Package 'FastCUB'

March 8, 2024
Title Fast Estimation of CUB Models via Louis' Identity
Version 0.0.3
Description For ordinal rating data, consider the accelerated EM algorithm to estimate and test models within the family of CUB models (where CUB stands for Combination of a discrete Uniform and a shifted Binomial distributions). The procedure is built upon Louis' identity for the observed information matrix. Best-subset variable selection is then implemented since it becomes more feasible from the computational point of view.
Depends R (>=2.15.2)
License GPL-2। GPL-3
Encoding UTF-8
Imports methods, Formula, utils, CUB
LazyData true
RoxygenNote 6.1.1
NeedsCompilation no
Repository CRAN
Author Rosaria Simone [aut, cre]
Maintainer Rosaria Simone rosaria.simone@unina.it
Date/Publication 2024-03-08 11:20:02 UTC

R topics documented:

bestcub 2
BIC.fastCUB 3
bitcsi 4
bitgama 5
coef.fastCUB 6
cormat 6
dissim 7
fastCUB 8
fastCUB_package 9
fitted.fastCUB 9
inibest 10
inibestgama 11
invmatgen 12
logis 12
logLik.fastCUB 13
makeplot 14
print.fastCUB 14
probbit 15
probcub00 15
probcub0q 16
probcubp0 17
probcubpq 19
relgoods 20
summary.fastCUB 22
univer 23
vcov.fastCUB 24
Index 25
bestcub Best-subset variable selection for CUB models via fast EM algorithm

Description

Perform a best-subset search for CUB models on the basis of the BIC index, by combining all possible covariates' specification for feeling and for uncertainty parameters

Usage

bestcub (ordinal, m, Y, W, toler=1e-4, maxiter=200, iterc=5, alpha=0.05, mix=FALSE, tolmix=1e+2,fmix=NULL, invgen=TRUE)

Arguments

ordinal	Vector of ordinal responses
m	Number of ordinal categories
Y	Matrix of selected covariates for the uncertainty parameter
W	Matrix of selected covariates for the feeling parameter
toler	Fixed error tolerance for final estimates
maxiter	Maximum number of iterations allowed for running the optimization algorithm
iterc	Iteration from which the acceleration strategy starts
alpha	Significant level for Wald test mix
	Logical: should a first preliminary standard EM be run at toler equal to tolmix? (default is FALSE)

tolmix	Error tolerance for first preliminary EM (if mix=TRUE).
fmix	Fraction of iteration needed for first preliminary EM (if mix=TRUE). Default is null.
invgen	Logical: should the recursive formula for the inverse of the information matrix be considered? (Default is TRUE)

Value

A list containing the following results:

vsel	List of all estimated models (with the accelerated EM)
bestW	Names of covariates for feeling in the best model with all significant effect
besty	Names of covariates for feeling in the best model with all significant effect
param	ML estimates of the best model
se	Estimated standard errors for the best model
bic	BIC index of the best (significant) model
mattime	Matrix of computational time for each of the estimated model
matiter	Matrix of number of iterations occurred for each of the estimated model

See Also

fastCUB

BIC.fastCUB S3 BIC method for class "fastCUB"

Description

S3 BIC method for objects of class fastCUB.

Usage

\#\# S3 method for class 'fastCUB'
BIC(object, ...)

Arguments

$$
\begin{array}{ll}
\text { object } & \text { An object of class "fastCUB" } \\
\ldots & \text { Other arguments }
\end{array}
$$

Value

BIC index for the fitted model.

See Also

logLik, fastCUB

Description

Compute the shifted Binomial probabilities of ordinal responses.

Usage

bitcsi(m,ordinal,csi)

Arguments

m	Number of ordinal categories
ordinal	Vector of ordinal responses
csi	Feeling parameter of the shifted Binomial distribution

Value

A vector of the same length as ordinal, where each entry is the shifted Binomial probability of the corresponding observation.

References

Piccolo D. (2003). On the moments of a mixture of uniform and shifted binomial random variables, Quaderni di Statistica, 5, 85-104

See Also

probcub00, probcubp0, probcub0q

Examples

```
data(univer)
m<-7
csi<-0.7
ordinal<-univer$informat
pr<-bitcsi(m,ordinal,csi)
```


Description

Return the shifted Binomial probabilities of ordinal responses where the feeling component is explained by covariates via a logistic link.

