This vignette covers advanced techniques for experienced R users who want to integrate the BID framework deeply into their data science and dashboard development workflows.
Target audience: Data scientists, senior Shiny developers, and UX-aware analysts who want to: - Automate BID workflow integration - Scale UX analysis across multiple dashboards - Create custom behavioral science extensions - Build data-driven UX improvement processes
You maintain 20+ dashboards across different business units. Manually applying the BID framework to each is time-intensive.
# Create a comprehensive BID analysis function
analyze_dashboard_ux <- function(
dashboard_config,
telemetry_path = NULL,
telemetry_sensitivity = "moderate") {
# Stage 1: Interpret (from configuration)
interpret_stage <- bid_interpret(
central_question = dashboard_config$central_question,
data_story = dashboard_config$data_story,
user_personas = dashboard_config$personas
)
# If telemetry exists, integrate it into the workflow
if (!is.null(telemetry_path) && file.exists(telemetry_path)) {
# Ingest telemetry with sensitivity preset (new in 0.3.2)
# Choose "strict" for new dashboards, "moderate" for established ones,
# or "relaxed" for mature, stable dashboards
telemetry_issues <- bid_telemetry(
telemetry_path,
thresholds = bid_telemetry_presets(telemetry_sensitivity)
)
# Convert top issues to Notice stages
notice_stages <- bid_notices(
issues = telemetry_issues |>
filter(severity %in% c("critical", "high")) |>
slice_head(n = 3),
previous_stage = interpret_stage
)
# Use the most critical issue as primary focus
primary_notice <- notice_stages[[1]]
} else {
# Manual problem definition if no telemetry
primary_notice <- bid_notice(
previous_stage = interpret_stage,
problem = dashboard_config$known_problems,
evidence = dashboard_config$evidence
)
}
# Stage 3: Anticipate with domain-specific biases
anticipate_stage <- bid_anticipate(
previous_stage = primary_notice,
bias_mitigations = dashboard_config$bias_mitigations %||%
get_domain_biases(dashboard_config$domain)
)
# Stage 4: Structure with telemetry flags if available
structure_flags <- if (
!is.null(telemetry_path) && file.exists(telemetry_path)
) {
bid_flags(telemetry_issues)
} else {
NULL
}
structure_stage <- bid_structure(
previous_stage = anticipate_stage,
telemetry_flags = structure_flags
)
# Stage 5: Validate with domain-specific next steps
validate_stage <- bid_validate(
previous_stage = structure_stage,
)
return(validate_stage)
}
# Domain-specific bias patterns
get_domain_biases <- function(domain) {
bias_patterns <- list(
"finance" = list(
loss_aversion = "Show both gains and losses clearly with proper context",
anchoring = "Provide multiple reference points (budget, previous period, industry average)",
confirmation_bias = "Include contrarian indicators and risk metrics"
),
"marketing" = list(
attribution_bias = "Show multi-touch attribution to avoid overvaluing last-click",
survivorship_bias = "Include data on discontinued campaigns and failed experiments",
framing = "Toggle between cost-per-acquisition and customer-lifetime-value views"
),
"operations" = list(
availability_bias = "Surface less-visible but important operational metrics",
recency_bias = "Balance recent performance with longer-term trends",
cognitive_load = "Use progressive disclosure for complex operational dashboards"
)
)
return(
bias_patterns[[domain]] %||%
list(
anchoring = "Provide appropriate reference points",
framing = "Consider multiple perspectives on the same data",
confirmation_bias = "Include challenging or contrarian data points"
)
)
}
# Batch analyze multiple dashboards
analyze_dashboard_portfolio <- function(dashboard_configs) {
results <- map(dashboard_configs, analyze_dashboard_ux)
names(results) <- map_chr(dashboard_configs, "name")
# Generate portfolio-level insights
portfolio_summary <- summarize_portfolio_ux(results)
return(
list(
individual_analyses = results,
portfolio_summary = portfolio_summary,
improvement_priorities = rank_improvement_opportunities(results)
)
)
}
# Example usage
dashboard_portfolio <- list(
list(
name = "Executive Dashboard",
domain = "finance",
central_question = "How is the business performing this quarter?",
data_story = list(
hook = "Quarterly performance varies significantly across business units",
context = "Board meeting preparation requires clear performance narrative",
tension = "Current reports are too detailed for executive review",
resolution = "Provide executive summary with drill-down capability"
),
personas = list(
list(
name = "CEO",
technical_level = "Basic",
time_constraints = "5 minutes"
),
list(
name = "CFO",
technical_level = "Intermediate",
focus = "Financial metrics"
)
),
known_problems = "Information overload in current quarterly reviews",
evidence = "Board meetings consistently run over time due to data interpretation"
