Array operations in the gRbase package

Sgren Hgjsgaard
gRbase version 2.0.2 as of 2024-05-29

Contents
1 Introduction 2
2 Arrays/tables in R 2
2.1 Cross classified data - contingency tables. 0L 2
2.2 Defining arrays e 3
3 Operations on arrays 4
3.1 Normalizing an arrayo e e 4
3.2 Subsetting an array —slicing L oL 4
3.3 Collapsing and inflating arrays L oL o 5
3.4 Permuting an array Lol 6
3.5 Equality e 7
3.6 Aligning 7
3.7 Multiplication, addition etc: +, —, %, /. 8
3.8 An array as a probability density oL oL o 9
3.9 Miscellaneous 9
4 Examples 10
4.1 A Bayesian network Lo 10
4.2 Tterative Proportional Scaling (IPS) 11
5 Some low level functions 12
5.1 cell2entry(), entry2cell() and next_cell() 13
5.2 mnext_cell_slice() and slice2entry() 14
5.3 fact_grid() — Factorial grid oL 14
A More about slicing 15

Warning: package ’gRbase’ was built under R version 4.4.0

Error: package or namespace load failed for ’gRbase’ in dyn.load(file, DLLpath = DLLpath,
000§

unable to load shared object ’/home/sorenh/R/x86_64-pc-linux-gnu-library/4.3/gRbase/libs/gRbase.so’:
libRblas.so: cannot open shared object file: No such file or directory

1 Introduction

This note describes some operations on arrays in R. These operations have been implemented to
facilitate implementation of graphical models and Bayesian networks in R.

2 Arrays/tables in R

The documentation of R states the following about arrays:

An array in R can have one, two or more dimensions. It is simply a vector which is
stored with additional attributes giving the dimensions (attribute "dim") and optionally
names for those dimensions (attribute "dimnames"). A two-dimensional array is the
same thing as a matriz. One-dimensional arrays often look like vectors, but may be
handled differently by some functions.

2.1 Cross classified data - contingency tables

Arrays appear for example in connection with cross classified data. The array hec below is an
excerpt of the HairEyeColor array in R:

hec <- c¢(32, 53, 11, 50, 10, 25, 36, 66, 9, 34, 5, 29)
dim(hec) <- c(2, 3, 2)
dimnames (hec) <- list(Hair = c("Black", "Brown"),
Eye = c("Brown", "Blue", "Hazel"),
Sex = c("Male", "Female"))

hec

, , Sex = Male

##

Eye

Hair Brown Blue Hazel

Black 32 11 10
Brown 58] 50 25

##

, , Sex = Female

#it

23 Eye

Hair Brown Blue Hazel
#it Black 36 9 5

Brown 66 34 29

Above, hec is an array because it has a dim attribute. Moreover, hec also has a dimnames attribute
naming the levels of each dimension. Notice that each dimension is given a name.

Printing arrays can take up a lot of space. Alternative views on an array can be obtained with
ftable() or by converting the array to a dataframe with as.data.frame.table(). We shall do
so in the following.

##flat <- function(z) {ftable(z, row.vars=1)}
flat <- function(x, n=4) {as.data.frame.table(x) %>% head(n)}
hec %>% flat

Error in hec %>% flat: could not find function "¥%>%"

An array with named dimensions is in this package called a named array. The functionality
described below relies heavily on arrays having named dimensions. A check for an object being a
named array is provided by is.named.array () [gRbase|

is.named.array(hec)

Error in is.named.array(hec): could not find function "is.named.array"

2.2 Defining arrays

Another way is to use tabNew () [gRbase] from gRbase. This function is flexible wrt the input; for
example:

dn <- list(Hair=c("Black", "Brown"), Eye="Brown:Blue:Hazel, Sex="Male:Female)
counts <- c(32, 53, 11, 50, 10, 25, 36, 66, 9, 34, 5, 29)
z3 <- tabNew(“Hair:Eye:Sex, levels=dn, value=counts)

