CRAN status Grand total R-CMD-check Codecov test coverage LinkedIn

BFS

Search and download data from the Swiss Federal Statistical Office

The BFS package allows to search and download public data from the Swiss Federal Statistical Office (BFS stands for Bundesamt für Statistik in German) APIs in a dynamic and reproducible way.

Installation

install.packages("BFS")

You can also install the development version from Github.

devtools::install_github("lgnbhl/BFS")

Usage

library(BFS)

Get the data catalog

Before downloading a BFS dataset, you need to get its related BFS number (FSO number) in the official data catalog. You can search in the catalog directly from R using the bfs_get_catalog_data() function in any language (“de”, “fr”, “it” or “en”):

bfs_get_catalog_data(language = "en", extended_search = "student")
## # A tibble: 4 × 6
##   title                 language number_bfs number_asset publication_date url_px
##   <chr>                 <chr>    <chr>      <chr>        <date>           <chr> 
## 1 University of applie… en       px-x-1502… 31306033     2024-03-28       https…
## 2 University of applie… en       px-x-1502… 31306029     2024-03-28       https…
## 3 University students … en       px-x-1502… 31305852     2024-03-28       https…
## 4 University students … en       px-x-1502… 31305854     2024-03-28       https…

You can search in the data catalog using the following arguments:

Note that English (“en”) and Italian (“it”) data catalogs offer a limited list of datasets. For the full list please get the French (“fr”) or German (“de”) data catalogs (see language_available column).

To return all the catalog metadata in the raw (uncleaned) structure, you can add return_raw = TRUE:

catalog_raw <- bfs_get_catalog_data(
  language = "en", 
  extended_search = "student", 
  return_raw = TRUE
)

catalog_raw
## # A tibble: 4 × 5
##   ids$uuid      $contentId bfs$embargo description$titles$m…¹ shop$orderNr links
##   <chr>              <int> <chr>       <chr>                  <chr>        <lis>
## 1 9cb3291f-425…    2301224 2024-03-28… University of applied… px-x-150204… <df> 
## 2 8f65763b-907…    2301215 2024-03-28… University of applied… px-x-150204… <df> 
## 3 4fd81856-d35…    2301207 2024-03-28… University students b… px-x-150204… <df> 
## 4 7d7f1b9e-0c6…    2301195 2024-03-28… University students b… px-x-150204… <df> 
## # ℹ abbreviated name: ¹​description$titles$main
## # ℹ 14 more variables: ids$gnp <chr>, $damId <int>, $languageCopyId <int>,
## #   bfs$lifecycle <df[,4]>, $lifecycleGroup <chr>, $provisional <lgl>,
## #   $articleModel <df[,4]>, $articleModelGroup <df[,4]>,
## #   description$categorization <df[,13]>, $bibliography <df[,1]>,
## #   $shortSummary <df[,2]>, $language <chr>, $abstractShort <chr>,
## #   shop$stock <lgl>

The data catalog in a raw structure returns a data.frame containing nested data.frames in some columns. Here an example to get the description nested data.frame as a tibble:

library(dplyr)

as_tibble(catalog_raw$description)
## # A tibble: 4 × 6
##   titles$main       categorization$colle…¹ bibliography$period shortSummary$html
##   <chr>             <list>                 <chr>               <chr>            
## 1 University of ap… <df [2 × 4]>           1997-2023           This dataset pre…
## 2 University of ap… <df [2 × 4]>           1997-2023           This dataset pre…
## 3 University stude… <df [2 × 4]>           1990-2023           This dataset pre…
## 4 University stude… <df [2 × 4]>           1980-2023           This dataset pre…
## # ℹ abbreviated name: ¹​categorization$collection
## # ℹ 15 more variables: categorization$prodima <list>, $inquiry <list>,
## #   $spatialdivision <list>, $classification <list>, $institution <list>,
## #   $publisher <list>, $tags <list>, $dataSource <list>, $copyrights <list>,
## #   $termsOfUse <list>, $serie <list>, $periodicity <list>,
## #   shortSummary$raw <chr>, language <chr>, abstractShort <chr>

As the API limit is 350 results, you can get the full data catalog by looping on specific parameters. For example, you can loop over all prodima numbers (equivalent to BFS themes):

