
Package ‘bigPLScox’
November 11, 2025

Type Package

Version 0.6.0

Date 2025-11-01

Depends R (>= 4.0.0)

Imports bigmemory, bigalgebra, bigSurvSGD, caret, doParallel, foreach,
kernlab, methods, Rcpp, risksetROC, rms, sgPLS, survAUC,
survcomp, survival

LinkingTo BH, Rcpp, RcppArmadillo, bigmemory

Suggests bench, knitr, plsRcox, mvtnorm, readr, rmarkdown, testthat
(>= 3.0.0)

Title Partial Least Squares for Cox Models with Big Matrices

Author Frederic Bertrand [cre, aut] (ORCID:
<https://orcid.org/0000-0002-0837-8281>),

Myriam Maumy-Bertrand [aut] (ORCID:
<https://orcid.org/0000-0002-4615-1512>)

Maintainer Frederic Bertrand <frederic.bertrand@lecnam.net>

Description Provides Partial least squares Regression and various regular, sparse
or kernel, techniques for fitting Cox models for big data. Provides a Partial
Least Squares (PLS) algorithm adapted to Cox proportional hazards models that
works with 'bigmemory' matrices without loading the entire dataset in memory.
Also implements a gradient-descent based solver for Cox proportional hazards
models that works directly on 'bigmemory' matrices.
Bertrand and Maumy (2023) <https://hal.science/hal-05352069>, and
<https://hal.science/hal-05352061> highlighted
fitting and cross-validating PLS-based Cox models to censored big data.

License GPL-3

Encoding UTF-8

URL https://fbertran.github.io/bigPLScox/,

https://github.com/fbertran/bigPLScox/

BugReports https://github.com/fbertran/bigPLScox/issues/

1

https://orcid.org/0000-0002-0837-8281
https://orcid.org/0000-0002-4615-1512
https://hal.science/hal-05352069
https://hal.science/hal-05352061
https://fbertran.github.io/bigPLScox/
https://github.com/fbertran/bigPLScox/
https://github.com/fbertran/bigPLScox/issues/

2 Contents

Classification/MSC 62N01, 62N02, 62N03, 62N99

RoxygenNote 7.3.3

VignetteBuilder knitr

Config/testthat/edition 3

SystemRequirements C++17

NeedsCompilation yes

Repository CRAN

Date/Publication 2025-11-11 21:20:15 UTC

Contents
bigPLScox-package . 3
bigmatrix-operations . 4
bigscale . 5
bigSurvSGD.na.omit . 7
big_pls_cox . 10
big_pls_cox_gd . 11
component_information . 13
computeDR . 14
coxDKgplsDR . 17
coxDKsgplsDR . 21
coxDKspls_sgplsDR . 26
coxgpls . 31
coxgplsDR . 35
coxsgpls . 39
coxsgplsDR . 43
coxspls_sgpls . 47
coxspls_sgplsDR . 51
cox_deviance_residuals . 56
cv.big_pls_cox . 57
cv.coxDKgplsDR . 59
cv.coxDKsgplsDR . 64
cv.coxDKspls_sgplsDR . 68
cv.coxgpls . 73
cv.coxgplsDR . 78
cv.coxsgpls . 82
cv.coxsgplsDR . 87
cv.coxspls_sgpls . 92
cv.coxspls_sgplsDR . 96
dataCox . 101
dCox_sim . 102
micro.censure . 103
partialbigSurvSGDv0 . 105
predict.big_pls_cox . 106
predict_cox_pls . 108

bigPLScox-package 3

predict_pls_latent . 111
sim_data . 113
Xmicro.censure_compl_imp . 114

Index 116

bigPLScox-package bigPLScox-package

Description

Provides Partial least squares Regression for regular, generalized linear and Cox models for big
data. It allows for missing data in the explanatory variables. Repeated k-fold cross-validation of
such models using various criteria. Bootstrap confidence intervals constructions are also available.

Author(s)

Maintainer: Frederic Bertrand <frederic.bertrand@lecnam.net> (ORCID)

Authors:

• Myriam Maumy-Bertrand <myriam.maumy@ehesp.fr> (ORCID)

References

Maumy, M., Bertrand, F. (2023). PLS models and their extension for big data. Joint Statistical
Meetings (JSM 2023), Toronto, ON, Canada.

Maumy, M., Bertrand, F. (2023). bigPLS: Fitting and cross-validating PLS-based Cox models
to censored big data. BioC2023 — The Bioconductor Annual Conference, Dana-Farber Cancer
Institute, Boston, MA, USA. Poster. https://doi.org/10.7490/f1000research.1119546.1

Bastien, P., Bertrand, F., Meyer, N., and Maumy-Bertrand, M. (2015). Deviance residuals-based
sparse PLS and sparse kernel PLS for binary classification and survival analysis. BMC Bioinfor-
matics, 16, 211.

See Also

big_pls_cox() and big_pls_cox_gd()

Examples

set.seed(314)
library(bigPLScox)
data(sim_data)
head(sim_data)

https://orcid.org/0000-0002-0837-8281
https://orcid.org/0000-0002-4615-1512

4 bigmatrix-operations

bigmatrix-operations Matrix and arithmetic operations for big.matrix objects

Description

These methods extend the base matrix multiplication operator (%*%) and the group generic Arithmetic
so that big.matrix objects can interoperate with base R matrices and numeric scalars using the
high-performance routines provided by bigalgebra.

Usage

S4 method for signature 'big.matrix,big.matrix'
x %*% y

S4 method for signature 'matrix,big.matrix'
x %*% y

S4 method for signature 'big.matrix,matrix'
x %*% y

S4 method for signature 'big.matrix,big.matrix'
Arith(e1, e2)

S4 method for signature 'big.matrix,matrix'
Arith(e1, e2)

S4 method for signature 'matrix,big.matrix'
Arith(e1, e2)

S4 method for signature 'numeric,big.matrix'
Arith(e1, e2)

S4 method for signature 'big.matrix,numeric'
Arith(e1, e2)

Arguments

x, y Matrix operands supplied either as big.matrix instances or base R matrices,
depending on the method signature.

e1, e2 Numeric operands, which may be big.matrix objects, base R matrices, or nu-
meric scalars depending on the method signature.

Details

Matrix multiplications dispatch to bigalgebra::dgemm(), mixed arithmetic on matrices relies on
bigalgebra::daxpy(), and scalar/matrix combinations use bigalgebra::dadd() when appropri-
ate.

bigscale 5

See Also

bigmemory::big.matrix(), bigalgebra::dgemm(), bigalgebra::daxpy(), bigalgebra::dadd()

Examples

if (requireNamespace("bigmemory", quietly = TRUE) &&
requireNamespace("bigalgebra", quietly = TRUE)) {

x <- bigmemory::big.matrix(2, 2, init = 1)
y <- bigmemory::big.matrix(2, 2, init = 2)
x %*% y
x + y
x * 3

}

bigscale Construct Scaled Design Matrices for Big Survival Models

Description

Prepares a large-scale feature matrix for stochastic gradient descent byapplying optional normali-
sation, stratified sampling, and batching rules.

Usage

bigscale(
formula = survival::Surv(time = time, status = status) ~ .,
data,
norm.method = "standardize",
strata.size = 20,
batch.size = 1,
features.mean = NULL,
features.sd = NULL,
parallel.flag = FALSE,
num.cores = NULL,
bigmemory.flag = FALSE,
num.rows.chunk = 1e+06,
col.names = NULL,
type = "short"

)

Arguments

formula formula used to extract the outcome and predictors that should be included in
the scaled design matrix.

data Input data source containing the variables referenced in formula.

6 bigscale

norm.method Normalisation strategy (for example centring or standardising columns) applied
to the feature matrix.

strata.size Number of observations to retain from each stratum when constructing stratified
batches.

batch.size Total size of each mini-batch produced by the scaling routine.

features.mean Optional vector of column means that can be reused to normalise multiple data
sets in a consistent manner.

features.sd Optional vector of column standard deviations that pairs with features.mean
during scaling.

parallel.flag Logical flag signalling whether the scaling work should be parallelised across
cores.

num.cores Number of processor cores allocated when parallel.flag is TRUE.

bigmemory.flag Logical flag specifying whether intermediate results should be stored in bigmemory-
backed matrices.

num.rows.chunk Chunk size used when streaming data from on-disk objects into memory.

col.names Optional character vector assigning column names to the generated design ma-
trix.

type Type of model or preprocessing target being prepared, such as survival or re-
gression.

Value

A scaled design matrix of the scaler class along with metadata describing the transformation that
was applied. time.indices: indices of the time variable cens.indices: indices of the censored vari-
ables features.indices: indices of the features time.sd: standard deviation of the time variable
time.mean: mean of the time variable features.sd: standard deviation of the features features.mean:
mean of the features nr: number of rows nc: number of columns col.names: columns names

See Also

bigSurvSGD.na.omit() for fitting models that use the scaled features.

Examples

data(micro.censure, package = "bigPLScox")
surv_data <- stats::na.omit(

micro.censure[, c("survyear", "DC", "sexe", "Agediag")]
)
scaled <- bigscale(

survival::Surv(survyear, DC) ~ .,
data = surv_data,
norm.method = "standardize",
batch.size = 16

)

bigSurvSGD.na.omit 7

bigSurvSGD.na.omit Fit Survival Models with Stochastic Gradient Descent

Description

Performs stochastic gradient descent optimisation for large-scale survival models after removing
observations with missing values.

Usage

bigSurvSGD.na.omit(
formula = survival::Surv(time = time, status = status) ~ .,
data,
norm.method = "standardize",
features.mean = NULL,
features.sd = NULL,
opt.method = "AMSGrad",
beta.init = NULL,
beta.type = "averaged",
lr.const = 0.12,
lr.tau = 0.5,
strata.size = 20,
batch.size = 1,
num.epoch = 100,
b1 = 0.9,
b2 = 0.99,
eps = 1e-08,
inference.method = "plugin",
num.boot = 1000,
num.epoch.boot = 100,
boot.method = "SGD",
lr.const.boot = 0.12,
lr.tau.boot = 0.5,
num.sample.strata = 1000,
sig.level = 0.05,
beta0 = 0,
alpha = NULL,
lambda = NULL,
nlambda = 100,
num.strata.lambda = 10,
lambda.scale = 1,
parallel.flag = FALSE,
num.cores = NULL,
bigmemory.flag = FALSE,
num.rows.chunk = 1e+06,
col.names = NULL,
type = "float"

8 bigSurvSGD.na.omit

)

Arguments

formula Model formula describing the survival outcome and the set of predictors to in-
clude in the optimisation.

data Input data set or connection to a big-memory backed design matrix that contains
the variables referenced in formula.

norm.method Normalization strategy applied to the feature matrix before optimisation, for
example centring or standardising columns.

features.mean Optional pre-computed column means used when normalising the features so
that repeated fits can reuse shared statistics.

features.sd Optional pre-computed column standard deviations used in concert with features.mean
for scaling the predictors.

opt.method Gradient based optimisation routine to employ, such as vanilla SGD or adaptive
methods like Adam.

beta.init Vector of starting values for the regression coefficients supplied when warm-
starting the optimisation.

beta.type Indicator controlling how beta.init is interpreted, for example whether the
coefficients correspond to the original or normalised scale.

lr.const Base learning-rate constant used by the stochastic gradient descent routine.

lr.tau Learning-rate decay horizon or damping factor that moderates the step size
schedule.

strata.size Number of observations drawn per stratum when building mini-batches for the
optimisation loop.

batch.size Total number of observations assembled into each stochastic gradient batch.

num.epoch Number of passes over the training data used during the optimisation.

b1 First exponential moving-average rate used by adaptive methods such as Adam
to smooth gradients.

b2 Second exponential moving-average rate used by adaptive methods to smooth
squared gradients.

eps Numerical stabilisation constant added to denominators when updating the adap-
tive moments.

inference.method

Inference approach requested after fitting, for example naive asymptotics or
bootstrap resampling.

num.boot Number of bootstrap replicates to draw when inference.method relies on re-
sampling.

num.epoch.boot Number of optimisation epochs to run within each bootstrap replicate.

boot.method Type of bootstrap scheme to apply, such as ordinary or stratified resampling.

lr.const.boot Learning-rate constant used during bootstrap refits.

lr.tau.boot Learning-rate decay factor applied during bootstrap refits.

bigSurvSGD.na.omit 9

num.sample.strata

Number of strata sampled without replacement during each bootstrap iteration
when stratified resampling is selected.

sig.level Significance level used when constructing confidence intervals or hypothesis
tests.

beta0 Optional vector of coefficients under the null hypothesis when performing hy-
pothesis tests.

alpha Elastic-net mixing parameter controlling the relative weight of ℓ1 and ℓ2 regu-
larisation penalties.

lambda Sequence of regularisation strengths supplied explicitly for penalised estimation.

nlambda Number of automatically generated lambda values when a grid is produced in-
ternally.

num.strata.lambda

Number of strata used when tuning lambda via cross-validation or other search
procedures.

lambda.scale Scale on which the lambda grid is generated, for example logarithmic or linear
spacing.

parallel.flag Logical flag enabling parallel computation of gradients or bootstrap replicates.

num.cores Number of processing cores to use when parallel execution is enabled.

bigmemory.flag Logical flag indicating whether intermediate matrices should be stored using
bigmemory backed objects.

num.rows.chunk Row chunk size to use when streaming data from an on-disk matrix representa-
tion.

col.names Optional character vector of column names associated with the feature matrix.

type Type of survival model to fit, for example Cox proportional hazards or acceler-
ated failure time variants.