Error in tabNew(“Hair:Eye:Sex, levels = dn, value = counts): could not find function "tabNew"
z4 <- tabNew(c("Hair", "Eye", "Sex"), levels=dn, values=counts)

Error in tabNew(c("Hair", "Eye", "Sex"), levels = dn, values = counts): could not find
function "tabNew"

Notice that the levels list (dn above) when used in tabNew () [gRbase| is allowed to contain super-
fluous elements. Default dimnames are generated with

z5 <- tabNew(“Hair:Eye:Sex, levels=c(2, 3, 2), values = counts)

Error in tabNew(“Hair:Eye:Sex, levels = c(2, 3, 2), values = counts): could not find function
"tabNew"

dimnames (z5) %>% str
Error in dimnames(z5) %>% str: could not find function "%>%"

Using tabNew|gRbase|, arrays can be normalized to sum to one in two ways: 1) Normalization can
be over the first variable for each configuration of all other variables and 2) over all configurations.
For example:

26 <- tabNew(“Hair:Eye:Sex, levels=c(2, 3, 2), values=counts, normalize="first")

Error in tabNew(“Hair:Eye:Sex, levels = c(2, 3, 2), values = counts, normalize = "first"):
could not find function "tabNew"

z6 %>% flat

Error in z6 %>J% flat: could not find function "J>%"

3 Operations on arrays

In the following we shall denote the dimnames (or variables) of the array hec by H, E and S
and we let (h, e, s) denote a configuration of these variables. The contingency table above shall be
denoted by Trgs and we shall refer to the (h, e, s)-entry of Tygs as Tygrs(h, e, s).

3.1 Normalizing an array
Normalize an array with tabNormalize () [gRbase| Entries of an array can be normalized to sum to
one in two ways: 1) Normalization can be over the first variable for each configuration of all other

variables and 2) over all configurations. For example:

tabNormalize(z5, "first") %>% flat

Error in tabNormalize(z5, "first") %>} flat: could not find function "¥>%"

3.2 Subsetting an array — slicing

We can subset arrays (this will also be called “slicing”) in different ways. Notice that the result
is not necessarily an array. Slicing can be done using standard R code or using tabSlice[gRbase].
The virtue of tabSlice|gRbase] comes from the flexibility when specifying the slice:

The following leads from the original 2 x 3 x 2 array to a 2 x 2 array by cutting away the Sex=Male
and Eye=Brown slice of the array:

tabSlice(hec, slice=list(Eye=c("Blue", "Hazel"), Sex="Female"))

Error in tabSlice(hec, slice = list(Eye = c("Blue", "Hazel"), Sex = "Female")): could not
find function "tabSlice"

We may also regard the result above as a 2 x 2 x 1 array:

tabSlice(hec, slice=list(Eye=c("Blue", "Hazel"), Sex="Female"), drop=FALSE)

Error in tabSlice(hec, slice = list(Eye = c("Blue", "Hazel"), Sex = "Female"), : could
not find function "tabSlice"

If slicing leads to a one dimensional array, the output will by default not be an array but a vector
(without a dim attribute). However, the result can be forced to be a 1-dimensional array:

tl <- tabSlice(hec, slice=list(Hair=1, Sex="Female")); ti
Error in tabSlice(hec, slice = list(Hair = 1, Sex = "Female")): could not find function

"tabSlice"

Error in eval(expr, envir, enclos): object ’t1’ not found

t2 <- tabSlice(hec, slice=list(Hair=1, Sex="Female"), as.array=TRUE); t2

Error in tabSlice(hec, slice = list(Hair = 1, Sex = "Female"), as.array = TRUE): could not
find function "tabSlice"

Error in eval(expr, envir, enclos): object ’t2’ not found

A higher dimensional array (in which some dimensions only have one level)
t3 <- tabSlice(hec, slice=list(Hair=1, Sex="Female"), drop=FALSE); t3