),
# Additional dashboard configurations...
)
# Run portfolio analysis
portfolio_results <- analyze_dashboard_portfolio(dashboard_portfolio)The bid_telemetry_presets() function (new in 0.3.2)
provides pre-configured threshold sets that eliminate manual threshold
tuning. Choose the appropriate sensitivity based on your dashboard’s
maturity and criticality:
# STRICT: For critical applications or new dashboards
# Flags even minor issues (e.g., inputs used by < 2% of sessions)
critical_dashboard_analysis <- function(telemetry_path) {
# Use strict thresholds for critical business dashboards
issues <- bid_telemetry(
telemetry_path,
thresholds = bid_telemetry_presets("strict")
)
# Strict preset catches early warning signs
# Example thresholds:
# - unused_input_threshold: 0.02 (2% usage)
# - delay_threshold_secs: 20 seconds
# - error_rate_threshold: 0.05 (5% of sessions)
return(issues)
}
# MODERATE: Default balanced approach for most applications
standard_dashboard_analysis <- function(telemetry_path) {
# Balanced sensitivity for established dashboards
issues <- bid_telemetry(
telemetry_path,
thresholds = bid_telemetry_presets("moderate")
)
# Moderate preset provides good signal-to-noise ratio
# Example thresholds:
# - unused_input_threshold: 0.05 (5% usage)
# - delay_threshold_secs: 30 seconds
# - error_rate_threshold: 0.1 (10% of sessions)
return(issues)
}
# RELAXED: For mature, stable dashboards
mature_dashboard_analysis <- function(telemetry_path) {
# Only flag major issues in stable production dashboards
issues <- bid_telemetry(
telemetry_path,
thresholds = bid_telemetry_presets("relaxed")
)
# Relaxed preset focuses on severe problems
# Example thresholds:
# - unused_input_threshold: 0.1 (10% usage)
# - delay_threshold_secs: 60 seconds
# - error_rate_threshold: 0.2 (20% of sessions)
return(issues)
}
# Adaptive sensitivity based on dashboard lifecycle
adaptive_telemetry_analysis <- function(
telemetry_path,
dashboard_age_days,
is_critical = FALSE) {
# Choose sensitivity based on dashboard maturity and criticality
sensitivity <- if (is_critical) {
"strict"
} else if (dashboard_age_days < 30) {
"strict" # New dashboards need close monitoring
} else if (dashboard_age_days < 180) {
"moderate" # Maturing dashboards
} else {
"relaxed" # Stable, mature dashboards
}
issues <- bid_telemetry(
telemetry_path,
thresholds = bid_telemetry_presets(sensitivity)
)
cli::cli_alert_info(
"Using {sensitivity} sensitivity for {dashboard_age_days}-day-old dashboard"
)
return(issues)
}
# Compare findings across different sensitivity levels
compare_sensitivity_levels <- function(telemetry_path) {
strict_issues <- bid_telemetry(
telemetry_path,
thresholds = bid_telemetry_presets("strict")
)
moderate_issues <- bid_telemetry(
telemetry_path,
thresholds = bid_telemetry_presets("moderate")
)
relaxed_issues <- bid_telemetry(
telemetry_path,
thresholds = bid_telemetry_presets("relaxed")
)
# Compare issue counts at different sensitivity levels
comparison <- data.frame(
sensitivity = c("strict", "moderate", "relaxed"),
total_issues = c(
nrow(strict_issues),
nrow(moderate_issues),
nrow(relaxed_issues)
),
critical_issues = c(
nrow(filter(strict_issues, severity == "critical")),
nrow(filter(moderate_issues, severity == "critical")),
nrow(filter(relaxed_issues, severity == "critical"))
)
)
return(comparison)
}# Add domain-specific behavioral concepts
add_custom_concepts <- function() {
# Define custom concepts for your domain
custom_finance_concepts <- tibble(
concept = c(
"Risk Perception Bias",
"Mental Accounting",
"Temporal Discounting"
),
category = "Financial Psychology",
description = c(
"Tendency to perceive identical risks differently based on presentation context",
"Treating money differently based on its source or intended use",
"Overvaluing immediate rewards relative to future benefits"
),
implementation_tips = c(
"Present risks in multiple formats (percentages, frequencies, visual scales)",
