Package ‘BFpack'

October 20, 2023
Type Package
Title Flexible Bayes Factor Testing of Scientific Expectations

Version 1.2.3

Maintainer Joris Mulder j.mulder3@tilburguniversity.edu
Description Implementation of default Bayes factors
for testing statistical hypotheses under various statistical models. The package is
intended for applied quantitative researchers in the
social and behavioral sciences, medical research,
and related fields. The Bayes factor tests can be
executed for statistical models such as
univariate and multivariate normal linear models,
correlation analysis, generalized linear models, special cases of
linear mixed models, survival models, relational
event models. Parameters that can be tested are
location parameters (e.g., group means, regression coefficients),
variances (e.g., group variances), and measures of
association (e.g,. polychoric/polyserial/biserial/tetrachoric/product
moments correlations), among others.
The statistical underpinnings are
described in
Mulder and Xin (2019) DOI:10.1080/00273171.2021.1904809,
Mulder and Gelissen (2019) DOI:10.1080/02664763.2021.1992360,
Mulder (2016) DOI:10.1016/j.jmp.2014.09.004,
Mulder and Fox (2019) DOI:10.1214/18-BA1115,
Mulder and Fox (2013) DOI:10.1007/s11222-011-9295-3,
Boeing-Messing, van Assen, Hofman, Hoijtink, and Mulder (2017) DOI:10.1037/met0000116,
Hoijtink, Mulder, van Lissa, and Gu, (2018) DOI:10.31234/osf.io/v3shc,
Gu , Mulder, and Hoijtink, (2018) DOI:10.1111/bmsp.12110,
Hoijtink, Gu, and Mulder, (2018) DOI:10.1111/bmsp.12145, and
Hoijtink, Gu, Mulder, and Rosseel, (2018) DOI:10.1037/met0000187. When using the packages, please refer to Mulder et al. (2021) DOI:10.18637/jss.v100.i18.
License GPL (>=3)
URL https://github.com/jomulder/BFpack
BugReports https://github.com/jomulder/BFpack/issues
Encoding UTF-8
LazyData true
NeedsCompilation yes
RoxygenNote 7.2.1
Depends R (>= 3.0.0), bain
Imports stats, utils, MASS, mvtnorm, pracma, lme4, extraDistr, ergm,Bergm, sandwich, QRM
Suggests testthat, polycor, survival, pscl, metafor, knitr, rmarkdown,lmtest
VignetteBuilder knitr
Author Joris Mulder [aut, cre],Caspar van Lissa [aut, ctb],Donald R. Williams [aut, ctb],Xin Gu [aut, ctb],
Anton Olsson-Collentine [aut, ctb],
Florian Boeing-Messing [aut, ctb],
Jean-Paul Fox [aut, ctb],
Janosch Menke [ctb],
Robbie van Aert [ctb],
Barry Brown [ctb],
James Lovato [ctb],
Kathy Russell [ctb],
Lapack 3.8 [ctb],
Jack Dongarra [ctb],
Jim Bunch [ctb],
Cleve Moler [ctb],
Gilbert Stewart [ctb],
John Burkandt [ctb],
Ashwith Rego [ctb],
Alexander Godunov [ctb],
Alan Miller [ctb],
Jean-Pierre Moreau [ctb],
The R Core Team [cph]
Repository CRAN
Date/Publication 2023-10-20 09:00:16 UTC
R topics documented:
BFpack-package 3
actors 4
attention 5
bartlett_test 5
BF.default 7
cor_test 10
Fcor 12
fmri 12
memory 13
relevents 14
same_culture 14
same_location 15
sivan 15
therapeutic 16
timssICC 17
tvprices 18
wilson 18
Index 20
BFpack-package BFpack: Flexible Bayes factor testing of scientific expectations

