if you wish to use indiv.summary

or pedigree.summary after running the simulation (see Model Output, next

page). The simulations will be noticeably slower (and require more RAM) if

this is set to TRUE, especially with larger carrying capacity, higher fecundity,

more replicates, and longer simulation periods. Defaults to TRUE.

GeneCount Which individuals should be included ("all", or only breeding "adults")

when the number of rare alleles is counted in the population each year.

nyears Number of years to run the simulation. Consider setting a value that

corresponds to 10 generations of your study species.

nrepl Number of replicates to run. More replicates will increase running time, but

will produce narrower confidence limits for estimated output. Defaults to 100,

but 1000 may be more useful for estimating allele retention.

nreplprint Interval (number of replicates) at which to print a message with the current

system time. Allows the user to gauge model progress and to estimate time to

completion. Defaults to 10.

printplots Whether to plot the population growth (number of individuals, as defined by

KAdults, present each year) and allele frequency (in the pool defined by

GeneCount) as they change over time (TRUE or FALSE). If TRUE, one line will

be plotted for each replicate immediately after it runs. Can be used to

immediately gauge the demographics of the population (e.g. if it will grow as

expected) during test runs; will slow down the simulation by ~ 10-20%.

Defaults to FALSE.

11

Model Output

The following summary functions are included to deal with output from aRetain:

aRetain.summary

This function summarizes the output from aRetain by averaging the census estimates

across replicates. It has four arguments:

1. adata Object output by aRetain.

2. GeneCount As specified for aRetain.

3. alpha Significance level for confidence limits, e.g. 0.05.

4. dropextinct Exclude replicates in which the population went extinct

(TRUE or FALSE). Defaults to TRUE; a message displays how

many replicates this included.

Output: a matrix with nyears rows and 16 columns providing the following summary

statistics for each year:

1. MeanN Mean number of adults.

2. SEN SE of MeanN .

3. MeanNNonbr Mean # of nonbreeders.

4. MeanBrF Mean # of breeding females.

5. SEBrF SE of MeanBrF.

6. MeanBrM Mean # of breeding males.

7. SEBrM SE of MeanBrM.

8. MeanNFound Mean # of founders (starters and supplementals) alive.

9. MeanNMigr Mean # of immigrants alive.

10. MeanAge Mean age of breeding adults (those that bred that year).

11. P.extant Probability that the population is extant.

12. P.xLCL Lower bound of the confidence interval for P.extant.

13. P.xUCL Upper bound of the confidence interval for P.extant.

14. P.retain Probability that the rare allele is present in the population.

15. P.LCL Lower bound of the confidence interval for P.retain.

16. P.UCL Upper bound of the confidence interval for P.retain.

17. A.Freq Frequency of the rare allele in the simulated population (in

adults or in all individuals, as per GeneCount in aRetain).

18. A.SE SE of A.Freq.

12

indiv.summary

This function summarizes individual data by origin (starter, supplemental, local, migrant)

to compare fates across origins. Can only be run after running aRetain with trackall =

TRUE. indiv.summary has three arguments:

1. adata Object output by aRetain.

2. genlength Mean age of breeding individuals, as returned by aRetain.

summary (after recovery from any founder age effects).

3. alpha Significance level for confidence limits, e.g. 0.05

Output: a matrix with four rows, one for each origin: starters, supplementals, locals, and

migrants. All of these exclude individuals that died immediately post-release (subject to

inisurv) and those added in the last generation. The function provides the following

summary statistics, averaged across replicates for individuals of each origin:

1. n Total number of individuals from each origin, summed

within each replicate and then averaged across replicates.

2. pbreed Probability of an individual breeding (proportion that bred).

3. pbreed.LCL Lower binomial confidence limit for pbreed.

4. pbreed.UCL Upper binomial confidence limit for pbreed.

5. YrsBred Mean # of years bred per individual (including those that

never bred).

6. YrsBredBr Mean # of years bred per individual (that bred at least

once).

7. lifespan Mean lifespan in the population.

8. effectivegen Mean # of individuals that bred each generation.

9. NMatings Mean # of lifetime matings

pedigree.summary

This uses function calcInbreeding from package pedigree (Coster 2011) to calculate

the inbreeding coefficient (F) of each individual, the average across individuals alive

each year (including founders, who are assigned F = 0 because ancestry is not known)

within each replicate, and the average across replicates for each year. Can only be run

after running aRetain with trackall = TRUE. This function has one argument:

1. adata Object output by aRetain.