Value

A fitted model object storing the learned coefficients, optimisation metadata, and any requested
inference summaries. coef: Log of hazards ratio. If no inference is used, it returns a vector for
estimated coefficients: If inference is used, it returns a matrix including estimates and confidence
intervals of coefficients. In case of penalization, it resturns a matrix with columns corresponding
to lambdas. coef.exp: Exponentiated version of coef (hazards ratio). lambda: Returns lambda(s)
used for penalizarion. alpha: Returns alpha used for penalizarion. features.mean: Returns means
of features, if given or calculated features.sd: Returns standard deviations of features, if given or
calculated.

See Also

See Also bigSurvSGD, bigscale for constructing normalised design matrices and partialbigSurvSGDv0
for partial fitting pipelines.

10 big_pls_cox

Examples

data(micro.censure, package = "bigPLScox")
surv_data <- stats::na.omit(micro.censure[, c("survyear", "DC", "sexe", "Agediag")])
Increase num.epoch and num.boot for real use
fit <- bigSurvSGD.na.omit(

survival::Surv(survyear, DC) ~ .,
data = surv_data,
norm.method = "standardize",
opt.method = "adam",
batch.size = 16,
num.epoch = 2,

)

big_pls_cox Partial Least Squares Components for Cox Models with Big Matrices

Description

Compute Partial Least Squares (PLS) components tailored for Cox proportional hazards models
when predictors are stored as a big.matrix from the bigmemory package.

Usage

big_pls_cox(
X,
time,
status,
ncomp = 2L,
control = survival::coxph.control(),
keepX = NULL

)

Arguments

X A numeric matrix or a bigmemory::big.matrix object containing the predic-
tors.

time Numeric vector of survival times.

status Integer (0/1) vector of event indicators.

ncomp Number of latent components to compute.

control Optional list passed to survival::coxph.control.

keepX Optional integer vector specifying the number of variables to retain (naive spar-
sity) in each component. A value of zero keeps all predictors. If a single integer
is supplied it is recycled across components.

big_pls_cox_gd 11

Details

The function standardises each predictor column, iteratively builds latent scores using martingale
residuals from Cox fits, and deflates the predictors without materialising the full design matrix in
memory. Both in-memory and file-backed bigmemory matrices are supported.

Value

A list with the computed scores, loadings, weights, scaling information and the fitted Cox model
returned by survival::coxph.fit.

References

Maumy, M., Bertrand, F. (2023). PLS models and their extension for big data. Joint Statistical
Meetings (JSM 2023), Toronto, ON, Canada.

Maumy, M., Bertrand, F. (2023). bigPLS: Fitting and cross-validating PLS-based Cox models
to censored big data. BioC2023 — The Bioconductor Annual Conference, Dana-Farber Cancer
Institute, Boston, MA, USA. Poster. https://doi.org/10.7490/f1000research.1119546.1

Bastien, P., Bertrand, F., Meyer, N., & Maumy-Bertrand, M. (2015). Deviance residuals-based
sparse PLS and sparse kernel PLS for censored data. Bioinformatics, 31(3), 397–404. doi:10.
1093/bioinformatics/btu660

Bertrand, F., Bastien, P., Meyer, N., & Maumy-Bertrand, M. (2014). PLS models for censored data.
In Proceedings of UseR! 2014 (p. 152).

See Also

big_pls_cox_gd(), predict.big_pls_cox(), select_ncomp(), computeDR().

Examples

if (requireNamespace("survival", quietly = TRUE)) {
set.seed(1)
X <- matrix(rnorm(100), nrow = 20)
time <- rexp(20)
status <- rbinom(20, 1, 0.5)
fit <- big_pls_cox(X, time, status, ncomp = 2)
str(fit)

}

big_pls_cox_gd Gradient-Descent Solver for Cox Models on Big Matrices

Description

Fits a Cox proportional hazards regression model using a gradient-descent optimizer implemented
in C++. The function operates directly on a bigmemory::big.matrix object to avoid materialising
large design matrices in memory.

doi:10.1093/bioinformatics/btu660
doi:10.1093/bioinformatics/btu660

12 big_pls_cox_gd

Usage

big_pls_cox_gd(
X,
time,
status,
ncomp = NULL,
max_iter = 500L,
tol = 1e-06,
learning_rate = 0.01,
keepX = NULL

)

Arguments

X A bigmemory::big.matrix containing the design matrix (rows are observa-
tions).

time A numeric vector of follow-up times with length equal to the number of rows of
X.

status A numeric or integer vector of the same length as time containing the event
indicators (1 for an event, 0 for censoring).

ncomp An integer giving the number of components (columns) to use from X. Defaults
to min(5, ncol(X)).

max_iter Maximum number of gradient-descent iterations (default 500).

tol Convergence tolerance on the Euclidean distance between successive coefficient
vectors.

learning_rate Step size used for the gradient-descent updates.

keepX Optional integer vector describing the number of predictors to retain per com-
ponent (naive sparsity). A value of zero keeps all predictors.

Value

A list with components:

• coefficients: Estimated Cox regression coefficients on the latent scores.

• loglik: Final partial log-likelihood value.

• iterations: Number of gradient-descent iterations performed.

• converged: Logical flag indicating whether convergence was achieved.

• scores: Matrix of latent score vectors (one column per component).

• loadings: Matrix of loading vectors associated with each component.

• weights: Matrix of PLS weight vectors.

• center: Column means used to centre the predictors.

• scale: Column scales (standard deviations) used to standardise the predictors.

component_information 13

References

Maumy, M., Bertrand, F. (2023). PLS models and their extension for big data. Joint Statistical
Meetings (JSM 2023), Toronto, ON, Canada.

Maumy, M., Bertrand, F. (2023). bigPLS: Fitting and cross-validating PLS-based Cox models
to censored big data. BioC2023 — The Bioconductor Annual Conference, Dana-Farber Cancer
Institute, Boston, MA, USA. Poster. https://doi.org/10.7490/f1000research.1119546.1

Bastien, P., Bertrand, F., Meyer, N., & Maumy-Bertrand, M. (2015). Deviance residuals-based
sparse PLS and sparse kernel PLS for censored data. Bioinformatics, 31(3), 397–404. doi:10.
1093/bioinformatics/btu660

Bertrand, F., Bastien, P., Meyer, N., & Maumy-Bertrand, M. (2014). PLS models for censored data.
In Proceedings of UseR! 2014 (p. 152).

See Also

big_pls_cox(), predict.big_pls_cox(), select_ncomp(), computeDR().

Examples

library(bigmemory)
set.seed(1)
n <- 50
p <- 10
X <- bigmemory::as.big.matrix(matrix(rnorm(n * p), n, p))
time <- rexp(n, rate = 0.1)
status <- rbinom(n, 1, 0.7)
fit <- big_pls_cox_gd(X, time, status, ncomp = 3, max_iter = 200)

component_information Information criteria for component selection

Description

Computes log-likelihood, AIC and BIC values for nested models using the latent components esti-
mated by big_pls_cox() or big_pls_cox_gd().

Usage

component_information(object, max_comp = ncol(object$scores))

S3 method for class 'big_pls_cox'
component_information(object, max_comp = ncol(object$scores))

S3 method for class 'big_pls_cox_gd'
component_information(object, max_comp = ncol(object$scores))

select_ncomp(object, criterion = c("AIC", "BIC", "loglik"), ...)

doi:10.1093/bioinformatics/btu660
doi:10.1093/bioinformatics/btu660

14 computeDR

Arguments

object A fitted object of class big_pls_cox or big_pls_cox_gd.

max_comp Maximum number of components to consider. Defaults to all components stored
in the model.

criterion Criterion to optimise: "AIC", "BIC" or "loglik".

... Passed to component_information().

Value

A data frame with columns ncomp, loglik, AIC, and BIC.

A list with the table of information criteria and the recommended number of components.

computeDR Compute deviance residuals

Description

This function computes deviance residuals from a null Cox model. By default it delegates to
survival::coxph(), but a high-performance C++ engine is also available for large in-memory
or bigmemory::big.matrix design matrices.

Usage

computeDR(
time,
time2,
event,
type,
origin,
typeres = "deviance",
collapse,
weighted,
scaleY = TRUE,
plot = FALSE,
engine = c("survival", "cpp", "qcpp"),
method = c("efron", "breslow"),
X = NULL,
coef = NULL,
eta = NULL,
center = NULL,
scale = NULL

)

computeDR 15

Arguments

time for right censored data, this is the follow up time. For interval data, the first
argument is the starting time for the interval.

time2 The status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE
(TRUE = death) or 1/2 (2=death). For interval censored data, the status indica-
tor is 0=right censored, 1=event at time, 2=left censored, 3=interval censored.
Although unusual, the event indicator can be omitted, in which case all subjects
are assumed to have an event.

event ending time of the interval for interval censored or counting process data only.
Intervals are assumed to be open on the left and closed on the right, (start,
end]. For counting process data, event indicates whether an event occurred at
the end of the interval.

type character string specifying the type of censoring. Possible values are "right",
"left", "counting", "interval", or "interval2". The default is "right"
or "counting" depending on whether the time2 argument is absent or present,
respectively.

origin for counting process data, the hazard function origin. This option was intended
to be used in conjunction with a model containing time dependent strata in order
to align the subjects properly when they cross over from one strata to another,
but it has rarely proven useful.

typeres character string indicating the type of residual desired. Possible values are
"martingale", "deviance", "score", "schoenfeld", "dfbeta", "dfbetas",
and "scaledsch". Only enough of the string to determine a unique match is
required.

collapse vector indicating which rows to collapse (sum) over. In time-dependent models
more than one row data can pertain to a single individual. If there were 4 individ-
uals represented by 3, 1, 2 and 4 rows of data respectively, then collapse=c(1,1,1,2,3,3,4,4,4,4)
could be used to obtain per subject rather than per observation residuals.

weighted if TRUE and the model was fit with case weights, then the weighted residuals are
returned.

scaleY Should the time values be standardized ?

plot Should the survival function be plotted ?

engine Either "survival" (default) to call survival::coxph() or "cpp" to use the
C++ implementation.

method Tie handling to use with engine = "cpp": either "efron" (default) or "breslow".

X Optional design matrix used to compute the linear predictor when engine =
"cpp". Supports base matrices, data frames, and bigmemory::big.matrix ob-
jects.

coef Optional coefficient vector associated with X when engine = "cpp".

eta Optional precomputed linear predictor passed directly to the C++ engine.

center, scale Optional centring and scaling vectors applied to X before computing the linear
predictor with the C++ engine.

16 computeDR

Value

Residuals from a null model fit. When engine = "cpp", the returned vector has attributes "martingale",
"cumhaz", and "linear_predictor".

Author(s)

Frédéric Bertrand
<frederic.bertrand@lecnam.net>
https://fbertran.github.io/homepage/

References

Bastien, P., Bertrand, F., Meyer, N., and Maumy-Bertrand, M. (2015). Deviance residuals-based
sparse PLS and sparse kernel PLS for binary classification and survival analysis. BMC Bioinfor-
matics, 16, 211.

Therneau, T.M., Grambsch, P.M. (2000). Modeling Survival Data: Extending the Cox Model.
Springer.

See Also

coxph

Examples

data(micro.censure, package = "bigPLScox")

Y_train_micro <- micro.censure$survyear[1:80]
C_train_micro <- micro.censure$DC[1:80]

Y_DR <- computeDR(Y_train_micro,C_train_micro)
Y_DR <- computeDR(Y_train_micro,C_train_micro,plot=TRUE)

Y_cpp <- computeDR(
Y_train_micro,
C_train_micro,
engine = "cpp",
eta = rep(0, length(Y_train_micro))

)

Y_qcpp <- computeDR(
Y_train_micro,
C_train_micro,
engine = "qcpp"

)

https://fbertran.github.io/homepage/

coxDKgplsDR 17

coxDKgplsDR Fitting a Direct Kernel group PLS model on the (Deviance) Residuals

Description

This function computes the Cox Model based on PLSR components computed model with

• as the response: the Survival time

• as explanatory variables: Xplan.

It uses the package sgPLS to perform group PLSR fit.

Usage

coxDKgplsDR(Xplan, ...)