# themes_names <- c("Statistical basis and overviews 00", "Population 01", "Territory and environment 02", "Work and income 03", "National economy 04", "Prices 05", "Industry and services 06", "Agriculture and forestry 07", "Energy 08", "Construction and housing 09", "Tourism 10", "Mobility and transport 11", "Money, banks and insurance 12", "Social security 13", "Health 14", "Education and science 15", "Culture, media, information society, sports 16", "Politics 17", "General Government and finance 18", "Crime and criminal justice 19", "Economic and social situation of the population 20", "Sustainable development, regional and international disparities 21")
themes_prodima <- c(900001, 900010, 900035, 900051, 900075, 900084, 900092, 900104, 900127, 900140, 900160, 900169, 900191, 900198, 900210, 900212, 900214, 900226, 900239, 900257, 900269, 900276)

library(purrr)

catalog_all <- purrr::pmap_dfr(
  .l = list(language = "de", prodima = themes_prodima, return_raw = TRUE),
  .f = bfs_get_catalog_data,
)

catalog_all
## # A tibble: 764 × 5
##    ids$uuid     $contentId bfs$embargo description$titles$m…¹ shop$orderNr links
##    <chr>             <int> <chr>       <chr>                  <chr>        <lis>
##  1 8a2bfd2e-a9…    1085359 2024-10-03… Privathaushalte nach … px-x-010202… <df> 
##  2 a964371b-27…    1085346 2024-10-03… Ständige Wohnbevölker… px-x-010202… <df> 
##  3 ef70eb19-93…     325772 2024-09-26… Heiraten und Heiratsh… px-x-010202… <df> 
##  4 32069ba3-1c…     189095 2024-09-26… Lebendgeburten nach M… px-x-010202… <df> 
##  5 5a8b2ea1-e2…     325776 2024-09-26… Scheidungen und Schei… px-x-010202… <df> 
##  6 66f3d4f6-ed…     189065 2024-09-26… Todesfälle nach Monat… px-x-010202… <df> 
##  7 51dfa1cf-21…   13807205 2024-08-23… Männliche Vornamen de… px-x-010405… <df> 
##  8 b65c9036-b0…   13807212 2024-08-23… Weibliche Vornamen de… px-x-010405… <df> 
##  9 38a86458-22…     189124 2024-08-22… Auswanderung der stän… px-x-010302… <df> 
## 10 6426823f-cb…     189120 2024-08-22… Auswanderung der stän… px-x-010302… <df> 
## # ℹ 754 more rows
## # ℹ abbreviated name: ¹​description$titles$main
## # ℹ 16 more variables: ids$gnp <chr>, $damId <int>, $languageCopyId <int>,
## #   bfs$lifecycle <df[,4]>, $lifecycleGroup <chr>, $provisional <lgl>,
## #   $articleModel <df[,4]>, $articleModelGroup <df[,4]>,
## #   $lastUpdatedVersion <chr>, description$titles$sub <chr>,
## #   description$categorization <df[,13]>, $bibliography <df[,2]>, …
# to not overload the server, please save the data frame locally
# readr::write_csv(catalog_all, "catalog_all.csv") 
# catalog_all <- readr::read_csv("catalog_all.csv") 

Please use this loop moderately to not overload BFS server unnecessarily (just run it when needed and save the result locally).

Download data in any language

The function bfs_get_data() allows you to download any dataset from the BFS catalog (equivalent to selecting “data” in the “Article Type” dropdown of the BFS website) using its BFS number (FSO number).

Using the number_bfs argument (FSO number), you can get BFS data in a given language (“en”, “de”, “fr” or “it”) from the official PXWeb API of the Swiss Federal Statistical Office.