 Output: a matrix with one row for each year and 4 columns:

1. year Year of simulation, not including founding year (0).

2. meanF Mean F, averaged across individuals and replicates.

3. varF Inter-replicate variance in F.

4. indivVarF Inter-individual variance of F, averaged across replicates.

13

LRS.summary

This function calculates the number of matings for each individual of the specified sex,

over the individual’s full lifetime during the simulation. Can be run only after running

aRetain with trackall = TRUE. This function has two arguments:

1. adata Object output by aRetain.

2. sex Which sex to use in the calculations.

Output: a matrix with one row for each individual that lived during each replicate of the

simulation and 2 columns:

1. ID ID number of the individual. ID numbers are unique within

each replicate, but will be repeated across replicates.

2. NMatings Number of times the individual mated during its lifetime.

The individual-level data is not expected to be useful, but

can be used to calculate the mean or a histogram of mating

success.

agerepro.summary

This function calculates the average reproductive success, by age and sex, in the final

year of the simulation. Can only be run after running aRetain with trackall = TRUE.

This function has three arguments:

1. adata Object output by aRetain.

2. maxage Value of MaxAge used in aRetain, or the maximum age of

interest for the summary, whichever is smaller.

3. sex Which sex to use in the calculations.

 Output: a matrix with one row for each age and 7 columns:

1. age Age of each individual, from 0 to MaxAge

2. alive.mean Mean number of individuals that lived to this age.

3. alive.sd SD across replicates in the number of individuals that lived

to this age.

4. matings.mean Mean number of matings per individual at this age.

5. matings.sd SD among individuals in matings.mean.

6. offspring.mean Mean number of offspring produced by individuals of this

age.

7. offspring.sd SD among individuals in offspring.mean.

14

Troubleshooting

If the model stops immediately after starting and outputs an error message:

aRetain and its summary functions provide informative error messages in response to

unexpected input. For example, if you try to input a decimal where a whole number is

needed, the simulation stops with an error message (e.g. "Error in FUN(1:30[[1L]],

...) : 'migrfreq' must be a whole number"). Input values are checked one at a

time, so after you fix one error, another may appear when you restart the simulation.

If the model stops and outputs an error message after running for a while:

"Error: cannot allocate vector of size X.X Mb" indicates that you do not have

enough memory to store the information generated and used by the model. Increase the

memory allotted to R with memory.limit(size=XXXX) where XXXX = the maximum

for your machine (4095 for a 32-bit system, 8000000000 for a 64-bit system). Be sure to

clear objects that are no longer needed, e.g. between simulations, with rm. If your system

does not provide enough memory for your simulation, you have a few options (some of

which may limit the usefulness of the simulation for your purposes):

1) Use a 64-bit system rather than a 32-bit system.

2) Use a 64-bit system with more RAM.

3) Run fewer replicates or simulate a shorter time period.

4) Simulate a smaller population size.

5) Run with trackall = FALSE to simulate allele retention; then run a smaller

simulation (e.g. 100 replicates instead of 1000) with trackall = TRUE to run the

pedigree and individual summaries. Most of these statistics are easier to estimate

than allele retention so fewer replicates are needed.

If the output values indicate unexpected model function:

Check the demography of your population (from aRetain.summary). Does it grow as

expected? Does it decline to extinction in many replicates? Is the nonbreeder:breeder

ratio too high, perhaps due to a juvenile/nonbreeder survival rate that is too high? Any

demographic parameter can affect allele retention.

Remember that the .summary functions should only be run after aRetain was run with

trackall = TRUE. Otherwise, these functions will give unexpected values (e.g. very

small inbreeding coefficients or very high probabilities of breeding) because not all

individuals will be included. Note that if your simulation did not include animals of a

certain origin (e.g. supplement or migrant), you will see NA values in the corresponding

row of the output from indiv.summary; this does not indicate a problem.

15

Figure 1. Flow diagram of the aRetain function of AlleleRetain, showing the age classes

tracked (transparent boxes) and events (gray boxes) that influence each age class at the indicated

points in the annual loop. User-specified parameters (white boxes) are connected to the events

during which they are called; some parameters can change at carrying capacity, as indicated by

“[K]” (e.g. MAXypF and MAXypFK). Each year loop (Summer through Spring) is repeated over the

simulation period specified by nyears, and the simulation period is repeated over the number of

replicates specified by nrepl. The seasons listed assume the simulated species breeds in summer

(as an example only; does not affect program function). Note that individuals are released in Fall;

the first half-year simulated after starters are released is year 0.