"Show total portfolio impact rather than individual position P&L",
"Include time-based context and compound effect visualizations"
),
shiny_components = c(
"plotly for interactive risk visualization, bslib progress bars for probability",
"DT tables with conditional formatting, reactable grouping features",
"echarts4r timeline components, animated value transitions"
)
)
# You could extend the package concept dictionary (advanced users only)
# This would require package development workflow
return(custom_finance_concepts)
}
# Create domain-specific BID analysis functions
analyze_financial_dashboard <- function(config, custom_concepts = NULL) {
# Load custom concepts if provided
if (!is.null(custom_concepts)) {
# Use custom concepts in analysis
relevant_concepts <- filter(
custom_concepts,
grepl(config$domain_keywords, concept, ignore.case = TRUE)
)
}
# Apply standard BID workflow with custom extensions
result <- analyze_dashboard_ux(config)
# Add domain-specific analysis
result$domain_insights <- generate_domain_insights(result, custom_concepts)
result$specialized_suggestions <- get_domain_suggestions(
result,
config$domain
)
return(result)
}
# Generate domain-specific insights
generate_domain_insights <- function(bid_result, custom_concepts = NULL) {
insights <- list()
# Analyze layout choice against domain best practices
layout <- bid_result$layout[1]
if (layout == "dual_process") {
insights$layout_analysis <- "Dual-process layout chosen. Good for financial dashboards requiring both summary and detailed analysis."
}
# Check for domain-specific bias considerations
if (!is.null(custom_concepts)) {
# Suggest additional bias mitigations based on custom concepts
insights$additional_biases <- suggest_domain_biases(
bid_result,
custom_concepts
)
}
return(insights)
}# Framework for testing UX improvements
design_ux_experiment <- function(current_design, proposed_design, hypothesis) {
experiment_design <- list(
hypothesis = hypothesis,
primary_metrics = c(
"time_to_first_interaction",
"task_completion_rate",
"user_satisfaction_score",
"session_duration"
),
secondary_metrics = c(
"error_rate",
"feature_adoption_rate",
"return_visit_rate"
),
variants = list(
control = current_design,
treatment = proposed_design
),
sample_size_calculation = calculate_ux_sample_size(
baseline_completion_rate = 0.65,
minimum_detectable_effect = 0.10,
power = 0.80,
alpha = 0.05
)
)
return(experiment_design)
}
# Calculate required sample size for UX experiments
calculate_ux_sample_size <- function(
baseline_completion_rate,
minimum_detectable_effect,
power = 0.80,
alpha = 0.05) {
# Using power analysis for proportion tests
p1 <- baseline_completion_rate
p2 <- p1 + minimum_detectable_effect
# Simplified calculation (use power.prop.test() for precise calculation)
pooled_p <- (p1 + p2) / 2
pooled_variance <- pooled_p * (1 - pooled_p)
z_alpha <- qnorm(1 - alpha / 2)
z_beta <- qnorm(power)
n_per_group <- 2 * pooled_variance * (z_alpha + z_beta)^2 / (p2 - p1)^2
return(
list(
n_per_group = ceiling(n_per_group),
total_n = ceiling(2 * n_per_group),
assumptions = list(
baseline_rate = p1,
target_rate = p2,
effect_size = minimum_detectable_effect
)
)
)
}
# Analyze UX experiment results
analyze_ux_experiment <- function(experiment_data, experiment_design) {
# Primary analysis: task completion rate
completion_test <- prop.test(
x = c(
sum(experiment_data$control$completed),
sum(experiment_data$treatment$completed)
),
n = c(nrow(experiment_data$control), nrow(experiment_data$treatment))
)
# Secondary analysis: time to completion
time_test <- t.test(
experiment_data$treatment$completion_time,
experiment_data$control$completion_time,
alternative = "less" # Hypothesis: treatment is faster
)
# Effect size calculation
effect_size <- calculate_cohens_d(
experiment_data$treatment$completion_time,
experiment_data$control$completion_time
)
results <- list(
completion_rate_test = completion_test,