Usage

bitgama(m, ordinal, W, gama)

Arguments

m	Number of ordinal categories
ordinal	Vector of ordinal responses
W	Matrix of covariates for the feeling component gama
Vector of parameters for the feeling component, with length equal to NCOL(W)+1 to account for an intercept term (first entry of gama)	

Value

A vector of the same length as ordinal, where each entry is the shifted Binomial probability for the corresponding observation and feeling value.

See Also

logis, probcub0q, probcubpq

Examples

```
n<-100
m<-7
W<-sample(c(0,1),n,replace=TRUE)
gama<-c(0.2,-0.2)
csivett<-logis(W,gama)
ordinal<-rbinom(n,m-1,csivett)+1
pr<-bitgama(m,ordinal,W,gama)
```

```
    coef.fastCUB S3 Method: coeffor class "fastCUB"
```


Description

S3 method: coef for objects of class fastCUB.

Usage

\#\# S3 method for class 'fastCUB'
coef(object, ...)

Arguments

object
An object of class fastCUB
...
Other arguments

Details

Returns estimated values of coefficients of the fitted model

Value

ML estimates of parameters of the fitted CUB model.

See Also

fastCUB, summary
cormat Correlation matrix for estimated model

Description

Compute parameter correlation matrix for estimated model as returned by an object of class "fastCUB".

Usage

cormat(object, digits=options()\$digits)

Arguments

object
digits

An object of class "fastCUB"
Number of significant digits to be printed. Default is options()\$digits

Value

Parameters correlation matrix for fitted fastCUB models.

See Also

```
fastCUB, vcov
```

```
dissim Normalized dissimilarity measure
```


Description

Compute the normalized dissimilarity measure between observed relative frequencies and estimated (theoretical) probabilities of a discrete distribution.

Usage

dissim(proba, probb)

Arguments

proba	Vector of observed relative frequencies
probb	Vector of estimated (theoretical) probabilities

Value

Numeric value of the dissimilarity index, assessing the distance to a perfect fit.

Examples

```
proba<-c(0.01,0.03,0.08,0.07,0.27,0.37,0.17)
probb<-c(0.04,0.04,0.05,0.10,0.21,0.32,0.24)
dissim(proba,probb)
```

fastCUB Main function for fast estimation CUB models

Description

Main function to estimate and validate a CUB model for explaining uncertainty and feeling for given ratings, with or without covariates, on the basis of Louis' identity for the information matrix and the derived accelerated estimation.

Usage

fastCUB(Formula, data, ...)

Arguments

Formula Object of class Formula.
data Data frame from which model matrices and response variables are taken.
... Additional arguments to be passed for the specification of the model, including covariates matrices Y, W, X for \#' for uncertainty, feeling and shelter, respectively.

Details

This is the main function for CUB models, which calls for the corresponding functions whenever covariates are specified. It performs maximum likelihood estimation via the E-M algorithm for CUB models and extensions based on the Louis'identity for the observed information matrix.

Value

An object of the class "fastCUB": returns a list containing the following results:
estimates Maximum likelihood estimates: (π, ξ)
loglik Log-likelihood function at the final estimates
varmat Variance-covariance matrix of final estimates
niter Number of executed iterations
BIC BIC index for the estimated model

See Also

probcub00, probcubp0, probcub0q, probcubpq,
fastCUB_package fastCUB package

Description

The package implements Louis' identity for CUB models for rating data, to retrieve the observed information matrix within the EM algorithm. On this basis, an accelerated estimation procedure is derived and best-subset variable selection is implemented.

Details

Package:	fastCUB
Type:	Package
Version:	0.0 .1
Date:	$2019-03-05$
License: GPL-2 I GPL-3	

Author(s)

Rosaria Simone

References

Simone R. (2021). An accelerated EM algorithm for mixture models with uncertainty for rating data, Computational Statistics, 36, 691-714
Louis T.A. (1982). Finding the Observed Information Matrix when Using the EM Algorithm, Journal of the Royal Statistical Society, Series B, 44, 226-233
fitted.fastCUB S3 method "fitted" for class "fastCUB"

Description

S3 method fitted for objects of class fastCUB.

