
Package ‘arf’
January 24, 2024

Title Adversarial Random Forests

Version 0.2.0

Date 2024-01-24

Maintainer Marvin N. Wright <cran@wrig.de>

Description Adversarial random forests (ARFs) recursively partition data into
fully factorized leaves, where features are jointly independent. The
procedure is iterative, with alternating rounds of generation and
discrimination. Data becomes increasingly realistic at each round, until
original and synthetic samples can no longer be reliably distinguished.
This is useful for several unsupervised learning tasks, such as density
estimation and data synthesis. Methods for both are implemented in this
package. ARFs naturally handle unstructured data with mixed continuous and
categorical covariates. They inherit many of the benefits of random forests,
including speed, flexibility, and solid performance with default parameters.
For details, see Watson et al. (2022) <arXiv:2205.09435>.

License GPL (>= 3)

URL https://github.com/bips-hb/arf, https://bips-hb.github.io/arf/

BugReports https://github.com/bips-hb/arf/issues

Imports data.table, ranger, foreach, truncnorm

Encoding UTF-8

RoxygenNote 7.3.0

Suggests ggplot2, doParallel, mlbench, knitr, rmarkdown, tibble,
testthat (>= 3.0.0)

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation no

Author Marvin N. Wright [aut, cre] (<https://orcid.org/0000-0002-8542-6291>),
David S. Watson [aut] (<https://orcid.org/0000-0001-9632-2159>),
Kristin Blesch [aut] (<https://orcid.org/0000-0001-6241-3079>),
Jan Kapar [aut] (<https://orcid.org/0009-0000-6408-2840>)

Repository CRAN

Date/Publication 2024-01-24 14:53:15 UTC

1

https://arxiv.org/abs/2205.09435
https://github.com/bips-hb/arf
https://bips-hb.github.io/arf/
https://github.com/bips-hb/arf/issues
https://orcid.org/0000-0002-8542-6291
https://orcid.org/0000-0001-9632-2159
https://orcid.org/0000-0001-6241-3079
https://orcid.org/0009-0000-6408-2840

2 adversarial_rf

R topics documented:
adversarial_rf . 2
col_rename . 4
expct . 4
forde . 5
forge . 7
leaf_posterior . 9
lik . 9
post_x . 11
prep_evi . 11
prep_x . 12

Index 13

adversarial_rf Adversarial Random Forests

Description

Implements an adversarial random forest to learn independence-inducing splits.

Usage

adversarial_rf(
x,
num_trees = 10L,
min_node_size = 2L,
delta = 0,
max_iters = 10L,
early_stop = TRUE,
prune = TRUE,
verbose = TRUE,
parallel = TRUE,
...

)

Arguments

x Input data. Integer variables are recoded as ordered factors with a warning. See
Details.

num_trees Number of trees to grow in each forest. The default works well for most gen-
erative modeling tasks, but should be increased for likelihood estimation. See
Details.

min_node_size Minimal number of real data samples in leaf nodes.

delta Tolerance parameter. Algorithm converges when OOB accuracy is < 0.5 +
delta.

adversarial_rf 3

max_iters Maximum iterations for the adversarial loop.

early_stop Terminate loop if performance fails to improve from one round to the next?

prune Impose min_node_size by pruning?

verbose Print discriminator accuracy after each round?

parallel Compute in parallel? Must register backend beforehand, e.g. via doParallel.

... Extra parameters to be passed to ranger.

Details

The adversarial random forest (ARF) algorithm partitions data into fully factorized leaves where
features are jointly independent. ARFs are trained iteratively, with alternating rounds of generation
and discrimination. In the first instance, synthetic data is generated via independent bootstraps
of each feature, and a RF classifier is trained to distinguish between real and fake samples. In
subsequent rounds, synthetic data is generated separately in each leaf, using splits from the previous
forest. This creates increasingly realistic data that satisfies local independence by construction. The
algorithm converges when a RF cannot reliably distinguish between the two classes, i.e. when OOB
accuracy falls below 0.5 + delta.

