| Type: | Package | 
| Title: | Bayesian Stability Analysis of Genotype by Environment Interaction (GEI) | 
| Version: | 0.2.0 | 
| Maintainer: | Muhammad Yaseen <myaseen208@gmail.com> | 
| Description: | Performs general Bayesian estimation method of linear–bilinear models for genotype × environment interaction. The method is explained in Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) (<doi:10.1007/s13253-011-0063-9>). | 
| Depends: | R (≥ 3.1) | 
| Imports: | dplyr, ggplot2, lme4, MASS, rstiefel, rlang, scales, stats, tibble, tidyr | 
| License: | GPL-2 | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| RoxygenNote: | 7.3.2 | 
| NeedsCompilation: | no | 
| Packaged: | 2024-10-15 02:30:56 UTC; myaseen208 | 
| Author: | Muhammad Yaseen [aut, cre], Diego Jarquin [aut, ctb], Sergio Perez-Elizalde [aut, ctb], Juan Burgueño [aut, ctb], Jose Crossa [aut, ctb] | 
| Repository: | CRAN | 
| Date/Publication: | 2024-10-15 04:40:03 UTC | 
Bayesian Estimation of Genotype by Environment Interaction Model
Description
Bayesian estimation method of linear–bilinear models for Genotype by Environment Interaction Model
Usage
## Default S3 method:
bayes_ammi(.data, .y, .gen, .env, .rep, .nIter)
Arguments
| .data | data.frame | 
| .y | Response Variable | 
| .gen | Genotypes Factor | 
| .env | Environment Factor | 
| .rep | Replication Factor | 
| .nIter | Number of Iterations | 
Value
Genotype by Environment Interaction Model
Author(s)
- Muhammad Yaseen (myaseen208@gmail.com) 
- Diego Jarquin (diego.jarquin@gmail.com) 
- Sergio Perez-Elizalde (sergiop@colpos.mx) 
- Juan Burgueño (j.burgueno@cgiar.org) 
- Jose Crossa (j.crossa@cgiar.org) 
References
Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) A General Bayesian Estimation Method of Linear–Bilinear Models Applied to Plant Breeding Trials With Genotype × Environment Interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17, 15–37. (doi:10.1007/s13253-011-0063-9)
Examples
## Not run: 
library(baystability)
library(dplyr)
data(cultivo2008)
fm1 <-
   ge_ammi(
      .data  = cultivo2008
     , .y    = y
     , .gen  = entry
     , .env  = site
     , .rep  = rep
     )
r0 <- fm1$g
c0 <- fm1$e
n0 <- fm1$Rep
k0 <- fm1$k
mu0      <- fm1$mu
sigma20  <- fm1$sigma2
tau0     <- fm1$tau
tao0     <- fm1$tao
delta0   <- fm1$delta
lambdas0 <- fm1$lambdas
alphas0  <- fm1$alphas
gammas0  <- fm1$gammas
ge_means0 <- fm1$ge_means$ge_means
data(cultivo2008)
fm2 <-
 ge_ammi(
   .data = cultivo2009
   , .y    = y
   , .gen  = entry
   , .env  = site
   , .rep  = rep
  )
k        <- fm2$k
alphasa  <- fm2$alphas
gammasa  <- fm2$gammas
alphas1  <-
           tibble::as_tibble(fm2$alphas, .name_repair = "unique") %>%
           setNames(paste0("V", 1:ncol(.)))
gammas1  <-
           tibble::as_tibble(fm2$gammas, .name_repair = "unique") %>%
           setNames(paste0("V", 1:ncol(.)))