S3 method for class 'formula'
coxDKgplsDR(
Xplan,
time,
time2,
event,
type,
origin,
typeres = "deviance",
collapse,
weighted,
scaleX = TRUE,
scaleY = TRUE,
ncomp = min(7, ncol(Xplan)),
modepls = "regression",
ind.block.x,
keepX,
plot = FALSE,
allres = FALSE,
dataXplan = NULL,
subset,
weights,
model_frame = FALSE,
model_matrix = FALSE,
contrasts.arg = NULL,
kernel = "rbfdot",
hyperkernel,
verbose = FALSE,
...

)

18 coxDKgplsDR

Default S3 method:
coxDKgplsDR(
Xplan,
time,
time2,
event,
type,
origin,
typeres = "deviance",
collapse,
weighted,
scaleX = TRUE,
scaleY = TRUE,
ncomp = min(7, ncol(Xplan)),
modepls = "regression",
ind.block.x,
keepX,
plot = FALSE,
allres = FALSE,
kernel = "rbfdot",
hyperkernel,
verbose = FALSE,
...

)

Arguments

Xplan a formula or a matrix with the eXplanatory variables (training) dataset
... Arguments to be passed on to survival::coxph.
time for right censored data, this is the follow up time. For interval data, the first

argument is the starting time for the interval.
time2 The status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE

(TRUE = death) or 1/2 (2=death). For interval censored data, the status indica-
tor is 0=right censored, 1=event at time, 2=left censored, 3=interval censored.
Although unusual, the event indicator can be omitted, in which case all subjects
are assumed to have an event.

event ending time of the interval for interval censored or counting process data only.
Intervals are assumed to be open on the left and closed on the right, (start,
end]. For counting process data, event indicates whether an event occurred at
the end of the interval.

type character string specifying the type of censoring. Possible values are "right",
"left", "counting", "interval", or "interval2". The default is "right"
or "counting" depending on whether the time2 argument is absent or present,
respectively.

origin for counting process data, the hazard function origin. This option was intended
to be used in conjunction with a model containing time dependent strata in order
to align the subjects properly when they cross over from one strata to another,
but it has rarely proven useful.

coxDKgplsDR 19

typeres character string indicating the type of residual desired. Possible values are
"martingale", "deviance", "score", "schoenfeld", "dfbeta", "dfbetas",
and "scaledsch". Only enough of the string to determine a unique match is
required.

collapse vector indicating which rows to collapse (sum) over. In time-dependent models
more than one row data can pertain to a single individual. If there were 4 individ-
uals represented by 3, 1, 2 and 4 rows of data respectively, then collapse=c(1,1,1,2,3,3,4,4,4,4)
could be used to obtain per subject rather than per observation residuals.

weighted if TRUE and the model was fit with case weights, then the weighted residuals are
returned.

scaleX Should the Xplan columns be standardized ?

scaleY Should the time values be standardized ?

ncomp The number of components to include in the model. It this is not supplied,
min(7,maximal number) components is used.

modepls character string. What type of algorithm to use, (partially) matching one of
"regression", "canonical". See gPLS for details

ind.block.x a vector of integers describing the grouping of the X-variables. ind.block.x
<- c(3,10,15) means that X is structured into 4 groups: X1 to X3; X4 to X10,
X11 to X15 and X16 to Xp where p is the number of variables in the X matrix.

keepX numeric vector of length ncomp, the number of variables to keep in X-loadings.
By default all variables are kept in the model.

plot Should the survival function be plotted ?)

allres FALSE to return only the Cox model and TRUE for additionnal results. See
details. Defaults to FALSE.

dataXplan an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in dataXplan,
the variables are taken from environment(Xplan), typically the environment
from which coxpls is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

weights an optional vector of ’prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector.

model_frame If TRUE, the model frame is returned.

model_matrix If TRUE, the model matrix is returned.

contrasts.arg a list, whose entries are values (numeric matrices, functions or character strings
naming functions) to be used as replacement values for the contrasts replacement
function and whose names are the names of columns of data containing factors.

kernel the kernel function used in training and predicting. This parameter can be set to
any function, of class kernel, which computes the inner product in feature space
between two vector arguments (see kernels). The kernlab package provides the
most popular kernel functions which can be used by setting the kernel parameter
to the following strings:

list("rbfdot") Radial Basis kernel "Gaussian"

20 coxDKgplsDR

list("polydot") Polynomial kernel
list("vanilladot") Linear kernel
list("tanhdot") Hyperbolic tangent kernel
list("laplacedot") Laplacian kernel
list("besseldot") Bessel kernel
list("anovadot") ANOVA RBF kernel
list("splinedot") Spline kernel

hyperkernel the list of hyper-parameters (kernel parameters). This is a list which contains the
parameters to be used with the kernel function. For valid parameters for existing
kernels are :

• sigma, inverse kernel width for the Radial Basis kernel function "rbfdot"
and the Laplacian kernel "laplacedot".

• degree, scale, offset for the Polynomial kernel "polydot".
• scale, offset for the Hyperbolic tangent kernel function "tanhdot".
• sigma, order, degree for the Bessel kernel "besseldot".
• sigma, degree for the ANOVA kernel "anovadot".

In the case of a Radial Basis kernel function (Gaussian) or Laplacian kernel,
if hyperkernel is missing, the heuristics in sigest are used to calculate a good
sigma value from the data.

verbose Should some details be displayed ?

Details

If allres=FALSE returns only the final Cox-model. If allres=TRUE returns a list with the PLS
components, the final Cox-model and the group PLSR model. allres=TRUE is useful for evluating
model prediction accuracy on a test sample.

Value

If allres=FALSE :

cox_DKgplsDR Final Cox-model.

If allres=TRUE :

tt_DKgplsDR PLSR components.

cox_DKgplsDR Final Cox-model.

DKgplsDR_mod The PLSR model.

Author(s)

Frédéric Bertrand
<frederic.bertrand@lecnam.net>
https://fbertran.github.io/homepage/

https://fbertran.github.io/homepage/

coxDKsgplsDR 21

References

A group and Sparse Group Partial Least Square approach applied in Genomics context, Liquet
Benoit, Lafaye de Micheaux, Boris Hejblum, Rodolphe Thiebaut (2016). Bioinformatics.

Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Philippe
Bastien, Frederic Bertrand, Nicolas Meyer and Myriam Maumy-Bertrand (2015), Bioinformatics,
31(3):397-404, doi:10.1093/bioinformatics/btu660.

See Also

coxph, gPLS

Examples

data(micro.censure)
data(Xmicro.censure_compl_imp)

X_train_micro <- apply((as.matrix(Xmicro.censure_compl_imp)),FUN="as.numeric",MARGIN=2)[1:80,]
X_train_micro_df <- data.frame(X_train_micro)
Y_train_micro <- micro.censure$survyear[1:80]
C_train_micro <- micro.censure$DC[1:80]

(coxDKgplsDR_fit=coxDKgplsDR(X_train_micro,Y_train_micro,C_train_micro,
ncomp=6,ind.block.x=c(3,10,15),keepX=rep(4,6)))
(coxDKgplsDR_fit=coxDKgplsDR(~X_train_micro,Y_train_micro,C_train_micro,
ncomp=6,ind.block.x=c(3,10,15),keepX=rep(4,6)))
(coxDKgplsDR_fit=coxDKgplsDR(~.,Y_train_micro,C_train_micro,ncomp=6,
dataXplan=X_train_micro_df,ind.block.x=c(3,10,15),keepX=rep(4,6)))

rm(X_train_micro,Y_train_micro,C_train_micro,cox_spls_sgpls_fit)

coxDKsgplsDR Fitting a Direct Kernel group sparse PLS model on the (Deviance)
Residuals

Description

This function computes the Cox Model based on PLSR components computed model with

• as the response: the Survival time

• as explanatory variables: Xplan.

It uses the package sgplsDR to perform group PLSR fit.

22 coxDKsgplsDR

Usage

coxDKsgplsDR(Xplan, ...)

S3 method for class 'formula'
coxDKsgplsDR(
Xplan,
time,
time2,
event,
type,
origin,
typeres = "deviance",
collapse,
weighted,
scaleX = TRUE,
scaleY = TRUE,
ncomp = min(7, ncol(Xplan)),
modepls = "regression",
ind.block.x,
keepX,
alpha.x,
upper.lambda = 10^5,
plot = FALSE,
allres = FALSE,
dataXplan = NULL,
subset,
weights,
model_frame = FALSE,
model_matrix = FALSE,
contrasts.arg = NULL,
kernel = "rbfdot",
hyperkernel,
verbose = FALSE,
...

)

Default S3 method:
coxDKsgplsDR(
Xplan,
time,
time2,
event,
type,
origin,
typeres = "deviance",
collapse,
weighted,
scaleX = TRUE,

coxDKsgplsDR 23

scaleY = TRUE,
ncomp = min(7, ncol(Xplan)),
modepls = "regression",
ind.block.x,
keepX,
alpha.x,
upper.lambda = 10^5,
plot = FALSE,
allres = FALSE,
kernel = "rbfdot",
hyperkernel,
verbose = FALSE,
...

)

Arguments

Xplan a formula or a matrix with the eXplanatory variables (training) dataset

... Arguments to be passed on to survival::coxph.

time for right censored data, this is the follow up time. For interval data, the first
argument is the starting time for the interval.

time2 The status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE
(TRUE = death) or 1/2 (2=death). For interval censored data, the status indica-
tor is 0=right censored, 1=event at time, 2=left censored, 3=interval censored.
Although unusual, the event indicator can be omitted, in which case all subjects
are assumed to have an event.

event ending time of the interval for interval censored or counting process data only.
Intervals are assumed to be open on the left and closed on the right, (start,
end]. For counting process data, event indicates whether an event occurred at
the end of the interval.

type character string specifying the type of censoring. Possible values are "right",
"left", "counting", "interval", or "interval2". The default is "right"
or "counting" depending on whether the time2 argument is absent or present,
respectively.

origin for counting process data, the hazard function origin. This option was intended
to be used in conjunction with a model containing time dependent strata in order
to align the subjects properly when they cross over from one strata to another,
but it has rarely proven useful.

typeres character string indicating the type of residual desired. Possible values are
"martingale", "deviance", "score", "schoenfeld", "dfbeta", "dfbetas",
and "scaledsch". Only enough of the string to determine a unique match is
required.

collapse vector indicating which rows to collapse (sum) over. In time-dependent models
more than one row data can pertain to a single individual. If there were 4 individ-
uals represented by 3, 1, 2 and 4 rows of data respectively, then collapse=c(1,1,1,2,3,3,4,4,4,4)
could be used to obtain per subject rather than per observation residuals.

24 coxDKsgplsDR

weighted if TRUE and the model was fit with case weights, then the weighted residuals are
returned.

scaleX Should the Xplan columns be standardized ?

scaleY Should the time values be standardized ?

ncomp The number of components to include in the model. It this is not supplied,
min(7,maximal number) components is used.

modepls character string. What type of algorithm to use, (partially) matching one of
"regression", "canonical". See gPLS for details

ind.block.x a vector of integers describing the grouping of the X-variables. ind.block.x
<- c(3,10,15) means that X is structured into 4 groups: X1 to X3; X4 to X10,
X11 to X15 and X16 to Xp where p is the number of variables in the X matrix.

keepX numeric vector of length ncomp, the number of variables to keep in X-loadings.
By default all variables are kept in the model.

alpha.x The mixing parameter (value between 0 and 1) related to the sparsity within
group for the X dataset.

upper.lambda By default upper.lambda=10^5. A large value specifying the upper bound of
the intervall of lambda values for searching the value of the tuning parameter
(lambda) corresponding to a non-zero group of variables.

plot Should the survival function be plotted ?)

allres FALSE to return only the Cox model and TRUE for additionnal results. See
details. Defaults to FALSE.

dataXplan an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in dataXplan,
the variables are taken from environment(Xplan), typically the environment
from which coxpls is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

weights an optional vector of ’prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector.

model_frame If TRUE, the model frame is returned.

model_matrix If TRUE, the model matrix is returned.

contrasts.arg a list, whose entries are values (numeric matrices, functions or character strings
naming functions) to be used as replacement values for the contrasts replacement
function and whose names are the names of columns of data containing factors.

kernel the kernel function used in training and predicting. This parameter can be set to
any function, of class kernel, which computes the inner product in feature space
between two vector arguments (see kernels). The kernlab package provides the
most popular kernel functions which can be used by setting the kernel parameter
to the following strings:

list("rbfdot") Radial Basis kernel "Gaussian"
list("polydot") Polynomial kernel
list("vanilladot") Linear kernel

coxDKsgplsDR 25

list("tanhdot") Hyperbolic tangent kernel

list("laplacedot") Laplacian kernel

list("besseldot") Bessel kernel

list("anovadot") ANOVA RBF kernel

list("splinedot") Spline kernel

hyperkernel the list of hyper-parameters (kernel parameters). This is a list which contains the
parameters to be used with the kernel function. For valid parameters for existing
kernels are :

• sigma, inverse kernel width for the Radial Basis kernel function "rbfdot"
and the Laplacian kernel "laplacedot".

• degree, scale, offset for the Polynomial kernel "polydot".

• scale, offset for the Hyperbolic tangent kernel function "tanhdot".