Description

The R package BFpack provides tools for exploratory and confirmatory Bayesian hypothesis testing using Bayes factors and posterior probabilities under common statistical models. The main function 'BF' needs a fitted model 'x' as input argument. Depending on the class of the fitted model, a standard hypothesis test is executed by default. For example, if ' x ' is a fitted regression model of class ' lm ' then posterior probabilities are computed of whether each separate coefficient is zero, negative, or positive (assuming equal prior probabilities). If one has specific hypotheses with equality and/or order constraints on the parameters under the fitted model ' x ' then these can be formulated using the 'hypothesis‘ argument (a character string), possibly together prior probabilities for the hypotheses via the 'prior' argument (default all hypotheses are equally likely a priori), and the 'complement' argument which is a logical stating whether the complement hypotheses should be included in the case ('TRUE' by default).
Use compilation for Fortran functions

References

Mulder, J., D.R. Williams, Gu, X., A. Tomarken, F. Böing-Messing, J.A.O.C. Olsson-Collentine, Marlyne Meyerink, J. Menke, J.-P. Fox, Y. Rosseel, E.J. Wagenmakers, H. Hoijtink., and van Lissa, C. (submitted). BFpack: Flexible Bayes Factor Testing of Scientific Theories in R. https:// arxiv.org/abs/1911.07728

Mulder, J., van Lissa, C., Gu, X., Olsson-Collentine, A., Boeing-Messing, F., Williams, D. R., Fox, J.-P., Menke, J., et al. (2019). BFpack: Flexible Bayes Factor Testing of Scientific Expectations. (Version 0.2.1) https://CRAN.R-project.org/package=BFpack

Examples

```
## Not run:
# EXAMPLE 1. One-sample t test
ttest1 <- t_test(therapeutic, mu = 5)
print(ttest1)
# confirmatory Bayesian one sample t test
```

```
    BF1 <- BF(ttest1, hypothesis = "mu = 5")
    summary(BF1)
    # exploratory Bayesian one sample t test
    BF(ttest1)
    # EXAMPLE 2. ANOVA
    aov1 <- aov(price ~ anchor * motivation,data = tvprices)
    BF1 <- BF(aov1, hypothesis = "anchorrounded = motivationlow;
        anchorrounded < motivationlow")
    summary(BF1)
    # EXAMPLE 3. Logistic regression
    fit <- glm(sent ~ ztrust + zfWHR + zAfro + glasses + attract + maturity +
    tattoos, family = binomial(), data = wilson)
BF1 <- BF(fit, hypothesis = "ztrust > zfWHR > 0;
                                    ztrust > 0 & zfWHR = 0")
summary(BF1)
# EXAMPLE 4. Correlation analysis
set.seed(123)
cor1 <- cor_test(memory[1:20,1:3])
BF1 <- BF(cor1)
summary(BF1)
BF2 <- BF(cor1, hypothesis = "Wmn_with_Im > Wmn_with_Del > 0;
                                    Wmn_with_Im = Wmn_with_Del = 0")
summary(BF2)
## End(Not run)
```

actors
Actors from a small hypothetical network

Description

The related data files 'events', 'same_location', 'same_culture' contain information on the event sequence and the two event statistics respectively.

Usage

data(actors)

Format

dataframe (25 rows, 4 columns)

actors\$id	integer	ID of the employee, corresponding to the sender and receiver IDs in the events dataframe
actors\$location	numeric	Location of the actor, ranging from 1-4
actors\$culture	character	Categorical variable, indicating the culture of the employee

```
attention
```

Multiple Sources of Attentional Dysfunction in Adults With Tourette's Syndrome

Description

Data from a psychological study comparing attentional performances of Tourette's syndrome (TS) patients, ADHD patients, and controls. These data were simulated using the sufficient statistics from Silverstein, Como, Palumbo, West, and Osborn (1995).

Usage

data(attention)

Format

A data.frame with 51 rows and 2 columns.