#catalog_student$number_bfs[1] # px-x-1502040100_131
bfs_get_data(number_bfs = "px-x-1502040100_131", language = "en")
## # A tibble: 18,480 × 5
##    Year    `ISCED Field`     Sex    `Level of study`       `University students`
##    <chr>   <chr>             <chr>  <chr>                                  <dbl>
##  1 1980/81 Education science Male   First university degr…                   545
##  2 1980/81 Education science Male   Bachelor                                   0
##  3 1980/81 Education science Male   Master                                     0
##  4 1980/81 Education science Male   Doctorate                                 93
##  5 1980/81 Education science Male   Further education, ad…                    13
##  6 1980/81 Education science Female First university degr…                   946
##  7 1980/81 Education science Female Bachelor                                   0
##  8 1980/81 Education science Female Master                                     0
##  9 1980/81 Education science Female Doctorate                                 70
## 10 1980/81 Education science Female Further education, ad…                    52
## # ℹ 18,470 more rows

“Too Many Requests” error message

When running the bfs_get_data() function you may get the following error message (issue #7).

Error in pxweb_advanced_get(url = url, query = query, verbose = verbose) : 
  Too Many Requests (RFC 6585) (HTTP 429).

This could happen because you ran too many times a bfs_get_*() function (API config is here). A solution is to wait a few seconds before running the next bfs_get_*() function. You can add a delay in your R code using the delay argument.

bfs_get_data(
  number_bfs = "px-x-1502040100_131", 
  language = "en", 
  delay = 10
)

If the error message remains, it could be because you are querying a very large BFS dataset. Two workarounds exist: a) download the BFS file using bfs_download_asset() to read it locally or b) query only specific elements of the data to reduce the API call (see next section).

Here an example using the bfs_download_asset() function:

BFS::bfs_download_asset(
  number_bfs = "px-x-1502040100_131", #number_asset also possible
  destfile = "px-x-1502040100_131.px"
)

library(pxR) # install.packages("pxR")
large_dataset <- pxR::read.px(filename = "px-x-1502040100_131.px") |>
  as.data.frame()

Note that reading a PX file using pxR::read.px() gives access only to the German version.

Query specific elements

First you want to get the metadata of your dataset, i.e. the variables (code and text) and dimensions (values and valueTexts). For example:

metadata <- bfs_get_metadata(number_bfs = "px-x-1502040100_131", language = "en")

# tidy metadata
library(dplyr)
library(tidyr) # for unnest_longer

metadata_tidy <- metadata |>
  unnest_longer(c(values, valueTexts))

metadata_tidy
## # A tibble: 92 × 7
##    code  text  values valueTexts time  elimination
##    <chr> <chr> <chr>  <chr>      <lgl> <lgl>      
##  1 Jahr  Year  0      1980/81    TRUE  NA         
##  2 Jahr  Year  1      1981/82    TRUE  NA         
##  3 Jahr  Year  2      1982/83    TRUE  NA         
##  4 Jahr  Year  3      1983/84    TRUE  NA         
##  5 Jahr  Year  4      1984/85    TRUE  NA         
##  6 Jahr  Year  5      1985/86    TRUE  NA         
##  7 Jahr  Year  6      1986/87    TRUE  NA         
##  8 Jahr  Year  7      1987/88    TRUE  NA         
##  9 Jahr  Year  8      1988/89    TRUE  NA         
## 10 Jahr  Year  9      1989/90    TRUE  NA         
## # ℹ 82 more rows
## # ℹ 1 more variable: title <chr>

Then you can filter the dimensions you want to query using the text and valueTexts variables and build the query dimension object with the code and values variables.

# select dimensions
dim1 <- metadata_tidy |>
  filter(text == "Year" & valueTexts %in% c("2020/21", "2021/22"))
dim2 <- metadata_tidy |>
  filter(text == "Level of study" & valueTexts %in% c("Master", "Doctorate"))
dim3 <- metadata_tidy |>
  filter(text == "ISCED Field" & valueTexts %in% c("Education science"))
dim4 <- metadata_tidy |>
  filter(text == "Sex") # all valueTexts dimensions

# build dimensions list object
dimensions <- list(
  dim1$values,
  dim2$values,
  dim3$values,
  dim4$values
)

names(dimensions) <- c(
  unique(dim1$code), 
  unique(dim2$code), 
  unique(dim3$code), 
  unique(dim4$code)
)

dimensions
## $Jahr
## [1] "40" "41"
## 
## $Studienstufe
## [1] "2" "3"
## 
## $`ISCED Fach`
## [1] "0"
## 
## $Geschlecht
## [1] "0" "1"

Finally you can query BFS data with specific dimensions.