AdultsNonbreeders

Juveniles

matingSys

matingLength

meanMLRS

sdMRLS

reproAgeM

AgeOnMLRS

Pairing

Recruitment

Reproduction

adsurvivalF

adsurvivalM

MaxAge

SenesAge

juvsurv[K]

nonbrsurv[K]

reprolag

youngperF

SDypF

ypF1

ypF1yr

MAXypF[K]

ypFsex

youngSR

nMatings

Summer

Fall

Winter

Spring

q0

sourceN

startN

startAge

startSR

exactSSR

addN

addyrs

addSR

exactASR

migrN

migrfreq

migrSR

exactMSR

inisurv

Truncation to K

trackall

GeneCount

nreplprint

printall

Mortality

Output

mature

K, Klag

Kadults

mpriority

retainBreeders

Individuals released

Individuals harvested

harvN

harvAge

harvyrs

16

Model Flow

The following is a plain-English description of the procedures performed when a call is made to

each of the functions provided in AlleleRetain. These details are provided to aid in

understanding output, to troubleshoot any unexpected behavior of the program, and to assist

advanced users in modifying the source code if desired. Input and output (arguments, objects)

and functions are in Courier New font. R package names are bolded. Internal objects (which

are used by, but not output from, AlleleRetain or its functions) are in italics.

aRetain

1. The model checks all input to ensure values are valid; if not, the simulation stops and

outputs a warning message.

2. The model sets up empty matrices needed later (including population, which will contain

adults that have recruited into the breeding population and individuals that have died if

trackall = TRUE; nonbreeders; juveniles; migrants)

3. Initial population is formed with addnew and newinfo.

4. Each year (looped over 1:nyears):

a. Starters are put into nonbreeders if they are adults (no breeding will occur this year),

or into juveniles otherwise. This is year 1.

b. pairs (if any) are also stored in oldpairs to later assess which ones were paired last

year.

c. The total number of adults (if KAdults = TRUE) or all individuals (if KAdults =

FALSE) now present is recorded to be used later in density-dependent effects.

d. Breeding occurs (unless in year 0 or within reprolag years of founding):

i. # young/year for females in the first reproductive stage is adjusted by

multiplying their individual means by ypF1.

ii. Reproduction is simulated by running pairs through breed; offspring are put

into juveniles.

iii. If nMatings > 1, pairs are re-formed and breeding repeats until nMatings is

achieved for females.

iv. Information from newinfo and parent IDs are recorded for each offspring.

e. Any supplementals are added with addnew and newinfo. The year in which they

were added is recorded. If juvenile, they are added to juveniles; if adult, they are

added to nonbreeders.

f. Any immigrants are added, as for supplementals. If removeL = TRUE, the

corresponding number of local adults is removed from population.

17

g. If harvest is indicated for this year, the specified numbers and ages of individuals are

removed from the population. If harvest is limited to one age class, and there aren’t

enough individuals of that age to meet harvN, the harvest quota is not met.

h. Survival: individuals are randomly selected to survive or die, based on the appropriate

survival probability:

i. Adult: survival rate is adjusted for age (Fig. 2a):

Sa = Sx –
Sx

MaxAge - SenesAge
 * (a – SenesAge)

where Sa = survival at age a and Sx = adsurvivalF or adsurvivalM.

ii. Nonbreeder: survival rate is density-dependent (Fig. 2b):

S𝐸𝑡
 =

S0

1 + β ∗ 𝐸𝑡

where S𝐸𝑡
 is survival rate at population density E in year t, S0 is survival when

density is near 0, β is the decline in survival as density increases, and Et is

population density at time t (Morris & Doak 2002). “Density” is defined in this

model as the proportion of K that has been filled. The model solves for β

according to the user-specified values for nonbrsurv (S0) and nonbrsurvK

(S1), then uses β and S0 to calculate density-dependent survival probability in

each year. Nonbreeder survival is applied to all individuals in nonbreeders, even

those that are older than mature (they remain in nonbreeders until they recruit

to breed).

iii.Juvenile: density dependent as for nonbreeders, depending on juvsurv/juvsurvK.