Details

$\begin{array}{lll}\text { accuracy } & \text { numeric } & \text { Participant's accuracy in the attentional task } \\ \text { group } & \text { factor } & \text { Participant's group membership (TS patient, ADHD patient, or control) }\end{array}$

References

Silverstein, S. M., Como, P. G., Palumbo, D. R., West, L. L., \& Osborn, L. M. (1995). Multiple sources of attentional dysfunction in adults with Tourette's syndrome: Comparison with attention deficit-hyperactivity disorder. Neuropsychology, 9(2), 157-164. doi:10.1037/0894-4105.9.2.157
bartlett_test Bartlett Test of Homogeneity of Variances

Description

Performs Bartlett's test of the null that the variances in each of the groups (samples) are the same.

Usage

bartlett_test(x, g, ...)
\#\# Default S3 method:
bartlett_test(x, g, ...)

Arguments

X
a numeric vector of data values, or a list of numeric data vectors representing the respective samples, or fitted linear model objects (inheriting from class "lm").
g a vector or factor object giving the group for the corresponding elements of x . Ignored if x is a list.
further arguments to be passed to or from methods.

Details

x must be a numeric data vector, and g must be a vector or factor object of the same length as x giving the group for the corresponding elements of x .

Value

A list with class "bartlett_htest" containing the following components:

```
statistic Bartlett's K-squared test statistic.
parameter the degrees of freedom of the approximate chi-squared distribution of the test statistic.
p.value the p-value of the test.
conf.int a confidence interval for the mean appropriate to the specified alternative hy-
    pothesis.
method the character string "Bartlett test of homogeneity of variances".
data.name a character string giving the names of the data.
vars the sample variances across groups (samples).
n the number of observations per group (sample)
```


Bain t_test

In order to allow users to enjoy the functionality of bain with the familiar stats-function bartlett. test, we have had to make minor changes to the function bartlett.test.default. All rights to, and credit for, the function bartlett. test. default belong to the R Core Team, as indicated in the original license below. We make no claims to copyright and incur no liability with regard to the changes implemented in bartlett_test.
This the original copyright notice by the R core team: File src/library/stats/R/bartlett_test.R Part of the R package, https://www.R-project.org

Copyright (C) 1995-2015 The R Core Team

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

A copy of the GNU General Public License is available at https://www.R-project.org/Licenses/

References

Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London Series A 160, 268-282. DOI: 10.1098/rspa.1937.0109.

Examples

```
require(graphics)
```

plot(count ~ spray, data $=$ InsectSprays)
bartlett_test(InsectSprays\$count, InsectSprays $\$$ spray)

```
BF.default
```

Bayes factors for Bayesian exploratory and confirmatory hypothesis testing

Description

The BF function can be used for hypothesis testing and model selection using the Bayes factor. By default exploratory hypothesis tests are performed of whether each model parameter equals zero, is negative, or is positive. Confirmatory hypothesis tests can be executed by specifying hypotheses with equality and/or order constraints on the parameters of interest.

Usage

\#\# Default S3 method:
$\mathrm{BF}(\mathrm{x}$, hypothesis $=$ NULL, prior.hyp $=$ NULL, complement $=$ TRUE, Sigma, n, \ldots)
\#\# S3 method for class 'lm'
$\mathrm{BF}(\mathrm{x}$, hypothesis = NULL, prior.hyp = NULL, complement = TRUE, BF.type = 2, ...)
\#\# S3 method for class 't_test'
BF (x, hypothesis = NULL, prior.hyp = NULL, complement = TRUE, BF.type = 2, ...)

Arguments

x
hypothesis
prior.hyp A vector specifying the prior probabilities of the hypotheses. The default is NULL which will specify equal prior probabilities.

complement	a logical specifying whether the complement should be added to the tested hypothesis under hypothesis.
Sigma	An approximate posterior covariance matrix (e.g,. error covariance matrix) of the parameters of interest. This argument is only required when x is a named vector.
n	The (effective) sample size that was used to acquire the estimates in the named vector x and the error covariance matrix Sigma. This argument is only required when x is a named vector.
	Parameters passed to and from other functions.
BF.type	An integer that specified the type of Bayes factor (or prior) that is used for the test. Currently, this argument is only used for models of class ' lm ' and 't_test', where BF.type=2 implies an adjusted fractional Bayes factor with a 'fractional prior mean' at the null value (Mulder, 2014), and BF.type $=1$ implies a regular fractional Bayes factor (based on O'Hagan (1995)) with a 'fractional prior mean' at the MLE.

