Getting Started With DataSimilarity: Quantifying Similarity of Datasets and Multivariate Two- and k-Sample Testing

Marieke Stolte [®] TU Dortmund University Luca Sauer TU Dortmund University

Jörg Rahnenführer ^(D) TU Dortmund University Andrea Bommert ^(D) TU Dortmund University

Abstract

Quantifying the similarity of two or more datasets is a common task in various applications of statistics and machine learning, including two- or k-sample testing and metaor transfer learning. The **DataSimilarity** package contains a variety of methods for quantifying the similarity of datasets. The package includes 36 methods of which 14 are implemented for the first time in R. The remaining are wrapper functions for methods with already existing implementations that unify and simplify the various input and output formats of different methods and bundle the methods of many existing R packages in a single package. In this vignette, we show the basic workflow for using the package.

Keywords: dataset similarity, two-sample testing, multi-sample testing.

1. Introduction

The challenge of quantifying how similar two or more datasets are arises in various contexts where two or more datasets should be compared. This could be in the context of transferring results of a prediction model from one dataset to another, as well as for assessing how close simulated data is to a real-world dataset. The most common usage is for two- or k-sample testing. Formally, the two-sample problem is defined as the testing problem

$$H_0: F_1 = F_2 \text{ vs. } H_1: F_1 \neq F_2.$$
 (1)

A two-sample test, therefore, can be used to check whether the underlying distributions of two datasets coincide. Analogously, the k-sample problem is defined as

$$H_0: F_1 = F_2 = \dots = F_k$$
 vs. $H_1: \exists i \neq j \in \{1, \dots, k\}: F_i \neq F_j$

for k distributions F_1, \ldots, F_k .

Many different methods are proposed in the literature for quantifying the similarity of two or more datasets, and most of these define a two- or k-sample test. In this package, a subset of these methods are implemented, which were selected as relevant from a literature review

Getting Started

(Stolte, Kappenberg, Rahnenführer, and Bommert 2024). For more details on the methods and their selection, see the 'Details' vignette. In the following, the basic steps for using the **DataSimilarity** package are explained using real-world example datasets with different characteristics with regard to the scale level, number of datasets, and presence of a target variable in each dataset.

2. Workflow

In the following, the typical workflow for working with the package is demonstrated. There are two different use cases with different workflows.

- a) We already know which method to apply to our dataset comparison at hand.
- b) We have two datasets that we want to compare, but we do not have a specific method in mind.

In both cases, we first load the package:

```
R> library("DataSimilarity")
```

In case a), the workflow for using the package would be to find the corresponding function for the method and apply it to the data. The full list of methods can also be found in the 'Details' vignette as well as in the method.table dataset.

In case b), the package can also be used as a tool for finding an appropriate method. This depends on the dataset characteristics. Here, we distinguish between numeric and categorical data, the number of datasets (two or more than two), and whether or not the datasets include a target variable. We demonstrate how to find and apply a method for different types of datasets in the following. The general workflow for case b) can be summarized as follows:

- 1. Load the package.
- 2. Call findSimilarityMethod() to find an appropriate similarity method.
- 3. Call DataSimilarity() or use the function corresponding to the method found in 2. to apply the chosen method to the datasets at hand.

For the 2nd step, we present six important special cases in the following for datasets with different characteristics and demonstrate the package workflow in each of these special cases. For finding the appropriate methods in 2., there is a list of criteria (e.g. applicability to numeric or categorical data) which can guide our choice of an appropriate method. These were previously introduced by Stolte *et al.* (2024). The desired criteria can be passed to the findSimilarityMethod() by setting the corresponding arguments to TRUE. The function returns by default the function names for all implemented and suitable methods. By setting only.names = FALSE, the full information on which criteria the method fulfills can be retrieved.

2.1. Exactly two numeric datasets without target variables

The dataset dhfr (Sutherland and Weaver 2004) from the caret package (Kuhn and Max 2008) is a binary classification dataset (regarding Dihydrofolate Reductase inhibition) consisting of

325 compounds of which 203 are labeled as 'active' and 122 as 'inactive'. The variables are 228 molecular descriptors. As the active and inactive compounds should differ in their descriptors, we divide the dataset according to the first variable that indicates the activity status.

```
R> data(dhfr, package = "caret")
R> act <- dhfr[dhfr$Y == "active", -1]
R> inact <- dhfr[dhfr$Y == "inactive", -1]</pre>
```

For finding an appropriate method, we can use the function findSimilarityMethod(). We specify that we have two numeric datasets. As two datasets is already the default, we only need to specify Numeric = TRUE:

R> findSimilarityMethod(Numeric = TRUE)

[1]	"Bahr"	"BallDivergence"	"BF"
[4]	"BG"	"BG2"	"BMG"
[7]	"C2ST"	"CCS"	"CF"
[10]	"Cramer"	"DiProPerm"	"DISCOB"
[13]	"DISCOF"	"DS"	"Energy"
[16]	"engineerMetric"	"FR"	"FStest"
[19]	"GGRL"	"GPK"	"HMN"
[22]	"Jeffreys"	"KMD"	"LHZ"
[25]	"MMCM"	"MMD"	"MW"
[28]	"NKT"	"OTDD"	"Petrie"
[31]	"RItest"	"Rosenbaum"	"SC"
[34]	"SH"	"Wasserstein"	"YMRZL"