ARFs are useful for several unsupervised learning tasks, such as density estimation (see forde)
and data synthesis (see forge). For the former, we recommend increasing the number of trees for
improved performance (typically on the order of 100-1000 depending on sample size).

Integer variables are recoded with a warning. Default behavior is to convert those with six or more
unique values to numeric, while those with up to five unique values are treated as ordered factors.
To override this behavior, explicitly recode integer variables to the target type prior to training.

Note: convergence is not guaranteed in finite samples. The max_iters argument sets an upper
bound on the number of training rounds. Similar results may be attained by increasing delta. Even
a single round can often give good performance, but data with strong or complex dependencies
may require more iterations. With the default early_stop = TRUE, the adversarial loop terminates
if performance does not improve from one round to the next, in which case further training may be
pointless.

Value

A random forest object of class ranger.

References

Watson, D., Blesch, K., Kapar, J., & Wright, M. (2023). Adversarial random forests for density es-
timation and generative modeling. In Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics, pp. 5357-5375.

See Also

forde, forge

4 expct

Examples

arf <- adversarial_rf(iris)

col_rename Adaptive column renaming

Description

This function renames columns in case the input data.frame includes any colnames required by
internal functions (e.g., "y").

Usage

col_rename(df, old_name)

Arguments

df Input data.frame.

old_name Name of column to be renamed.

expct Expected Value

Description

Compute the expectation of some query variable(s), optionally conditioned on some event(s).

Usage

expct(params, query = NULL, evidence = NULL)

Arguments

params Circuit parameters learned via forde.

query Optional character vector of variable names. Estimates will be computed for
each. If NULL, all variables other than those in evidence will be estimated.

evidence Optional set of conditioning events. This can take one of three forms: (1) a
partial sample, i.e. a single row of data with some but not all columns; (2) a data
frame of conditioning events, which allows for inequalities; or (3) a posterior
distribution over leaves. See Details.

forde 5

Details

This function computes expected values for any subset of features, optionally conditioned on some
event(s).

Value

A one row data frame with values for all query variables.

References

Watson, D., Blesch, K., Kapar, J., & Wright, M. (2023). Adversarial random forests for density es-
timation and generative modeling. In Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics, pp. 5357-5375.

See Also

adversarial_rf, forde, lik

Examples

Train ARF and corresponding circuit
arf <- adversarial_rf(iris)
psi <- forde(arf, iris)

What is the expected value Sepal.Length?
expct(psi, query = "Sepal.Length")

What if we condition on Species = "setosa"?
evi <- data.frame(Species = "setosa")
expct(psi, query = "Sepal.Length", evidence = evi)

Compute expectations for all features other than Species
expct(psi, evidence = evi)

forde Forests for Density Estimation

Description

Uses a pre-trained ARF model to estimate leaf and distribution parameters.

6 forde

Usage

forde(
arf,
x,
oob = FALSE,
family = "truncnorm",
finite_bounds = FALSE,
alpha = 0,
epsilon = 0,
parallel = TRUE

)

Arguments

arf Pre-trained adversarial_rf. Alternatively, any object of class ranger.

x Training data for estimating parameters.

oob Only use out-of-bag samples for parameter estimation? If TRUE, x must be the
same dataset used to train arf.

family Distribution to use for density estimation of continuous features. Current op-
tions include truncated normal (the default family = "truncnorm") and uniform
(family = "unif"). See Details.

finite_bounds Impose finite bounds on all continuous variables?

alpha Optional pseudocount for Laplace smoothing of categorical features. This avoids
zero-mass points when test data fall outside the support of training data. Effec-
tively parametrizes a flat Dirichlet prior on multinomial likelihoods.

epsilon Optional slack parameter on empirical bounds when family = "unif" or finite_bounds
= TRUE. This avoids zero-density points when test data fall outside the support of
training data. The gap between lower and upper bounds is expanded by a factor
of 1 + epsilon.

parallel Compute in parallel? Must register backend beforehand, e.g. via doParallel.