Details

The function requires a fitted modeling object. Current analyses that are supported: $t_{-} t e s t$, bartlett_test, aov, manova, lm, mlm, glm, hetcor, lmer, coxph, survreg, ergm, bergm, zeroinfl, rma and polr.
For testing parameters from the results of $t _t e s t(), \operatorname{lm}(), \operatorname{aov}()$, manova () , and bartlett_test(), hypothesis testing is done using adjusted fractional Bayes factors are computed (using minimal fractions). For testing measures of association (e.g., correlations) via cor_test (), Bayes factors are computed using joint uniform priors under the correlation matrices. For testing intraclass correlations (random intercept variances) via lmer (), Bayes factors are computed using uniform priors for the intraclass correlations. For all other tests, approximate adjusted fractional Bayes factors (with minimal fractions) are computed using Gaussian approximations, similar as a classical Wald test.

Value

The output is an object of class BF. The object has elements:

- BFtu_exploratory: The Bayes factors of the constrained hypotheses against the unconstrained hypothesis in the exploratory test.
- PHP_exploratory: The posterior probabilities of the constrained hypotheses in the exploratory test.
- BFtu_confirmatory: The Bayes factors of the constrained hypotheses against the unconstrained hypothesis in the confirmatory test using the hypothesis argument.
- PHP_confirmatory: The posterior probabilities of the constrained hypotheses in the confirmatory test using the hypothesis argument.
- BFmatrix_confirmatory: The evidence matrix which contains the Bayes factors between all possible pairs of hypotheses in the confirmatory test.
- BFtable_confirmatory: The Specification table (output when printing the summary of a BF for a confirmatory test) which contains the different elements of the extended Savage Dickey density ratio where
- The first column 'complex=' quantifies the relative complexity of the equality constraints of a hypothesis (the prior density at the equality constraints in the extended Savage Dickey density ratio).
- The second column 'complex>' quantifies the relative complexity of the order constraints of a hypothesis (the prior probability of the order constraints in the extended Savage Dickey density ratio).
- The third column 'fit=' quantifies the relative fit of the equality constraints of a hypothesis (the posterior density at the equality constraints in the extended Savage Dickey density ratio).
- The fourth column 'fit>' quantifies the relative fit of the order constraints of a hypothesis (the posterior probability of the order constraints in the extended Savage Dickey density ratio)
- The fifth column ' $B F=$ ' contains the Bayes factor of the equality constraints against the unconstrained hypothesis.
- The sixth column 'BF>' contains the Bayes factor of the order constraints against the unconstrained hypothesis.
- The seventh column 'BF' contains the Bayes factor of the constrained hypothesis against the unconstrained hypothesis.
- The eighth column 'BF=' contains the posterior probabilities of the constrained hypotheses.
- prior: The prior probabilities of the constrained hypotheses in a confirmatory test.
- hypotheses: The tested constrained hypotheses in a confirmatory test.
- estimates: The unconstrained estimates.
- model: The input model x.
- call: The call of the BF function.

Methods (by class)

- BF (default): S3 method for a named vector ' ${ }^{\prime}$ '
- BF (lm): S3 method for an object of class 'lm'
- BF (t _test): BF S3 method for an object of class 't_test'

References

Mulder, J., D.R. Williams, Gu, X., A. Tomarken, F. Böing-Messing, J.A.O.C. Olsson-Collentine, Marlyne Meyerink, J. Menke, J.-P. Fox, Y. Rosseel, E.J. Wagenmakers, H. Hoijtink., and van Lissa, C. (2021). BFpack: Flexible Bayes Factor Testing of Scientific Theories in R. Journal of Statistical Software. DOI:10.18637/jss.v100.i18