We can also get more information if we set only.names = FALSE:

```
R> findSimilarityMethod(Numeric = TRUE, only.names = FALSE)
```

Method	Implementation
1 Baringhaus and Franz (2010)	Bahr
2 Pan et al. (2018)	BallDivergence
3 Baringhaus and Franz (2010)	BF
4 Biau and Gyorfi (2005)	BG
5 Biswas and Ghosh (2014)	BG2
6 Biswas, Mukhopadhyay and Ghosh (2014)	BMG
7 C2ST (Lopez-Paz and Oquab, 2017)	C2ST
8 Chen, Chen and Su (2018)	CCS
10 Chen and Friedman (2017)	CF
13 Cramer test (Baringhaus and Franz, 2004)	Cramer
14 DiProPerm test (Wei et al., 2016)	DiProPerm
15 DISCO (Rizzo and Székely, 2010)	DISCOB
16 DISCO (Rizzo and Székely, 2010)	DISCOF
17 Deb and Sen (2021)	DS
18 Energy statistic (Zech and Aslan, 2003)	Energy

Getting Started

19	Engineer metric (Rachev, 1991) engineerMetric
20	Friedman and Rafsky (1979) FR
22	Paul, De and Ghosh (2022) FStest
23	Ganti et al. (1999) GGRL
24	GPK (Song and Chen, 2023) GPK
25	Hediger, Michel and Näf (2021) HMN
26	Jeffrey's divergence Jeffreys
27	KMD (Huang and Sen, 2023) KMD
28	Li, Hu and Zhang (2022) LHZ
29	Mukherjee et al. (2022) MMCM
30	MMD (Gretton et al., 2009) MMD
31	Mukhopadhyay and Wang (2020) MW
32	Ntoutsi, Kalousis and Theodoridis (2008) NKT
33	Alvarez-Melis and Fusi (2020) OTDD
34	Petrie (2016) Petrie
35	Paul, De and Ghosh (2022) RItest
36	Rosenbaum (2005) Rosenbaum
37	Song and Chen (2022) SC
38	Schilling (1986), Henze (1988) SH
39	q-Wasserstein metrics Wasserstein
40	Yu et al. (2007) YMRZL
40	
1	Target.InclusionNumericCategoricalUnfulfilledFulfilledUnfulfilled
2 3	Unfulfilled Fulfilled Unfulfilled
3 4	Unfulfilled Fulfilled Unfulfilled
4 5	Unfulfilled Fulfilled Unfulfilled
	Unfulfilled Fulfilled Unfulfilled
6	Unfulfilled Fulfilled Unfulfilled
7	Unfulfilled Fulfilled Conditionally Fulfilled
8	Unfulfilled Fulfilled Unfulfilled
10	Unfulfilled Fulfilled Unfulfilled
13	Unfulfilled Fulfilled Unfulfilled
14	Unfulfilled Fulfilled Unfulfilled
15	Unfulfilled Fulfilled Unfulfilled
16	Unfulfilled Fulfilled Unfulfilled
17	Unfulfilled Fulfilled Unfulfilled
18	Unfulfilled Fulfilled Unfulfilled
19	Unfulfilled Fulfilled Unfulfilled
20	Unfulfilled Fulfilled Unfulfilled
22	Unfulfilled Fulfilled Unfulfilled
23	Fulfilled Fulfilled Fulfilled
24	Unfulfilled Fulfilled Unfulfilled
25	Unfulfilled Fulfilled Fulfilled
26	Unfulfilled Fulfilled Unfulfilled
27	Unfulfilled Fulfilled Unfulfilled
28	Unfulfilled Fulfilled Unfulfilled
29	Unfulfilled Fulfilled Fulfilled

30	Unfulfilled Fulfil	led Conditionally Fulfilled	1
31	Unfulfilled Fulfil		
32	Fulfilled Fulfil		
33	Fulfilled Fulfil		
34	Unfulfilled Fulfil		
35	Unfulfilled Fulfil		
36	Unfulfilled Fulfil		
37	Unfulfilled Fulfil		
38	Unfulfilled Fulfil		
39	Unfulfilled Fulfil		
40	Unfulfilled Fulfil		
	Unequal.Sample.Sizes		ltiple.Samples
1	Fulfilled	Fulfilled	Unfulfilled
2	Fulfilled	Fulfilled	Fulfilled
3	Fulfilled	Fulfilled	Unfulfilled
4	Unfulfilled	Fulfilled	Unfulfilled
5	Fulfilled	Fulfilled	Unfulfilled
6	Fulfilled		
7	Fulfilled	Conditionally Fulfilled	Fulfilled
8	Fulfilled	-	
10	Fulfilled		
13	Fulfilled		
14	Fulfilled		
15	Fulfilled		Fulfilled
16	Fulfilled		
17	Fulfilled		
18	Fulfilled		Fulfilled
19	Fulfilled		
20	Fulfilled		Unfulfilled
22	Fulfilled		
23	Fulfilled		
24	Fulfilled		Unfulfilled
	Conditionally Fulfilled		Unfulfilled
26	Fulfilled		Unfulfilled
27	Fulfilled	Fulfilled	Fulfilled
28	Fulfilled	Fulfilled	Unfulfilled
29	Fulfilled	Fulfilled	Fulfilled
30	Fulfilled	Fulfilled	Unfulfilled
31	Fulfilled	Fulfilled	Fulfilled
32	Fulfilled	Fulfilled	Unfulfilled
33	Fulfilled	Fulfilled	Unfulfilled
34	Fulfilled	Fulfilled	Fulfilled
35	Fulfilled	Fulfilled	Fulfilled
36	Fulfilled	Fulfilled	Unfulfilled
37	Fulfilled		Fulfilled
38	Fulfilled		Unfulfilled
39	Fulfilled		Unfulfilled
		• •	