completion_time_test = time_test,
effect_size = effect_size,
practical_significance = assess_practical_significance(
completion_test,
time_test,
effect_size
),
recommendation = generate_experiment_recommendation(
completion_test,
time_test,
effect_size
)
)
return(results)
}
# Example: Test progressive disclosure vs. full information display
progressive_disclosure_experiment <- function() {
# Current design: all information visible
current_design <- list(
name = "Full Information Display",
description = "All metrics and filters visible simultaneously",
implementation = "Traditional dashboard with all components loaded"
)
# Proposed design: progressive disclosure
proposed_design <- list(
name = "Progressive Disclosure",
description = "Key metrics first, additional details on request",
implementation = "Primary KPIs with 'Show Details' interactions"
)
# Hypothesis based on BID framework
hypothesis <- "Progressive disclosure will reduce cognitive load and improve task completion rate for dashboard users (based on Cognitive Load Theory and Choice Overload research)"
experiment <- design_ux_experiment(
current_design = current_design,
proposed_design = proposed_design,
hypothesis = hypothesis
)
return(experiment)
}# Create UX health monitoring system
create_ux_monitoring_system <- function(
dashboard_configs,
telemetry_connections) {
monitoring_system <- list(
dashboards = dashboard_configs,
telemetry_sources = telemetry_connections,
health_checks = define_ux_health_checks(),
alert_thresholds = define_alert_thresholds(),
reporting_schedule = "weekly"
)
return(monitoring_system)
}
# Define UX health check metrics
define_ux_health_checks <- function() {
list(
cognitive_load_indicators = c(
"session_abandonment_rate",
"time_to_first_interaction",
"filter_usage_distribution",
"error_rate_by_component"
),
user_success_metrics = c(
"task_completion_rate",
"time_to_insight",
"feature_adoption_rate",
"user_satisfaction_nps"
),
behavioral_red_flags = c(
"rapid_repeated_clicks",
"excessive_back_navigation",
"long_pause_before_action",
"high_exit_rate_on_entry"
)
)
}
# Automated UX health reporting
generate_ux_health_report <- function(
monitoring_system,
time_period = "week",
use_adaptive_sensitivity = TRUE) {
health_data <- map(
monitoring_system$telemetry_sources,
function(source) {
# Use adaptive sensitivity based on dashboard maturity
if (use_adaptive_sensitivity && !is.null(source$dashboard_age_days)) {
sensitivity <- if (source$is_critical %||% FALSE) {
"strict"
} else if (source$dashboard_age_days < 30) {
"strict"
} else if (source$dashboard_age_days < 180) {
"moderate"
} else {
"relaxed"
}
thresholds <- bid_telemetry_presets(sensitivity)
} else {
# Default to moderate sensitivity
thresholds <- bid_telemetry_presets("moderate")
sensitivity <- "moderate"
}
issues <- bid_telemetry(
source$path,
thresholds = thresholds
)
health_scores <- calculate_ux_health_scores(issues)
trend_analysis <- calculate_ux_trends(issues, source$historical_data)
list(
dashboard = source$dashboard_name,
sensitivity_used = sensitivity,
current_health = health_scores,
trends = trend_analysis,
recommendations = generate_health_recommendations(
health_scores,
trend_analysis
)
)
}
)
# Portfolio-level insights
portfolio_health <- aggregate_portfolio_health(health_data)
# Generate executive summary
executive_summary <- create_ux_executive_summary(portfolio_health)
report <- list(
period = time_period,
executive_summary = executive_summary,
dashboard_details = health_data,
portfolio_trends = portfolio_health,
action_items = prioritize_ux_improvements(health_data)
)
return(report)
}
# Calculate UX health scores
calculate_ux_health_scores <- function(telemetry_issues) {
# Weight issues by severity and impact
severity_weights <- c("critical" = 5, "high" = 3, "medium" = 2, "low" = 1)
issue_impact <- telemetry_issues |>
mutate(
weighted_impact = case_when(
severity == "critical" ~ 5,
severity == "high" ~ 3,