Error in tabSlice(hec, slice = list(Hair = 1, Sex = "Female"), drop = FALSE): could not
find function "tabSlice"

Error in eval(expr, envir, enclos): object ’t3’ not found

The difference between the last two forms can be clarified:
t2 %>% flat
Error in t2 %>% flat: could not find function "%>%"
t3 %>% flat

Error in t3 %>J% flat: could not find function "J>%"

3.3 Collapsing and inflating arrays

Collapsing: The H E-marginal array T of Tygg is the array with values

THE(h, 6) = ZTHES(h7e7S)

Inflating: The “opposite” operation is to extend an array. For example, we can extend Tyg to
have a third dimension, e.g. Sex. That is

Tsue(s,h,e) = Tup(h,e)

so Tspe(s, h,e) is constant as a function of s.

With gRbase we can collapse arrays with?:

he <- tabMarg(hec, c("Hair", "Eye"))
Error in tabMarg(hec, c("Hair", "Eye")): could not find function "tabMarg"
he

Error in eval(expr, envir, enclos): object ’he’ not found

Alternatives
tabMarg(hec, “Hair:Eye)

Error in tabMarg(hec, “Hair:Eye): could not find function "tabMarg"

tabMarg(hec, c(1, 2))

1FIXME: Should allow for abbreviations in formula and character vector specifications.

Error in tabMarg(hec, c(1, 2)): could not find function "tabMarg"
hec %a_% ~“Hair:Eye

Error in hec %a_}, "Hair:Eye: could not find function "%a_7%"

Notice that collapsing is a projection in the sense that applying the operation again does not
change anything:

hel <- tabMarg(hec, c("Hair", "Eye"))

Error in tabMarg(hec, c("Hair", "Eye")): could not find function "tabMarg"
he2 <- tabMarg(hel, c("Hair", "Eye"))

Error in tabMarg(hel, c("Hair", "Eye")): could not find function "tabMarg"
tabEqual(hel, he2)

Error in tabEqual(hel, he2): could not find function "tabEqual"

Expand an array by adding additional dimensions with tabExpand () [gRbase]:

extra.dim <- list(Sex=c("Male", "Female"))
tabExpand (he, extra.dim)

Error in tabExpand(he, extra.dim): could not find function "tabExpand"

Alternatives
he %a~% extra.dim

Error in he %a”% extra.dim: could not find function "%a~%"

Notice that expanding and collapsing brings us back to where we started:

(he %a~% extra.dim) %a_% c("Hair", "Eye")

Error in (he %a~’, extra.dim) %a_% c("Hair", "Eye"): could not find function "%a_%"

3.4 Permuting an array

A reorganization of the table can be made with tabPerm[gRbase| (similar to aperm()), but tabPerm|[gRbase|
allows for a formula and for variable abbreviation:

tabPerm(hec, “Eye:Sex:Hair) %> flat

Error in tabPerm(hec, "Eye:Sex:Hair) %>% flat: could not find function "¥%>%"

Alternative forms (the first two also works for aperm):

tabPerm(hec, c("Eye", "Sex", "Hair"))

Error in tabPerm(hec, c("Eye", "Sex", "Hair")): could not find function "tabPerm"
tabPerm(hec, c(2, 3, 1))

Error in tabPerm(hec, c(2, 3, 1)): could not find function "tabPerm"

tabPerm(hec, ~Ey:Se:Ha)

Error in tabPerm(hec, “Ey:Se:Ha): could not find function "tabPerm"

tabPerm(hec, c("Ey", "Se", "Ha"))

Error in tabPerm(hec, c("Ey", "Se", "Ha")): could not find function "tabPerm"

3.5 Equality

Two arrays are defined to be identical 1) if they have the same dimnames and 2) if, possibly after
a permutation, all values are identical (up to a small numerical difference):

hec2 <- tabPerm(hec, 3:1)