Examples

```
# EXAMPLE 1. One-sample t test
ttest1 <- t_test(therapeutic, mu = 5)
print(ttest1)
# confirmatory Bayesian one sample t test
BF1 <- BF(ttest1, hypothesis = "mu = 5")
```

```
summary(BF1)
# exploratory Bayesian one sample t test
BF(ttest1)
# EXAMPLE 2. ANOVA
aov1 <- aov(price ~ anchor * motivation,data = tvprices)
BF1 <- BF(aov1, hypothesis = "anchorrounded = motivationlow;
                        anchorrounded < motivationlow")
summary(BF1)
# EXAMPLE 3. linear regression
lm1 <- lm(mpg ~ cyl + hp + wt, data = mtcars)
BF(lm1, hypothesis = "wt < cyl < hp = 0")
# EXAMPLE 4. Logistic regression
fit <- glm(sent ~ ztrust + zfWHR + zAfro + glasses + attract + maturity +
    tattoos, family = binomial(), data = wilson)
BF1 <- BF(fit, hypothesis = "ztrust > zfWHR > 0;
    ztrust > 0 & zfWHR = 0")
summary(BF1)
# EXAMPLE 5. Correlation analysis
set.seed(123)
cor1 <- cor_test(memory[1:20,1:3])
BF1 <- BF(cor1)
summary(BF1)
BF2 <- BF(cor1, hypothesis = "Wmn_with_Im > Wmn_with_Del > 0;
    Wmn_with_Im = Wmn_with_Del = 0')
summary(BF2)
# EXAMPLE 6. Bayes factor testing on a named vector
# A Poisson regression model is used to illustrate the computation
# of Bayes factors with a named vector as input
poisson1 <- glm(formula = breaks ~ wool + tension,
    data = datasets::warpbreaks, family = poisson)
# extract estimates, error covariance matrix, and sample size:
estimates <- poisson1$coefficients
covmatrix <- vcov(poisson1)
samplesize <- nobs(poisson1)
# compute Bayes factors on equal/order constrained hypotheses on coefficients
BF1 <- BF(estimates, Sigma = covmatrix, n = samplesize, hypothesis =
"woolB > tensionM > tensionH; woolB = tensionM = tensionH")
summary(BF1)
```

cor_test Bayesian correlation analysis

Description

Estimate the unconstrained posterior for the correlations using a joint uniform prior.

Usage

```
cor_test(..., formula \(=\) NULL, iter \(=5000\), burnin \(=3000\) )
```


Arguments

\ldots.	matrices (or data frames) of dimensions n (observations) by p (variables) for different groups (in case of multiple matrices or data frames).
formula	an object of class formula. This allows for including control variables in the model (e.g., \sim education).
iter	number of iterations from posterior (default is 5000$).$ burnin
	number of iterations for burnin (default is 3000$).$

Value

list of class cor_test:

- meanF posterior means of Fisher transform correlations
- covmF posterior covariance matrix of Fisher transformed correlations
- correstimates posterior estimates of correlation coefficients
- corrdraws list of posterior draws of correlation matrices per group
- corrnames names of all correlations

Examples

```
# Bayesian correlation analysis of the 6 variables in 'memory' object
# we consider a correlation analysis of the first three variable of the memory data.
fit <- cor_test(BFpack::memory[,1:3])
# Bayesian correlation of variables in memory object in BFpack while controlling
# for the Cat variable
fit <- cor_test(BFpack::memory[,c(1:4)],formula = ~ Cat)
# Example of Bayesian estimation of polyserial correlations
memory_example <- memory[,c("Im","Rat")]
memory_example$Rat <- as.ordered(memory_example$Rat)
fit <- cor_test(memory_example)
# Bayesian correlation analysis of first three variables in memory data
# for two different groups
HC <- subset(BFpack::memory[,c(1:3,7)], Group == "HC")[,-4]
SZ <- subset(BFpack::memory[,c(1:3,7)], Group == "SZ")[,-4]
fit <- cor_test(HC,SZ)
```


Description

Approximated degrees of freedom and approximated scale of the Fisher transformed correlations depending on the dimension of the vector of dependent variables P based on a joint uniform prior.