• sigma, order, degree for the Bessel kernel "besseldot".

• sigma, degree for the ANOVA kernel "anovadot".

In the case of a Radial Basis kernel function (Gaussian) or Laplacian kernel,
if hyperkernel is missing, the heuristics in sigest are used to calculate a good
sigma value from the data.

verbose Should some details be displayed ?

Details

If allres=FALSE returns only the final Cox-model. If allres=TRUE returns a list with the PLS
components, the final Cox-model and the group PLSR model. allres=TRUE is useful for evluating
model prediction accuracy on a test sample.

Value

If allres=FALSE :

cox_DKsgplsDR Final Cox-model.

If allres=TRUE :

tt_DKsgplsDR PLSR components.

cox_DKsgplsDR Final Cox-model.

DKsgplsDR_mod The PLSR model.

Author(s)

Frédéric Bertrand
<frederic.bertrand@lecnam.net>
https://fbertran.github.io/homepage/

https://fbertran.github.io/homepage/

26 coxDKspls_sgplsDR

References

A group and Sparse Group Partial Least Square approach applied in Genomics context, Liquet
Benoit, Lafaye de Micheaux, Boris Hejblum, Rodolphe Thiebaut (2016). Bioinformatics.

Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Philippe
Bastien, Frederic Bertrand, Nicolas Meyer and Myriam Maumy-Bertrand (2015), Bioinformatics,
31(3):397-404, doi:10.1093/bioinformatics/btu660.

See Also

coxph, gPLS

Examples

data(micro.censure)
data(Xmicro.censure_compl_imp)

X_train_micro <- apply((as.matrix(Xmicro.censure_compl_imp)),
FUN="as.numeric",MARGIN=2)[1:80,]
X_train_micro_df <- data.frame(X_train_micro)
Y_train_micro <- micro.censure$survyear[1:80]
C_train_micro <- micro.censure$DC[1:80]

(coxDKsgplsDR_fit=coxDKsgplsDR(X_train_micro,Y_train_micro,C_train_micro,
ncomp=6,ind.block.x=c(3,10,15), alpha.x = rep(0.95, 6)))
(coxDKsgplsDR_fit=coxDKsgplsDR(~X_train_micro,Y_train_micro,C_train_micro,
ncomp=6,ind.block.x=c(3,10,15), alpha.x = rep(0.95, 6)))
(coxDKsgplsDR_fit=coxDKsgplsDR(~.,Y_train_micro,C_train_micro,ncomp=6,
dataXplan=X_train_micro_df,ind.block.x=c(3,10,15), alpha.x = rep(0.95, 6)))

rm(X_train_micro,Y_train_micro,C_train_micro,coxDKsgplsDR_fit)

coxDKspls_sgplsDR Fitting a Cox-Model on sparse PLSR components using the (Deviance)
Residuals

Description

This function computes the Cox Model based on PLSR components computed model with

• as the response: the Survival time

• as explanatory variables: Xplan.

It uses the package sgPLS to perform group PLSR fit.

coxDKspls_sgplsDR 27

Usage

coxDKspls_sgplsDR(Xplan, ...)

S3 method for class 'formula'
coxDKspls_sgplsDR(
Xplan,
time,
time2,
event,
type,
origin,
typeres = "deviance",
collapse,
weighted,
scaleX = TRUE,
scaleY = TRUE,
ncomp = min(7, ncol(Xplan)),
ind.block.x = NULL,
modepls = "regression",
keepX,
plot = FALSE,
allres = FALSE,
dataXplan = NULL,
subset,
weights,
model_frame = FALSE,
model_matrix = FALSE,
contrasts.arg = NULL,
kernel = "rbfdot",
hyperkernel,
verbose = FALSE,
...

)

Default S3 method:
coxDKspls_sgplsDR(
Xplan,
time,
time2,
event,
type,
origin,
typeres = "deviance",
collapse,
weighted,
scaleX = TRUE,
scaleY = TRUE,
ncomp = min(7, ncol(Xplan)),

28 coxDKspls_sgplsDR

ind.block.x = NULL,
modepls = "regression",
keepX,
alpha.x,
upper.lambda = 10^5,
plot = FALSE,
allres = FALSE,
kernel = "rbfdot",
hyperkernel,
verbose = FALSE,
...

)

Arguments

Xplan a formula or a matrix with the eXplanatory variables (training) dataset

... Arguments to be passed on to survival::coxph.

time for right censored data, this is the follow up time. For interval data, the first
argument is the starting time for the interval.

time2 The status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE
(TRUE = death) or 1/2 (2=death). For interval censored data, the status indica-
tor is 0=right censored, 1=event at time, 2=left censored, 3=interval censored.
Although unusual, the event indicator can be omitted, in which case all subjects
are assumed to have an event.

event ending time of the interval for interval censored or counting process data only.
Intervals are assumed to be open on the left and closed on the right, (start,
end]. For counting process data, event indicates whether an event occurred at
the end of the interval.

type character string specifying the type of censoring. Possible values are "right",
"left", "counting", "interval", or "interval2". The default is "right"
or "counting" depending on whether the time2 argument is absent or present,
respectively.

origin for counting process data, the hazard function origin. This option was intended
to be used in conjunction with a model containing time dependent strata in order
to align the subjects properly when they cross over from one strata to another,
but it has rarely proven useful.

typeres character string indicating the type of residual desired. Possible values are
"martingale", "deviance", "score", "schoenfeld", "dfbeta", "dfbetas",
and "scaledsch". Only enough of the string to determine a unique match is
required.

collapse vector indicating which rows to collapse (sum) over. In time-dependent models
more than one row data can pertain to a single individual. If there were 4 individ-
uals represented by 3, 1, 2 and 4 rows of data respectively, then collapse=c(1,1,1,2,3,3,4,4,4,4)
could be used to obtain per subject rather than per observation residuals.

weighted if TRUE and the model was fit with case weights, then the weighted residuals are
returned.

coxDKspls_sgplsDR 29

scaleX Should the Xplan columns be standardized ?

scaleY Should the time values be standardized ?

ncomp The number of components to include in the model. It this is not supplied,
min(7,maximal number) components is used.

ind.block.x a vector of integers describing the grouping of the X-variables. ind.block.x
<- c(3,10,15) means that X is structured into 4 groups: X1 to X3; X4 to X10,
X11 to X15 and X16 to Xp where p is the number of variables in the X matrix.

modepls character string. What type of algorithm to use, (partially) matching one of
"regression", "canonical". See gPLS for details

keepX numeric vector of length ncomp, the number of variables to keep in X-loadings.
By default all variables are kept in the model.

plot Should the survival function be plotted ?)

allres FALSE to return only the Cox model and TRUE for additionnal results. See
details. Defaults to FALSE.

dataXplan an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in dataXplan,
the variables are taken from environment(Xplan), typically the environment
from which coxpls is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

weights an optional vector of ’prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector.

model_frame If TRUE, the model frame is returned.

model_matrix If TRUE, the model matrix is returned.

contrasts.arg a list, whose entries are values (numeric matrices, functions or character strings
naming functions) to be used as replacement values for the contrasts replacement
function and whose names are the names of columns of data containing factors.

kernel the kernel function used in training and predicting. This parameter can be set to
any function, of class kernel, which computes the inner product in feature space
between two vector arguments (see kernels). The kernlab package provides the
most popular kernel functions which can be used by setting the kernel parameter
to the following strings:

list("rbfdot") Radial Basis kernel "Gaussian"
list("polydot") Polynomial kernel
list("vanilladot") Linear kernel
list("tanhdot") Hyperbolic tangent kernel
list("laplacedot") Laplacian kernel
list("besseldot") Bessel kernel
list("anovadot") ANOVA RBF kernel
list("splinedot") Spline kernel

hyperkernel the list of hyper-parameters (kernel parameters). This is a list which contains the
parameters to be used with the kernel function. For valid parameters for existing
kernels are :

30 coxDKspls_sgplsDR

• sigma, inverse kernel width for the Radial Basis kernel function "rbfdot"
and the Laplacian kernel "laplacedot".

• degree, scale, offset for the Polynomial kernel "polydot".
• scale, offset for the Hyperbolic tangent kernel function "tanhdot".
• sigma, order, degree for the Bessel kernel "besseldot".
• sigma, degree for the ANOVA kernel "anovadot".

In the case of a Radial Basis kernel function (Gaussian) or Laplacian kernel,
if hyperkernel is missing, the heuristics in sigest are used to calculate a good
sigma value from the data.

verbose Should some details be displayed ?

alpha.x numeric vector of length ncomp giving the sparsity level applied within each
component. Required when ind.block.x is specified.

upper.lambda numeric value controlling the maximal penalty considered by sgPLS when esti-
mating sparse group loadings. Defaults to 10^5.

Details

If allres=FALSE returns only the final Cox-model. If allres=TRUE returns a list with the PLS
components, the final Cox-model and the group PLSR model. allres=TRUE is useful for evluating
model prediction accuracy on a test sample.

Value

If allres=FALSE :

cox_DKspls_sgplsDR

Final Cox-model.

If allres=TRUE :

tt_DKspls_sgplsDR

PLSR components.
cox_DKspls_sgplsDR

Final Cox-model.
DKspls_sgplsDR_mod

The PLSR model.

Author(s)

Frédéric Bertrand
<frederic.bertrand@lecnam.net>
https://fbertran.github.io/homepage/

References

A group and Sparse Group Partial Least Square approach applied in Genomics context, Liquet
Benoit, Lafaye de Micheaux, Boris Hejblum, Rodolphe Thiebaut (2016). Bioinformatics.

https://fbertran.github.io/homepage/

coxgpls 31

Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Philippe
Bastien, Frederic Bertrand, Nicolas Meyer and Myriam Maumy-Bertrand (2015), Bioinformatics,
31(3):397-404, doi:10.1093/bioinformatics/btu660.

See Also

coxph, gPLS

Examples

data(micro.censure)
data(Xmicro.censure_compl_imp)

X_train_micro <- apply((as.matrix(Xmicro.censure_compl_imp)),
FUN="as.numeric",MARGIN=2)[1:80,]
X_train_micro_df <- data.frame(X_train_micro)
Y_train_micro <- micro.censure$survyear[1:80]
C_train_micro <- micro.censure$DC[1:80]

(cox_DKspls_sgplsDR_fit=coxDKspls_sgplsDR(X_train_micro,Y_train_micro,
C_train_micro,ncomp=6,ind.block.x=c(3,10,15), alpha.x = rep(0.95, 6)))
(cox_DKspls_sgplsDR_fit=coxDKspls_sgplsDR(~X_train_micro,Y_train_micro,
C_train_micro,ncomp=6,ind.block.x=c(3,10,15), alpha.x = rep(0.95, 6)))
(cox_DKspls_sgplsDR_fit=coxDKspls_sgplsDR(~.,Y_train_micro,C_train_micro,
ncomp=6,dataXplan=X_train_micro_df,ind.block.x=c(3,10,15),
alpha.x = rep(0.95, 6)))

rm(X_train_micro,Y_train_micro,C_train_micro,cox_DKspls_sgplsDR_fit)

coxgpls Fitting a Cox-Model on group PLSR components

Description

This function computes the Cox Model based on PLSR components computed model with

• as the response: the Survival time

• as explanatory variables: Xplan.

It uses the package sgPLS to perform group PLSR fit.

Usage

coxgpls(Xplan, ...)

S3 method for class 'formula'
coxgpls(
Xplan,

32 coxgpls

time,
time2,
event,
type,
origin,
typeres = "deviance",
collapse,
weighted,
scaleX = TRUE,
scaleY = TRUE,
ncomp = min(7, ncol(Xplan)),
modepls = "regression",
ind.block.x,
keepX,
plot = FALSE,
allres = FALSE,
dataXplan = NULL,
subset,
weights,
model_frame = FALSE,
model_matrix = FALSE,
contrasts.arg = NULL,
...

)

Default S3 method:
coxgpls(
Xplan,
time,
time2,
event,
type,
origin,
typeres = "deviance",
collapse,
weighted,
scaleX = TRUE,
scaleY = TRUE,
ncomp = min(7, ncol(Xplan)),
modepls = "regression",
ind.block.x,
keepX,
plot = FALSE,
allres = FALSE,
...