40	Fulfilled	T	Fulfilled	Unfulfilled
10	Without.training			
1		Unfulfilled	-	-
2	Fulfilled		Unfulfilled	
3		Unfulfilled		
4	Fulfilled		Unfulfilled	
5		Unfulfilled		
6		Unfulfilled		
7	Unfulfilled			
8	Fulfilled			
10	Fulfilled			
13	Fulfilled			
13				
	Fulfilled			
15	Fulfilled			
16		Unfulfilled		
17	Fulfilled			
18	Fulfilled			
19	Fulfilled			
20	Fulfilled			
22	Fulfilled	Fulfilled		
23	Fulfilled	Fulfilled	Unfulfilled	<na></na>
24	Fulfilled	Unfulfilled	Unfulfilled	Fulfilled
25	Conditionally Fulfilled	Fulfilled	Unfulfilled	Fulfilled
26	Fulfilled	Fulfilled	Fulfilled	Fulfilled
27	Fulfilled	Fulfilled	Unfulfilled	Fulfilled
28	Fulfilled	Fulfilled	Fulfilled	<na></na>
29	Fulfilled	Unfulfilled	Fulfilled	Fulfilled
30	Fulfilled	Unfulfilled	Unfulfilled	Fulfilled
31	Fulfilled	Unfulfilled	Unfulfilled	Fulfilled
32	Fulfilled	Fulfilled	Unfulfilled	<na></na>
33	Fulfilled	Unfulfilled		
34	Fulfilled			
35	Fulfilled			
36	Fulfilled			
37	Fulfilled			
38	Fulfilled			
39	Fulfilled		Unfulfilled	
40	Unfulfilled		Unfulfilled	
10		plexity Interpre		
1	Com	<pre>viewicy incerpic <na></na></pre>	Unfulfilled	0
2				
		<na></na>	Unfulfilled	0
3 ⊿		<na></na>	Unfulfilled	0
4		<na></na>	Unfulfilled	0
5	0/200	<na></na>	Unfulfilled	0
6	$U(N^{-2})$	log N)	Fulfilled	1
7		<na></na>	Fulfilled	0
8		<na></na>	Unfulfilled	0

				_
10		<na></na>	Unfulfilled	0
13		O(N^2)	Unfulfilled	0
14		<na></na>	Unfulfilled	<na></na>
15		O(N^2)	Unfulfilled	0
16		O(N^2)	Unfulfilled	0
17		O(N^3)	Unfulfilled	0
18		O(N^2)	Unfulfilled	0
19		<na></na>	Unfulfilled	0
20		<na></na>	Fulfilled	2
22		<na></na>	Unfulfilled	0
23		<na></na>	Unfulfilled	0
24		<na></na>	Unfulfilled	0
25		<na></na>	Fulfilled	0
		<na> <na></na></na>		0
26			Unfulfilled	
27		O(KN log N)	Unfulfilled	0
28		<na></na>	Unfulfilled	0
29		<na></na>	Unfulfilled	0
30		O(N^2p),O(Np)	Unfulfilled	0
31		<na></na>	Unfulfilled	0
32		<na></na>	Unfulfilled	0
33		<na></na>	Unfulfilled	0
34	O(N^2 log N),0)(N^3),O(N log N)	Fulfilled	Fulfilled
35		<na></na>	Unfulfilled	0
36		O(N^3)	Fulfilled	0
37		<na></na>	Unfulfilled	0
38		<na></na>	Fulfilled	0
39		<na></na>	Unfulfilled	0
40		<na></na>	Fulfilled	0
	Upper.bound	Rotation.invariant		
1	<na></na>	Fulfilled	Decasionitenang	Fulfilled
2	<na></na>	<na></na>		<na></na>
3	<na></na>	Fulfilled		Fulfilled
4	2	Unfulfilled		Unfulfilled
_				
5	Unfulfilled	Fulfilled		Fulfilled
6	min(n_1, n_2)	Fulfilled	a	Fulfilled
7		Conditionally Fulfilled	Conditionall	-
8	Fulfilled	Fulfilled		Fulfilled
10	<na></na>	Fulfilled		Fulfilled
13	Unfulfilled	Fulfilled		Fulfilled
14	<na></na>	Conditionally Fulfilled	Conditionall	y Fulfilled
15	Unfulfilled	Fulfilled		Fulfilled
16	Unfulfilled	Fulfilled		Fulfilled
17	<na></na>	<na></na>		Fulfilled
18	Unfulfilled	Fulfilled		Fulfilled
19	Unfulfilled	Unfulfilled		Fulfilled
20	Ν	Fulfilled		Fulfilled
22	1		Conditionall	
		J		•