Usage

data(Fcor)

Format

A data.frame with 3 columns.

Details

nu	numeric	Approximated degrees of freedom
sigma	numeric	Approximated scale
\mathbf{P}	integer	Dimension of vector of dependent variables

```
fmri

\section*{Description}
fMRI data assessing relation between individual differences in the ability to recognize faces and cars and thickness of the superficial, middle, and deep layers of the fusiform face area, as assessed by high-resolution fMRI recognition (Williams et al, 2019, under review)

\section*{Usage}
data(fmri)

\section*{Format}

A data.frame with 13 rows and 6 columns.

\section*{Details}
\begin{tabular}{lll} 
Subject & numeric & Particicpant ID number \\
Face & numeric & Standardized score on face recognition battery \\
Vehicle & numeric & Standardized score on vehicle recognition battery \\
Superficial & numeric & Depth in mm of superficial layer of FFA \\
Middle & numeric & Depth in mm of middle layer of FFA \\
Bform & numeric & Depth in mm of deep layer of FFA
\end{tabular}

\section*{References}

McGuigin, R.W., Newton, A.T., Tamber-Rosenau, B., Tomarken, A.J, \& Gauthier, I. (under review). Thickness of deep layers in the fusiform face area predicts face recognition.
memory Memory data on health and schizophrenic patients

\section*{Description}

Data set from study assessing differences between schizophrenic patients and healthy control participants in patterns of correlations among 6 verbal memory tasks (Ichinose et al., 2019).
\begin{tabular}{lll} 
Im & numeric & Percent correct on immediate recall of 3 word lists \\
Del & numeric & Percent correct on delayed recall of 3 word lists \\
Wmn & numeric & Number correct on letter-number span test of auditory working memory \\
Cat & numeric & Number correct on category fluency task \\
Fas & numeric & Number correct on letter fluency task \\
Rat & numeric & Number correct on remote associates task \\
Group & factor & Participant Group (HC = Healthy Control; SZ = Schizophrenia)
\end{tabular}

\section*{Usage}
data(memory)

\section*{Format}

A data.frame with 40 rows and 8 columns.

\section*{References}

Ichinose, M.C., Han, G., Polyn, S., Park, S., \& Tomarken, A.J. (2019). Verbal memory performance discordance in schizophrenia: A reflection of cognitive dysconnectivity. Unpublished manuscript.

\section*{relevents A sequence of innovation-related e-mail messages}

\section*{Description}

A time-ordered sequence of 247 communication messages between 25 actors.

\section*{Usage}
data(relevents)

\section*{Format}
dataframe ( 247 rows, 3 columns)
\begin{tabular}{lll} 
relevents\$time & numeric & Time of the e-mail message, in seconds since onset of the observation \\
relevents\$sender & integer & ID of the sender, corresponding to the employee IDs in the actors dataframe \\
relevents\$receiver & integer & ID of the receiver
\end{tabular}

\section*{Details}

The related data files 'actors', 'same_location', 'same_culture' contain information on the actors and three event statistics respectively.
```

