
MetabolSSMF

Introduction
This vignette presents the package, which implements a framework for the simplex-
structured matrix factorisation (SSMF) algorithm in . This package provides a standard algorithm, which
allows users to apply the SSMF to perform soft clustering of the data set that they are interested in. The
usage of this package will be illustrated through an application to a simulated metabolomic data set. This
vignette also includes the usage of:

gap statistic to select the number of clusters;
bootstrap resampling for estimating confidence intervals for the cluster prototypes;
soft adjusted Rand index for comparing known and estimated partitions;
Shannon diversity index for evaluating the average uncertainty in a soft clustering partition.

This document gives a quick tour of functionalities. It was written in R Markdown, using
the knitr package for production. See help(package=“MetabolSSMF”) for further details.

 The latest version of the package can be installed from :

Data
The simulated data set is created by the product of a soft membership matrix and a prototype matrix

. A user can use a Dirichlet distribution to generate the values for the soft membership matrix with
simplex structure. can be defined using a designed pattern. The package provides a simulated data set

, simulated prototype matrix and simulated membership matrix . These can be loaded through the
code data(SimulatedDataset), data(SimulatedPrototypes) and data(SimulatedMemberships),
respectively.

Visualise the simulated data
Visualise the values of simulated prototype matrix

𝐌𝐞𝐭𝐚𝐛𝐨𝐥𝐒𝐒𝐌𝐅

R

𝐌𝐞𝐭𝐚𝐛𝐨𝐥𝐒𝐒𝐌𝐅

𝐈𝐧𝐬𝐭𝐚𝐥𝐥𝐚𝐭𝐢𝐨𝐧: 𝐆𝐢𝐭𝐡𝐮𝐛

Install the package
devtools::install_github("WenxuanLiu1996/MetabolSSMF")

Load the package
library(MetabolSSMF)

𝐻
𝑊 𝐻

𝑊
𝑋 𝑊 𝐻

Simulated data set X
X <- as.matrix(SimulatedDataset)

Simulated W matrix (prototype matrix)
W <- as.matrix(SimulatedPrototypes)

Simulated H matrix (membership matrix)
H <- as.matrix(SimulatedMemberships)

𝑊

Visualise the values of simulated soft membership matrix in each observation

The scatter pies plot of the 2-dimensional projected clusters. It represents the simulated data with 4 soft
clusters, the area of colour in the pies depicts the values of the soft membership of the observations.

Define 4 different colors
color <- c(ggsci::pal_jco("default", alpha=0.8)(7)[2], ggsci::pal_jama("default",

alpha=0.8)(7)[c(3:5)])

par(mar=c(5.1, 4.1, 4.1, 4.1), xpd=TRUE)
matplot(t(W), type='l', lty = 1, ylab='Prototypes', col = color, lwd=2, ylim = c(0,1))
legend('topright', inset=c(-0.15,0), legend = 1:4, fill=color[1:4])

𝐻

pca_X <- prcomp(X, center = F, scale. = F)
par(mar=c(5.1, 4.1, 4.1, 4.1), xpd=TRUE)
caroline::pies(lapply(apply(H, 1, list), unlist), color.table = caroline::nv(color[1:4],

paste0('Pty', 1:4)), x0=pca_X$x[,1], y0=pca_X$x[,2], radii = 2, ylab='PC2',
xlab='PC1')

legend('topright', inset=c(-0.15,0), legend = 1:4, fill=color[1:4])

Choose the number of clusters
The SSMF algorithm can be run with using a for loop and the results can be saved to a
list. The ‘elbow criterion’ or the gap statistic can be done as a subsequent step.

Plot the residual sum of squares (“elbow criterion”)

𝑘 = 1, 2,… ,𝐾

Set the maximum k that is used in loop.
K <- 10

Run the SSMF algorithm with various k and save the results as a list
fit_SSMF <- list()
for(k in 1:K){
 fit <- ssmf(X, k = k, lr = 0.001, meth='kmeans')
 fit_SSMF[[k]] <- fit
}

Extract the RSS and save as a vector
rss_SSMF <- unlist(lapply(fit_SSMF, function(x) x$SSE))

Plot RSS
plot(1:K, rss_SSMF, type="b", xlab = "K", ylab = "RSS", main='Elbow Criterion')

If the ‘elbow’ is not clear, the gap statistic is suggested.