~~					
23		Unfulfilled	~ • • •		Fulfilled
24	<na> Conditionall</na>	•	Condit	tionally	
25	1	Unfulfilled			Fulfilled
26	Unfulfilled	<na></na>			<na></na>
27	1	Fulfilled			Fulfilled
28	<na></na>	<na></na>			<na></na>
29	<na></na>	Fulfilled			Fulfilled
30	<na> Conditionall</na>		Condit	tionally	Fulfilled
31	<na></na>	<na></na>	oomar	01011011J	<na></na>
32		Unfulfilled			Fulfilled
			Condid		
33	<na> Conditionall</na>	•	Condit	tionally	Fulfilled
34	Fulfilled	Fulfilled			Fulfilled
35	1 Conditionall	•	Condit	tionally	Fulfilled
36	$\min(n_1, n_2)$	Fulfilled			Fulfilled
37	<na></na>	Fulfilled			Fulfilled
38	1	Fulfilled			Fulfilled
39	<na> Conditionall</na>	y Fulfilled	Condit	tionally	Fulfilled
40		Unfulfilled		v	Fulfilled
	Homogeneous.scale.invarian		finite	Symmet	
1	Unfulfille			Fulfi	
2	<na< td=""><td></td><td></td><td>Fulfi</td><td></td></na<>			Fulfi	
3	Unfulfille			Fulfi	
4	Unfulfille			Fulfi	
5	Fulfille			Fulfil	
6	Fulfille	d Unfuli	filled	Fulfi	lled
7	Conditionally Fulfille	d	<na></na>	Fulfi	led
8	Fulfille	d	<na></na>	Fulfil	lled
10	Fulfille	d	<na></na>	Fulfi	led
13	Unfulfille	d Fulf	filled	Fulfi	led
14	Conditionally Fulfille			Unfulfi	
15	Unfulfille			Fulfi	
16	Unfulfille			Fulfi	
	Fulfille			Fulfi	
17					
18	Unfulfille			Fulfi	
19	Unfulfille			Fulfi	
20	Fulfille			Fulfi	
22	<na< td=""><td>></td><td><na></na></td><td>Fulfil</td><td>lled</td></na<>	>	<na></na>	Fulfil	lled
23	Fulfille	d	<na></na>	Fulfi	lled
24	Conditionally Fulfille	d	<na></na>	Fulfi	lled
25	Fulfille	d	<na></na>	Fulfi	led
26	Fulfille	d Fulf	filled	Fulfi	led
27	Fulfille		filled		
28				Fulfi	
29	Fulfille		<na></na>		
30	Conditionally Fulfille		filled		
	Ũ				
31	<na< td=""><td></td><td></td><td>Fulfil</td><td></td></na<>			Fulfil	
32	Fulfille	a Unfuli	riiled	Fulfi	LTed

~~			P14-11-1	P. 16:11 . 1
33	-	<na></na>	Fulfilled	
34	Fi	ulfilled	<na></na>	
35		<na></na>	<na></na>	
36	Fi	ulfilled	Unfulfilled	Fulfilled
37	Fi	ulfilled	<na></na>	Fulfilled
38	Fi	ulfilled	Unfulfilled	Fulfilled
39	Unfi	ulfilled	Fulfilled	Fulfilled
40	Fi	ulfilled	<na></na>	Fulfilled
	Triangle.inequality	Con	sistency.N	
1	<na></na>		Fulfilled	
2	Unfulfilled		Fulfilled	
3	<na></na>		Fulfilled	
4	<na></na>		Fulfilled	
5	<na></na>		Fulfilled	
6	<na></na>		<na></na>	
7		Conditionally		
		Conditionally		
8	<na></na>		Fulfilled	
10	<na></na>		Fulfilled	
13	Fulfilled		Fulfilled	
14		Conditionally		
15	<na></na>		Fulfilled	
16	<na></na>		Fulfilled	
17	<na></na>		Fulfilled	
18	Fulfilled		Fulfilled	
19	Fulfilled	Not	Applicable	
20	<na></na>		Fulfilled	
22	<na></na>		<na></na>	
23	<na></na>		<na></na>	
24	<na></na>		<na></na>	
25		Conditionally		
26	Unfulfilled	•	Applicable	
27	<na></na>		Fulfilled	
28	<na></na>		Fulfilled	
29	<na></na>		Fulfilled	
30		Conditionally		
		conditionally		
31	<na></na>	Nat	<na></na>	
32	<na></na>		Applicable	
33	Fulfilled	Not	Applicable	
34	<na></na>		<na></na>	
35	<na></na>		<na></na>	
36	<na></na>		Fulfilled	
37	<na></na>		Fulfilled	
38	<na></na>		Fulfilled	
39	Fulfilled	Not	Applicable	
40	<na></na>		<na></na>	
	Consisten	cy.p Number.Fu	lfilled Numbe	r.Cond.Fulfilled
1		<na></na>	12	0