BFS::bfs_get_data(
  number_bfs = "px-x-1502040100_131",
  language = "en",
  query = dimensions
  )
## # A tibble: 8 × 5
##   Year    `ISCED Field`     Sex    `Level of study` `University students`
##   <chr>   <chr>             <chr>  <chr>                            <dbl>
## 1 2020/21 Education science Male   Master                             151
## 2 2020/21 Education science Male   Doctorate                          121
## 3 2020/21 Education science Female Master                             555
## 4 2020/21 Education science Female Doctorate                          306
## 5 2021/22 Education science Male   Master                             143
## 6 2021/22 Education science Male   Doctorate                          115
## 7 2021/22 Education science Female Master                             599
## 8 2021/22 Education science Female Doctorate                          318

Catalog of tables

A lot of datasets are not accessible through the official PXWeb API. They are listed in the data catalog as “tables” in the “Article Type” dropdown of the BFS website. You can search for specific tables using bfs_get_catalog_tables().

catalog_tables_en_students <- bfs_get_catalog_tables(language = "en", extended_search = "students")

catalog_tables_en_students
## # A tibble: 5 × 5
##   title                          language number_asset publication_date order_nr
##   <chr>                          <chr>    <chr>        <date>           <chr>   
## 1 Students at universities and … en       31826381     2024-05-01       ts-x-15…
## 2 Students at universities of a… en       31826380     2024-05-01       ts-x-15…
## 3 Students at universities and … en       31185431     2024-03-28       su-e-15…
## 4 Students at universities of a… en       31185438     2024-03-28       su-e-15…
## 5 Students at universities of t… en       31185427     2024-03-28       su-e-15…

Most of the BFS tables are Excel or CSV files. You can download an table with bfs_download_asset() using the number asset.

library(dplyr)

tables_asset_number_students <- catalog_tables_en_students |>
  dplyr::filter(title == "Students at universities and institutes of technology: Basistables") |>
  dplyr::pull(number_asset)

file_path <- BFS::bfs_download_asset(
  number_asset = tables_asset_number_students,
  destfile = "su-e-15.02.04.01.xlsx"
)

To return all the catalog metadata in the raw (uncleaned) structure, you can add return_raw = TRUE:

catalog_tables_raw <- bfs_get_catalog_tables(
  language = "en", 
  extended_search = "student", 
  return_raw = TRUE
)

catalog_tables_raw
## # A tibble: 6 × 5
##   ids$uuid      $contentId bfs$embargo description$titles$m…¹ shop$orderNr links
##   <chr>              <int> <chr>       <chr>                  <chr>        <lis>
## 1 a5169f0b-6f8…   14876281 2024-10-31… Student mobility with… su-e-15.02.… <df> 
## 2 7a604831-d27…   20044168 2024-05-01… Students at universit… ts-x-15.02.… <df> 
## 3 ac4e3021-db4…   20044200 2024-05-01… Students at universit… ts-x-15.02.… <df> 
## 4 5e328530-77f…     528179 2024-03-28… Students at universit… su-e-15.02.… <df> 
## 5 6e27402b-8dc…     528173 2024-03-28… Students at universit… su-e-15.02.… <df> 
## 6 1e86c267-5f9…     528176 2024-03-28… Students at universit… su-e-15.02.… <df> 
## # ℹ abbreviated name: ¹​description$titles$main
## # ℹ 14 more variables: ids$gnp <chr>, $damId <int>, $languageCopyId <int>,
## #   bfs$lifecycle <df[,4]>, $lifecycleGroup <chr>, $provisional <lgl>,
## #   $articleModel <df[,4]>, $articleModelGroup <df[,4]>,
## #   description$categorization <df[,13]>, $bibliography <df[,1]>,
## #   $language <chr>, $shortSummary <df[,2]>, $abstractShort <chr>,
## #   shop$stock <lgl>