# Biplots OLS
library(ggplot2)
    BiplotOLS1 <-
      ggplot(data = alphas1, mapping = aes(x = V1, y = V2)) +
      geom_point() +
      geom_hline(yintercept = 0) +
      geom_vline(xintercept = 0) +
      geom_text(aes(label = 1:nrow(alphas1)), vjust = "inward", hjust = "inward") +
      scale_x_continuous(
               limits = c(-max(abs(c(range(alphas1[, 1:2]))))
                         , max(abs(c(range(alphas1[, 1:2])))))) +
      scale_y_continuous(
               limits = c(-max(abs(c(range(alphas1[, 1:2]))))
                         , max(abs(c(range(alphas1[, 1:2])))))) +
      labs(title = "OLS", x = expression(u[1]), y = expression(u[2])) +
      theme_bw() +
      theme(plot.title = element_text(hjust = 0.5))
      print(BiplotOLS1)
    BiplotOLS2 <-
      ggplot(data = gammas1, mapping = aes(x = V1, y = V2)) +
      geom_point() +
      geom_hline(yintercept = 0) +
      geom_vline(xintercept = 0) +
      geom_text(aes(label = 1:nrow(gammas1)), vjust = "inward", hjust = "inward") +
      scale_x_continuous(
                limits = c(-max(abs(c(range(gammas1[, 1:2]))))
                         , max(abs(c(range(gammas1[, 1:2])))))) +
      scale_y_continuous(
                limits = c(-max(abs(c(range(gammas1[, 1:2]))))
                          , max(abs(c(range(gammas1[, 1:2])))))) +
      labs(title = "OLS", x = expression(v[1]), y = expression(v[2])) +
      theme_bw() +
      theme(plot.title = element_text(hjust = 0.5))
      print(BiplotOLS2)
    BiplotOLS3 <-
      ggplot(data = alphas1, mapping = aes(x = V1, y = V2)) +
      geom_point() +
      geom_hline(yintercept = 0) +
      geom_vline(xintercept = 0) +
      geom_text(aes(label = 1:nrow(alphas1)), vjust = "inward", hjust = "inward") +
      geom_point(data = gammas1, mapping = aes(x = V1, y = V2)) +
      geom_segment(data = gammas1, aes(x = 0, y = 0, xend = V1, yend = V2),
                    arrow = arrow(length = unit(0.2, "cm")), alpha = 0.75, color = "red") +
      geom_text(data = gammas1,
              aes(x = V1, y = V2, label = paste0("E", 1:nrow(gammasa)))
             , vjust = "inward", hjust = "inward") +
      scale_x_continuous(
              limits = c(-max(abs(c(range(alphas1[, 1:2], gammas1[, 1:2]))))
                        , max(abs(c(range(alphas1[, 1:2], gammas1[, 1:2])))))) +
      scale_y_continuous(
              limits = c(-max(abs(c(range(alphas1[, 1:2], gammas1[, 1:2]))))
                       , max(abs(c(range(alphas1[, 1:2], gammas1[, 1:2])))))) +
      labs(title = "OLS", x = expression(PC[1]), y = expression(PC[2])) +
      theme_bw() +
      theme(plot.title = element_text(hjust = 0.5))
      print(BiplotOLS3)
data(cultivo2009)
fm3 <-
  bayes_ammi(
    .data = cultivo2009
    , .y     = y
    , .gen   = entry
    , .env   = site
    , .rep   = rep
    , .nIter = 200
  )
 Mean_Alphas <- fm3$Mean_Alphas %>% setNames(paste0("V", 1:ncol(.)))
 Mean_Gammas <- fm3$Mean_Gammas %>% setNames(paste0("V", 1:ncol(.)))