Gap statistic

Apply the gap statistic to the simulated data
fit_gap <- gap(X, rss = rss_SSMF)

Visualise the results
par(mar=c(5.1, 4.1, 4.1, 8.1), xpd=TRUE)
plot(x = c(1:K), y = fit_gap$gap, type='b', ylim=range((fit_gap$gap), (fit_gap$gap -

fit_gap$standard.error)[-1]), xlab='K', ylab='GAP', main='Gap statistic')
lines(x = c(1:(K-1)), y = (fit_gap$gap - fit_gap$standard.error)[-1], col='blue', lty=2,

type='b')
lines(x = rep(fit_gap$optimal.k, 2), y = range(fit_gap$gap), lty = 2, col='red')
legend('topright', inset=c(-0.35,0), col=c('black', 'blue', 'red'), lty=c(1, 2, 2), legend

= c('Gap', '-1 SE', 'Optimal K'), cex=0.8)

The estimated number of prototypes is 4 from both the ‘elbow criterion’ and gap statistic.

Bootstrap

Note: Usually the matrix is the output of the function ssmf(). If is not supplied, the bootstrapped
matrix might have different prototype orders from the outputs of the function ssmf().

Visualise the values of the bootstrap estimation and confidence intervals for the prototypes

Set the number of times to bootstrap
M <- 1000

Bootstrap
Initial H (membership) matrix to start the algorithm
Based on the results above, k=4 here
initialisation <- init(data = X, k = 4, method = 'kmeans')
fit_boot <- bootstrap(data = X, k = 4, H = initialisation$H, mtimes=M)

𝐻 𝐻 𝑊

par(mar=c(5.1, 4.1, 4.1, 4.1), xpd=TRUE)
matplot(t(fit_boot$W.est[c(2,4,1,3),]), type='n', xaxt='n', ylab='Features', ylim =

range(fit_boot$lower,fit_boot$upper))
for(i in 1:4){
 alpha <- 0.2

Estimated prototypes are represented by the solid lines and the 4 colours represent 4 clusters. Shadows
around the lines are confidence intervals for the prototypes.

Visualise the values of the estimated soft membership matrix

 plat <- c(ggsci::pal_jco("default",alpha=alpha)(7)[2], ggsci::pal_jama("default",
alpha=alpha)(7)[c(3:5)])

 col <- switch(i, plat[1], plat[2], plat[3], plat[4])
 polygon(c(1:138, 138:1), c(fit_boot$upper[c(2,4,1,3),][i,],

rev(fit_boot$lower[c(2,4,1,3),][i,])), col = col, border= col, lty = 1)
}
matplot(t(fit_boot$W.est[c(2,4,1,3),]), type='l', lty = 1, ylab='Features', add=T,

col=color, lwd=2)
legend('topright', inset=c(-0.15,0), legend = 1:4, fill=color[1:4])
axis(1, at=c(1, seq(10, 130, 10), 138), labels = c(1, seq(10, 130, 10), 138), cex=0.8)

par(mar=c(5.1, 4.1, 4.1, 4.1), xpd=TRUE)
caroline::pies(lapply(apply(fit_SSMF[[4]]$H, 1, list), unlist), color.table =

caroline::nv(color[1:4], c(4,3,2,1)), x0=pca_X$x[,1], y0=pca_X$x[,2], radii = 2,
ylab='PC2', xlab='PC1')

legend('topright', inset=c(-0.15,0), legend = 1:4, fill=color[1:4])

Soft Adjusted Rand Index (sARI)

The sARI between estimated soft membership matrix and the true soft membership matrix is 0.344. The
self comparison of the true soft membership matrix shows the upper bound of this sARI is 0.382. We can
use the percentage of these two values 0.344/0.382 0.901 to states that the estimated soft membership
matrix explained 90.1 information of the true soft membership matrix.

Shannon diversity index

Compare the true and estimated soft membership matrix
sARI(fit_SSMF[[4]]$H, H)
#> [1] 0.3439103

Self comparison of the true soft membership matrix
sARI(H, H)
#> [1] 0.3816684

=

%

E <- rep(NA, nrow(fit_SSMF[[4]]$H))
for(i in 1:nrow(fit_SSMF[[4]]$H)){
 E[i] <- diversity(fit_SSMF[[4]]$H[i,], two.power=T)
}

The estimated soft memberships of the simulated observations have an average values of 2.7,
indicating that most observations softly clustered by SSMF are fuzzy between 2 and 3clusters.

Additional NOTE
The SSMF algorithm has randomness, this document presents one of the situation using set.seed(12345)
at the beginning. The results will vary with different seeds that are used in . It is suggested to not set the
seed and run the algorithm multiple times using the same values of (the number of prototypes). Then,
select a result with the lowest RSS, save it to the list and continue processing next steps.

round(mean(E), 1)
#> [1] 2.7

=2E()ℎ𝑖⋅

R

𝑘