The data catalog in a raw structure returns a data.frame containing nested data.frames in some columns. Here an example to get the description nested data.frame as a tibble:

library(dplyr)

as_tibble(catalog_tables_raw$description)
## # A tibble: 6 × 6
##   titles$main                categorization$colle…¹ bibliography$period language
##   <chr>                      <list>                 <chr>               <chr>   
## 1 Student mobility within S… <df [2 × 4]>           2022                EN      
## 2 Students at universities … <df [3 × 4]>           1980-2023           DE/EN/F…
## 3 Students at universities … <df [3 × 4]>           2000-2023           DE/EN/F…
## 4 Students at universities … <df [3 × 4]>           1990-2023           EN      
## 5 Students at universities … <df [3 × 4]>           1997-2023           EN      
## 6 Students at universities … <df [2 × 4]>           2005-2023           EN      
## # ℹ abbreviated name: ¹​categorization$collection
## # ℹ 14 more variables: categorization$prodima <list>, $inquiry <list>,
## #   $spatialdivision <list>, $classification <list>, $institution <list>,
## #   $publisher <list>, $tags <list>, $dataSource <list>, $copyrights <list>,
## #   $termsOfUse <list>, $serie <list>, $periodicity <list>,
## #   shortSummary <df[,2]>, abstractShort <chr>

Access geodata catalog

Display geo-information catalog of the Swiss Official STAC API using bfs_get_catalog_geodata().

catalog_geodata <- bfs_get_catalog_geodata(include_metadata = TRUE)

catalog_geodata
## # A tibble: 281 × 12
##    collection_id     type  href  title description created updated crs   license
##    <chr>             <chr> <chr> <chr> <chr>       <chr>   <chr>   <chr> <chr>  
##  1 ch.are.agglomera… API   http… Citi… "The list … 2021-1… 2023-0… http… propri…
##  2 ch.are.alpenkonv… API   http… Alpi… "The perim… 2021-1… 2022-0… http… propri…
##  3 ch.are.belastung… API   http… Load… "Passenger… 2021-1… 2022-0… http… propri…
##  4 ch.are.belastung… API   http… Load… "Passenger… 2021-1… 2022-0… http… propri…
##  5 ch.are.belastung… API   http… Load… "Vehicles … 2021-1… 2022-0… http… propri…
##  6 ch.are.belastung… API   http… Load… "Vehicles … 2021-1… 2022-0… http… propri…
##  7 ch.are.erreichba… API   http… Acce… "Accessibi… 2021-1… 2022-0… http… propri…
##  8 ch.are.erreichba… API   http… Acce… "Accessibi… 2021-1… 2022-0… http… propri…
##  9 ch.are.gemeindet… API   http… Typo… "The typol… 2021-1… 2022-0… http… propri…
## 10 ch.are.gueteklas… API   http… Publ… "The publi… 2021-1… 2023-0… http… propri…
## # ℹ 271 more rows
## # ℹ 3 more variables: provider_name <chr>, bbox <list>, inverval <list>

Download geodata

For example you can get information about the dataset “Generalised borders G1 and area with urban character”.

library(dplyr)

geodata_g1 <- catalog_geodata |>
  filter(title == "Generalised borders G1 and area with urban character")
  
geodata_g1
## # A tibble: 1 × 12
##   collection_id      type  href  title description created updated crs   license
##   <chr>              <chr> <chr> <chr> <chr>       <chr>   <chr>   <chr> <chr>  
## 1 ch.bfs.generalisi… API   http… Gene… Administra… 2022-0… 2023-0… http… propri…
## # ℹ 3 more variables: provider_name <chr>, bbox <list>, inverval <list>

Download dataset by collection id with bfs_download_geodata() and unzip file if needed.

# Access Generalised borders G1 and area with urban character
borders_g1_path <- bfs_download_geodata(
  collection_id = "ch.bfs.generalisierte-grenzen_agglomerationen_g1", 
  output_dir = tempdir() #  temporary directory
)

# you may need to unzip the file
unzip(borders_g1_path[4], exdir = "borders_G1")

By default, the files are downloaded in a temporary directory. You can specify the folder where saving the files using the output_dir argument.

Some layers are accessible using WMS (Web Map Service):

library(leaflet)

leaflet() %>% 
  setView(lng = 8, lat = 46.8, zoom = 8) %>%
  addWMSTiles(
    baseUrl = "https://wms.geo.admin.ch/?", 
    layers = "ch.bfs.generalisierte-grenzen_agglomerationen_g2",
    options = WMSTileOptions(format = "image/png", transparent = TRUE),
    attribution = "Generalised borders G1 © 2024 BFS")

Cartographic base maps

You can get cartographic base maps from the ThemaKart project using bfs_get_base_maps(). The list of available geometries in the official documentation.