Usage

\#\# S3 method for class 'fastCUB'
fitted(object, ...)

Arguments

object An object of class fastCUB
... Other arguments

Details

Returns the fitted probability distribution for GEM models with no covariates. If only one dichotomous covariate is included in the model to explain some components, it returns the fitted probability distribution for each profile.

See Also

fastCUB
inibest Preliminary estimators for CUB models without covariates

Description

Compute preliminary parameter estimates of a CUB model without covariates for given ordinal responses. These preliminary estimators are used within the package code to start the E-M algorithm.

Usage

inibest(m,freq)

Arguments

m Number of ordinal categories
freq Vector of the absolute frequencies of given ordinal responses

Value

A vector (π, ξ) of the initial parameter estimates for a CUB model without covariates, given the absolute frequency distribution of ordinal responses

References

Iannario M. (2009). A comparison of preliminary estimators in a class of ordinal data models, Statistica \& Applicazioni, VII, 25-44
Iannario M. (2012). Preliminary estimators for a mixture model of ordinal data, Advances in Data Analysis and Classification, 6, 163-184

See Also

inibestgama

Examples

$m<-9$

freq<-c $(10,24,28,36,50,43,23,12,5)$
estim<-inibest(m,freq)
pai<-estim[1]
csi<-estim[2]
inibestgama Preliminary parameter estimates of a CUB model with covariates for feeling

Description

Compute preliminary parameter estimates for the feeling component of a CUB model fitted to ordinal responses These estimates are set as initial values for parameters to start the E-M algorithm.

Usage

inibestgama(m,ordinal, W)

Arguments

m	Number of ordinal categories
ordinal	Vector of ordinal responses
W	Matrix of selected covariates for explaining the feeling component

Value

A vector of length equal to $\mathrm{NCOL}(\mathrm{W})+1$, whose entries are the preliminary estimates of the parameters for the feeling component, including an intercept term as first entry.

References

Iannario M. (2008). Selecting feeling covariates in rating surveys, Rivista di Statistica Applicata, 20, 103-116
Iannario M. (2009). A comparison of preliminary estimators in a class of ordinal data models, Statistica \& Applicazioni, VII, 25-44
Iannario M. (2012). Preliminary estimators for a mixture model of ordinal data, Advances in Data Analysis and Classification, 6, 163-184

See Also

inibest

Examples

```
data(univer)
m<-7; ordinal<-univer$global; cov<-univer$diploma
ini<-inibestgama(m,ordinal,W=cov)
```


Description

Compute the variance-covariance matrix of the incomplete score vector involved in Louis' identity for the observed information matrix

Usage

invmatgen(G, H, listE)

Arguments

G Primary matrix for the sum decomposition of $\$ \mathrm{G}+\mathrm{H} \$$
H Secondary matrix for the sum decomposition of $\$ \mathrm{G}+\mathrm{H} \$$
listE Auxiliary matrices that sum up to H

Value

The inverse of matrix $\mathrm{G}+\mathrm{H}$ computed recursively thanks to matrices listed in listE

References

Miller K. (1981). On the inverse of the sum of matrices, Mathematics Magazine, 54, 67-72

See Also
fastCUB

Description

Create a matrix YY binding array Y with a vector of ones, placed as the first column of YY. It applies the logistic transform componentwise to the standard matrix multiplication between YY and param.

Usage

logis(Y, param)

Arguments

Y
param

A generic matrix or one dimensional array
Vector of coefficients, whose length is $\mathrm{NCOL}(\mathrm{Y})+1$ (to consider also an intercept term)

Value

Return a vector whose length is $\operatorname{NROW}(\mathrm{Y})$ and whose i-th component is the logistic function at the scalar product between the i-th row of YY and the vector param.

Examples

```
n<-50
Y<-sample(c(1,2,3),n,replace=TRUE)
param<-c(0.2,0.7)
logis(Y,param)
```

logLik.fastCUB logLik S3 Method for class "fastCUB"

Description

S3 method: $\operatorname{logLik}()$ for objects of class "fastCUB".