2	<na></na>		11	0
3	<na></na>		12	0
4	<na></na>		9	0
5	Fulfilled		13	0
6	Fulfilled		13	0
7			7	
	<na></na>			6
8	<na></na>		13	0
10	<na></na>		12	0
	Conditionally Fulfilled		14	1
14	<na></na>		5	5
15	<na></na>		11	0
16	<na></na>		11	0
17	<na></na>		13	0
18	Conditionally Fulfilled		14	1
19	Not Applicable		8	0
20	Unfulfilled		14	0
20	Fulfilled		11	3
22	ruiiiiied <na></na>			
			11	0
24	<na></na>		8	3
25	<na></na>		11	3
26	Not Applicable		11	0
27	<na></na>		16	0
28	<na></na>		10	0
29	<na></na>		14	0
30	<na></na>		9	5
31	<na></na>		9	0
32	Not Applicable		11	0
33	Not Applicable		11	2
34	<na></na>		13	0
35	Fulfilled		11	3
	ruiiiiied <na></na>			
36			14	0
37	<na></na>		12	0
38	Unfulfilled		12	1
39	Not Applicable		9	2
40	<na></na>		11	0
	Number.Unfulfilled Number.	NA	L	
1	6	З	5	
2	5	5	j.	
3	6	3	}	
4	9	3		
5	5	3		
6	5	3		
7	5	3		
8	5	3		
10	5	4		
13	6	0		
14	6	5)	

15 16 17 18 19 20 22 23 24 25	7 4 6 10 6 3 4 5 4	3 4 0 1 4 6 5 3	
26	5	3	
27	3	2	
28	4	7	
29 30	3 5	4 2	
31	4	8	
32	6	2	
33 34	4 4	2 4	
35	4	4 4	
36	5	2	
37	5	4	
38 39	6 7	2 1	
40	5	5	
1	Comparison	hased	Class on inter-point distances
2	oomparibon	babea	Testing approach
3	Comparison	based	on inter-point distances
-		-	characteristic functions
5 6	Comparison	based	on inter-point distances Graph-based
7	Method	based	on binary classification
8			Graph-based
10	. .		Graph-based
13 14	-		on inter-point distances
14			on binary classification on inter-point distances
16	-		on inter-point distances
17	-		on inter-point distances
18	-		on inter-point distances
19	Discrep	bancy r	neasure for distributions
20			Graph-based
22 22 Companian of	CDE		Testing approach
23 Comparison of 24	CDFS, densi	ity or	characteristic functions Kernel-based
24 25	Method	based	on binary classification

26 Discrepancy measure for distributions
27 Kernel-based
28 Comparison of CDFs, density or characteristic functions
29 Graph-based
30 Kernel-based
1
32 Comparison of CDFs, density or characteristic functions
33 Distance/ similarity measure for datasets
34 Graph-based
35 Testing approach
36 Graph-based
37 Graph-based
1
38 Graph-based
39 Discrepancy measure for distributions
40 Method based on binary classification
Subclass
1 Comparison based on inter-point distances
2 Testing approach
0 11
3 Comparison based on inter-point distances
4 Comparison of CDFs
5 Comparison based on inter-point distances
6 Graph-based
7 Method based on binary classification
8 Graph-based
1
13 Comparison based on inter-point distances
14 Method based on binary classification
15 Comparison based on inter-point distances
16 Comparison based on inter-point distances
17 Comparison based on inter-point distances
18 Comparison based on inter-point distances
5
20 Graph-based
22 Testing approach
23 Comparison of density functions
24 Kernel-based (MMD)
25 Method based on binary classification
26 Divergence
27 Kernel-based
28 Comparison of characteristic functions
29 Graph-based
30 Kernel-based (MMD)
31 Graph-based
32 Comparison of density functions
33 Distance/ similarity measure for datasets
•
1
35 Testing approach

36	Graph-based
37	Graph-based
38	Graph-based (NN)
39	Probability metric
40	Method based on binary classification

We could use this additional information and choose the method that fulfills most criteria among all methods that fulfill the required criteria, i.e., here, the KMD. For demonstration purposes, we apply the Rosenbaum cross-match test here to check whether the active and inactive compounds differ. For a description of the test, see the 'Details' vignette. As the combined sample size is smaller than 340, we can apply the exact test. We can either use the DataSimilarity() function and specify the method argument accordingly:

```
R> DataSimilarity(act, inact, method = "Rosenbaum", exact = TRUE)
```

Exact cross-match test

Alternatively, we can use the Rosenbaum() function directly:

```
R> Rosenbaum(act, inact, exact = TRUE)
```

Exact cross-match test

The output of the Rosenbaum test is an object of class 'htest'. The output of the other methods is also in this format. The statistic value can be accessed by saving the result and accessing the statistic element of the saved result:

```
R> res.Rosenbaum <- Rosenbaum(act, inact, exact = TRUE)
R> res.Rosenbaum$statistic
```

z -9.409805 The p value can be accessed analogously as follows:

```
R> res.Rosenbaum$p.value
```

```
[1] 3.56166e-22
```

This holds for almost all other functions in this package. Additionally, the output might include more information specific to the method, which is then described on the respective help page. For the Rosenbaum test, for example, the unstandardized cross-match count is also returned and can be accessed via

R> res.Rosenbaum\$estimate

edge.count 20

The cross-match count is equal to 20. At most, there could be 122 cross-matches if each observation from the 'inactive' dataset was connected to an observation in the 'active' dataset. Therefore, the cross-match count of 20 can be considered a rather small value. This is also reflected by the z score of -9.41. Consequently, we see that the hypothesis of equal distributions can be rejected with a p value smaller than $2.2 \cdot 10^{-16}$.

We obtain a warning that informs us that a ghost value was introduced when calculating the optimal non-bipartite matching, due to the odd pooled sample size. This means that an artificial point was added to the sample that has the highest distance to all other points in the sample, such that the optimal non-bipartite matching, which needs an even sample size, could be calculated. The ghost value and the point with which it was matched are then discarded from the subsequent calculations.