severity == "medium" ~ 2,
TRUE ~ 1
)
) |>
summarize(
total_issues = n(),
weighted_impact_score = sum(weighted_impact),
critical_issues = sum(severity == "critical"),
.groups = "drop"
)
# Calculate health score (0-100, higher is better)
health_score <- pmax(0, 100 - (issue_impact$weighted_impact_score * 2))
health_rating <- case_when(
health_score >= 85 ~ "Excellent",
health_score >= 70 ~ "Good",
health_score >= 55 ~ "Fair",
TRUE ~ "Needs Attention"
)
return(
list(
score = health_score,
rating = health_rating,
issue_breakdown = issue_impact,
primary_concerns = get_primary_concerns(telemetry_issues)
)
)
}
# Example implementation
monitor_dashboard_portfolio <- function() {
# Set up monitoring for multiple dashboards
portfolio_monitoring <- create_ux_monitoring_system(
dashboard_configs = list(
list(name = "Executive Dashboard", business_unit = "Corporate"),
list(name = "Sales Analytics", business_unit = "Sales"),
list(name = "Marketing Performance", business_unit = "Marketing")
),
telemetry_connections = list(
list(
dashboard_name = "Executive Dashboard",
path = "exec_dashboard_telemetry.sqlite",
historical_data = "exec_dashboard_history.rds",
dashboard_age_days = 365, # Mature dashboard
is_critical = TRUE # Executive-facing = critical
),
list(
dashboard_name = "Sales Analytics",
path = "sales_dashboard_telemetry.sqlite",
historical_data = "sales_dashboard_history.rds",
dashboard_age_days = 45, # Recently launched
is_critical = FALSE
),
list(
dashboard_name = "Marketing Performance",
path = "marketing_dashboard_telemetry.sqlite",
historical_data = "marketing_dashboard_history.rds",
dashboard_age_days = 15, # Brand new
is_critical = FALSE
)
)
)
# Generate weekly health report with adaptive sensitivity
# Executive Dashboard: uses "strict" (critical = TRUE)
# Sales Analytics: uses "moderate" (45 days old)
# Marketing Performance: uses "strict" (15 days old, new dashboard)
weekly_report <- generate_ux_health_report(
portfolio_monitoring,
use_adaptive_sensitivity = TRUE
)
return(weekly_report)
}# Create custom BID stage for specific domains
create_custom_bid_stage <- function(
stage_name,
stage_function,
validation_rules) {
# Example: Security-focused BID stage for sensitive data dashboards
bid_security_stage <- function(
previous_stage,
security_requirements = NULL,
compliance_framework = "GDPR",
data_sensitivity_level = "medium") {
validate_previous_stage(previous_stage, stage_name)
# Security-specific analysis
security_analysis <- assess_dashboard_security_ux(
previous_stage = previous_stage,
requirements = security_requirements,
framework = compliance_framework,
sensitivity = data_sensitivity_level
)
# Generate security-aware UX recommendations
security_recommendations <- generate_security_ux_recommendations(
security_analysis,
previous_stage
)
# Create result tibble
result_data <- tibble(
stage = stage_name,
security_level = data_sensitivity_level,
compliance_framework = compliance_framework,
security_recommendations = paste(
security_recommendations,
collapse = "; "
),
previous_layout = safe_column_access(previous_stage, "layout"),
timestamp = Sys.time()
)
# Return as bid_stage object
return(bid_stage(stage_name, result_data))
}
return(bid_security_stage)
}
# Example: Accessibility-focused analysis using existing functions
create_accessibility_analysis <- function(
previous_stage,
wcag_level = "AA",
assistive_tech_support = TRUE,
target_disabilities = c("visual", "motor", "cognitive")) {
# Use existing bid_concept function to get accessibility recommendations
contrast_info <- bid_concept("Accessibility Contrast")
keyboard_info <- bid_concept("Keyboard Navigation")
screen_reader_info <- bid_concept("Screen Reader Compatibility")
# Create basic accessibility recommendations using existing concepts
accessibility_recommendations <- c(
contrast_info$implementation_tips[1],
keyboard_info$implementation_tips[1],
screen_reader_info$implementation_tips[1]