)

coxgpls 33

Arguments

Xplan a formula or a matrix with the eXplanatory variables (training) dataset

... Arguments to be passed on to survival::coxph.

time for right censored data, this is the follow up time. For interval data, the first
argument is the starting time for the interval.

time2 The status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE
(TRUE = death) or 1/2 (2=death). For interval censored data, the status indica-
tor is 0=right censored, 1=event at time, 2=left censored, 3=interval censored.
Although unusual, the event indicator can be omitted, in which case all subjects
are assumed to have an event.

event ending time of the interval for interval censored or counting process data only.
Intervals are assumed to be open on the left and closed on the right, (start,
end]. For counting process data, event indicates whether an event occurred at
the end of the interval.

type character string specifying the type of censoring. Possible values are "right",
"left", "counting", "interval", or "interval2". The default is "right"
or "counting" depending on whether the time2 argument is absent or present,
respectively.

origin for counting process data, the hazard function origin. This option was intended
to be used in conjunction with a model containing time dependent strata in order
to align the subjects properly when they cross over from one strata to another,
but it has rarely proven useful.

typeres character string indicating the type of residual desired. Possible values are
"martingale", "deviance", "score", "schoenfeld", "dfbeta", "dfbetas",
and "scaledsch". Only enough of the string to determine a unique match is
required.

collapse vector indicating which rows to collapse (sum) over. In time-dependent models
more than one row data can pertain to a single individual. If there were 4 individ-
uals represented by 3, 1, 2 and 4 rows of data respectively, then collapse=c(1,1,1,2,3,3,4,4,4,4)
could be used to obtain per subject rather than per observation residuals.

weighted if TRUE and the model was fit with case weights, then the weighted residuals are
returned.

scaleX Should the Xplan columns be standardized ?

scaleY Should the time values be standardized ?

ncomp The number of components to include in the model. It this is not supplied,
min(7,maximal number) components is used.

modepls character string. What type of algorithm to use, (partially) matching one of
"regression", "canonical". See gPLS for details

ind.block.x a vector of integers describing the grouping of the X-variables. ind.block.x
<- c(3,10,15) means that X is structured into 4 groups: X1 to X3; X4 to X10,
X11 to X15 and X16 to Xp where p is the number of variables in the X matrix.
When missing, every predictor is placed in its own group.

keepX numeric vector of length ncomp, the number of variables to keep in X-loadings.
By default all variables are kept in the model.

34 coxgpls

plot Should the survival function be plotted ?)
allres FALSE to return only the Cox model and TRUE for additionnal results. See

details. Defaults to FALSE.
dataXplan an optional data frame, list or environment (or object coercible by as.data.frame

to a data frame) containing the variables in the model. If not found in dataXplan,
the variables are taken from environment(Xplan), typically the environment
from which coxpls is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

weights an optional vector of ’prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector.

model_frame If TRUE, the model frame is returned.
model_matrix If TRUE, the model matrix is returned.
contrasts.arg a list, whose entries are values (numeric matrices, functions or character strings

naming functions) to be used as replacement values for the contrasts replacement
function and whose names are the names of columns of data containing factors.

Details

If allres=FALSE returns only the final Cox-model. If allres=TRUE returns a list with the PLS
components, the final Cox-model and the group PLSR model. allres=TRUE is useful for evluating
model prediction accuracy on a test sample.

Value

If allres=FALSE :

cox_gpls Final Cox-model.

If allres=TRUE :

tt_gpls PLSR components.
cox_gpls Final Cox-model.
gpls_mod The PLSR model.

Author(s)

Frédéric Bertrand
<frederic.bertrand@lecnam.net>
https://fbertran.github.io/homepage/

References

A group and Sparse Group Partial Least Square approach applied in Genomics context, Liquet
Benoit, Lafaye de Micheaux, Boris Hejblum, Rodolphe Thiebaut (2016). Bioinformatics.

Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Philippe
Bastien, Frederic Bertrand, Nicolas Meyer and Myriam Maumy-Bertrand (2015), Bioinformatics,
31(3):397-404, doi:10.1093/bioinformatics/btu660.

https://fbertran.github.io/homepage/

coxgplsDR 35

See Also

coxph, gPLS

Examples

data(micro.censure)
data(Xmicro.censure_compl_imp)

X_train_micro <- apply((as.matrix(Xmicro.censure_compl_imp)),FUN="as.numeric",MARGIN=2)[1:80,]
X_train_micro_df <- data.frame(X_train_micro)
Y_train_micro <- micro.censure$survyear[1:80]
C_train_micro <- micro.censure$DC[1:80]

(coxgpls_fit=coxgpls(X_train_micro,Y_train_micro,C_train_micro,
ncomp=6,keepX=rep(4,6)))
(coxgpls_fit=coxgpls(~X_train_micro,Y_train_micro,C_train_micro,
ncomp=6,keepX=rep(4,6)))
(ccoxgpls_fit=coxgpls(~.,Y_train_micro,C_train_micro,ncomp=6,
dataXplan=X_train_micro_df,keepX=rep(4,6)))

rm(X_train_micro,Y_train_micro,C_train_micro,cox_spls_sgpls_fit)

coxgplsDR Fitting a Cox-Model on group PLSR components using the (Deviance)
Residuals

Description

This function computes the Cox Model based on PLSR components computed model with

• as the response: the Survival time

• as explanatory variables: Xplan.

It uses the package sgPLS to perform group PLSR fit.

Usage

coxgplsDR(Xplan, ...)

S3 method for class 'formula'
coxgplsDR(
Xplan,
time,
time2,
event,
type,
origin,
typeres = "deviance",

36 coxgplsDR

collapse,
weighted,
scaleX = TRUE,
scaleY = TRUE,
ncomp = min(7, ncol(Xplan)),
modepls = "regression",
ind.block.x,
keepX,
plot = FALSE,
allres = FALSE,
dataXplan = NULL,
subset,
weights,
model_frame = FALSE,
model_matrix = FALSE,
contrasts.arg = NULL,
...

)

Default S3 method:
coxgplsDR(
Xplan,
time,
time2,
event,
type,
origin,
typeres = "deviance",
collapse,
weighted,
scaleX = TRUE,
scaleY = TRUE,
ncomp = min(7, ncol(Xplan)),
modepls = "regression",
ind.block.x,
keepX,
plot = FALSE,
allres = FALSE,
...

)

Arguments

Xplan a formula or a matrix with the eXplanatory variables (training) dataset

... Arguments to be passed on to survival::coxph.

time for right censored data, this is the follow up time. For interval data, the first
argument is the starting time for the interval.

time2 The status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE

coxgplsDR 37

(TRUE = death) or 1/2 (2=death). For interval censored data, the status indica-
tor is 0=right censored, 1=event at time, 2=left censored, 3=interval censored.
Although unusual, the event indicator can be omitted, in which case all subjects
are assumed to have an event.

event ending time of the interval for interval censored or counting process data only.
Intervals are assumed to be open on the left and closed on the right, (start,
end]. For counting process data, event indicates whether an event occurred at
the end of the interval.

type character string specifying the type of censoring. Possible values are "right",
"left", "counting", "interval", or "interval2". The default is "right"
or "counting" depending on whether the time2 argument is absent or present,
respectively.

origin for counting process data, the hazard function origin. This option was intended
to be used in conjunction with a model containing time dependent strata in order
to align the subjects properly when they cross over from one strata to another,
but it has rarely proven useful.

typeres character string indicating the type of residual desired. Possible values are
"martingale", "deviance", "score", "schoenfeld", "dfbeta", "dfbetas",
and "scaledsch". Only enough of the string to determine a unique match is
required.

collapse vector indicating which rows to collapse (sum) over. In time-dependent models
more than one row data can pertain to a single individual. If there were 4 individ-
uals represented by 3, 1, 2 and 4 rows of data respectively, then collapse=c(1,1,1,2,3,3,4,4,4,4)
could be used to obtain per subject rather than per observation residuals.

weighted if TRUE and the model was fit with case weights, then the weighted residuals are
returned.

scaleX Should the Xplan columns be standardized ?

scaleY Should the time values be standardized ?

ncomp The number of components to include in the model. It this is not supplied,
min(7,maximal number) components is used.

modepls character string. What type of algorithm to use, (partially) matching one of
"regression", "canonical". See gPLS for details

ind.block.x a vector of integers describing the grouping of the X-variables. ind.block.x
<- c(3,10,15) means that X is structured into 4 groups: X1 to X3; X4 to X10,
X11 to X15 and X16 to Xp where p is the number of variables in the X matrix.

keepX numeric vector of length ncomp, the number of variables to keep in X-loadings.
By default all variables are kept in the model.

plot Should the survival function be plotted ?)

allres FALSE to return only the Cox model and TRUE for additionnal results. See
details. Defaults to FALSE.

dataXplan an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in dataXplan,
the variables are taken from environment(Xplan), typically the environment
from which coxpls is called.

38 coxgplsDR

subset an optional vector specifying a subset of observations to be used in the fitting
process.

weights an optional vector of ’prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector.

model_frame If TRUE, the model frame is returned.

model_matrix If TRUE, the model matrix is returned.

contrasts.arg a list, whose entries are values (numeric matrices, functions or character strings
naming functions) to be used as replacement values for the contrasts replacement
function and whose names are the names of columns of data containing factors.

Details

If allres=FALSE returns only the final Cox-model. If allres=TRUE returns a list with the PLS
components, the final Cox-model and the group PLSR model. allres=TRUE is useful for evluating
model prediction accuracy on a test sample.

Value

If allres=FALSE :

cox_gplsDR Final Cox-model.

If allres=TRUE :

tt_gplsDR PLSR components.

cox_gplsDR Final Cox-model.

gplsDR_mod The PLSR model.

Author(s)

Frédéric Bertrand
<frederic.bertrand@lecnam.net>
https://fbertran.github.io/homepage/

References

A group and Sparse Group Partial Least Square approach applied in Genomics context, Liquet
Benoit, Lafaye de Micheaux, Boris Hejblum, Rodolphe Thiebaut (2016). Bioinformatics.

Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Philippe
Bastien, Frederic Bertrand, Nicolas Meyer and Myriam Maumy-Bertrand (2015), Bioinformatics,
31(3):397-404, doi:10.1093/bioinformatics/btu660.

See Also

coxph, gPLS

https://fbertran.github.io/homepage/

coxsgpls 39

Examples

data(micro.censure)
data(Xmicro.censure_compl_imp)

X_train_micro <- apply((as.matrix(Xmicro.censure_compl_imp)),FUN="as.numeric",MARGIN=2)[1:80,]
X_train_micro_df <- data.frame(X_train_micro)
Y_train_micro <- micro.censure$survyear[1:80]
C_train_micro <- micro.censure$DC[1:80]

(coxgplsDR_fit=coxgplsDR(X_train_micro,Y_train_micro,C_train_micro,
ncomp=6,ind.block.x=c(3,10,15),keepX=rep(4,6)))
(coxgplsDR_fit=coxgplsDR(~X_train_micro,Y_train_micro,C_train_micro,
ncomp=6,ind.block.x=c(3,10,15),keepX=rep(4,6)))
(coxgplsDR_fit=coxgplsDR(~.,Y_train_micro,C_train_micro,ncomp=6,
dataXplan=X_train_micro_df,ind.block.x=c(3,10,15),keepX=rep(4,6)))

rm(X_train_micro,Y_train_micro,C_train_micro,cox_spls_sgpls_fit)

coxsgpls Fitting a Cox-Model on group sparse PLSR components

Description

This function computes the Cox Model based on PLSR components computed model with

• as the response: the Survival time

• as explanatory variables: Xplan.

It uses the package sgPLS to perform group PLSR fit.

Usage

coxsgpls(Xplan, ...)

S3 method for class 'formula'
coxsgpls(
Xplan,
time,
time2,
event,
type,
origin,
typeres = "deviance",
collapse,
weighted,
scaleX = TRUE,
scaleY = TRUE,

40 coxsgpls

ncomp = min(7, ncol(Xplan)),
modepls = "regression",
ind.block.x,
keepX,
alpha.x,
upper.lambda = 10^5,
plot = FALSE,
allres = FALSE,
dataXplan = NULL,
subset,
weights,
model_frame = FALSE,
model_matrix = FALSE,
contrasts.arg = NULL,
...

)

Default S3 method:
coxsgpls(
Xplan,
time,
time2,
event,
type,
origin,
typeres = "deviance",
collapse,
weighted,
scaleX = TRUE,
scaleY = TRUE,
ncomp = min(7, ncol(Xplan)),
modepls = "regression",
ind.block.x,
keepX,
alpha.x,
upper.lambda = 10^5,
plot = FALSE,
allres = FALSE,
...