i. juveniles are added to nonbreeders.

j. Maturing individuals are randomly selected to recruit into the breeding population

(not all those selected may be able to pair, depending on the sex ratio). If

retainBreeders = "none", all maturing individuals recruit into population, which

is later truncated to K by randomly removing individuals (new recruits have the same

chance as established breeders to remain in the population). Otherwise, only the

number of individuals needed to reach K (or startN, if within Klag) is recruited from

nonbreeders that will be old enough to breed next year (depending on mature). If

mpriority = TRUE, immigrants are selected first; then locals are randomly selected

to fill any remaining spaces.

k. The population is truncated to K (or to startN, if within Klag), if necessary. This is

not necessary if KAdults = TRUE and retainBreeders ≠ "none" because

recruitment was limited to only filling vacancies; there are no surplus individuals.

i. If KAdults = FALSE, nonbreeders are included in carrying capacity (K).

Otherwise, only adults in population are included.

18

ii. Individuals that have priority are retained through truncation:

1. Retained breeding adults, if any (depending on retainBreeders). Only

necessary if KAdults = FALSE, because if KAdults = TRUE and

retainBreeders ≠ "none", no surplus individuals are present (see 4.h.i).

2. Immigrants, if mpriority = TRUE.

iii. Then other available individuals are randomly selected until the population is at

K. Dead nonbreeders are moved into population.

l. pairs are re-formed for next year (by pairoff if monogamy or polypair

otherwise):

i. If matingLength = "seasonal", pairs are split up and all individuals are put

into the singles pool. Otherwise, pairs with both members still alive remain

intact.

ii. If matingSys = "monogamy", widowed or divorced individuals of the sex

indicated by retainBreeders are guaranteed a new mate (if the opposite sex is

available). Individuals of the non-retained sex(es) are returned to the singles

pool.

iii. If matingSys = "polygyny" or "polygynandry" and matingLength =

"lifelong", males will not receive a new mate if at least one of their previous

mates is still alive (probably not realistic for most species).

iv. Any remaining singles are paired (as the sex ratio allows).

m. Numbers of years alive, breeding seasons, and mates is updated for all individuals.

n. The population is censused.

5. Steps 1-4 are repeated over the specified number of years. The censuses from all years

are compiled into one matrix, and the list of individuals simulated in this replicate is

saved.

6. Steps 1-5 are repeated over the specified number of replicates.

19

Figure 2. Adjustments to survival rates. a) Adult survival declines linearly with age, from

SenesAge to 0 at MaxAge. b) Nonbreeder survival declines with density (proportion of K filled),

from near nonbrsurv at very low densities to nonbrsurvK at K (juvenile survival declines the

same way, according to juvsurv/juvsurvK).

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30

A
d

u
lt
 s

u
rv

iv
a
l r

a
te

Age

adsurvivalF/M = 0.90

SenesAge = 10

MaxAge = 30

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

N
o

n
b

re
e
d

e
r

s
u
rv

iv
a
l
ra

te

Proportion of K f illed

nonbrsurv = 0.80

nonbrsurvK = 0.20

b) a)

20

Summary functions

See Model Output (pg. 11-13) for further details.

aRetain.summary: summarize output across replicates. Averages are produced with the base

function mean, binomial confidence limits are produced with AlleleRetain internal functions

Bucl and Blcl, and standard error of each list of values (x) is calculated as

sqrt(var(x)/sum(x)).

indiv.summary: summarize individual data across replicates. For each origin (starters,

supplementals, locals, migrants), summarize information across individuals that were present

prior to the last generation. Does not include individuals that died immediately post-release

(subject to inisurv). All values are rounded to 2 significant digits.

pedigree.summary: outputs the mean and variance of inbreeding coefficient for individuals

alive in each year, and the inter-individual variance within pedigrees, averaged across

replicates. Founders are included in this summary (their F-values default to 0 as their

ancestry is not known).

LRS.summary: calculate the number of matings for each individual of the specified sex, over

the individual’s full lifetime during the simulation.

agerepro.summary: calculate the average reproductive success, by age and sex, in the final

year of the simulation.

Internal functions created for use by aRetain or summary functions

is.wholenumber: returns TRUE or FALSE depending on whether the input value is a whole

number. Used to check input values, to check whether the current year is an immigration year

(is.wholenumber (y/migrfreq)), and to check whether the current replicate is one after

which the message “Replicate # [r] finished at [time]” is printed.

pad: returns a vector padding the given data (a vector) with 0s to achieve the specified length

(given 1:5, length = 10, will return 1,2,3,4,5,0,0,0,0,0). Used in pairoff.