2.2. More than two numeric datasets without target variables

The well-known iris dataset (Fisher 1936) included in the **datasets** package that comes with base R (R Core Team 2024) includes measurements of sepal and petals of 50 flowers each of three iris species. We compare the datasets for the three species Iris setosa, versicolor, and virginica, which are known to differ in their sepal and petal measurements.

```
R> data("iris")
R> setosa <- iris[iris$Species == "setosa", -5]
R> versicolor <- iris[iris$Species == "versicolor", -5]
R> virginica <- iris[iris$Species == "virginica", -5]</pre>
```

For finding an appropriate method, we can use the function findSimilarityMethod() again and specify that we have more than two numeric datasets using the Numeric and the Multiple.samples options:

```
R> findSimilarityMethod(Numeric = TRUE, Multiple.Samples = TRUE)
```

[1]	"BallDivergence"	"C2ST"	"DISCOB"
[4]	"DISCOF"	"Energy"	"FStest"
[7]	"KMD"	"MMCM"	"MW"
[10]	"Petrie"	"RItest"	"SC"

For comparing the three datasets, we could, for example, use the Mukherjee, Agarwal, Zhang, and Bhattacharya (2022) Mahalanobis multisample cross-match (MMCM) test, which is a generalization of the cross-match test for multiple samples. For a description of the test, see the 'Details' vignette. Again, we can either use the DataSimilarity() function or the MMCM() function directly

```
R> DataSimilarity(setosa, versicolor, virginica, method = "MMCM")
```

Approximative MMCM test

data: setosa, versicolor, virginica chisq = 129.78, df = 3, p-value < 2.2e-16 alternative hypothesis: At least one pair of distributions are unequal.

R> MMCM(setosa, versicolor, virginica)

Approximative MMCM test

data: setosa, versicolor, virginica chisq = 129.78, df = 3, p-value < 2.2e-16 alternative hypothesis: At least one pair of distributions are unequal.

The MMCM statistic value on its own is hard to interpret. However, the test rejects the null hypothesis of equal distributions with $p < 2.2 \cdot 10^{-16}$. Therefore, we can conclude that the observed MMCM value presents an extreme value when assuming the null. Thus, the datasets are dissimilar.

2.3. Exactly two numeric datasets with target variables

The segmentationData dataset (Hill, LaPan, Li, and Haney 2007) in the caret package (Kuhn and Max 2008) includes cell body segmentation data. The dataset contains 119 imaging measurements of 2019 cells to predict the segmentation that is divided into the two classes PS for 'poorly segmented' and WS for 'well segmented'. Moreover, there is a division into 1009 observations used for training and 1010 observations used as a test set. We compare this training and test set. Ideally, the distributions of the training and test set should be equal in this predictive modelling setting.

```
R> data(segmentationData, package = "caret")
R> test <- segmentationData[segmentationData$Case == "Test", -(1:2)]
R> train <- segmentationData[segmentationData$Case == "Train", -(1:2)]</pre>
```

The following methods would be appropriate to use:

```
R> findSimilarityMethod(Numeric = TRUE, Target.Inclusion = TRUE)
```

[1] "GGRL" "NKT" "OTDD"

Setting Target.Inclusion = TRUE selects only the methods that can handle datasets that include a target variable. For demonstration, we choose the method of Ntoutsi, Kalousis, and Theodoridis (2008) and use all three proposed similarity measures NTO1, NTO2, and NTO3. For a description of the method, see the 'Details' vignette. The target1 and target2 arguments have to be specified as the column names of the target variable in the first and second supplied datasets, respectively. Here, the target variable is named "Class" in both cases. Again, we can use either the DataSimilarity() function or NKT().

```
R> DataSimilarity(train, test, method = "NKT", target1 = "Class",
                  target2 = "Class", tune = FALSE)
+
        Data similarity according to Ntoutsi et al. (2008), version 1
data: train and test
s = 0.96931
alternative hypothesis: The distributions of train and test are unequal.
R> NKT(train, test, target1 = "Class", target2 = "Class", tune = FALSE)
        Data similarity according to Ntoutsi et al. (2008), version 1
data: train and test
s = 0.96931
alternative hypothesis: The distributions of train and test are unequal.
R> DataSimilarity(train, test, method = "NKT", target1 = "Class",
                  target2 = "Class", tune = FALSE, version = 2)
        Data similarity according to Ntoutsi et al. (2008), version 2
data: train and test
s = 0.92444
alternative hypothesis: The distributions of train and test are unequal.
R> NKT(train, test, target1 = "Class", target2 = "Class", tune = FALSE,
       version = 2)
+
        Data similarity according to Ntoutsi et al. (2008), version 2
data: train and test
s = 0.92444
alternative hypothesis: The distributions of train and test are unequal.
R> DataSimilarity(train, test, method = "NKT", target1 = "Class",
                  target2 = "Class", tune = FALSE, version = 3)
```

```
Data similarity according to Ntoutsi et al. (2008), version 3

data: train and test

s = 0.96648

alternative hypothesis: The distributions of train and test are unequal.

R> NKT(train, test, target1 = "Class", target2 = "Class", tune = FALSE,

+ version = 3)

Data similarity according to Ntoutsi et al. (2008), version 3

data: train and test

s = 0.96648

alternative hypothesis: The distributions of train and test are unequal.
```

We observe high similarity between the training and test datasets with all three methods, reflected by the similarity values \mathbf{s} that are all close to the maximal value 1. For the method of Ntoutsi *et al.* (2008), no test is proposed and therefore, no p value is calculated.