The default arguments of bfs_get_base_maps() can be change to access specific files:

# default arguments
bfs_get_base_maps(
  geom = NULL,
  category = "gf", # "gf" for total area (i.e. "Gesamtflaeche")
  type = "Poly",
  date = NULL,
  most_recent = TRUE, #get most recent file by default
  format = "shp",
  asset_number = "24025646" #change ThemaKart geodata as updated every year
)

A typical base maps ThemaKart file looks like this:

All available geometry files in ThemaKart asset can be listed using return_sf = FALSE:

all_themakart_files <- bfs_get_base_maps(
  return_sf = FALSE, # do NOT return sf object
  asset_number = "30566934", # ThemaKart asset of 2024
  geom = "", 
  category = "", 
  type = "", 
  format = "",
  date = ""
)

length(all_themakart_files) # number of files available
## [1] 701

For example, all available river files can be found with:

all_river_files <- bfs_get_base_maps(
    return_sf = FALSE, # do NOT return sf object
    asset_number = "30566934", # ThemaKart asset of 2024
    geom = "flus", # "flus" for river related files
    category = "", 
    type = "", 
    format = "shp",
    date = ""
)

The function bfs_get_base_maps() eases file selection with arguments and returns an sf object by default.

switzerland_sf <- bfs_get_base_maps(geom = "suis")
communes_sf <- bfs_get_base_maps(geom = "polg")
districts_sf <- bfs_get_base_maps(geom = "bezk")
cantons_sf <- bfs_get_base_maps(geom = "kant")
cantons_capitals_sf <- bfs_get_base_maps(geom = "stkt", type = "Pnts", category = "kk")
lakes_sf <- bfs_get_base_maps(geom = "seen", category = "11")
# for some reason rivers don't have a "type" in their file names, so add type = ""
rivers_sf <- bfs_get_base_maps(geom = "flus", type = "", category = "22")

library(ggplot2)

ggplot() + 
  geom_sf(data = communes_sf, fill = "snow", color = "grey45") + 
  geom_sf(data = lakes_sf, fill = "lightblue2", color = "black") +
  geom_sf(data = districts_sf, fill = "transparent", color = "grey65") + 
  geom_sf(data = cantons_sf, fill = "transparent", color = "black") +
  geom_sf(data = cantons_capitals_sf, shape = 18, size = 3) +
  geom_sf(data = rivers_sf, color = "lightblue2", lwd = 1) +
  theme_minimal() +
  theme(axis.text = element_blank()) +
  labs(caption = "Source: ThemaKart, © BFS")

Note that the geometries are available for different date production. By default, bfs_get_base_maps() tries to get the most recent date. You can specify the date using the “date” argument.

You can create an interactive map easily with the mapview R package.

library(mapview)

BFS::bfs_get_base_maps(geom = "bezk") |>
  mapview(zcol = "name", legend = FALSE)

Get official list of Swiss municipalities

You can also get the historicized list of Swiss municipalities from the official BFS API using the new swissMunicipalities R package. The documentation is here.

# remotes::install_github("SwissStatsR/swissMunicipalities")
library(swissMunicipalities)
library(dplyr) # just for data wrangling

# snapshot of today list of Swiss municipalites/districts/cantons
snapshot <- swissMunicipalities::get_snapshots(hist_id = TRUE)

municipalities <- snapshot |> 
  filter(Level == 3) |>
  rename_with(~ paste0(.x, "_municipality", recycle0 = TRUE)) |>
  select(-Level_municipality)

districts <- snapshot |> 
  filter(Level == 2) |>
  rename_with(~ paste0(.x, "_district", recycle0 = TRUE)) |>
  select(-Level_district)

cantons <- snapshot |> 
  filter(Level == 1) |>
  rename_with(~ paste0(.x, "_canton", recycle0 = TRUE)) |>
  select(-Level_canton)

