It is fairly easy to use OpenMx to compare numerical and analytic
function derivatives. This vignette shows how to do it. The main tool
that we are going to use are two custom compute plans called
aPlan
and nPlan
.
## To take full advantage of multiple cores, use:
## mxOption(key='Number of Threads', value=parallel::detectCores()) #now
## Sys.setenv(OMP_NUM_THREADS=parallel::detectCores()) #before library(OpenMx)
aPlan <- mxComputeSequence(list( #analytic
mxComputeOnce('fitfunction', c('gradient')),
mxComputeReportDeriv()))
nPlan <- mxComputeSequence(list( #numerical
mxComputeNumericDeriv(analytic = FALSE, hessian=FALSE, checkGradient = FALSE),
mxComputeReportDeriv()))
Now that we have the plans ready, we can use them to debug a fitfunction. Here’s a fitfunction from the test suite that is somewhat contrived, but can serve our pedagogical needs.
mat1 <- mxMatrix("Full", rnorm(1), free=TRUE, nrow=1, ncol=1, labels="m1", name="mat1")
obj <- mxAlgebra(-.5 * (log(2*pi) + log(2) + (mat1[1,1])^2/2), name = "obj")
grad <- mxAlgebra(-(mat1[1,1]) + 2, name = "grad", dimnames=list("m1", NULL))
mv1 <- mxModel("mv1", mat1, obj, grad,
mxFitFunctionAlgebra("obj", gradient="grad"))
Since we are not very good at calculus, the gradient function contains some errors.
nu <- mxRun(mxModel(mv1, nPlan), silent = TRUE)
an <- mxRun(mxModel(mv1, aPlan), silent = TRUE)
cbind(numerical=nu$output$gradient, analytic=an$output$gradient)
## numerical analytic
## m1 -0.04829748 1.903405
The optimizer is not run so we get the results immediately, even for large complex models. The function also does not need to be (approximately) convex. Any function will do.
The numerical approximation can be pretty different from the analytic even when there are no errors. We can try another point in the parameter space.
p1 <- runif(2, -10,10)
mv1 <- omxSetParameters(mv1, labels = 'm1', values=p1)
nu <- mxRun(mxModel(mv1, nPlan), silent = TRUE)
an <- mxRun(mxModel(mv1, aPlan), silent = TRUE)
cbind(numerical=nu$output$gradient, analytic=an$output$gradient)
## numerical analytic
## m1 4.104062 10.20812
The results do not correspond very closely so we look for math errors. Indeed, there are errors in the gradient function. We replace it with the correct gradient,
grad <- mxAlgebra(-(mat1[1,1])/2, name = "grad", dimnames=list("m1", NULL))
mv2 <- mxModel(mv1, grad)
Let’s check the correspondence now.
nu <- mxRun(mxModel(mv2, nPlan), silent = TRUE)
an <- mxRun(mxModel(mv2, aPlan), silent = TRUE)
cbind(numerical=nu$output$gradient, analytic=an$output$gradient)
## numerical analytic
## m1 4.104062 4.104062
Wow, looks much better! Still, it is prudent to check at a few more points.
mv2 <- omxSetParameters(mv2, labels = 'm1', values=rnorm(1))
nu <- mxRun(mxModel(mv2, nPlan), silent = TRUE)
an <- mxRun(mxModel(mv2, aPlan), silent = TRUE)
cbind(numerical=nu$output$gradient, analytic=an$output$gradient)
## numerical analytic
## m1 0.6387303 0.6387303