)
# Create a summary rather than a bid_stage since this is just an example
accessibility_analysis <- list(
wcag_level = wcag_level,
assistive_tech_support = assistive_tech_support,
target_disabilities = target_disabilities,
recommendations = accessibility_recommendations,
concepts_referenced = c("Accessibility Contrast", "Keyboard Navigation", "Screen Reader Compatibility")
)
return(accessibility_analysis)
}
# Integration with main BID workflow
extended_bid_workflow <- function(config) {
# Standard BID stages
interpret_stage <- bid_interpret(
central_question = config$central_question,
data_story = config$data_story
)
notice_stage <- bid_notice(
previous_stage = interpret_stage,
problem = config$problem,
evidence = config$evidence
)
anticipate_stage <- bid_anticipate(
previous_stage = notice_stage,
bias_mitigations = config$bias_mitigations
)
structure_stage <- bid_structure(previous_stage = anticipate_stage)
# Custom accessibility analysis
if (config$include_accessibility) {
accessibility_analysis <- create_accessibility_analysis(
previous_stage = structure_stage,
wcag_level = config$accessibility_requirements$wcag_level
)
# Note: This analysis can inform the validate stage
final_stage <- structure_stage
} else {
final_stage <- structure_stage
}
# Validation with all insights
validate_stage <- bid_validate(
previous_stage = final_stage,
summary_panel = config$summary_panel,
next_steps = config$next_steps
)
return(validate_stage)
}# Integrate BID into standard data science project structure
create_bid_project_template <- function(
project_name,
project_type = "dashboard") {
project_structure <- list(
"01-data-exploration/" = "Standard EDA and data validation",
"02-user-research/" = "BID Stage 1 (Interpret) - user needs analysis",
"03-problem-identification/" = "BID Stage 2 (Notice) - friction point analysis",
"04-behavioral-analysis/" = "BID Stage 3 (Anticipate) - bias mitigation planning",
"05-interface-design/" = "BID Stage 4 (Structure) - layout and UX design",
"06-validation-testing/" = "BID Stage 5 (Validate) - user testing and iteration",
"07-telemetry-analysis/" = "Post-deployment UX monitoring and improvement",
"bid_analysis.R" = "Consolidated BID framework application",
"ux_monitoring.R" = "Automated UX health monitoring",
"README.md" = "Project documentation including BID insights"
)
return(project_structure)
}
# Template for BID-informed data science projects
bid_data_science_workflow <- function(project_config) {
workflow <- list(
# Phase 1: Data + User Understanding
phase_1 = list(
data_exploration = "Standard EDA process",
user_research = bid_interpret(
central_question = project_config$research_question,
data_story = project_config$data_narrative,
user_personas = project_config$stakeholders
)
),
# Phase 2: Problem Definition
phase_2 = list(
statistical_analysis = "Model building and validation",
ux_problem_identification = bid_notice(
previous_stage = workflow$phase_1$user_research,
problem = project_config$interface_challenges,
evidence = project_config$user_feedback
)
),
# Phase 3: Solution Design
phase_3 = list(
model_interpretation = "Feature importance and model explanation",
behavioral_considerations = bid_anticipate(
previous_stage = workflow$phase_2$ux_problem_identification,
bias_mitigations = project_config$cognitive_considerations
),
interface_structure = bid_structure(
previous_stage = workflow$phase_3$behavioral_considerations
)
),
# Phase 4: Validation & Deployment
phase_4 = list(
model_validation = "Standard model performance validation",
ux_validation = bid_validate(
previous_stage = workflow$phase_3$interface_structure,
summary_panel = project_config$success_criteria,
next_steps = project_config$iteration_plan
)
)
)
return(workflow)
}# Helper function to extract BID stage summary using existing functions
extract_bid_summary <- function(bid_result) {
if (inherits(bid_result, "bid_stage")) {