same_culture Same culture event statistic

```

\section*{Description}

A matrix coding whether senders of events (in the rows) and receivers of events (in the column) have the background culture. Related to the 'events' data object, that contains a relational event sequence, and the 'actors' object, that contains information on the 25 actors involved in the relational event sequence.

\section*{Usage}
data(same_culture)

\section*{Format}
dataframe ( 25 rows, 4 columns)
same_culture integer Event statistic. Matrix with senders in the rows and receivers in the columns. The event statistic is
same_location Same location event statistic

\section*{Description}

A matrix coding whether senders of events (in the rows) and receivers of events (in the column) have the same location. Related to the 'events' data object, that contains a relational event sequence, and the 'actors' object, that contains information on the 25 actors involved in the relational event sequence.

\section*{Usage}
data(same_location)

\section*{Format}
dataframe ( 25 rows, 4 columns)
same_location integer Event statistic. Matrix with senders in the rows and receivers in the columns. The event statistic i
sivan Wason task performance and morality

\section*{Description}

Data from an experimental study, using the Wason selection task (Wason 1968) to examine whether humans have cognitive adaptations for detecting violations of rules in multiple moral domains. Moral domains are operationalized in terms of the five domains of the Moral Foundations Questionnaire (Graham et al. 2011). These data were simulated using the R-package synthpop, based on the characteristics of the original data.

\section*{Usage}
data(sivan)

\section*{Format}

A data.frame with 887 rows and 12 columns.

\section*{Details}
\begin{tabular}{lll} 
sex & factor & Participant sex \\
age & integer & Participant age \\
nationality & factor & Participant nationality
\end{tabular}
\begin{tabular}{lll} 
politics & integer & How would you define your political opinions? Likert type scale, from 1 (Liberal) to 6 (Conserva \\
WasonOrder & factor & Was the Wason task presented before, or after the MFQ? \\
Harm & numeric & MFQ harm domain. \\
Fairness & numeric & MFQ fairness domain. \\
Loyalty & numeric & MFQ loyalty domain. \\
Purity & numeric & MFQ purity domain. \\
Tasktype & ordered & How was the Wason task framed? \\
GotRight & factor & Did the participant give the correct answer to the Wason task?
\end{tabular}

\section*{References}

Sivan, J., Curry, O. S., \& Van Lissa, C. J. (2018). Excavating the Foundations: Cognitive Adaptations for Multiple Moral Domains. Evolutionary Psychological Science, 4(4), 408-419. doi:10.1007/s40806-018-0154-8

\section*{therapeutic}

Data come from an experimental study (Rosa, Rosa, Sarner, and Barrett, 1998) that were also used in Howell (2012, p.196). An experiment was conducted to investigate if Therapeutic Touch practitioners who were blindfolded can effectively identify which of their hands is below the experimenter; \({ }^{-}\)s. Twenty-eight practitioners were involved and tested 10 times in the experiment. Researchers expected an average of 5 correct answers from each practitioner as it is the number by chance if they do not outperform others.

\section*{Description}
correct integer How many correct answers are from each practitioner)

\section*{Usage}
```