# Biplots Bayesian
BiplotBayes1 <-
  ggplot(data = Mean_Alphas, mapping = aes(x = V1, y = V2)) +
  geom_point() +
  geom_hline(yintercept = 0) +
  geom_vline(xintercept = 0) +
  geom_text(aes(label = 1:nrow(Mean_Alphas)),
             vjust = "inward"
           , hjust = "inward") +
  scale_x_continuous(
     limits = c(-max(abs(c(range(Mean_Alphas[, 1:2]))))
               , max(abs(c(range(Mean_Alphas[, 1:2])))))) +
  scale_y_continuous(
      limits = c(-max(abs(c(range(Mean_Alphas[, 1:2]))))
                , max(abs(c(range(Mean_Alphas[, 1:2])))))) +
  labs(title = "Bayes", x = expression(u[1]), y = expression(u[2])) +
  theme_bw() +
  theme(plot.title = element_text(hjust = 0.5))
print(BiplotBayes1)
BiplotBayes2 <-
  ggplot(data = Mean_Gammas, mapping = aes(x = V1, y = V2)) +
  geom_point() +
  geom_hline(yintercept = 0) +
  geom_vline(xintercept = 0) +
  geom_text(aes(label = 1:nrow(Mean_Gammas)), vjust = "inward", hjust = "inward") +
  scale_x_continuous(
            limits = c(-max(abs(c(range(Mean_Gammas[, 1:2]))))
                      , max(abs(c(range(Mean_Gammas[, 1:2])))))) +
  scale_y_continuous(
            limits = c(-max(abs(c(range(Mean_Gammas[, 1:2]))))
                      , max(abs(c(range(Mean_Gammas[, 1:2])))))) +
  labs(title = "Bayes", x = expression(v[1]), y = expression(v[2])) +
  theme_bw() +
  theme(plot.title = element_text(hjust = 0.5))
print(BiplotBayes2)
BiplotBayes3 <-
  ggplot(data = Mean_Alphas, mapping = aes(x = V1, y = V2)) +
  geom_point() +
  geom_hline(yintercept = 0) +
  geom_vline(xintercept = 0) +
  geom_text(aes(label = 1:nrow(Mean_Alphas)),
             vjust = "inward", hjust = "inward") +
  geom_point(data = Mean_Gammas, mapping = aes(x = V1, y = V2)) +
  geom_segment(data = Mean_Gammas,
                aes(x = 0, y = 0, xend = V1, yend = V2),
               arrow = arrow(length = unit(0.2, "cm"))
               , alpha = 0.75, color = "red") +
  geom_text(data = Mean_Gammas,
            aes(x = V1, y = V2,
            label = paste0("E", 1:nrow(Mean_Gammas))),
            vjust = "inward", hjust = "inward") +
  scale_x_continuous(
            limits = c(-max(abs(c(range(Mean_Alphas[, 1:2], Mean_Gammas[, 1:2]))))
                      , max(abs(c(range(Mean_Alphas[, 1:2], Mean_Gammas[, 1:2])))))) +
  scale_y_continuous(
           limits = c(-max(abs(c(range(Mean_Alphas[, 1:2], Mean_Gammas[, 1:2]))))
                   , max(abs(c(range(Mean_Alphas[, 1:2], Mean_Gammas[, 1:2])))))) +
  labs(title = "Bayes", x = expression(PC[1]), y = expression(PC[2])) +
  theme_bw() +
  theme(plot.title = element_text(hjust = 0.5))
print(BiplotBayes3)
Plot1Mu <-
  ggplot(data = fm3$mu1, mapping = aes(x = 1:nrow(fm3$mu1), y = mu)) +
  geom_line(color = "blue") +
  scale_x_continuous(labels = scales::comma) +
  scale_y_continuous(labels = scales::comma) +
  labs(y = expression(mu), x = "Iterations") +
  theme_bw()
print(Plot1Mu)
Plot2Mu <-
  ggplot(data = fm3$mu1, mapping = aes(mu)) +
  geom_histogram() +
  scale_x_continuous(labels = scales::comma) +
  scale_y_continuous(labels = scales::comma) +
  labs(y = "Frequency", x = expression(mu)) +
  theme_bw()
print(Plot2Mu)
Plot1Sigma2 <-
  ggplot(data = fm3$tau1, mapping = aes(x = 1:nrow(fm3$tau1), y = tau)) +
  geom_line(color = "blue") +
  scale_x_continuous(labels = scales::comma) +
  scale_y_continuous(labels = scales::comma) +
  labs(y = expression(sigma^2), x = "Iterations") +
  theme_bw()
print(Plot1Sigma2)
Plot2Sigma2 <-
  ggplot(data = fm3$tau1, mapping = aes(tau)) +
  geom_histogram() +
  scale_x_continuous(labels = scales::comma) +
  scale_y_continuous(labels = scales::comma) +
  labs(y = "Frequency", x = expression(sigma^2)) +
  theme_bw()
print(Plot2Sigma2)
# Plot of Alphas
Plot1Alpha1 <-
  ggplot(data = fm3$tao1, mapping = aes(x = 1:nrow(fm3$tao1), y = tao1)) +