2.4. Exactly two categorical datasets without target variables

The banque dataset from the ade4 package (Dray and Dufour 2007) consists of bank survey data of 810 customers. All variables are categorical and contain socio-economic information of the customers. We divide the data into bank card owners and non-bank card owners and compare these two groups. In total, 243 out of the 810 customers own a bank card. Bank card owners and non-bank card owners might differ in their socio-economic characteristics.

```
R> data(banque , package = "ade4")
R> card <- banque[banque$cableue == "oui", -7]
R> no.card <- banque[banque$cableue == "non", -7]</pre>
```

We again apply the findSimilarityMethod() function to find appropriate methods for comparing two categorical datasets. Again, two samples are the default. Therefore, we only have to specify Categorical = TRUE.

```
R> findSimilarityMethod(Categorical = TRUE)
```

[1]	"C2ST"	"CCS_cat"	"CF_cat"	"CMDistance"	"FR_cat"
[6]	"GGRL"	"HMN"	"MMCM"	"MMD"	"OTDD"
[11]	"Petrie"	"YMRZL"	"ZC_cat"		

For demonstration, we use the random forest test of Hediger, Michel, and Näf (2022) to compare these two groups. For a description of the test, see the 'Details' vignette. For easier interpretation, we look at the overall out-of-bag (OOB) prediction error instead of the perclass OOB prediction error and perform a permutation test with 1000 permutations. For reproducibility, we set a seed before applying the method. Alternatively, we could supply the seed via the seed argument for setting the seed within the function.

```
Getting Started
```

```
R> set.seed(1234)
R> DataSimilarity(card, no.card, method = "HMN", n.perm = 1000,
+ statistic = "OverallOOB")

Permutation OverallOOB random forest based two-sample test
data: card and no.card
p.hat = 0.1605, p-value = 0.000999
alternative hypothesis: The distributions of card and no.card are unequal.
R> set.seed(1234)
R> HMN(card, no.card, n.perm = 1000, statistic = "OverallOOB")

Permutation OverallOOB random forest based two-sample test
data: card and no.card
p.hat = 0.1605, p-value = 0.000999
alternative hypothesis: The distributions of card and no.card are unequal.
```

The overall OOB prediction error is 0.161, which is considerably smaller than the naive prediction error of 243/810 = 0.3. Therefore, the random forest can distinguish between the datasets, so we can conclude that the datasets differ. This is also reflected by the *p* value of 9.990e-04.

2.5. More than two categorical datasets without target variables

We consider the **banque** dataset from the **ade4** package (Dray and Dufour 2007) again. This time, we split it by the nine socio-professional categories given by 'csp', which are again expected to differ with regard to the other socio-economic characteristics.

```
R> data(banque, package = "ade4")
R> agric <- banque[banque$csp == "agric", -1]
R> artis <- banque[banque$csp == "artis", -1]
R> cadsu <- banque[banque$csp == "cadsu", -1]
R> inter <- banque[banque$csp == "inter", -1]
R> emplo <- banque[banque$csp == "emplo", -1]
R> ouvri <- banque[banque$csp == "ouvri", -1]
R> retra <- banque[banque$csp == "retra", -1]
R> inact <- banque[banque$csp == "inact", -1]
R> etudi <- banque[banque$csp == "etudi", -1]</pre>
```

To compare these datasets, we now need a method that can handle multiple datasets at once:

```
R> findSimilarityMethod(Categorical = TRUE, Multiple.Samples = TRUE)
```

```
[1] "C2ST" "MMCM" "Petrie"
```

We apply the classifier two-sample test (C2ST). For a description of the test, see the 'Details' vignette. First, we use the default K-NN classifier. Categorical variables are dummy-coded. Again, we can use either DataSimilarity() or C2ST():

The accuracy of the K-NN classifier is 0.319. It is larger than the naive accuracy for always predicting the largest class, which is given by prob = 0.226 in the output. The classifier seems to be able to distinguish between the datasets, and we can therefore regard them as dissimilar. Moreover, the null hypothesis of equal distributions can be rejected with a p value of 4.571e-07.

For demonstration, we additionally perform the C2ST with a neural net classifier.

Approximative Classifier Two-Sample Test using nnet

```
data: agric, artis, cadsu, inter, emplo, ouvri, retra, inact, etudi
p.hat = 0.30556, size = 567.00000, prob = 0.22593, p-value =
1.826e-06
alternative hypothesis: At least one pair of distributions are unequal.
```

The results are very similar to using K-NN.