)

Arguments

Xplan a formula or a matrix with the eXplanatory variables (training) dataset

... Arguments to be passed on to survival::coxph.

time for right censored data, this is the follow up time. For interval data, the first
argument is the starting time for the interval.

time2 The status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE

coxsgpls 41

(TRUE = death) or 1/2 (2=death). For interval censored data, the status indica-
tor is 0=right censored, 1=event at time, 2=left censored, 3=interval censored.
Although unusual, the event indicator can be omitted, in which case all subjects
are assumed to have an event.

event ending time of the interval for interval censored or counting process data only.
Intervals are assumed to be open on the left and closed on the right, (start,
end]. For counting process data, event indicates whether an event occurred at
the end of the interval.

type character string specifying the type of censoring. Possible values are "right",
"left", "counting", "interval", or "interval2". The default is "right"
or "counting" depending on whether the time2 argument is absent or present,
respectively.

origin for counting process data, the hazard function origin. This option was intended
to be used in conjunction with a model containing time dependent strata in order
to align the subjects properly when they cross over from one strata to another,
but it has rarely proven useful.

typeres character string indicating the type of residual desired. Possible values are
"martingale", "deviance", "score", "schoenfeld", "dfbeta", "dfbetas",
and "scaledsch". Only enough of the string to determine a unique match is
required.

collapse vector indicating which rows to collapse (sum) over. In time-dependent models
more than one row data can pertain to a single individual. If there were 4 individ-
uals represented by 3, 1, 2 and 4 rows of data respectively, then collapse=c(1,1,1,2,3,3,4,4,4,4)
could be used to obtain per subject rather than per observation residuals.

weighted if TRUE and the model was fit with case weights, then the weighted residuals are
returned.

scaleX Should the Xplan columns be standardized ?

scaleY Should the time values be standardized ?

ncomp The number of components to include in the model. It this is not supplied,
min(7,maximal number) components is used.

modepls character string. What type of algorithm to use, (partially) matching one of
"regression", "canonical". See gPLS for details

ind.block.x a vector of integers describing the grouping of the X-variables. ind.block.x
<- c(3,10,15) means that X is structured into 4 groups: X1 to X3; X4 to X10,
X11 to X15 and X16 to Xp where p is the number of variables in the X matrix.

keepX numeric vector of length ncomp, the number of variables to keep in X-loadings.
By default all variables are kept in the model.

alpha.x The mixing parameter (value between 0 and 1) related to the sparsity within
group for the X dataset.

upper.lambda By default upper.lambda=10^5. A large value specifying the upper bound of
the intervall of lambda values for searching the value of the tuning parameter
(lambda) corresponding to a non-zero group of variables.

plot Should the survival function be plotted ?)

42 coxsgpls

allres FALSE to return only the Cox model and TRUE for additionnal results. See
details. Defaults to FALSE.

dataXplan an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in dataXplan,
the variables are taken from environment(Xplan), typically the environment
from which coxpls is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

weights an optional vector of ’prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector.

model_frame If TRUE, the model frame is returned.

model_matrix If TRUE, the model matrix is returned.

contrasts.arg a list, whose entries are values (numeric matrices, functions or character strings
naming functions) to be used as replacement values for the contrasts replacement
function and whose names are the names of columns of data containing factors.

Details

If allres=FALSE returns only the final Cox-model. If allres=TRUE returns a list with the PLS
components, the final Cox-model and the group PLSR model. allres=TRUE is useful for evluating
model prediction accuracy on a test sample.

Value

If allres=FALSE :

cox_sgpls Final Cox-model.

If allres=TRUE :

tt_sgpls PLSR components.

cox_sgpls Final Cox-model.

sgpls_mod The PLSR model.

Author(s)

Frédéric Bertrand
<frederic.bertrand@lecnam.net>
https://fbertran.github.io/homepage/

References

A group and Sparse Group Partial Least Square approach applied in Genomics context, Liquet
Benoit, Lafaye de Micheaux, Boris Hejblum, Rodolphe Thiebaut (2016). Bioinformatics.

Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Philippe
Bastien, Frederic Bertrand, Nicolas Meyer and Myriam Maumy-Bertrand (2015), Bioinformatics,
31(3):397-404, doi:10.1093/bioinformatics/btu660.

https://fbertran.github.io/homepage/

coxsgplsDR 43

See Also

coxph, gPLS

Examples

data(micro.censure)
data(Xmicro.censure_compl_imp)

X_train_micro <- apply((as.matrix(Xmicro.censure_compl_imp)),FUN="as.numeric",MARGIN=2)[1:80,]
X_train_micro_df <- data.frame(X_train_micro)
Y_train_micro <- micro.censure$survyear[1:80]
C_train_micro <- micro.censure$DC[1:80]

(coxsgpls_fit=coxsgpls(X_train_micro,Y_train_micro,C_train_micro,
ncomp=6,ind.block.x=c(3,10,15), alpha.x = rep(0.95, 6)))
(coxsgpls_fit=coxsgpls(~X_train_micro,Y_train_micro,C_train_micro,
ncomp=6,ind.block.x=c(3,10,15), alpha.x = rep(0.95, 6)))
(coxsgpls_fit=coxsgpls(~.,Y_train_micro,C_train_micro,ncomp=6,
dataXplan=X_train_micro_df,ind.block.x=c(3,10,15), alpha.x = rep(0.95, 6)))

rm(X_train_micro,Y_train_micro,C_train_micro,cox_sgpls_sgfit)

coxsgplsDR Fitting a Cox-Model on group sparse PLSR components using the (De-
viance) Residuals

Description

This function computes the Cox Model based on PLSR components computed model with

• as the response: the Survival time

• as explanatory variables: Xplan.

It uses the package sgplsDR to perform group PLSR fit.

Usage

coxsgplsDR(Xplan, ...)

S3 method for class 'formula'
coxsgplsDR(
Xplan,
time,
time2,
event,
type,
origin,

44 coxsgplsDR

typeres = "deviance",
collapse,
weighted,
scaleX = TRUE,
scaleY = TRUE,
ncomp = min(7, ncol(Xplan)),
modepls = "regression",
ind.block.x,
keepX,
alpha.x,
upper.lambda = 10^5,
plot = FALSE,
allres = FALSE,
dataXplan = NULL,
subset,
weights,
model_frame = FALSE,
model_matrix = FALSE,
contrasts.arg = NULL,
...

)

Default S3 method:
coxsgplsDR(
Xplan,
time,
time2,
event,
type,
origin,
typeres = "deviance",
collapse,
weighted,
scaleX = TRUE,
scaleY = TRUE,
ncomp = min(7, ncol(Xplan)),
modepls = "regression",
ind.block.x,
keepX,
alpha.x,
upper.lambda = 10^5,
plot = FALSE,
allres = FALSE,
...

)

Arguments

Xplan a formula or a matrix with the eXplanatory variables (training) dataset

coxsgplsDR 45

... Arguments to be passed on to survival::coxph.

time for right censored data, this is the follow up time. For interval data, the first
argument is the starting time for the interval.

time2 The status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE
(TRUE = death) or 1/2 (2=death). For interval censored data, the status indica-
tor is 0=right censored, 1=event at time, 2=left censored, 3=interval censored.
Although unusual, the event indicator can be omitted, in which case all subjects
are assumed to have an event.

event ending time of the interval for interval censored or counting process data only.
Intervals are assumed to be open on the left and closed on the right, (start,
end]. For counting process data, event indicates whether an event occurred at
the end of the interval.

type character string specifying the type of censoring. Possible values are "right",
"left", "counting", "interval", or "interval2". The default is "right"
or "counting" depending on whether the time2 argument is absent or present,
respectively.

origin for counting process data, the hazard function origin. This option was intended
to be used in conjunction with a model containing time dependent strata in order
to align the subjects properly when they cross over from one strata to another,
but it has rarely proven useful.

typeres character string indicating the type of residual desired. Possible values are
"martingale", "deviance", "score", "schoenfeld", "dfbeta", "dfbetas",
and "scaledsch". Only enough of the string to determine a unique match is
required.

collapse vector indicating which rows to collapse (sum) over. In time-dependent models
more than one row data can pertain to a single individual. If there were 4 individ-
uals represented by 3, 1, 2 and 4 rows of data respectively, then collapse=c(1,1,1,2,3,3,4,4,4,4)
could be used to obtain per subject rather than per observation residuals.

weighted if TRUE and the model was fit with case weights, then the weighted residuals are
returned.

scaleX Should the Xplan columns be standardized ?

scaleY Should the time values be standardized ?

ncomp The number of components to include in the model. It this is not supplied,
min(7,maximal number) components is used.

modepls character string. What type of algorithm to use, (partially) matching one of
"regression", "canonical". See gPLS for details

ind.block.x a vector of integers describing the grouping of the X-variables. ind.block.x
<- c(3,10,15) means that X is structured into 4 groups: X1 to X3; X4 to X10,
X11 to X15 and X16 to Xp where p is the number of variables in the X matrix.

keepX numeric vector of length ncomp, the number of variables to keep in X-loadings.
By default all variables are kept in the model.

alpha.x The mixing parameter (value between 0 and 1) related to the sparsity within
group for the X dataset.

46 coxsgplsDR

upper.lambda By default upper.lambda=10^5. A large value specifying the upper bound of
the intervall of lambda values for searching the value of the tuning parameter
(lambda) corresponding to a non-zero group of variables.

plot Should the survival function be plotted ?)

allres FALSE to return only the Cox model and TRUE for additionnal results. See
details. Defaults to FALSE.

dataXplan an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in dataXplan,
the variables are taken from environment(Xplan), typically the environment
from which coxpls is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

weights an optional vector of ’prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector.

model_frame If TRUE, the model frame is returned.

model_matrix If TRUE, the model matrix is returned.

contrasts.arg a list, whose entries are values (numeric matrices, functions or character strings
naming functions) to be used as replacement values for the contrasts replacement
function and whose names are the names of columns of data containing factors.

Details

If allres=FALSE returns only the final Cox-model. If allres=TRUE returns a list with the PLS
components, the final Cox-model and the group PLSR model. allres=TRUE is useful for evluating
model prediction accuracy on a test sample.

Value

If allres=FALSE :

cox_sgplsDR Final Cox-model.

If allres=TRUE :

tt_sgplsDR PLSR components.

cox_sgplsDR Final Cox-model.

sgplsDR_mod The PLSR model.

Author(s)

Frédéric Bertrand
<frederic.bertrand@lecnam.net>
https://fbertran.github.io/homepage/

https://fbertran.github.io/homepage/

coxspls_sgpls 47

References

A group and Sparse Group Partial Least Square approach applied in Genomics context, Liquet
Benoit, Lafaye de Micheaux, Boris Hejblum, Rodolphe Thiebaut (2016). Bioinformatics.

Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Philippe
Bastien, Frederic Bertrand, Nicolas Meyer and Myriam Maumy-Bertrand (2015), Bioinformatics,
31(3):397-404, doi:10.1093/bioinformatics/btu660.

See Also

coxph, gPLS

Examples

data(micro.censure)
data(Xmicro.censure_compl_imp)

X_train_micro <- apply((as.matrix(Xmicro.censure_compl_imp)),FUN="as.numeric",MARGIN=2)[1:80,]
X_train_micro_df <- data.frame(X_train_micro)
Y_train_micro <- micro.censure$survyear[1:80]
C_train_micro <- micro.censure$DC[1:80]

(coxsgplsDR_fit=coxsgplsDR(X_train_micro,Y_train_micro,C_train_micro,
ncomp=6,ind.block.x=c(3,10,15), alpha.x = rep(0.95, 6)))
(coxsgplsDR_fit=coxsgplsDR(~X_train_micro,Y_train_micro,C_train_micro,
ncomp=6,ind.block.x=c(3,10,15), alpha.x = rep(0.95, 6)))
(coxsgplsDR_fit=coxsgplsDR(~.,Y_train_micro,C_train_micro,ncomp=6,
dataXplan=X_train_micro_df,ind.block.x=c(3,10,15), alpha.x = rep(0.95, 6)))

rm(X_train_micro,Y_train_micro,C_train_micro,cox_sgplsDR_sgfit)

coxspls_sgpls Fitting a Cox-Model on sparse PLSR components

Description

This function computes the Cox Model based on PLSR components computed model with

• as the response: the Survival time

• as explanatory variables: Xplan.

It uses the package sgPLS to perform group PLSR fit.

48 coxspls_sgpls

Usage

coxspls_sgpls(Xplan, ...)

S3 method for class 'formula'
coxspls_sgpls(
Xplan,
time,
time2,
event,
type,
origin,
typeres = "deviance",
collapse,
weighted,
scaleX = TRUE,
scaleY = TRUE,
ncomp = min(7, ncol(Xplan)),
ind.block.x = NULL,
modepls = "regression",
keepX,
plot = FALSE,
allres = FALSE,
dataXplan = NULL,
subset,
weights,
model_frame = FALSE,
model_matrix = FALSE,
contrasts.arg = NULL,
...

)

Default S3 method:
coxspls_sgpls(
Xplan,
time,
time2,
event,
type,
origin,
typeres = "deviance",
collapse,
weighted,
scaleX = TRUE,
scaleY = TRUE,
ncomp = min(7, ncol(Xplan)),
ind.block.x = NULL,
modepls = "regression",
keepX,

coxspls_sgpls 49

alpha.x,
upper.lambda = 10^5,
plot = FALSE,
allres = FALSE,
...