Error in tabPerm(hec, 3:1): could not find function "tabPerm"
tabEqual (hec, hec2)

Error in tabEqual(hec, hec2): could not find function "tabEqual"

Alternative
hec %a==% hec2

Error in hec %a==% hec2: could not find function "%a==)"

3.6 Aligning

We can align one array according to the ordering of another:

hec2 <- tabPerm(hec, 3:1)

Error in tabPerm(hec, 3:1): could not find function "tabPerm"
tabAlign(hec2, hec)

Error in tabAlign(hec2, hec): could not find function "tabAlign"

Alternative:
tabAlign(hec2, dimnames(hec))

Error in tabAlign(hec2, dimnames(hec)): could not find function "tabAlign"

3.7 Multiplication, addition etc: +, —, *, /
The product of two arrays Ty and Tyg is defined to be the array TH Es Wwith entries

Turs(h,e,s) = Tup(h,e) + Tus(h, s)

The sum, difference and quotient is defined similarly: This is done with tabProd()[gRbase],
tabAdd()tha%L tabDiff()ka%e]and.tabDiv()kawdz

hs <- tabMarg(hec, ~“Hair:Eye)
Error in tabMarg(hec, “Hair:Eye): could not find function "tabMarg"
tabMult (he, hs)

Error in tabMult(he, hs): could not find function "tabMult"

Available operations:

tabAdd (he, hs)

Error in tabAdd(he, hs): could not find function "tabAdd"
tabSubt (he, hs)

Error in tabSubt(he, hs): could not find function "tabSubt"
tabMult (he, hs)

Error in tabMult(he, hs): could not find function "tabMult"
tabDiv(he, hs)

Error in tabDiv(he, hs): could not find function "tabDiv"
tabDivO(he, hs) ## Conwvention 0/0 = 0

Error in tabDivO(he, hs): could not find function "tabDivO"

Shortcuts:

Alternative
he %a+% hs

Error in he %at+% hs: could not find function "Ya+%"
he %a-% hs
Error in he %a-% hs: could not find function "%a-%"
he %ax% hs

Error in he %ax% hs: could not find function "%ax*%"

he %a/% hs
Error in he %a/% hs: could not find function "%a/%"
he %a/0% hs ## Convention 0/0 = 0

Error in he %a/0% hs: could not find function "%a/0%"

Multiplication and addition of (a list of) multiple arrays is accomplished with tabProd () [gRbase]
and tabSum() [gRbase] (much like prod () [gRbase] and sum() [gRbase]):

es <- tabMarg(hec, ~“Eye:Sex)

Error in tabMarg(hec, “Eye:Sex): could not find function "tabMarg"
tabSum(he, hs, es)

Error in tabSum(he, hs, es): could not find function "tabSum"

tabSum(list(he, hs, es))

3.8 An array as a probability density

If an array consists of non—negative numbers then it may be regarded as an (unnormalized) discrete
multivariate density. With this view, the following examples should be self explanatory:

tabDist (hec, marg="Hair:Eye)

Error in tabDist(hec, marg = “Hair:Eye): could not find function "tabDist"
tabDist (hec, cond="Sex)

~“Sex): could not find function "tabDist"

Error in tabDist(hec, cond
tabDist (hec, marg="Hair, cond="Sex)

Error in tabDist(hec, marg = “Hair, cond = “Sex): could not find function "tabDist"

3.9 Miscellaneous
Multiply values in a slice by some number and all other values by another number:

tabSliceMult(es, list(Sex="Female"), val=10, comp=0)

Error in tabSliceMult(es, list(Sex = "Female"), val = 10, comp = 0): could not find function
"tabSliceMult"

4 Examples

4.1 A Bayesian network

A classical example of a Bayesian network is the “sprinkler example”, see e.g. http://en.wikipedia.
org/wiki/Bayesian_network:

Suppose that there are two events which could cause grass to be wet: either the sprinkler
is on or it is raining. Also, suppose that the rain has a direct effect on the use of the
sprinkler (namely that when it rains, the sprinkler is usually not turned on). Then the

situation can be modeled with a Bayesian network.

