SSLfmm: Semi-Supervised Learning under a Mixed-Missingness Mechanism in Finite Mixture Models

Implements a semi-supervised learning framework for finite mixture models under a mixed-missingness mechanism. The approach models both missing completely at random (MCAR) and entropy-based missing at random (MAR) processes using a logistic–entropy formulation. Estimation is carried out via an Expectation–-Conditional Maximisation (ECM) algorithm with robust initialisation routines for stable convergence. The methodology relates to the statistical perspective and informative missingness behaviour discussed in Ahfock and McLachlan (2020) <doi:10.1007/s11222-020-09971-5> and Ahfock and McLachlan (2023) <doi:10.1016/j.ecosta.2022.03.007>. The package provides functions for data simulation, model estimation, prediction, and theoretical Bayes error evaluation for analysing partially labelled data under a mixed-missingness mechanism.

Version: 0.1.0
Depends: R (≥ 4.2.0)
Imports: stats, mvtnorm, matrixStats
Published: 2025-12-09
DOI: 10.32614/CRAN.package.SSLfmm (may not be active yet)
Author: Jinran Wu ORCID iD [aut, cre], Geoffrey J. McLachlan ORCID iD [aut]
Maintainer: Jinran Wu <jinran.wu at uq.edu.au>
License: GPL-3
NeedsCompilation: no
CRAN checks: SSLfmm results

Documentation:

Reference manual: SSLfmm.html , SSLfmm.pdf

Downloads:

Package source: SSLfmm_0.1.0.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): SSLfmm_0.1.0.tgz, r-oldrel (arm64): SSLfmm_0.1.0.tgz, r-release (x86_64): SSLfmm_0.1.0.tgz, r-oldrel (x86_64): SSLfmm_0.1.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=SSLfmm to link to this page.