2.6. Exactly two categorical datasets with target variables

We consider the banque dataset from the ade4 package (Dray and Dufour 2007) again. In this case, we interpret the savings bank amount (eparliv) variable as the target variable, which is again supplied via the target1 and target2 arguments. It is divided into the three categories '> 20000', '> 0 and < 20000', and 'nulle'. We divide the data into the socio-professional categories as before, and now need a method for two categorical datasets that include a target variable.

```
R> findSimilarityMethod(Categorical = TRUE, Target.Inclusion = TRUE)
```

[1] "GGRL" "OTDD"

We use the optimal transport dataset distance (OTDD) to compare the resulting datasets for craftsmen, shopkeepers, company directors ('artis'), to that of higher intellectual professions ('cadsu'), and to that of manual workers ('ouvri'). For a description of the method, see the 'Details' vignette. As all variables are categorical, we use the Hamming distance instead of the default Euclidean distance. We can either use DataSimilarity() or OTDD().

```
R> DataSimilarity(artis, cadsu, method = "OTDD", target1 = "eparliv",
+ target2 = "eparliv", feature.cost = hammingDist)
```

Optimal Transport Dataset Distance

```
data: artis and cadsu
OTDD = 44.166
alternative hypothesis: Distributions of artis and cadsu are unequal
R> OTDD(artis, cadsu, target1 = "eparliv", target2 = "eparliv",
+ feature.cost = hammingDist)
Optimal Transport Dataset Distance
data: artis and cadsu
OTDD = 44.166
alternative hypothesis: Distributions of artis and cadsu are unequal
```

We obtain a dataset distance of 44.166 between craftsmen/shopkeepers/company directors and executives/higher intellectual professions. For the OTDD, low values correspond to high similarity, and the minimum value is 0. The observed value is clearly larger than zero, so the

```
20
```

datasets are not exactly similar. How dissimilar they are is however hard to interpret from the observed OTDD value on its own. For the OTDD, no test is proposed and therefore, no p value is calculated.

alternative hypothesis: Distributions of artis and ouvri are unequal

We obtain a dataset distance of 49.427 between craftsmen/shopkeepers/company directors and manual workers. Again, this value on its own is hard to interpret. However, we can compare the values and conclude that the data of craftsmen/shopkeepers/company directors is more similar to that of executives/higher intellectual professions than to that of manual workers.

Acknowledgments

This work has been supported (in part) by the Research Training Group "Biostatistical Methods for High-Dimensional Data in Toxicology" (RTG 2624, Project P1) funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation - Project Number 427806116).

We would like to thank Nabarun Deb and Bodhisattva Sen for allowing us to use their R implementation of their test for the package. Moreover, we would like to thank David Alvarez-Melis, whose Python implementation of the OTDD was the basis for our R implementation.

References

- Dray S, Dufour AB (2007). "The ade4 Package: Implementing the Duality Diagram for Ecologists." Journal of Statistical Software, 22(4), 1–20. doi:10.18637/jss.v022.i04.
- Fisher RA (1936). "The Use of Multiple Measurements in Taxonomic Problems." Annals of Eugenics, 7(2), 179–188. ISSN 2050-1439. doi:10.1111/j.1469-1809.1936.tb02137.x. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.1936.tb02137.x.

- Hediger S, Michel L, Näf J (2022). "On the Use of Random Forest for Two-Sample Testing." Computational Statistics & Data Analysis, 170, 107435. ISSN 0167-9473. doi:10.1016/ j.csda.2022.107435. URL https://www.sciencedirect.com/science/article/pii/ S0167947322000159.
- Hill AA, LaPan P, Li Y, Haney S (2007). "Impact of Image Segmentation on High-Content Screening Data Quality for SK-BR-3 Cells." *BMC Bioinformatics*, 8(1), 340. ISSN 1471-2105. doi:10.1186/1471-2105-8-340. URL https://doi.org/10.1186/ 1471-2105-8-340.
- Kuhn, Max (2008). "Building Predictive Models in R Using the caret Package." Journal of Statistical Software, 28(5), 1-26. doi:10.18637/jss.v028.i05. URL https://www.jstatsoft.org/index.php/jss/article/view/v028i05.
- Mukherjee S, Agarwal D, Zhang NR, Bhattacharya BB (2022). "Distribution-Free Multisample Tests Based on Optimal Matchings With Applications to Single Cell Genomics." *Journal of the American Statistical Association*, **117**(538), 627–638. ISSN 0162-1459. doi: 10.1080/01621459.2020.1791131.
- Ntoutsi I, Kalousis A, Theodoridis Y (2008). "A General Framework for Estimating Similarity of Datasets and Decision Trees: Exploring Semantic Similarity of Decision Trees." In *Proceedings of the 2008 SIAM International Conference on Data Mining (SDM)*, pp. 810– 821. Society for Industrial and Applied Mathematics. ISBN 978-0-89871-654-2. doi:10. 1137/1.9781611972788.73.
- R Core Team (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
- Stolte M, Kappenberg F, Rahnenführer J, Bommert A (2024). "Methods for Quantifying Dataset Similarity: A Review, Taxonomy and Comparison." *Statistics Surveys*, 18, 163– 298. ISSN 1935-7516. doi:10.1214/24-SS149.
- Sutherland JJ, Weaver DF (2004). "Three-Dimensional Quantitative Structure-Activity and Structure-Selectivity Relationships of Dihydrofolate Reductase Inhibitors." Journal of Computer-Aided Molecular Design, 18(5), 309–331. ISSN 0920-654X. doi:10.1023/b: jcam.0000047814.85293.da.

Affiliation:

Marieke Stolte Department of Statistics TU Dortmund University Vogelpothsweg 87 44227 Dortmund, Germany E-mail: stolte@statistik.tu-dortmund.de