Usage

```
## S3 method for class 'fastCUB'
```

 logLik(object, ...)

Arguments

$$
\text { object } \quad \text { An object of class "fastCUB" }
$$

... Other arguments

Value

Log-likelihood at the final ML estimates for parameters of the fitted fastCUB model.

See Also

fastCUB

Description

Plot facilities for objects of class "fastCUB".

Usage

makeplot (object)

Arguments

object An object of class "fastCUB"

Details

Returns a plot comparing fitted probabilities and observed relative frequencies for GEM models without covariates. If only one explanatory dichotomous variable is included in the model for one or all components, then the function returns a plot comparing the distributions of the responses conditioned to the value of the covariate.

```
print.fastCUB S3 method: print for class "fastCUB"
```


Description

S3 method print for objects of class fastCUB.

Usage

\#\# S3 method for class 'fastCUB'
print(x, ...)

Arguments

x
An object of class fastCUB
... Other arguments

Value

Brief summary results of the fitting procedure, including parameter estimates, their standard errors and the executed call.
probbit Probability distribution of a shifted Binomial random variable

Description

Return the shifted Binomial probability distribution.

Usage

probbit(m, csi)

Arguments

m	Number of ordinal categories
csi	Feeling parameter

Value

The vector of the probability distribution of a shifted Binomial model.

See Also

bitcsi, probcub00

Examples

```
m<-7
csi<-0.7
pr<-probbit(m,csi)
plot(1:m,pr,type="h",main="Shifted Binomial probability distribution",xlab="Categories")
points(1:m,pr,pch=19)
```

probcub00 Probability distribution of a CUB model without covariates

Description

Compute the probability distribution of a CUB model without covariates.

Usage

probcub00(m, pai,csi)

Arguments

m	Number of ordinal categories
pai	Uncertainty parameter
csi	Feeling parameter

Value

The vector of the probability distribution of a CUB model.

References

Piccolo D. (2003). On the moments of a mixture of uniform and shifted binomial random variables. Quaderni di Statistica, 5, 85-104

See Also

bitcsi, probcub0q, probcubp0, probcubpq

Examples

```
m<-9
pai<-0.3
csi<-0.8
pr<-probcub00(m,pai,csi)
plot(1:m,pr,type="h",main="CUB probability distribution",xlab="Ordinal categories")
points(1:m,pr,pch=19)
```

```
probcub0q
```

Probability distribution of a CUB model with covariates for the feeling component

Description

Compute the probability distribution of a CUB model with covariates for the feeling component.

Usage

probcub0q(m,ordinal, W, pai, gama)

Arguments

m	Number of ordinal categories
ordinal	Vector of ordinal responses W
Matrix of covariates for explaining the feeling component NCOL(Y)+1 to in- clude an intercept term in the model (first entry)	
pai	Uncertainty parameter
gama	Vector of parameters for the feeling component, whose length equals NCOL(W)+1 to include an intercept term in the model (first entry)

Value

A vector of the same length as ordinal, whose i-th component is the probability of the i-th observation according to a CUB distribution with the corresponding values of the covariates for the feeling component and coefficients specified in gama.

References

Piccolo D. (2006). Observed Information Matrix for MUB Models, Quaderni di Statistica, 8, 3378
Piccolo D. and D'Elia A. (2008). A new approach for modelling consumers' preferences, Food Quality and Preference, 18, 247-259
Iannario M. and Piccolo D. (2012). CUB models: Statistical methods and empirical evidence, in: Kenett R. S. and Salini S. (eds.), Modern Analysis of Customer Surveys: with applications using R, J. Wiley and Sons, Chichester, 231-258

See Also

bitgama, probcub00, probcubp0, probcubpq

Examples

```
data(relgoods)
m<-10
naord<-which(is.na(relgoods$Physician))
nacov<-which(is.na(relgoods$Gender))
na<-union(naord, nacov)
ordinal<-relgoods$Physician[-na]
W<-relgoods$Gender[-na]
pai<-0.44; gama<-c(-0.91,-0.7)
pr<-probcub0q(m,ordinal,W,pai,gama)
```

```
probcubp0
```

Probability distribution of a CUB model with covariates for the uncertainty component

Description

Compute the probability distribution of a CUB model with covariates for the uncertainty component.