Details

forde extracts leaf parameters from a pretrained forest and learns distribution parameters for data
within each leaf. The former includes coverage (proportion of data falling into the leaf) and split
criteria. The latter includes proportions for categorical features and mean/variance for continuous
features. The result is a probabilistic circuit, stored as a data.table, which can be used for various
downstream inference tasks.

Currently, forde only provides support for a limited number of distributional families: truncated
normal or uniform for continuous data, and multinomial for discrete data. Future releases will
accommodate a larger set of options.

Though forde was designed to take an adversarial random forest as input, the function’s first ar-
gument can in principle be any object of class ranger. This allows users to test performance with
alternative pipelines (e.g., with supervised forest input). There is also no requirement that x be
the data used to fit arf, unless oob = TRUE. In fact, using another dataset here may protect against
overfitting. This connects with Wager & Athey’s (2018) notion of "honest trees".

forge 7

Value

A list with 5 elements: (1) parameters for continuous data; (2) parameters for discrete data; (3)
leaf indices and coverage; (4) metadata on variables; and (5) the data input class. This list is used
for estimating likelihoods with lik and generating data with forge.

References

Watson, D., Blesch, K., Kapar, J., & Wright, M. (2023). Adversarial random forests for density es-
timation and generative modeling. In Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics, pp. 5357-5375.

Wager, S. & Athey, S. (2018). Estimation and inference of heterogeneous treatment effects using
random forests. J. Am. Stat. Assoc., 113(523): 1228-1242.

See Also

adversarial_rf, forge, lik

Examples

arf <- adversarial_rf(iris)
psi <- forde(arf, iris)
head(psi)

forge Forests for Generative Modeling

Description

Uses pre-trained FORDE model to simulate synthetic data.

Usage

forge(params, n_synth, evidence = NULL)

Arguments

params Circuit parameters learned via forde.

n_synth Number of synthetic samples to generate.

evidence Optional set of conditioning events. This can take one of three forms: (1) a
partial sample, i.e. a single row of data with some but not all columns; (2) a data
frame of conditioning events, which allows for inequalities; or (3) a posterior
distribution over leaves. See Details.

8 forge

Details

forge simulates a synthetic dataset of n_synth samples. First, leaves are sampled in proportion
to either their coverage (if evidence = NULL) or their posterior probability. Then, each feature
is sampled independently within each leaf according to the probability mass or density function
learned by forde. This will create realistic data so long as the adversarial RF used in the previous
step satisfies the local independence criterion. See Watson et al. (2023).

There are three methods for (optionally) encoding conditioning events via the evidence argument.
The first is to provide a partial sample, where some but not all columns from the training data are
present. The second is to provide a data frame with three columns: variable, relation, and
value. This supports inequalities via relation. Alternatively, users may directly input a pre-
calculated posterior distribution over leaves, with columns f_idx and wt. This may be preferable
for complex constraints. See Examples.

Value

A dataset of n_synth synthetic samples.

References

Watson, D., Blesch, K., Kapar, J., & Wright, M. (2023). Adversarial random forests for density es-
timation and generative modeling. In Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics, pp. 5357-5375.

See Also

adversarial_rf, forde

Examples

arf <- adversarial_rf(iris)
psi <- forde(arf, iris)
x_synth <- forge(psi, n_synth = 100)

Condition on Species = "setosa"
evi <- data.frame(Species = "setosa")
x_synth <- forge(psi, n_synth = 100, evidence = evi)

Condition in Species = "setosa" and Sepal.Length > 6
evi <- data.frame(variable = c("Species", "Sepal.Length"),

relation = c("==", ">"),
value = c("setosa", 6))

x_synth <- forge(psi, n_synth = 100, evidence = evi)

Or just input some distribution on leaves
(Weights that do not sum to unity are automatically scaled)
n_leaves <- nrow(psi$forest)
evi <- data.frame(f_idx = psi$forest$f_idx, wt = rexp(n_leaves))
x_synth <- forge(psi, n_synth = 100, evidence = evi)

leaf_posterior 9

leaf_posterior Compute leaf posterior

Description

This function returns a posterior distribution on leaves, conditional on some evidence.