We specify conditional probabilities p(r), p(s|r) and p(wl|s, r) as follows (notice that the vertical
conditioning bar (]) is replaced by the horizontal underscore:

yIl <— C("y" s np"
lev <- list(rain=yn, sprinkler=yn, wet=yn)
r <- tabNew(“rain, levels=lev, values=c(.2, .8))

Error in tabNew(“rain, levels = lev, values = c(0.2, 0.8)): could not find function "tabNew"
s_r <- tabNew(“sprinkler:rain, levels = lev, values = c(.01, .99, .4, .6))

Error in tabNew(“sprinkler:rain, levels = lev, values = c(0.01, 0.99, : could not find
function "tabNew"

w_sr <- tabNew(“wet:sprinkler:rain, levels=lev,
values=c(.99, .01, .8, .2, .9, .1, 0, 1))

Error in tabNew(“wet:sprinkler:rain, levels = lev, values = c(0.99, 0.01, : could not find
function "tabNew"

Error in eval(expr, envir, enclos): object ’r’ not found
s_r »>% flat

Error in s_r ’>% flat: could not find function ">%"
w_sr %>% flat

Error in w_sr %>% flat: could not find function "%>%"

The joint distribution p(r,s,w) = p(r)p(s|r)p(w|s,r) can be obtained with tabProd() [gRbasel:
ways:

joint <- tabProd(r, s_r, w_sr); joint ¥%>% flat

Error in tabProd(r, s_r, w_sr): could not find function "tabProd"

Error in joint %>% flat: could not find function "¥>%"

What is the probability that it rains given that the grass is wet? We find p(r,w) = 3 p(r, s, w)
and then p(r|w) = p(r, w)/p(w). Can be done in various ways: with tabDist () [gRbase|

10

tabDist(joint, marg="rain, cond="wet)

Error in tabDist(joint, marg = “rain, cond = “wet): could not find function "tabDist"

Alternative:
rw <- tabMarg(joint, “rain + wet)

Error in tabMarg(joint, ~“rain + wet): could not find function "tabMarg"
tabDiv(rw, tabMarg(rw, ~wet))
Error in tabDiv(rw, tabMarg(rw, ~“wet)): could not find function "tabDiv"

or
rw %a/h (rw %a_% “wet)

Error in rw %a/}, (xw %a_% “wet): could not find function "%a/%"

Alternative:
x <- tabSliceMult(rw, slice=list(wet="y")); x

Error in tabSliceMult(rw, slice = list(wet = "y")): could not find function "tabSliceMult"

Error in eval(expr, envir, enclos): object ’x’ not found
tabDist(x, marg="rain)

Error in tabDist(x, marg = “rain): could not find function "tabDist"

4.2 Iterative Proportional Scaling (IPS)
We consider the 3—way lizard data from gRbase:

data(lizard, package="gRbase")
lizard %>% flat

Error in lizard %>% flat: could not find function "%>%"

Consider the two factor log-linear model for the 1izard data. Under the model the expected
counts have the form
logm(d, h,s) = a1(d, h) + az(d, s) + az(h, s)

If we let n(d, h,s) denote the observed counts, the likelihood equations are: Find m(d, h, s) such
that
m(d,h) =n(d,h), m(d,s)=n(d,s), m(h,s)=n(h,s)

where m(d, h) = > m(d, h.s) etc. The updates are as follows: For the first term we have

n(d, h)

m(d, h, s) < m(d,h,s) m(d 1)

11

After iterating the updates will not change and we will have equality: m(d, h, s) = m(d, h, s) :1(('3},?)

and summing over s shows that the equation m(d, h) = n(d, h) is satisfied.