data(therapeutic)

```

\section*{Format}

A data.frame with 22 rows and 1 column.

\section*{References}

Howell, D. (2012). Statistical methods for psychology (8th ed.). Belmont, CA: Cengage Learning.
timssICC Trends in International Mathematics and Science Study (TIMSS) 2011-2015

\section*{Description}

A stratified sample was drawn by country and school to obtain a balanced sample of \(p=15\) grade- 4 students per school for each of four countries (The Netherlands (NL), Croatia (HR), Germany (DE), and Denmark (DK)) and two measurement occasions (2011, 2015). Achievement scores (first plausible value) of overall mathematics were considered. Performances of fourth and eight graders from more than 50 participating countries around the world can be found at (https://www.iea.nl/timss) The TIMSS achievement scale is centered at 500 and the standard deviation is equal to 100 scale score points. The TIMSS data set has a three-level structure, where students are nested within classrooms/schools, and the classrooms/schools are nested within countries. Only one classroom was sampled per school. Changes in the mathematics achievement can be investigated by examining the grouping of students in schools across countries. Changes in country-specific intraclass correlation coefficient from 2011 to 2015, representing heterogeneity in mathematic achievements within and between schools across years, can be tested. When detecting a decrease in average performance together with an increase of the intraclass correlation, a subset of schools performed worse. For a constant intraclass correlation across years the drop in performance applied to the entire population of schools. For different countries, changes in the intraclass correlation across years can be tested concurrently to examine also differences across countries.

\section*{Usage \\ data(timssICC)}

\section*{Format}

A data.frame with 16770 rows and 15 columns.

\section*{Details}
\begin{tabular}{lll} 
math & numeric & math score child \\
groupNL11 & numeric & Indicator for child from NL in 2011 \\
groupNL15 & numeric & Indicator for child from NL in 2015 \\
groupHR11 & numeric & Indicator for child from HR in 2011 \\
groupHR15 & numeric & Indicator for child from HR in 2015 \\
groupDE11 & numeric & Indicator for child from DE in 2011 \\
groupDE15 & numeric & Indicator for child from DE in 2015 \\
groupDR11 & numeric & Indicator for child from DK in 2011 \\
groupDR15 & numeric & Indicator for child from DK in 2015 \\
gender & numeric & Female=0,Male=1 \\
weight & numeric & Child sampling weight \\
yeargender & numeric & Interaction for occassion and gender \\
lln & numeric & total number of children in school-class \\
groupschool & factor & Nested indicator for school in country \\
schoolID & factor & Unique indicator for school
\end{tabular}

\section*{References}

Mulder, J. \& Fox, J.-P. (2019). Bayes factor testing of multiple intraclass correlations. Bayesian Analysis. 14, 2, p. 521-552.
tvprices Precision of the Anchor Influences the Amount of Adjustment

\section*{Description}

Data from an experimental study where participants have to guess the price of a plasma tv. There were two experimental conditions. These data were simulated using the sufficient statistics from Janiszewski \& Uy (2008).

\section*{Usage}
data(tvprices)

\section*{Format}

A data.frame with 59 rows and 3 columns.

\section*{Details}
\begin{tabular}{lll} 
price & numeric & Participant z-scores of price \\
anchor & factor & Participant anchor \\
motivation & factor & motivation to change
\end{tabular}

\section*{References}

Janiszewski, C., \& Uy, D. (2008). Precision of the anchor influences the amount of adjustment. Psychological Science, 19(2), 121-127. doi:10.1111/j.1467-9280.2008.02057.x
\[
\text { wilson } \quad \text { Facial trustworthiness and criminal sentencing }
\]

\section*{Description}

Data from a correlational study in which the correlation between ratings of facial trustworthiness of inmates was correlated with whether they had received the death penalty or not (wilson and Rule,
2015). These data were simulated using the R-package synthpop, based on the characteristics of the original data.

\section*{Usage}
```

data(wilson)

```

\section*{Format}

A data.frame with 742 rows and 13 columns.

\section*{Details}
\begin{tabular}{lll} 
stim & integer & Stimulus Number \\
sent & integer & Sentence: 1= Death, 0 = Life \\
race & integer & Race: \(1=\) White, \(-1=\) Black \\
glasses & integer & Glasses: \(1=\) Yes, \(0=\) No \\
tattoos & integer & Tattoos: \(1=\) Yes, \(0=\) No \\
ztrust & numeric & Trustworthiness \\
trust_2nd & numeric & Trustworthiness ratings with 2nd control group; Death targets are same as in primary analysis, Life ta \\
afro & numeric & raw Afrocentricity ratings. \\
zAfro & numeric & Afrocentricity ratings normalized within target race. Analyses in paper were done with this variable. \\
attract & numeric & Attractiveness \\
fWHR & numeric & facial width-to-height \\
afWHR & numeric & fWHR normalized within target race. Analyses in paper were done with this variable \\
maturity & numeric & Maturity
\end{tabular}

\section*{References}

Wilson, J. P., \& Rule, N. O. (2015). Facial Trustworthiness Predicts Extreme Criminal-Sentencing Outcomes. Psychological Science, 26(8), 1325-1331. doi: 10.1177/0956797615590992

\section*{Index}
```

* datasets
actors,4
attention,5
Fcor, 12
fmri, 12
memory, 13
relevents,14
same_culture, 14
same_location, 15
sivan, 15
therapeutic, 16
timssICC, 17
tvprices,18
wilson,18
actors,4
aov, }
attention, 5
bartlett_test, 5, 8
bergm, }
BF (BF.default), }
BF.default, }
BFpack-package, 3
cor_test, 10
coxph,8
ergm, 8
Fcor, 12
fmri, 12
formula, 11
glm, 8
hetcor, }
lm, }
lmer, }
manova, }

```
```