Usage

leaf_posterior(params, evidence)

Arguments

params Circuit parameters learned via forde.

evidence Data frame of conditioning event(s).

lik Likelihood Estimation

Description

Compute the likelihood of input data, optionally conditioned on some event(s).

Usage

lik(
params,
query,
evidence = NULL,
arf = NULL,
oob = FALSE,
log = TRUE,
batch = NULL,
parallel = TRUE

)

Arguments

params Circuit parameters learned via forde.

query Data frame of samples, optionally comprising just a subset of training fea-
tures. Likelihoods will be computed for each sample. Missing features will
be marginalized out. See Details.

evidence Optional set of conditioning events. This can take one of three forms: (1) a
partial sample, i.e. a single row of data with some but not all columns; (2) a data
frame of conditioning events, which allows for inequalities; or (3) a posterior
distribution over leaves. See Details.

10 lik

arf Pre-trained adversarial_rf or other object of class ranger. This is not re-
quired but speeds up computation considerably for total evidence queries. (Ig-
nored for partial evidence queries.)

oob Only use out-of-bag leaves for likelihood estimation? If TRUE, x must be the
same dataset used to train arf. Only applicable for total evidence queries.

log Return likelihoods on log scale? Recommended to prevent underflow.

batch Batch size. The default is to compute densities for all of queries in one round,
which is always the fastest option if memory allows. However, with large sam-
ples or many trees, it can be more memory efficient to split the data into batches.
This has no impact on results.

parallel Compute in parallel? Must register backend beforehand, e.g. via doParallel.

Details

This function computes the likelihood of input data, optionally conditioned on some event(s).
Queries may be partial, i.e. covering some but not all features, in which case excluded variables
will be marginalized out.

There are three methods for (optionally) encoding conditioning events via the evidence argument.
The first is to provide a partial sample, where some but not all columns from the training data are
present. The second is to provide a data frame with three columns: variable, relation, and
value. This supports inequalities via relation. Alternatively, users may directly input a pre-
calculated posterior distribution over leaves, with columns f_idx and wt. This may be preferable
for complex constraints. See Examples.

Value

A vector of likelihoods, optionally on the log scale.

References

Watson, D., Blesch, K., Kapar, J., & Wright, M. (2023). Adversarial random forests for density es-
timation and generative modeling. In Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics, pp. 5357-5375.

See Also

adversarial_rf, forge

Examples

Estimate average log-likelihood
arf <- adversarial_rf(iris)
psi <- forde(arf, iris)
ll <- lik(psi, iris, arf = arf, log = TRUE)
mean(ll)

Identical but slower
ll <- lik(psi, iris, log = TRUE)
mean(ll)

post_x 11

Partial evidence query
lik(psi, query = iris[1, 1:3])

Condition on Species = "setosa"
evi <- data.frame(Species = "setosa")
lik(psi, query = iris[1, 1:3], evidence = evi)

Condition on Species = "setosa" and Petal.Width > 0.3
evi <- data.frame(variable = c("Species", "Petal.Width"),

relation = c("==", ">"),
value = c("setosa", 0.3))

lik(psi, query = iris[1, 1:3], evidence = evi)

post_x Post-process data

Description

This function prepares output data for forge.

Usage

post_x(x, params)

Arguments

x Input data.frame.

params Circuit parameters learned via forde.

prep_evi Preprocess evidence

Description

This function prepares the evidence for computing leaf posteriors.

Usage

prep_evi(params, evidence)

Arguments

params Circuit parameters learned via forde.

evidence Optional set of conditioning events.

12 prep_x

prep_x Preprocess input data

Description

This function prepares input data for ARFs.

Usage

prep_x(x)

Arguments

x Input data.frame.

Index

adversarial_rf, 2, 5–8, 10

col_rename, 4

expct, 4

forde, 3–5, 5, 7–9, 11
forge, 3, 7, 7, 10

leaf_posterior, 9
lik, 5, 7, 9

post_x, 11
prep_evi, 11
prep_x, 12

13

	adversarial_rf
	col_rename
	expct
	forde
	forge
	leaf_posterior
	lik
	post_x
	prep_evi
	prep_x
	Index