Blcl, Bucl: calculate Wilson’s binomial confidence interval (lower and upper limits,

respectively). Used in aRetain.summary to summarize output across replicates.

pairoff: Monogamous pairs (to the maximum number specified) are formed based on sex.

Individuals are split into “mated” (in pairs) and “unmated”.

polypair: Polygynous pairs are formed based on sex and relative quality of males. If only

one male with LRS > 0 is present, all females mate with him. Otherwise, each male’s

probability of mating is determined by dividing his LRS score by the sum of the scores of all

other males present. One mate for each female is randomly drawn from the available males,

21

based on their probabilities of mating, with any male able to be selected more than once. All

females are assigned a mate. Unpaired males are put in “unmated” pool; pairs are listed as

“mated” (each male may be listed more than once). (aRetain will later put these groups into

singles and pairs, respectively.)

getsingles and dropsingles: two internal functions used together to move widowed

individuals from pairs into singles. getsingles adds widowed individuals to singles;

dropsingles removes those individuals from pairs.

breed: Offspring are produced based on characteristics of the breeding pairs.

1. Each pair is assigned a mean number of juveniles produced annually, based on the

male’s mean, the female’s mean, or an average of the two (depending on ypFsex)

2. The number of offspring actually produced by that pair in that year is drawn from a

Poisson distribution with the pair’s mean. This number is constrained to MAXypF if

necessary.

3. Each offspring for that pair is assigned a sex (based on youngSR), it inherits one allele

from the mother and one from the father, and the unique IDs of its parents are

recorded.

4. Loop through all pairs.

5. All offspring are combined into one matrix and output.

addnew: Add new individuals (from additional translocations) to the population.

1. The number of individuals that survive translocation is drawn from a binomial

distribution with size = startN and probability = inisurv. Each individual is

assigned a sex, randomly (by drawing from a binomial distribution) based on

startSR if exactSSR = FALSE, or to exactly meet startSR if exactSSR = TRUE.

If startSR cannot be met exactly (e.g. if startN is odd but startSR = 0.50), the

remainder is assigned as female.

2. Genotypes are assigned to each individual (0, 1, or 2 copies of the rare allele

described by q0), randomly if sourceN = Inf, or after randomly permuting the genes

in the source population according to Hardy-Weinberg Equilibrium and sourceN.

newinfo: Describe individual information for individuals added to the population (via either

translocation or reproduction).

1. The “origin” of each individual is assigned (1 = starter, 2 = supplemental, 3 = local, 4

= migrant).

2. A unique ID is assigned to each individual.

3. Year of birth is assigned: Local offspring and individuals translocated as juveniles are

assigned the current year. Individuals translocated as young adults are assumed to

have just reached sexual maturity and are assigned birth years accordingly (e.g. if

released in year 10 and mature = 4, they are assigned year 6 as their birth year). For

individuals released as adults, estimated age of each individual is randomly drawn

based on the expected proportion of individuals that survive to each age:

Pa = Pa-1 * Sa-1

22

where Pa is the proportion that survive to age a and Sa is survival rate at age a. The

proportion at each age = the probability that any given starter is that age. The birth

year for each adult is then assigned by subtracting their age from the current year.

4. Each individual is assigned a mean number of young produced per year, drawn from

a normal distribution with mean = youngperF and SD = SDypF. Any negatives are

converted to 0, and anything above MAXypF is constrained to MAXypF.

5. Each individual is assigned a value for lifetime reproductive success (LRS) by

drawing from a gamma distribution with mean = meanMLRS and SD = sdMLRS. The

shape of the gamma distribution = meanMLRS2/sdMLRS2; scale = sdMLRS2/meanMLRS.

The gamma distribution was chosen because of its flexibility in shape appropriate to

polygynous mating systems (from strongly right-skewed to nearly symmetrical).

These values are rounded to two decimal places to ensure that very tiny numbers are

rounded to 0 (those individuals will never breed). Any negatives are set to zero. This

value is only used for males (not females).

6. Each individual is assigned a 0 for number of years alive in the population and

number of years bred (because this information is recorded when the individual is just

entering the population).