# consolidate municipality data with districts and cantons levels
municipalities_consolidated <- municipalities |>
  left_join(districts, by = join_by(Parent_municipality == Identifier_district)) |>
  left_join(cantons, by = join_by(Parent_district == Identifier_canton)) |>
  rename(Identifier_district = Parent_municipality, Identifier_canton = Parent_district) |>
  select(starts_with(c("Identifier", "Name", "ABBREV", "Valid")), everything()) |>
  arrange(Identifier_municipality, Identifier_district)

municipalities_consolidated
# A tibble: 2,131 × 82
   Identifier_municipality Identifier_district Identifier_canton Name_en_municipality Name_fr_municipality
                     <dbl>               <dbl>             <dbl> <chr>                <chr>               
 1                       1                 101                 1 Aeugst am Albis      Aeugst am Albis     
 2                       2                 101                 1 Affoltern am Albis   Affoltern am Albis  
 3                       3                 101                 1 Bonstetten           Bonstetten          
 4                       4                 101                 1 Hausen am Albis      Hausen am Albis     
 5                       5                 101                 1 Hedingen             Hedingen            
 6                       6                 101                 1 Kappel am Albis      Kappel am Albis     
 7                       7                 101                 1 Knonau               Knonau              
 8                       8                 101                 1 Maschwanden          Maschwanden         
 9                       9                 101                 1 Mettmenstetten       Mettmenstetten      
10                      10                 101                 1 Obfelden             Obfelden            
# ℹ 2,121 more rows
# ℹ 77 more variables: Name_de_municipality <chr>, Name_it_municipality <chr>, Name_en_district <chr>,
#   Name_fr_district <chr>, Name_de_district <chr>, Name_it_district <chr>, Name_en_canton <chr>,
#   Name_fr_canton <chr>, Name_de_canton <chr>, Name_it_canton <chr>, ABBREV_1_Text_en_municipality <chr>,
#   ABBREV_1_Text_fr_municipality <chr>, ABBREV_1_Text_de_municipality <chr>, ABBREV_1_Text_it_municipality <chr>,
#   ABBREV_1_Text_municipality <chr>, ABBREV_1_Text_en_district <chr>, ABBREV_1_Text_fr_district <chr>,
#   ABBREV_1_Text_de_district <chr>, ABBREV_1_Text_it_district <chr>, ABBREV_1_Text_district <chr>, …
# ℹ Use `print(n = ...)` to see more rows

You can now use the consolidated list of Swiss municipalities to ease geodata analysis.

library(sf)
library(ggplot2)

communes_sf <- bfs_get_base_maps(geom = "polg", date = "20230101")

communes_ge <- communes_sf |>
  inner_join(municipalities_consolidated |>
               filter(Name_de_canton == "Genève"), 
             by = c("id" = "Identifier_municipality"))

bbox_ge <- sf::st_bbox(communes_ge)

lake_leman <- bfs_get_base_maps(geom = "seen", category = "11") |>
  filter(name == "Lac Léman")

communes_ge |> 
  ggplot() + 
  geom_sf(data = lake_leman, fill = "lightblue2", color = "grey65") +
  geom_sf(fill = "snow", color = "grey65") + 
  geom_sf_text(aes(label = name), size = 3, check_overlap = T) + 
  # bounding box
  coord_sf(
    xlim = c(bbox_ge$xmin, bbox_ge$xmax),
    ylim = c(bbox_ge$ymin, bbox_ge$ymax)
  ) +
  theme_minimal() +
  theme(axis.text = element_blank()) +
  labs(title = "Communes du canton de Genève",
       x = NULL, y = NULL, 
       caption = "Source: ThemaKart, © BFS")

Main dependencies of the package

Under the hood, this package is using the pxweb package to query the Swiss Federal Statistical Office PXWEB API. PXWEB is an API structure developed by Statistics Sweden and other national statistical institutions (NSI) to disseminate public statistics in a structured way. To query the Geo Admin STAC API, this package is using the rstac package. STAC is a specification of files and web services used to describe geospatial information assets.

You can clean the column names of the datasets automatically using janitor::clean_names() by adding the argument clean_names = TRUE in the bfs_get_data() function.

Other information

This package is in no way officially related to or endorsed by the Swiss Federal Statistical Office (BFS).

Contribute

Any contribution is strongly appreciated. Feel free to report a bug, ask any question or make a pull request for any remaining issue.