A rudimentary implementation of iterative proportional scaling for log—linear models is straight
forward:

myips <- function(indata, glist){
fit <- indata
fitl] <- 1
List of sufficient marginal tables
md <- lapply(glist, function(g) tabMarg(indata, g))
for (i in 1:4){
for (j in seq_along(glist)){
mf <- tabMarg(fit, glist[[j11)
adj <- tabDiv(md[[5 1], mf)
fit <- tabMult(fit, adj)
or
adj <- md[[j 1] %a/% mf
fit <- fit %a*’, adj
}
b
pearson <- sum((fit - indata)~2 / fit)
list(pearson=pearson, fit=fit)

}

glist <- list(c("species", "diam"),c("species", "height"),c("diam", "height"))
fml <- myips(lizard, glist)

Error in tabMarg(indata, g): could not find function "tabMarg"
fmi$pearson

Error in eval(expr, envir, enclos): object ’fml’ not found

fm1$fit ¥>% flat

Error in fmi1$fit > flat: could not find function "¥>%"

fm2 <- loglin(lizard, glist, fit=T)
4 iterations: deviation 0.009619

fm2$pearson
[1] 0.1506

fm2$fit %>% flat

Error in fm2$fit %>)% flat: could not find function "¥>%"

5 Some low level functions

For e.g. a 2 x 3 x 2 array, the entries are such that the first variable varies fastest so the ordering
of the cells are (1,1,1), (2,1,1), (1,2,1), (2,2,1),(1,3,1) and so on. To find the value of such a

12

cell, say, (4, k,1) in the array (which is really just a vector), the cell is mapped into an entry of a
vector.

For example, cell (2,3,1) (Hair=Brown, Eye=Hazel, Sex=Male) must be mapped to entry 4 in

hec

, , Sex = Male

##

Eye

Hair Brown Blue Hazel

Black 32 11 10
Brown 58] 50 25

##

, , Sex = Female

##

Eye

Hair Brown Blue Hazel
Black 36 9 5

Brown 66 34 29

c(hec)
[1] 32 53 11 50 10 25 36 66 9 34 5 29

For illustration we do:
cell2name <- function(cell, dimnames){

unlist(lapply(l:length(cell), function(m) dimnames[[m]][cell[m]]))
}

cell2name(c(2,3,1), dimnames(hec))
[1] "Brown" "Hazel" "Male"

5.1 cell2entry(), entry2cell() and next_cell()
The map from a cell to the corresponding entry is provided by cell2entry()[gRbase]. The

reverse operation, going from an entry to a cell (which is much less needed) is provided by
entry2cell () [gRbase]|.

cell2entry(c(2,3,1), dim=c(2, 3, 2))
Error in cell2entry(c(2, 3, 1), dim = c(2, 3, 2)): could not find function "cell2entry"
entry2cell(6, dim=c(2, 3, 2))

Error in entry2cell(6, dim = c(2, 3, 2)): could not find function "entry2cell"

Given a cell, say ¢ = (2,3,1) in a 2 x 3 x 2 array we often want to find the next cell in the table
following the convention that the first factor varies fastest, that is (1,1,2). This is provided by
next_cell()[gRbase].

next_cell(c(2,3,1), dim=c(2, 3, 2))

Error in next_cell(c(2, 3, 1), dim = c(2, 3, 2)): could not find function "next_cell"

13

5.2 next_cell_slice() and slice2entry()
Given that we look at cells for which for which the index in dimension 2 is at level 3 (that is

Eye=Hazel), i.e. cells of the form (j,3,1). Given such a cell, what is then the next cell that also
satisfies this constraint. This is provided by next_cell_slice () [gRbase].?

next_cell_slice(c(1,3,1), slice_marg=2, dim=c(2, 3, 2))

Error in next_cell_slice(c(1, 3, 1), slice_marg = 2, dim = c(2, 3, 2)): could not find
function "next_cell_slice"

next_cell_slice(c(2,3,1), slice_marg=2, dim=c(2, 3, 2))