7. Parents are recorded as NA (unknown) for translocated (assumed wild-caught)

individuals.

References

Coster, A. 2011. pedigree: Pedigree functions. R package version 1.3.2. http://CRAN.R-

project.org/package=pedigree

Efford, M. G. 2010. mohuasim: a stochastic model for the loss of rare alleles from re-introduced

populations. R package version 1.2.

Morris, W. F., and D. F. Doak. 2002. Quantitative conservation biology. Sinauer Associates,

Sunderland, Massachusetts.

R Development Core Team. 2011. R: A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.

Tracy, L. N., G. P. Wallis, M. G. Efford, and I. G. Jamieson. 2011. Preserving genetic diversity

in threatened species reintroductions: how many individuals should be released? Animal

Conservation 14:439-446.

Weiser, E.L., Grueber, C. E., and I. G. Jamieson. 2012. AlleleRetain: A program to assess

management options for conserving allelic diversity in small, isolated populations.

Molecular Ecology Resources 12:1161-1167.

Weiser, E.L., Grueber, C. E., and I. G. Jamieson. 2013. Simulating retention of rare alleles in

small populations: assessing management options for species with different life histories.

Conservation Biology 27:335-344.

23

Appendix 1: Example Code

Here’s an example of code to run several scenarios through aRetain; save output from

aRetain.summary, indiv.summary, and pedigree.summary into .csv files; and plot certain

output. Four scenarios are run using this code: the parameters that vary between scenarios

(starting population size and migration) are specified first, with the remaining parameter values

assigned explicitly within the code. This code produces plots as the simulation progresses by

calling from the R base plot function.

Parameter values used here were estimated for North Island robins Petroica longipes (Weiser et

al. 2013) with K applied only to adults and adjusted to achieve 50 breeding pairs. This example

runs for 5 robin generations (25 years) over 100 replicates (so the confidence intervals are wide).

Total run time for the 4 scenarios may be 5 minutes or so, depending on your system. A message

will display after every 10 replicates to inform you of the progress of the simulation. Hit the

Escape key at any time to abort the simulation (no data will be saved for scenarios that have not

finished running).

NOTE: If you try to copy and paste this code from this PDF document, it might not run due to

font translation issues. Instead, download the example code from the AlleleRetain website:

http://sites.google.com/site/alleleretain/download; choose the file called “AlleleRetain Appendix

1 Example Code.txt”. Alternatively, you can type your own code into your own .txt or R script

file, working from this example (all lines that start with a “#” are comments to help guide you,

not something that you need to put into R for the model to run).

Load AlleleRetain

library(AlleleRetain)

Specify the location where you want to save output files, e.g.:

loc <- "C:/Program Files/R/"

Increase the memory limit to the max allowed on your machine (4095 for a

32-bit system; 8000000000 on a 64-bit system):

memory.limit(size=8000000000)

Specify the values for any parameters for which you'd like to try several

scenarios:

startN.set <- c(20, 40)

migrN.set <- c(0, 15)

Define the number of values to try for each parameter (must correspond to

the lengths of the value lists specified above):

nN <- length(startN.set)

nM <- length(migrN.set)

Set up the plotting frame to compare scenarios

par(mfrow=c(nN*nM, 4), mar=c(4.5,4.5,2,1))

Display the current time so you know when you started the simulation:

http://sites.google.com/site/alleleretain/download

24

(Start_time <- Sys.time())

Loop over each combination of the parameter values listed above (each

scenario is simulated sequentially):

for(i in 1:nN){ for(j in 1:nM){

Run each aRetain for scenario:

robin <- aRetain(

Source population:

q0 = 0.05,

sourceN = Inf,

Translocated individuals:

startN = startN.set[i], # Pulled from the set listed above

startAge = "adult",

startSR = 0.5,

exactSSR = FALSE,

inisurv = c(1,1,1),

addN = 0,

addyrs = 0,

addSR = 0.5,

exactASR = FALSE,

migrN = migrN.set[j], # Pulled from the set listed above

migrSR = 0.5,

exactMSR = FALSE,

migrfreq = 5,

mpriority = TRUE,

removeL = FALSE,

Characteristics of the new population:

K = 108,

Klag = 0,

KAdults = TRUE,

reprolag = 0,

Life history of the species:

mature = 1,

matingSys = "monogamy",

matingLength = "lifelong",

meanMLRS = 1, # meanMLRS, sdMLRS, reproAgeM, AgeOnMLRS,

nMatings are not used in monogamous systems

sdMLRS = 0,

reproAgeM = c(1:16),

AgeOnMLRS = "age/age",

nMatings = 1,

retainBreeders = "both",

MaxAge = 16,

SenesAge = 5,

Expected demography in the new population:

adsurvivalF = 0.77,

adsurvivalM = 0.77,

nonbrsurv = 0.60,

nonbrsurvK = 0.30,

juvsurv = 0.60,

25

juvsurvK = 0.30,

youngperF = 3.19,

ypF1 = 1,

ypF1yr = 1,

SDypF = 1.23,

MAXypF = 6,

MAXypFK = 6,

ypFsex = "female",

youngSR = 0.5,

Simulation and output specifications:

trackall = TRUE,

GeneCount = "adult",

nyears = 25,

nrepl = 100,

nreplprint = 10,

printplots = FALSE)

Name this scenario based on which values were used:

fname <- paste("ROBIN_startN", startN.set[i], "_migr", migrN.set[j], sep="")

Generate summary output for this scenario:

Run the census summary:

robinsum <- aRetain.summary(robin, GeneCount = "adult", alpha=0.05,

dropextinct=TRUE)

Name the census summary file:

sfn <- paste(loc, fname, "_Sum.csv", sep="")

Save the main summary file:

write.csv(robinsum, file=sfn)

Run, name and save the individual summary:

indiv <- indiv.summary(robin, genlength=5)

ifn <- paste(loc, fname, "_Indiv.csv", sep="")

write.csv(indiv, file=ifn)

Run, name, and save the pedigree summary:

pedsum <- pedigree.summary(robin)

pfn<-paste(loc, fname, "_Pedigree.csv", sep="")

write.csv(pedsum, file=pfn)

Display each summary file for immediate viewing, to 2 decimal places:

print(robinsum[20:25,], digits=2) # only show the last 5 years

print(indiv, digits=2)

print(pedsum[20:25,], digits=2) # only show the last 5 years

Plot particular output (one row for each scenario):

if(i==1) if(j==1){

 Nmain = "Population growth"

 Amain = "Allele retention"

 Fmain = "Inbreeding (F)"

 Imain = "Prop. that bred"

}

else {

 Nmain = NULL

 Amain = NULL

 Fmain = NULL

26

 Imain = NULL

}

Plot population growth:

 plot(robinsum[,1], main=Nmain, ylab="# adults", ylim=c(0, 110),

xlab="year", type="l", lwd=2, cex.main=1.5, cex.lab=1.4, cex.axis=1.25,

font.main=1, las=1)

Add labels for the scenario modeled

 mtext(paste("startN =", startN.set[i], sep=" "), side=1, line=-3,

cex=0.9, at=16)

 mtext(paste("migrN =", migrN.set[j], sep=" "), side=1, line=-1.5,

cex=0.9, at=15)

Plot allele retention

 plot(robinsum[,14], main=Amain, ylab="prob. retain allele",

xlab="year", ylim=c(0,1), type="l", lwd=2, cex.main=1.5, cex.lab=1.4,

cex.axis=1.25, font.main=1, las=1)

 lines(robinsum[,15])

 lines(robinsum[,16])

Plot inbreeding accumulation

 plot(pedsum[,2], main=Fmain, ylab = "mean F", xlab = "year",

ylim=c(0,0.2), type="l", lwd=2, cex.main=1.5, cex.lab=1.4, cex.axis=1.25,

font.main=1, las=1, yaxp=c(0, 0.2, 2))

Plot probability of breeding for each type

 plot(indiv[,2], main=Imain, ylab="proportion that bred", xlab=NULL,

ylim=c(0,1), xaxt="n", cex=2, pch=18, cex.main=1.5, cex.lab=1.4,

cex.axis=1.25, font.main=1, las=1)

 axis(side=1, at=c(1:4), labels=c("start", "suppl", "local", "migr"),

cex.axis=1.25)

Remove stored objects to free up memory to run the next scenario:

rm(robin, robinsum, pedsum, indiv)

} } # close the loop and run the simulation

Time it took the whole simulation to run:

Sys.time() - Start_time

27

Appendix 2: Example Output

Some example output from code in Appendix 1, with startN = 20, migrN = 15, is shown below.

Your numbers might be slightly different due to the probabilistic nature of the model.