  geom_line(color = "blue") +
  scale_x_continuous(labels = scales::comma) +
  scale_y_continuous(labels = scales::comma) +
  labs(y = expression(alpha[1]), x = "Iterations") +
  theme_bw()
print(Plot1Alpha1)
Plot2Alpha1 <-
  ggplot(data = fm3$tao1, mapping = aes(tao1)) +
  geom_histogram() +
  scale_x_continuous(labels = scales::comma) +
  scale_y_continuous(labels = scales::comma) +
  labs(y = "Frequency", x = expression(alpha[1])) +
  theme_bw()
print(Plot2Alpha1)
Plot1Alpha2 <-
  ggplot(data = fm3$tao1, mapping = aes(x = 1:nrow(fm3$tao1), y = tao2)) +
  geom_line(color = "blue") +
  scale_x_continuous(labels = scales::comma) +
  scale_y_continuous(labels = scales::comma) +
  labs(y = expression(alpha[2]), x = "Iterations") +
  theme_bw()
print(Plot1Alpha2)
Plot2Alpha2 <-
  ggplot(data = fm3$tao1, mapping = aes(tao2)) +
  geom_histogram() +
  scale_x_continuous(labels = scales::comma) +
  scale_y_continuous(labels = scales::comma) +
  labs(y = "Frequency", x = expression(alpha[2])) +
  theme_bw()
print(Plot2Alpha2)
# Plot of Betas
Plot1Beta1 <-
  ggplot(data = fm3$delta1, mapping = aes(x = 1:nrow(fm3$delta1), y = delta1)) +
  geom_line(color = "blue") +
  scale_x_continuous(labels = scales::comma) +
  scale_y_continuous(labels = scales::comma) +
  labs(y = expression(beta[1]), x = "Iterations") +
  theme_bw()
print(Plot1Beta1)
Plot2Beta1 <-
  ggplot(data = fm3$delta1, mapping = aes(delta1)) +
  geom_histogram() +
  scale_x_continuous(labels = scales::comma) +
  scale_y_continuous(labels = scales::comma) +
  labs(y = "Frequency", x = expression(beta[1])) +
  theme_bw()
print(Plot2Beta1)
Plot1Beta2 <-
  ggplot(data = fm3$delta1, mapping = aes(x = 1:nrow(fm3$delta1), y = delta2)) +
  geom_line(color = "blue") +
  scale_x_continuous(labels = scales::comma) +
  scale_y_continuous(labels = scales::comma) +
  labs(y = expression(beta[2]), x = "Iterations") +
  theme_bw()
print(Plot1Beta2)
Plot2Beta2 <-
  ggplot(data = fm3$delta1, mapping = aes(delta2)) +
  geom_histogram() +
  scale_x_continuous(labels = scales::comma) +
  scale_y_continuous(labels = scales::comma) +
  labs(y = "Frequency", x = expression(beta[2])) +
  theme_bw()
print(Plot2Beta2)
Plot1Beta3 <-
  ggplot(data = fm3$delta1, mapping = aes(x = 1:nrow(fm3$delta1), y = delta3)) +
  geom_line(color = "blue") +
  scale_x_continuous(labels = scales::comma) +
  scale_y_continuous(labels = scales::comma) +
  labs(y = expression(beta[3]), x = "Iterations") +
  theme_bw()
print(Plot1Beta3)
Plot2Beta3 <-
  ggplot(data = fm3$delta1, mapping = aes(delta3)) +
  geom_histogram() +
  scale_x_continuous(labels = scales::comma) +
  scale_y_continuous(labels = scales::comma) +
  labs(y = "Frequency", x = expression(beta[3])) +
  theme_bw()
print(Plot2Beta3)
## End(Not run)
Data for Genotypes by Environment Interaction (GEI)
Description
cultivo2008 is used for performing Genotypes by Environment Interaction (GEI) Analysis.
Usage
data(cultivo2008)
Format
A data.frame 1320 obs. of  6 variables.
Details
- Gen Genotype 
- Institute Institute 
- Rep Replicate 
- Block Block 
- Env Environment 
- Yield Yield Response 
Author(s)
- Muhammad Yaseen (myaseen208@gmail.com) 
- Diego Jarquin (diego.jarquin@gmail.com) 
- Sergio Perez-Elizalde (sergiop@colpos.mx) 
- Juan Burgueño (j.burgueno@cgiar.org) 
- Jose Crossa (j.crossa@cgiar.org) 
References
Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) A General Bayesian Estimation Method of Linear–Bilinear Models Applied to Plant Breeding Trials With Genotype × Environment Interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17, 15–37. (doi:10.1007/s13253-011-0063-9)
Examples
data(cultivo2008)
Data for Genotypes by Environment Interaction (GEI)
Description
cultivo2009 is used for performing Genotypes by Environment Interaction (GEI) Analysis.