# Single stage, extract key information
stage_info <- list(
stage = get_stage(bid_result),
timestamp = bid_result$timestamp[1],
key_fields = names(bid_result)[!names(bid_result) %in% c("stage", "timestamp")]
)
return(stage_info)
} else if (is.list(bid_result)) {
# Multiple stages, summarize each
summary_list <- lapply(bid_result, function(stage) {
if (inherits(stage, "bid_stage")) {
list(
stage = get_stage(stage),
timestamp = stage$timestamp[1]
)
} else {
list(stage = "unknown", timestamp = NA)
}
})
return(summary_list)
} else {
return(list(error = "Unable to extract summary from provided object"))
}
}
# Create comprehensive BID documentation
document_bid_decisions <- function(bid_result, project_context) {
documentation <- list(
project_overview = project_context,
bid_stages_summary = extract_bid_summary(bid_result),
# Use existing bid_report functionality instead of custom functions
detailed_report = if (inherits(bid_result, "bid_stage")) {
"Use bid_report(bid_result) for detailed documentation"
} else {
"Provide bid_stage object to generate detailed report"
}
)
return(documentation)
}# Helper function for consensus building using existing concepts
build_consensus_on_bid_decisions <- function(team_members) {
# Use existing bid_concept to get collaboration guidance
cooperation_info <- bid_concept("Cooperation & Coordination")
consensus_framework <- list(
team_size = length(team_members),
collaboration_approach = cooperation_info$implementation_tips[1],
recommended_process = c(
"Review BID stages individually with each team member",
"Identify areas of agreement and disagreement",
"Use bid_concepts() to find relevant behavioral science principles",
"Document final decisions with rationale"
),
tools = "Use bid_report() to share findings across team"
)
return(consensus_framework)
}
# Enable team collaboration on BID analysis using existing functions
create_bid_collaboration_workflow <- function(team_members, project_config) {
workflow <- list(
team_composition = list(
members = team_members,
roles = c("UX Designer", "Data Analyst", "Product Manager", "Developer")
),
consensus_building = build_consensus_on_bid_decisions(team_members),
documentation_approach = "Use bid_report() for comprehensive documentation",
concept_reference = "Use bid_concepts() to explore relevant principles together"
)
return(workflow)
}# Build organizational BID knowledge
build_bid_knowledge_base <- function(completed_projects) {
knowledge_base <- map_dfr(
completed_projects,
function(project) {
extract_lessons_learned(project$bid_analysis, project$outcomes)
}
)
# Identify patterns and best practices
patterns <- identify_successful_patterns(knowledge_base)
anti_patterns <- identify_problematic_patterns(knowledge_base)
return(
list(
knowledge_base = knowledge_base,
successful_patterns = patterns,
anti_patterns = anti_patterns,
recommendations = generate_org_recommendations(patterns, anti_patterns)
)
)
}Here’s a complete real-world example combining automated analysis with telemetry presets:
# Real-world scenario: Quarterly UX review for multiple dashboards
quarterly_ux_review <- function() {
# Dashboard portfolio with different maturity levels
dashboards <- list(
list(
name = "C-Suite Executive Dashboard",
telemetry_path = "data/exec_telemetry.sqlite",
age_days = 450,
is_critical = TRUE,
central_question = "Are executives getting insights efficiently?",
data_story = new_data_story(
hook = "Board meetings consume excessive time on data interpretation",
context = "Executive team needs faster decision support",
tension = "Current dashboard has too many options",
resolution = "Streamline to key metrics with progressive disclosure"
)
),
list(
name = "Sales Team Analytics",
telemetry_path = "data/sales_telemetry.sqlite",
age_days = 60,
is_critical = FALSE,
central_question = "Why are sales reps abandoning the dashboard?",
data_story = new_data_story(
hook = "Sales dashboard usage dropped 40% in last month",