Usage

probcubp0(m,ordinal, Y, bet,csi)

Arguments

m	Number of ordinal categories
ordinal	Vector of ordinal responses
Y	Matrix of covariates for explaining the uncertainty component
bet	Vector of parameters for the uncertainty component, whose length equals NCOL(Y) +1 to include an intercept term in the model (first entry)
csi	Feeling parameter

Value

A vector of the same length as ordinal, whose i-th component is the probability of the i-th observation according to a CUB model with the corresponding values of the covariates for the uncertainty component and coefficients for the covariates specified in bet.

References

Piccolo D. (2006). Observed Information Matrix for MUB Models, Quaderni di Statistica, 8, 3378
Piccolo D. and D'Elia A. (2008). A new approach for modelling consumers' preferences, Food Quality and Preference, 18, 247-259
Iannario M. and Piccolo D. (2012). CUB models: Statistical methods and empirical evidence, in: Kenett R. S. and Salini S. (eds.), Modern Analysis of Customer Surveys: with applications using R, J. Wiley and Sons, Chichester, 231-258

See Also

bitgama, probcub00, probcubpq, probcub0q

Examples

```
data(relgoods)
m<-10
naord<-which(is.na(relgoods$Physician))
nacov<-which(is.na(relgoods$Gender))
na<-union(naord, nacov)
ordinal<-relgoods$Physician[-na]
Y<-relgoods$Gender[-na]
bet<-c(-0.81,0.93); csi<-0.20
probi<-probcubp0(m,ordinal,Y,bet,csi)
```

probcubpq Probability distribution of a CUB model with covariates for both feeling and uncertainty

Description

Compute the probability distribution of a CUB model with covariates for both the feeling and the uncertainty components.

Usage

probcubpq(m, ordinal, Y, W, bet, gama)

Arguments

m	Number of ordinal categories
ordinal	Vector of ordinal responses
Y	Matrix of covariates for explaining the uncertainty component
W	Matrix of covariates for explaining the feeling component
bet	Vector of parameters for the uncertainty component, whose length equals NCOL(Y) +1 to include an intercept term in the model (first entry)
gama	Vector of parameters for the feeling component, whose length equals NCOL(W)+1 to include an intercept term in the model (first entry)

Value

A vector of the same length as ordinal, whose i-th component is the probability of the i-th rating according to a CUB distribution with given covariates for both uncertainty and feeling, and specified coefficients vectors bet and gama, respectively.

References

Piccolo D. (2006). Observed Information Matrix for MUB Models, Quaderni di Statistica, 8, 3378
Piccolo D. and D'Elia A. (2008). A new approach for modelling consumers' preferences, Food Quality and Preference, 18, 247-259
Iannario M. and Piccolo D. (2012). CUB models: Statistical methods and empirical evidence, in: Kenett R. S. and Salini S. (eds.), Modern Analysis of Customer Surveys: with applications using R, J. Wiley and Sons, Chichester, 231-258

See Also

bitgama, probcub00, probcubp0, probcub0q

Examples

```
    data(relgoods)
    m<-10
    naord<-which(is.na(relgoods$Physician))
    nacov<-which(is.na(relgoods$Gender))
    na<-union(naord,nacov)
    ordinal<-relgoods$Physician[-na]
    W<-Y<-relgoods$Gender[-na]
    gama<-c(-0.91,-0.7); bet<-c(-0.81,0.93)
    probi<-probcubpq(m,ordinal,Y,W,bet,gama)
```

 relgoods Relational goods and Leisure time dataset

Description

Dataset consists of the results of a survey aimed at measuring the evaluation of people living in the metropolitan area of Naples, Italy, with respect to of relational goods and leisure time collected in December 2014. Every participant was asked to assess on a 10 point ordinal scale his/her personal score for several relational goods (for instance, time dedicated to friends and family) and to leisure time. In addition, the survey asked respondents to self-evaluate their level of happiness by marking a sign along a horizontal line of 110 millimeters according to their feeling, with the left-most extremity standing for "extremely unhappy", and the right-most extremity corresponding to the status "extremely happy".