)

Arguments

Xplan a formula or a matrix with the eXplanatory variables (training) dataset

... Arguments to be passed on to survival::coxph.

time for right censored data, this is the follow up time. For interval data, the first
argument is the starting time for the interval.

time2 The status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE
(TRUE = death) or 1/2 (2=death). For interval censored data, the status indica-
tor is 0=right censored, 1=event at time, 2=left censored, 3=interval censored.
Although unusual, the event indicator can be omitted, in which case all subjects
are assumed to have an event.

event ending time of the interval for interval censored or counting process data only.
Intervals are assumed to be open on the left and closed on the right, (start,
end]. For counting process data, event indicates whether an event occurred at
the end of the interval.

type character string specifying the type of censoring. Possible values are "right",
"left", "counting", "interval", or "interval2". The default is "right"
or "counting" depending on whether the time2 argument is absent or present,
respectively.

origin for counting process data, the hazard function origin. This option was intended
to be used in conjunction with a model containing time dependent strata in order
to align the subjects properly when they cross over from one strata to another,
but it has rarely proven useful.

typeres character string indicating the type of residual desired. Possible values are
"martingale", "deviance", "score", "schoenfeld", "dfbeta", "dfbetas",
and "scaledsch". Only enough of the string to determine a unique match is
required.

collapse vector indicating which rows to collapse (sum) over. In time-dependent models
more than one row data can pertain to a single individual. If there were 4 individ-
uals represented by 3, 1, 2 and 4 rows of data respectively, then collapse=c(1,1,1,2,3,3,4,4,4,4)
could be used to obtain per subject rather than per observation residuals.

weighted if TRUE and the model was fit with case weights, then the weighted residuals are
returned.

scaleX Should the Xplan columns be standardized ?

scaleY Should the time values be standardized ?

ncomp The number of components to include in the model. It this is not supplied,
min(7,maximal number) components is used.

50 coxspls_sgpls

ind.block.x a vector of integers describing the grouping of the X-variables. ind.block.x
<- c(3,10,15) means that X is structured into 4 groups: X1 to X3; X4 to X10,
X11 to X15 and X16 to Xp where p is the number of variables in the X matrix.

modepls character string. What type of algorithm to use, (partially) matching one of
"regression", "canonical". See gPLS for details

keepX numeric vector of length ncomp, the number of variables to keep in X-loadings.
By default all variables are kept in the model.

plot Should the survival function be plotted ?)

allres FALSE to return only the Cox model and TRUE for additionnal results. See
details. Defaults to FALSE.

dataXplan an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in dataXplan,
the variables are taken from environment(Xplan), typically the environment
from which coxpls is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

weights an optional vector of ’prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector.

model_frame If TRUE, the model frame is returned.

model_matrix If TRUE, the model matrix is returned.

contrasts.arg a list, whose entries are values (numeric matrices, functions or character strings
naming functions) to be used as replacement values for the contrasts replacement
function and whose names are the names of columns of data containing factors.

alpha.x numeric vector of length ncomp giving the sparsity level applied within each
component. Required when ind.block.x is specified.

upper.lambda numeric value controlling the maximal penalty considered by sgPLS when esti-
mating sparse group loadings. Defaults to 10^5.

Details

If allres=FALSE returns only the final Cox-model. If allres=TRUE returns a list with the PLS
components, the final Cox-model and the group PLSR model. allres=TRUE is useful for evluating
model prediction accuracy on a test sample.

Value

If allres=FALSE :

cox_spls_sgpls Final Cox-model.

If allres=TRUE :

tt_spls_sgpls PLSR components.

cox_spls_sgpls Final Cox-model.

spls_sgpls_mod The PLSR model.

coxspls_sgplsDR 51

Author(s)

Frédéric Bertrand
<frederic.bertrand@lecnam.net>
https://fbertran.github.io/homepage/

References

A group and Sparse Group Partial Least Square approach applied in Genomics context, Liquet
Benoit, Lafaye de Micheaux, Boris Hejblum, Rodolphe Thiebaut (2016). Bioinformatics.

Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Philippe
Bastien, Frederic Bertrand, Nicolas Meyer and Myriam Maumy-Bertrand (2015), Bioinformatics,
31(3):397-404, doi:10.1093/bioinformatics/btu660.

See Also

coxph, gPLS

Examples

data(micro.censure)
data(Xmicro.censure_compl_imp)

X_train_micro <- apply((as.matrix(Xmicro.censure_compl_imp)),
FUN="as.numeric",MARGIN=2)[1:80,]
X_train_micro_df <- data.frame(X_train_micro)
Y_train_micro <- micro.censure$survyear[1:80]
C_train_micro <- micro.censure$DC[1:80]

(cox_spls_sgpls_fit=coxspls_sgpls(X_train_micro,Y_train_micro,C_train_micro,
ncomp=6,ind.block.x=c(3,10,15), alpha.x = rep(0.95, 6)))
(cox_spls_sgpls_fit=coxspls_sgpls(~X_train_micro,Y_train_micro,C_train_micro,
ncomp=6,ind.block.x=c(3,10,15), alpha.x = rep(0.95, 6)))
(cox_spls_sgpls_fit=coxspls_sgpls(~.,Y_train_micro,C_train_micro,ncomp=6,
dataXplan=X_train_micro_df,ind.block.x=c(3,10,15), alpha.x = rep(0.95, 6)))

rm(X_train_micro,Y_train_micro,C_train_micro,cox_spls_sgpls_fit)

coxspls_sgplsDR Fitting a Cox-Model on sparse PLSR components using the (Deviance)
Residuals

Description

This function computes the Cox Model based on PLSR components computed model with

• as the response: the Survival time

https://fbertran.github.io/homepage/

52 coxspls_sgplsDR

• as explanatory variables: Xplan.

It uses the package sgPLS to perform group PLSR fit.

Usage

coxspls_sgplsDR(Xplan, ...)

S3 method for class 'formula'
coxspls_sgplsDR(
Xplan,
time,
time2,
event,
type,
origin,
typeres = "deviance",
collapse,
weighted,
scaleX = TRUE,
scaleY = TRUE,
ncomp = min(7, ncol(Xplan)),
ind.block.x = NULL,
modepls = "regression",
keepX,
alpha.x,
upper.lambda = 10^5,
plot = FALSE,
allres = FALSE,
dataXplan = NULL,
subset,
weights,
model_frame = FALSE,
model_matrix = FALSE,
contrasts.arg = NULL,
...

)

Default S3 method:
coxspls_sgplsDR(
Xplan,
time,
time2,
event,
type,
origin,
typeres = "deviance",
collapse,
weighted,

coxspls_sgplsDR 53

scaleX = TRUE,
scaleY = TRUE,
ncomp = min(7, ncol(Xplan)),
ind.block.x = NULL,
modepls = "regression",
keepX,
alpha.x,
upper.lambda = 10^5,
plot = FALSE,
allres = FALSE,
...

)

Arguments

Xplan a formula or a matrix with the eXplanatory variables (training) dataset

... Arguments to be passed on to survival::coxph.

time for right censored data, this is the follow up time. For interval data, the first
argument is the starting time for the interval.

time2 The status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE
(TRUE = death) or 1/2 (2=death). For interval censored data, the status indica-
tor is 0=right censored, 1=event at time, 2=left censored, 3=interval censored.
Although unusual, the event indicator can be omitted, in which case all subjects
are assumed to have an event.

event ending time of the interval for interval censored or counting process data only.
Intervals are assumed to be open on the left and closed on the right, (start,
end]. For counting process data, event indicates whether an event occurred at
the end of the interval.

type character string specifying the type of censoring. Possible values are "right",
"left", "counting", "interval", or "interval2". The default is "right"
or "counting" depending on whether the time2 argument is absent or present,
respectively.

origin for counting process data, the hazard function origin. This option was intended
to be used in conjunction with a model containing time dependent strata in order
to align the subjects properly when they cross over from one strata to another,
but it has rarely proven useful.

typeres character string indicating the type of residual desired. Possible values are
"martingale", "deviance", "score", "schoenfeld", "dfbeta", "dfbetas",
and "scaledsch". Only enough of the string to determine a unique match is
required.

collapse vector indicating which rows to collapse (sum) over. In time-dependent models
more than one row data can pertain to a single individual. If there were 4 individ-
uals represented by 3, 1, 2 and 4 rows of data respectively, then collapse=c(1,1,1,2,3,3,4,4,4,4)
could be used to obtain per subject rather than per observation residuals.

weighted if TRUE and the model was fit with case weights, then the weighted residuals are
returned.

54 coxspls_sgplsDR

scaleX Should the Xplan columns be standardized ?

scaleY Should the time values be standardized ?

ncomp The number of components to include in the model. It this is not supplied,
min(7,maximal number) components is used.

ind.block.x a vector of integers describing the grouping of the X-variables. ind.block.x
<- c(3,10,15) means that X is structured into 4 groups: X1 to X3; X4 to X10,
X11 to X15 and X16 to Xp where p is the number of variables in the X matrix.

modepls character string. What type of algorithm to use, (partially) matching one of
"regression", "canonical". See gPLS for details

keepX numeric vector of length ncomp, the number of variables to keep in X-loadings.
By default all variables are kept in the model.

alpha.x numeric vector of length ncomp giving the sparsity level applied within each
component. Required when ind.block.x is specified.

upper.lambda numeric value giving the upper bound for the regularized regression penalty
used in sgPLS. Defaults to 105.

plot Should the survival function be plotted ?)

allres FALSE to return only the Cox model and TRUE for additionnal results. See
details. Defaults to FALSE.

dataXplan an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in dataXplan,
the variables are taken from environment(Xplan), typically the environment
from which coxpls is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

weights an optional vector of ’prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector.

model_frame If TRUE, the model frame is returned.

model_matrix If TRUE, the model matrix is returned.

contrasts.arg a list, whose entries are values (numeric matrices, functions or character strings
naming functions) to be used as replacement values for the contrasts replacement
function and whose names are the names of columns of data containing factors.

Details

If allres=FALSE returns only the final Cox-model. If allres=TRUE returns a list with the PLS
components, the final Cox-model and the group PLSR model. allres=TRUE is useful for evluating
model prediction accuracy on a test sample.

Value

If allres=FALSE :

cox_spls_sgplsDR

Final Cox-model.

coxspls_sgplsDR 55

If allres=TRUE :

tt_spls_sgplsDR

PLSR components.
cox_spls_sgplsDR

Final Cox-model.
spls_sgplsDR_mod

The PLSR model.

Author(s)

Frédéric Bertrand
<frederic.bertrand@lecnam.net>
https://fbertran.github.io/homepage/

References

A group and Sparse Group Partial Least Square approach applied in Genomics context, Liquet
Benoit, Lafaye de Micheaux, Boris Hejblum, Rodolphe Thiebaut (2016). Bioinformatics.

Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Philippe
Bastien, Frederic Bertrand, Nicolas Meyer and Myriam Maumy-Bertrand (2015), Bioinformatics,
31(3):397-404, doi:10.1093/bioinformatics/btu660.

See Also

coxph, gPLS

Examples

data(micro.censure)
data(Xmicro.censure_compl_imp)

X_train_micro <- apply((as.matrix(Xmicro.censure_compl_imp)),
FUN="as.numeric",MARGIN=2)[1:80,]
X_train_micro_df <- data.frame(X_train_micro)
Y_train_micro <- micro.censure$survyear[1:80]
C_train_micro <- micro.censure$DC[1:80]

(cox_spls_sgplsDR_fit=coxspls_sgplsDR(X_train_micro,Y_train_micro,C_train_micro,
ncomp=6,ind.block.x=c(3,10,15), alpha.x = rep(0.95, 6)))
(cox_spls_sgplsDR_fit=coxspls_sgplsDR(~X_train_micro,Y_train_micro,C_train_micro,
ncomp=6,ind.block.x=c(3,10,15), alpha.x = rep(0.95, 6)))
(cox_spls_sgplsDR_fit=coxspls_sgplsDR(~.,Y_train_micro,C_train_micro,ncomp=6,
dataXplan=X_train_micro_df,ind.block.x=c(3,10,15), alpha.x = rep(0.95, 6)))

rm(X_train_micro,Y_train_micro,C_train_micro,cox_spls_sgplsDR_fit)

https://fbertran.github.io/homepage/

56 cox_deviance_residuals

cox_deviance_residuals

Cox deviance residuals via C++ backends

Description

Compute martingale and deviance residuals for Cox models without materialising intermediate sur-
vival fits in R. The functions rely on dedicated C++ implementations that operate either on in-
memory vectors or on bigmemory::big.matrix objects to enable streaming computations on large
datasets.

Usage

cox_deviance_residuals(time, status, weights = NULL)

cox_deviance_details(time, status, weights = NULL)

cox_deviance_residuals_big(X, time_col, status_col, weights = NULL)

cox_partial_deviance_big(X, coef, time, status)

benchmark_deviance_residuals(time, status, iterations = 25, methods = list())

Arguments

time Numeric vector of follow-up times.

status Numeric or integer vector of the same length as time giving the event indicators
(1 for an event, 0 for censoring).

weights Optional non-negative case weights. When supplied they must have the same
length as time.

X A bigmemory::big.matrix storing the survival information column-wise.
time_col, status_col

Integer indices pointing to the columns of X that contain the follow-up time and
event indicator respectively.

coef Numeric vector of regression coefficients used to evaluate the partial log-likelihood
and deviance on a big.matrix design.

iterations Number of iterations used by bench::mark when benchmarking the residual
computations.

methods Optional named list of alternative residual implementations to compare against
in benchmark_deviance_residuals.