Usage
data(cultivo2009)
Format
A data.frame 1320 obs. of  6 variables.
Details
- Gen Genotype 
- Institute Institute 
- Rep Replicate 
- Block Block 
- Env Environment 
- Yield Yield Response 
Author(s)
- Muhammad Yaseen (myaseen208@gmail.com) 
- Diego Jarquin (diego.jarquin@gmail.com) 
- Sergio Perez-Elizalde (sergiop@colpos.mx) 
- Juan Burgueño (j.burgueno@cgiar.org) 
- Jose Crossa (j.crossa@cgiar.org) 
References
Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) A General Bayesian Estimation Method of Linear–Bilinear Models Applied to Plant Breeding Trials With Genotype × Environment Interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17, 15–37. (doi:10.1007/s13253-011-0063-9)
Examples
data(cultivo2009)
Environment Effects
Description
Calcuates Environment Effects
Usage
## Default S3 method:
e_eff(.data, .y, .gen, .env)
Arguments
| .data | data.frame | 
| .y | Response Variable | 
| .gen | Genotypes Factor | 
| .env | Environment Factor | 
Value
Environment Effects
Author(s)
- Muhammad Yaseen (myaseen208@gmail.com) 
References
Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) A General Bayesian Estimation Method of Linear–Bilinear Models Applied to Plant Breeding Trials With Genotype × Environment Interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17, 15–37. (doi:10.1007/s13253-011-0063-9)
Examples
data(cultivo2008)
e_eff(
    .data  = cultivo2008
   , .y    = y
   , .gen  = entry
   , .env  = site
   )
Genotype Effects
Description
Calcuates Genotype Effects
Usage
## Default S3 method:
g_eff(.data, .y, .gen, .env)
Arguments
| .data | data.frame | 
| .y | Response Variable | 
| .gen | Genotypes Factor | 
| .env | Environment Factor | 
Value
Genotype Effects
Author(s)
- Muhammad Yaseen (myaseen208@gmail.com) 
References
Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) A General Bayesian Estimation Method of Linear–Bilinear Models Applied to Plant Breeding Trials With Genotype × Environment Interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17, 15–37. (doi:10.1007/s13253-011-0063-9)
Examples
data(cultivo2008)
g_eff(
    .data  = cultivo2008
   , .y    = y
   , .gen  = entry
   , .env  = site
   )
AMMI of Genotype by Environment Interaction Model
Description
Performs Additive Main Effects and Multiplication Interaction Analysis of Genotype by Environment Interaction Model
Usage
ge_ammi(.data, .y, .gen, .env, .rep)
## Default S3 method:
ge_ammi(.data, .y, .gen, .env, .rep)
Arguments
| .data | data.frame | 
| .y | Response Variable | 
| .gen | Genotypes Factor | 
| .env | Environment Factor | 
| .rep | Replication Factor | 
Value
Genotype by Environment Interaction Model
Author(s)
- Muhammad Yaseen (myaseen208@gmail.com) 
References
Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) A General Bayesian Estimation Method of Linear–Bilinear Models Applied to Plant Breeding Trials With Genotype × Environment Interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17, 15–37. (doi:10.1007/s13253-011-0063-9)
Examples
data(cultivo2008)
fm1 <-
   ge_ammi(
      .data  = cultivo2008
     , .y    = y
     , .gen  = entry
     , .env  = site
     , .rep  = rep
     )
data(cultivo2009)
fm2 <-
   ge_ammi(
      .data  = cultivo2009
     , .y    = y
     , .gen  = entry
     , .env  = site
     , .rep  = rep
     )
Genotype by Environment Interaction Effects
Description
Calcuates Genotype by Environment Interaction Effects
Usage
## Default S3 method:
ge_eff(.data, .y, .gen, .env)
Arguments
| .data | data.frame | 
| .y | Response Variable | 
| .gen | Genotypes Factor | 
| .env | Environment Factor | 
Value
Genotype by Environment Interaction Effects
Author(s)
- Muhammad Yaseen (myaseen208@gmail.com) 
References
Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) A General Bayesian Estimation Method of Linear–Bilinear Models Applied to Plant Breeding Trials With Genotype × Environment Interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17, 15–37. (doi:10.1007/s13253-011-0063-9)