Error in next_cell_slice(c(2, 3, 1), slice_marg = 2, dim = c(2, 3, 2)): could not find
function "next_cell_slice"

Given that in dimension 2 we look at level 3. We want to find entries for the cells of the form
(7,3,1).3

slice2entry(slice_cell=3, slice_marg=2, dim=c(2, 3, 2))

Error in slice2entry(slice_cell = 3, slice_marg = 2, dim = c(2, 3, 2)): could not find
function "slice2entry"

To verify that we indeed get the right cells:

r <- slice2entry(slice_cell=3, slice_marg=2, dim=c(2, 3, 2))

Error in slice2entry(slice_cell = 3, slice_marg = 2, dim = c(2, 3, 2)): could not find
function "slice2entry"

lapply(lapply(r, entry2cell, c(2, 3, 2)),
cell2name, dimnames (hec))

Error in eval(expr, envir, enclos): object ’entry2cell’ not found

5.3 fact_grid() — Factorial grid
Using the operations above we can obtain the combinations of the factors as a matrix:

head(fact_grid(c(2, 3, 2)), 6)

Error in fact_grid(c(2, 3, 2)): could not find function "fact_grid"

A similar dataframe can also be obtained with the standard R function expand.grid (but factGrid
is faster)

head(expand.grid(list(1:2, 1:3, 1:2)), 6)

2FIXME: sliceset should be called margin.
SFIXME:slicecell and sliceset should be renamed

14

Varl Var2 Var3

1 1 1 1
2 2 1 1
3 1 2 1
4 2 2 1
5 1 3 1
6 2 3 1

A More about slicing

Slicing using standard R code can be done as follows:
hec[, 2:3, 1 %% flat ## 4 2 ¢ 2 = 2 array
Error in hec[, 2:3,] %>% flat: could not find function "%>%"

hec[1, , 1] ## A wvector
Brown Blue Hazel
32 11 10

hec[1l, , 1, drop=FALSE] ## 4 1 =z 3 = 1 array

, , Sex = Male

##

Eye

Hair Brown Blue Hazel

Black 32 11 10
Programmatically we can do the above as
do.call("[", c(list(hec), 1list(TRUE, 2:3, TRUE))) %>% flat

Error in do.call("[", c(list(hec), list(TRUE, 2:3, TRUE))) %>% flat: could not find function
||%>%l|

do.call("[", c(list(hec), 1list(1, TRUE, 1)))
do.call("[", c(list(hec), list(1l, TRUE, 1), drop=FALSE))

gRbase provides two alterntives for each of these three cases above:
tabSlicePrim(hec, slice=1ist(TRUE, 2:3, TRUE)) %>/ flat

Error in tabSlicePrim(hec, slice = 1list(TRUE, 2:3, TRUE)) %>% flat: could not find function
n%>%u

tabSlice(hec, slice=list(c(2, 3)), margin=2) %>} flat

Error in tabSlice(hec, slice = list(c(2, 3)), margin = 2) %>} flat: could not find function
n%>%u

tabSlicePrim(hec, slice=1list(1, TRUE, 1))

Error in tabSlicePrim(hec, slice = list(1, TRUE, 1)): could not find function "tabSlicePrim"

15

tabSlice(hec, slice=list(1, 1), margin=c(1l, 3))
Error in tabSlice(hec, slice = list(1, 1), margin = c(1, 3)): could not find function "tabSlice"
tabSlicePrim(hec, slice=1ist(1, TRUE, 1), drop=FALSE)

Error in tabSlicePrim(hec, slice = list(1, TRUE, 1), drop = FALSE): could not find function
"tabSlicePrim"

tabSlice(hec, slice=list(1, 1), margin=c(1l, 3), drop=FALSE)

Error in tabSlice(hec, slice = list(1, 1), margin = c(1, 3), drop = FALSE): could not find
function "tabSlice"

16