Usage

data(relgoods)

Format

The description of subjects' covariates is the following:
ID An identification number
Gender A factor with levels: $0=$ man, $1=$ woman
BirthMonth A variable indicating the month of birth of the respondent
BirthYear A variable indicating the year of birth of the respondent
Family A factor variable indicating the number of members of the family
Year. 12 A factor with levels: $1=$ if there is any child aged less than 12 in the family, $0=$ otherwise
EducationDegree A factor with levels: $1=$ compulsory school, $2=$ high school diploma, $3=$ Graduated-Bachelor degree, $4=$ Graduated-Master degree, $5=$ Post graduated
MaritalStatus A factor with levels: $1=$ Unmarried, $2=$ Married/Cohabitee, $3=$ Separated/Divorced, 4 = Widower

Residence A factor with levels: $1=$ City of Naples, $2=$ District of Naples, $3=$ Others Campania, $4=$ Others Italia, $5=$ Foreign countries

Glasses A factor with levels: $1=$ wearing glasses or contact lenses, $0=$ otherwise
RightHand A factor with levels: $1=$ right-handed, $0=$ left-handed
Smoking A factor with levels: $1=$ smoker, $0=$ not smoker
WalkAlone A factor with levels: $1=$ usually walking alone, $0=$ usually walking in company
job A factor with levels: $1=$ Not working, $2=$ Retired, $3=$ occasionally, $4=$ fixed-term job, $5=$ permanent job
PlaySport A factor with levels: $1=$ Not playing any sport, $2=$ Yes, individual sport, $3=$ Yes, team sport
Pets A factor with levels: $1=$ owning a pet, $0=$ not owning any pet

1. Respondents were asked to evaluate the following items on a 10 point Likert scale, ranging from $1=$ "never, at all" to $10=$ "always, a lot":
WalkOut How often the respondent goes out for a walk
Parents How often respondent talks at least to one of his/her parents
MeetRelatives How often respondent meets his/her relatives
Association Frequency of involvement in volunteering or different kinds of associations/parties, etc
RelFriends Quality of respondent's relationships with friends
RelNeighbours Quality of the relationships with neighbors
NeedHelp Easiness in asking help whenever in need
Environment Level of comfort with the surrounding environment
Safety Level of safety in the streets
EndofMonth Family making ends meet
MeetFriend Number of times the respondent met his/her friends during the month preceding the interview
Physician Importance of the kindness/simpathy in the selection of respondent's physician
Happiness Each respondent was asked to mark a sign on a 110 mm horizontal line according to his/her feeling of happiness (left endpoint corresponding to completely unhappy, rightmost endpoint corresponding to extremely happy
2. The same respondents were asked to score the activities for leisure time listed below, according to their involvement/degree of amusement, on a 10 point Likert scale ranging from $1=$ "At all, nothing, never" to $10=$ "Totally, extremely important, always":
Videogames
Reading
Cinema
Drawing
Shopping
Writing
Bicycle
Tv
StayWFriend Spending time with friends
Groups Taking part to associations, meetings, etc.
```
Walking
HandWork Hobby, gardening, sewing, etc.
Internet
Sport
SocialNetwork
Gym
Quiz Crosswords, sudoku, etc.
MusicInstr Playing a musical instrument
GoAroundCar Hanging out by car
Dog Walking out the dog
GoOutEat Go to restaurants/pubs
```


Details

Period of data collection: December 2014
Mode of collection: questionnaire
Number of observations: 2459
Number of subjects' covariates: 16
Number of analyzed items: 34
Warning: with a limited number of missing values

```
summary.fastCUB S3 method: summary for class "fastCUB"
```


Description

S3 method summary for objects of class fastCUB.

Usage

\#\# S3 method for class 'fastCUB'
summary (object, correlation = FALSE, ...)