Examples
data(cultivo2008)
ge_eff(
    .data  = cultivo2008
   , .y    = y
   , .gen  = entry
   , .env  = site
   )
Genotype by Environment Interaction Means
Description
Calcuates Genotype by Environment Interaction Means
Usage
## Default S3 method:
ge_mean(.data, .y, .gen, .env)
Arguments
| .data | data.frame | 
| .y | Response Variable | 
| .gen | Genotypes Factor | 
| .env | Environment Factor | 
Value
Genotype by Environment Interaction Means
Author(s)
- Muhammad Yaseen (myaseen208@gmail.com) 
References
Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) A General Bayesian Estimation Method of Linear–Bilinear Models Applied to Plant Breeding Trials With Genotype × Environment Interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17, 15–37. (doi:10.1007/s13253-011-0063-9)
Examples
data(cultivo2008)
ge_mean(
    .data  = cultivo2008
   , .y    = y
   , .gen  = entry
   , .env  = site
   )
Genotype by Environment Interaction Model
Description
Calcuates Genotype by Environment Interaction Model
Usage
ge_model(.data, .y, .gen, .env, .rep)
## Default S3 method:
ge_model(.data, .y, .gen, .env, .rep)
Arguments
| .data | data.frame | 
| .y | Response Variable | 
| .gen | Genotypes Factor | 
| .env | Environment Factor | 
| .rep | Replication Factor | 
Value
Genotype by Environment Interaction Model
Author(s)
- Muhammad Yaseen (myaseen208@gmail.com) 
References
Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) A General Bayesian Estimation Method of Linear–Bilinear Models Applied to Plant Breeding Trials With Genotype × Environment Interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17, 15–37. (doi:10.1007/s13253-011-0063-9)
Examples
data(cultivo2008)
fm1 <-
   ge_model(
      .data  = cultivo2008
     , .y    = y
     , .gen  = entry
     , .env  = site
     , .rep  = rep
     )
Genotype by Environment Interaction Variances
Description
Calcuates Genotype by Environment Interaction Variances
Usage
## Default S3 method:
ge_var(.data, .y, .gen, .env)
Arguments
| .data | data.frame | 
| .y | Response Variable | 
| .gen | Genotypes Factor | 
| .env | Environment Factor | 
Value
Genotype by Environment Interaction Variances
Author(s)
- Muhammad Yaseen (myaseen208@gmail.com) 
References
Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) A General Bayesian Estimation Method of Linear–Bilinear Models Applied to Plant Breeding Trials With Genotype × Environment Interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17, 15–37. (doi:10.1007/s13253-011-0063-9)
Examples
data(cultivo2008)
ge_var(
    .data  = cultivo2008
   , .y    = y
   , .gen  = entry
   , .env  = site
   )
k Matrix
Description
Gives k matrix
Usage
matrix_k(n)
## Default S3 method:
matrix_k(n)
Arguments
| n | Number of columns | 
Value
Matrix
Author(s)
- Muhammad Yaseen (myaseen208@gmail.com) 
References
Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) A General Bayesian Estimation Method of Linear–Bilinear Models Applied to Plant Breeding Trials With Genotype × Environment Interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17, 15–37. (doi:10.1007/s13253-011-0063-9)
Orthogonal Normalization
Description
Perform Orthogonal Normalization of a matrix
Usage
orthnorm(u = NULL, basis = TRUE, norm = TRUE)
## Default S3 method:
orthnorm(u = NULL, basis = TRUE, norm = TRUE)
Arguments
| u | Matrix | 
| basis | Logical argument by default TRUE | 
| norm | Logical argument by default TRUE | 
Value
Matrix
Author(s)
- Muhammad Yaseen (myaseen208@gmail.com) 
References
Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) A General Bayesian Estimation Method of Linear–Bilinear Models Applied to Plant Breeding Trials With Genotype × Environment Interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17, 15–37. (doi:10.1007/s13253-011-0063-9)