context = "Recently redesigned with new features",
tension = "Unclear if design or data quality issue",
resolution = "Use telemetry to identify friction points"
)
),
list(
name = "Marketing Campaign Tracker",
telemetry_path = "data/marketing_telemetry.sqlite",
age_days = 10,
is_critical = FALSE,
central_question = "Is the new campaign dashboard intuitive?",
data_story = new_data_story(
hook = "Brand new dashboard for campaign tracking",
context = "Marketing team transitioning from Excel",
tension = "Need to catch UX issues early",
resolution = "Aggressive monitoring for first 30 days"
)
)
)
# Process each dashboard with appropriate sensitivity
results <- lapply(dashboards, function(dashboard) {
# Choose sensitivity based on criticality and maturity
sensitivity <- if (dashboard$is_critical) {
"strict"
} else if (dashboard$age_days < 30) {
"strict" # New dashboards
} else if (dashboard$age_days < 180) {
"moderate" # Maturing
} else {
"relaxed" # Stable
}
cli::cli_h2("Analyzing: {dashboard$name}")
cli::cli_alert_info(
"Dashboard age: {dashboard$age_days} days | Sensitivity: {sensitivity}"
)
# Run telemetry analysis with appropriate preset
issues <- bid_telemetry(
dashboard$telemetry_path,
thresholds = bid_telemetry_presets(sensitivity)
)
if (nrow(issues) == 0) {
cli::cli_alert_success("No significant UX issues detected")
return(NULL)
}
# Run full BID pipeline on top issues
interpret_stage <- bid_interpret(
central_question = dashboard$central_question,
data_story = dashboard$data_story
)
# Convert critical issues to Notice stages
critical_issues <- issues |>
filter(severity %in% c("critical", "high")) |>
slice_head(n = 3)
if (nrow(critical_issues) > 0) {
notices <- bid_notices(
issues = critical_issues,
previous_stage = interpret_stage
)
# Work through BID stages for primary issue
primary_notice <- notices[[1]]
anticipate_stage <- bid_anticipate(
previous_stage = primary_notice
)
# Use telemetry flags to inform structure
flags <- bid_flags(issues)
structure_stage <- bid_structure(
previous_stage = anticipate_stage,
telemetry_flags = flags
)
validate_stage <- bid_validate(
previous_stage = structure_stage
)
return(
list(
dashboard = dashboard$name,
sensitivity = sensitivity,
total_issues = nrow(issues),
critical_issues = nrow(critical_issues),
bid_analysis = validate_stage,
recommendations = extract_recommendations(validate_stage)
)
)
}
return(NULL)
})
# Filter out NULL results
results <- results[!sapply(results, is.null)]
# Generate executive summary
cli::cli_h1("Quarterly UX Review Summary")
cli::cli_alert_info("Analyzed {length(dashboards)} dashboards")
cli::cli_alert_warning(
"{length(results)} dashboards have critical UX issues requiring attention"
)
return(results)
}
# Helper to extract recommendations from validate stage
extract_recommendations <- function(validate_stage) {
# This is a simplified example - customize based on your needs
if (inherits(validate_stage, "bid_stage")) {
suggestions <- safe_column_access(validate_stage, "suggestions")
if (!is.null(suggestions)) {
return(suggestions)
}
}
return("See full BID analysis for recommendations")
}These advanced patterns enable you to:
Key principle for advanced users: Apply the same systematic, evidence-based approach you use for data analysis to user experience design. The BID framework provides the structure—your analytical skills provide the rigor.
New in v0.3.2: The
bid_telemetry_presets() function eliminates the need for
manual threshold tuning, making it easier to scale UX analysis across
multiple dashboards with varying maturity levels.
For questions about advanced implementations, custom extensions, or enterprise deployment patterns, consider contributing to the package development at github.com/jrwinget/bidux.
Remember: Advanced techniques are most effective when they serve your users’ cognitive needs, not just technical capabilities. Always validate complex implementations with real user testing.