Excerpt for last 5 years (20-25) from aRetain.summary:

 MeanNAd SEN MeanNNonbr MeanBrF SEBrF MeanBrM SEBrM MeanNFound MeanNMigr

20 108 0 33 50 0.32 50 0.32 0 6.0

21 108 0 30 50 0.33 50 0.33 0 4.4

22 108 0 29 50 0.34 50 0.34 0 3.5

23 108 0 30 50 0.31 50 0.31 0 2.7

24 108 0 31 49 0.29 49 0.29 0 2.1

25 108 0 34 50 0.32 50 0.32 0 6.3

MeanAge P.extant P.xLCL P.xUCL P.retain P.LCL P.UCL A.Freq A.SE

4.8 1 0.95 1 0.87 0.78 0.93 0.054 0.0051

4.7 1 0.95 1 0.87 0.78 0.93 0.053 0.0053

4.7 1 0.95 1 0.87 0.78 0.93 0.051 0.0054

4.6 1 0.95 1 0.86 0.77 0.92 0.052 0.0054

4.6 1 0.95 1 0.84 0.75 0.90 0.053 0.0054

4.7 1 0.95 1 0.89 0.81 0.94 0.054 0.0053

Output from indiv.summary; values for supplementals are NaN (NA) because none were added:

n pbreed

pbreed

.LCL

pbreed

.UCL

Yrs

Bred

Yrs

BredBr lifespan effectivegen

starters 20 0.58 0.35 0.78 2.21 3.8 2.4 NaN

supplement 0 NaN NaN NaN NaN NaN NaN NaN

locals 2116 0.24 0.22 0.26 0.89 3.7 1.1 102

migrants 54 0.46 0.33 0.60 1.58 3.4 1.5 5

Excerpt for the last 5 years from pedigree.summary:

year meanF varF indivVarF

20 0.073 0.00025 0.0032

21 0.073 0.00024 0.0031

22 0.073 0.00023 0.0031

23 0.074 0.00023 0.0030

24 0.076 0.00026 0.0030

25 0.077 0.00028 0.0028

Plots output by example code given in Appendix 1 are shown below. Each row represents a

different scenario (startN and migrN as indicated on the left-hand panels). Fine lines on the

allele retention graphs indicate 95% confidence limits; the jumps in allele retention occur when

migrants are added every 5 years. Migrants were given priority to recruit into breeding

vacancies, but they were still subject to low density-dependent annual survival as nonbreeders,

so only a fraction was able to breed.

5 10 15 20 25

0

20

40

60

80

100

Population growth

year

#
 a

d
u
lts

startN = 20

migrN = 0

5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Allele retention

year

p
ro

b
.
re

ta
in

 a
lle

le

5 10 15 20 25

0.0

0.1

0.2

Inbreeding (F)

year

m
e
a
n
 F

0.0

0.2

0.4

0.6

0.8

1.0

Prop. that bred

Index

p
ro

p
o
rt

io
n
 t
h
a
t
b
re

d

start suppl local migr

5 10 15 20 25

0

20

40

60

80

100

year

#
 a

d
u
lts

startN = 20

migrN = 15

5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

year

p
ro

b
.
re

ta
in

 a
lle

le

5 10 15 20 25

0.0

0.1

0.2

year

m
e
a
n
 F

0.0

0.2

0.4

0.6

0.8

1.0

Index

p
ro

p
o
rt

io
n
 t
h
a
t
b
re

d

start suppl local migr

5 10 15 20 25

0

20

40

60

80

100

year

#
 a

d
u
lts

startN = 40

migrN = 0

5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

year

p
ro

b
.
re

ta
in

 a
lle

le

5 10 15 20 25

0.0

0.1

0.2

year

m
e
a
n
 F

0.0

0.2

0.4

0.6

0.8

1.0

Index

p
ro

p
o
rt

io
n
 t
h
a
t
b
re

d

start suppl local migr

5 10 15 20 25

0

20

40

60

80

100

year

#
 a

d
u
lts

startN = 40

migrN = 15

5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

year

p
ro

b
.
re

ta
in

 a
lle

le

5 10 15 20 25

0.0

0.1

0.2

year

m
e
a
n
 F

0.0

0.2

0.4

0.6

0.8

1.0

Index

p
ro

p
o
rt

io
n
 t
h
a
t
b
re

d

start suppl local migr