Arguments

object
An object of class fastCUB
correlation Logical: should the estimated correlation matrix be returned? Default is FALSE ... Other arguments

Value

Extended summary results of the fitting procedure, including parameter estimates, their standard errors and Wald statistics, maximized log-likelihood compared with that of the saturated model and of a Uniform sample. AIC, BIC and ICOMP indeces are also displayed for model selection. Execution time and number of exectued iterations for the fitting procedure are aslo returned.

Description

A sample survey on students evaluation of the Orientation services was conducted across the 13 Faculties of University of Naples Federico II in five waves: participants were asked to express their ratings on a 7 point scale ($1=$ "very unsatisfied", $7=$ "extremely satisfied"). Here dataset collected during 2002 is loaded.

Usage

data(univer)

Format

The description of subjects' covariates is:
Faculty A factor variable, with levels ranging from 1 to 13 indicating the coding for the different university faculties
Freqserv A factor with levels: $0=$ for not regular users, $1=$ for regular users
Age Variable indicating the age of the respondent in years
Gender A factor with levels: $0=$ man, $1=$ woman
Diploma A factor with levels: $1=$ classic studies, $2=$ scientific studies, $3=$ linguistic, $4=$ Professional, $5=$ Technical/Accountancy, $6=$ others
Residence A factor with levels: $1=$ city NA, $2=$ district NA, $3=$ others
ChangeFa A factor with levels: $1=$ changed faculty, $2=$ not changed faculty
Analyzed ordinal variables (Likert ordinal scale): $1=$ "extremely unsatisfied", $2=$ "very unsatisfied", 3 = "unsatisfied", 4 = "indifferent", $5=$ "satisfied", $6=$ "very satisfied", 7 = "extremely satisfied"

Informat Level of satisfaction about the collected information
Willingn Level of satisfaction about the willingness of the staff
Officeho Judgment about the Office hours
Competen Judgement about the competence of the staff
Global Global satisfaction

Details

Period of data collection: 2002
Mode of collection: questionnaire
Number of observations: 2179
Number of subjects' covariates: 7
Number of analyzed items: 5

```
    vcov.fastCUB S3 method vcov() for class "fastCUB"
```


Description

S3 method: vcov for objects of class fastCUB.

Usage

\#\# S3 method for class 'fastCUB'
vcov(object, ...)

Arguments

object	An object of class fastCUB
\ldots	Other arguments

Value

Variance-covariance matrix of the final ML estimates for parameters of the fitted CUB model. It is computed on the basis of Louis' identity within the EM algorithm.

See Also

fastCUB

Index

```
* datasets
    relgoods, 20
    univer, 23
* device
    makeplot,14
* distribution
    bitcsi,4
    bitgama,5
    probbit, 15
    probcub00, 15
    probcub0q, 16
    probcubp0,17
    probcubpq,19
* htest
        inibest,10
        inibestgama,11
* models
    cormat, }
    makeplot,14
* package
    BIC.fastCUB, }
    coef.fastCUB,6
    fastCUB, }
    fastCUB_package, }
    fitted.fastCUB,9
    logLik.fastCUB,13
    makeplot,14
    print.fastCUB,14
    summary.fastCUB, 22
    vcov.fastCUB,24
* stats
    bestcub, 2
    invmatgen, 12
* univar
    dissim,7
* utilities
    inibest,10
    inibestgama, 11
    logis,12
```

```
bestcub, 2
BIC.fastCUB, }
bitcsi, 4, 15, 16
bitgama, 5, 17-19
coef.fastCUB, 6
cormat, }
dissim, }
fastCUB, 3, 6, 8, 9, 10, 12-14, 22, 24
fastCUB_package, }
fitted.fastCUB,9
inibest, 10,11
inibestgama, 10,11
invmatgen, 12
logis, 5, 12
logLik, 3
logLik.fastCUB,13
makeplot,14
print.fastCUB,14
probbit, 15
probcub00, 4, 8, 15, 15, 17-19
probcub0q, 4, 5, 8, 16, 16, 18, 19
probcubp0, 4, 8, 16, 17, 17, 19
probcubpq, 5, 8, 16-18,19
relgoods, 20
summary, }
summary.fastCUB, 22
univer,23
vcov.fastCUB,24
```