Details

• cox_deviance_residuals() operates on standard R vectors and matches the output of residuals(coxph(...),
type = "deviance") for right-censored data without ties.

cv.big_pls_cox 57

• cox_deviance_residuals_big() keeps the computation in C++ while reading directly from
a big.matrix, avoiding extra copies.

• cox_partial_deviance_big() evaluates the partial log-likelihood and deviance for a given
coefficient vector and big design matrix. This is useful when selecting the number of latent
components via information criteria.

benchmark_deviance_residuals() compares the dedicated C++ implementation against refer-
ence approaches (for example, the survival package) using bench::mark. The function returns a
tibble with iteration statistics.

Value

• cox_deviance_residuals() and cox_deviance_residuals_big() return a numeric vector
of deviance residuals.

• cox_deviance_details() returns a list with cumulative hazard, martingale, and deviance
residuals.

• cox_partial_deviance_big() returns a list containing the partial log-likelihood, deviance,
and the evaluated linear predictor.

• benchmark_deviance_residuals() returns a tibble::tibble.

Examples

if (requireNamespace("survival", quietly = TRUE)) {
set.seed(123)
time <- rexp(50)
status <- rbinom(50, 1, 0.6)
dr_cpp <- cox_deviance_residuals(time, status)
dr_surv <- residuals(survival::coxph(survival::Surv(time, status) ~ 1),

type = "deviance")
all.equal(unname(dr_cpp), unname(dr_surv), tolerance = 1e-6)

}

cv.big_pls_cox Cross-validation for big-memory PLS-Cox models

Description

Performs K-fold cross-validation for models fitted with big_pls_cox() or big_pls_cox_gd().
The routine mirrors the behaviour of the cross-validation helpers available in the original plsRcox
package while operating on big.matrix inputs.

Usage

cv.big_pls_cox(
data,
nfold = 5L,
nt = 5L,

58 cv.big_pls_cox

keepX = NULL,
givefold,
allCVcrit = FALSE,
times.auc = NULL,
times.prederr = NULL,
method = c("efron", "breslow"),
verbose = TRUE,
...

)

cv.big_pls_cox_gd(
data,
nfold = 5L,
nt = NULL,
keepX = NULL,
givefold,
allCVcrit = FALSE,
times.auc = NULL,
times.prederr = NULL,
method = c("efron", "breslow"),
verbose = TRUE,
...

)

Arguments

data A list with entries x, time and status matching the arguments of big_pls_cox()
or big_pls_cox_gd(). x can be either a numeric matrix/data frame or a bigmemory::big.matrix.

nfold Integer giving the number of folds to use.

nt Number of latent components to evaluate.

keepX Optional integer vector passed to the modelling function to enforce naive spar-
sity (see big_pls_cox()).

givefold Optional list of fold indices. When supplied, it must contain nfold integer vec-
tors whose union is seq_len(nrow(data$x)).

allCVcrit Logical; when FALSE (default) only the recommended integrated AUC com-
puted with survivalROC is returned. When TRUE, the 13 additional criteria
from plsRcox are also evaluated.

times.auc Optional time grid used for time-dependent AUC computations. Defaults to an
equally spaced grid between zero and the maximum observed time.

times.prederr Optional time grid used for prediction error curves. Defaults to the same grid as
times.auc without the last ten evaluation points to avoid instabilities.

method Ties handling method passed to survival::coxph.

verbose Logical; print progress information.

... Additional arguments forwarded to the underlying modelling function.

cv.coxDKgplsDR 59

Details

The function returns cross-validated estimates for each component (including the null model) using
either big_pls_cox() or big_pls_cox_gd(), depending on the engine argument. The imple-
mentation reuses the internal indicators (getIndicCV, getIndicCViAUCSurvROCTest) to provide
consistent metrics with the legacy plsRcox helpers.

Value

A list containing cross-validation summaries. When allCVcrit = FALSE, the list holds

nt Number of components assessed.
cv.error10 Mean iAUC of survivalROC across folds for 0 to nt components.
cv.se10 Estimated standard errors for cv.error10.
folds Fold assignments.
lambda.min10 Component minimising the cross-validated error.
lambda.1se10 Largest component within one standard error of the optimum.

When allCVcrit = TRUE, the full set of 14 criteria (log partial likelihood, iAUC variants and Brier
scores) is returned together with their associated standard errors and one-standard-error selections.

cv.coxDKgplsDR Cross-validating a Direct Kernel group PLS model fitted on the (De-
viance) Residuals

Description

This function cross-validates coxDKgplsDR models.

Usage

cv.coxDKgplsDR(
data,
method = c("efron", "breslow"),
nfold = 5,
nt = 10,
plot.it = TRUE,
se = TRUE,
givefold,
scaleX = TRUE,
folddetails = FALSE,
allCVcrit = FALSE,
details = FALSE,
namedataset = "data",
save = FALSE,
verbose = TRUE,
...

)

60 cv.coxDKgplsDR

Arguments

data A list of three items:

• x the explanatory variables passed to coxDKgplsDR’s Xplan argument,
• time passed to coxDKgplsDR’s time argument,
• status coxDKgplsDR’s status argument.

method A character string specifying the method for tie handling. If there are no tied
death times all the methods are equivalent. The Efron approximation is used as
the default here, it is more accurate when dealing with tied death times, and is
as efficient computationally.

nfold The number of folds to use to perform the cross-validation process.

nt The number of components to include in the model. It this is not supplied, 10
components are fitted.

plot.it Shall the results be displayed on a plot ?

se Should standard errors be plotted ?

givefold Explicit list of omited values in each fold can be provided using this argument.

scaleX Shall the predictors be standardized ?

folddetails Should values and completion status for each folds be returned ?

allCVcrit Should the other 13 CV criteria be evaled and returned ?

details Should all results of the functions that perform error computations be returned ?

namedataset Name to use to craft temporary results names

save Should temporary results be saved ?

verbose Should some CV details be displayed ?

... Other arguments to pass to coxDKgplsDR.

Details

It only computes the recommended iAUCSurvROC criterion. Set allCVcrit=TRUE to retrieve the
13 other ones.

Value

nt The number of components requested

cv.error1 Vector with the mean values, across folds, of, per fold unit, Cross-validated log-
partial-likelihood for models with 0 to nt components.

cv.error2 Vector with the mean values, across folds, of, per fold unit, van Houwelingen
Cross-validated log-partial-likelihood for models with 0 to nt components.

cv.error3 Vector with the mean values, across folds, of iAUC_CD for models with 0 to nt
components.

cv.error4 Vector with the mean values, across folds, of iAUC_hc for models with 0 to nt
components.

cv.error5 Vector with the mean values, across folds, of iAUC_sh for models with 0 to nt
components.

cv.coxDKgplsDR 61

cv.error6 Vector with the mean values, across folds, of iAUC_Uno for models with 0 to nt
components.

cv.error7 Vector with the mean values, across folds, of iAUC_hz.train for models with 0
to nt components.

cv.error8 Vector with the mean values, across folds, of iAUC_hz.test for models with 0 to
nt components.

cv.error9 Vector with the mean values, across folds, of iAUC_survivalROC.train for mod-
els with 0 to nt components.

cv.error10 Vector with the mean values, across folds, of iAUC_survivalROC.test for models
with 0 to nt components.

cv.error11 Vector with the mean values, across folds, of iBrierScore unw for models with
0 to nt components.

cv.error12 Vector with the mean values, across folds, of iSchmidScore (robust BS) unw for
models with 0 to nt components.

cv.error13 Vector with the mean values, across folds, of iBrierScore w for models with 0 to
nt components.

cv.error14 Vector with the mean values, across folds, of iSchmidScore (robust BS) w for
models with 0 to nt components.

cv.se1 Vector with the standard error values, across folds, of, per fold unit, Cross-
validated log-partial-likelihood for models with 0 to nt components.

cv.se2 Vector with the standard error values, across folds, of, per fold unit, van Houwelin-
gen Cross-validated log-partial-likelihood for models with 0 to nt components.

cv.se3 Vector with the standard error values, across folds, of iAUC_CD for models with
0 to nt components.

cv.se4 Vector with the standard error values, across folds, of iAUC_hc for models with
0 to nt components.

cv.se5 Vector with the standard error values, across folds, of iAUC_sh for models with
0 to nt components.

cv.se6 Vector with the standard error values, across folds, of iAUC_Uno for models
with 0 to nt components.

cv.se7 Vector with the standard error values, across folds, of iAUC_hz.train for models
with 0 to nt components.

cv.se8 Vector with the standard error values, across folds, of iAUC_hz.test for models
with 0 to nt components.

cv.se9 Vector with the standard error values, across folds, of iAUC_survivalROC.train
for models with 0 to nt components.

cv.se10 Vector with the standard error values, across folds, of iAUC_survivalROC.test
for models with 0 to nt components.

cv.se11 Vector with the standard error values, across folds, of iBrierScore unw for mod-
els with 0 to nt components.

cv.se12 Vector with the standard error values, across folds, of iSchmidScore (robust BS)
unw for models with 0 to nt components.

62 cv.coxDKgplsDR

cv.se13 Vector with the standard error values, across folds, of iBrierScore w for models
with 0 to nt components.

cv.se14 Vector with the standard error values, across folds, of iSchmidScore (robust BS)
w for models with 0 to nt components.

folds Explicit list of the values that were omited values in each fold.

lambda.min1 Vector with the standard error values, across folds, of, per fold unit, Cross-
validated log-partial-likelihood for models with 0 to nt components.

lambda.min2 Vector with the standard error values, across folds, of, per fold unit, van Houwelin-
gen Cross-validated log-partial-likelihood for models with 0 to nt components.

lambda.min1 Optimal Nbr of components, min Cross-validated log-partial-likelihood crite-
rion.

lambda.se1 Optimal Nbr of components, min+1se Cross-validated log-partial-likelihood cri-
terion.

lambda.min2 Optimal Nbr of components, min van Houwelingen Cross-validated log-partial-
likelihood.

lambda.se2 Optimal Nbr of components, min+1se van Houwelingen Cross-validated log-
partial-likelihood.

lambda.min3 Optimal Nbr of components, max iAUC_CD criterion.

lambda.se3 Optimal Nbr of components, max+1se iAUC_CD criterion.

lambda.min4 Optimal Nbr of components, max iAUC_hc criterion.

lambda.se4 Optimal Nbr of components, max+1se iAUC_hc criterion.

lambda.min5 Optimal Nbr of components, max iAUC_sh criterion.

lambda.se5 Optimal Nbr of components, max+1se iAUC_sh criterion.

lambda.min6 Optimal Nbr of components, max iAUC_Uno criterion.

lambda.se6 Optimal Nbr of components, max+1se iAUC_Uno criterion.

lambda.min7 Optimal Nbr of components, max iAUC_hz.train criterion.

lambda.se7 Optimal Nbr of components, max+1se iAUC_hz.train criterion.

lambda.min8 Optimal Nbr of components, max iAUC_hz.test criterion.

lambda.se8 Optimal Nbr of components, max+1se iAUC_hz.test criterion.

lambda.min9 Optimal Nbr of components, max iAUC_survivalROC.train criterion.

lambda.se9 Optimal Nbr of components, max+1se iAUC_survivalROC.train criterion.

lambda.min10 Optimal Nbr of components, max iAUC_survivalROC.test criterion.

lambda.se10 Optimal Nbr of components, max+1se iAUC_survivalROC.test criterion.

lambda.min11 Optimal Nbr of components, min iBrierScore unw criterion.

lambda.se11 Optimal Nbr of components, min+1se iBrierScore unw criterion.

lambda.min12 Optimal Nbr of components, min iSchmidScore unw criterion.

lambda.se12 Optimal Nbr of components, min+1se iSchmidScore unw criterion.

lambda.min13 Optimal Nbr of components, min iBrierScore w criterion.

lambda.se13 Optimal Nbr of components, min+1se iBrierScore w criterion.

cv.coxDKgplsDR 63

lambda.min14 Optimal Nbr of components, min iSchmidScore w criterion.

lambda.se14 Optimal Nbr of components, min+1se iSchmidScore w criterion.

errormat1-14 If details=TRUE, matrices with the error values for every folds across each of
the components and each of the criteria

completed.cv1-14

If details=TRUE, matrices with logical values for every folds across each of the
components and each of the criteria: TRUE if the computation was completed
and FALSE it is failed.

All_indics All results of the functions that perform error computation, for each fold, each
component and error criterion.

Author(s)

Frédéric Bertrand
<frederic.bertrand@lecnam.net>
https://fbertran.github.io/homepage/

References

plsRcox, Cox-Models in a high dimensional setting in R, Frederic Bertrand, Philippe Bastien, Nico-
las Meyer and Myriam Maumy-Bertrand (2014). Proceedings of User2014!, Los Angeles, page 152.

Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Philippe
Bastien, Frederic Bertrand, Nicolas Meyer and Myriam Maumy-Bertrand (2015), Bioinformatics,
31(3):397-404, doi:10.1093/bioinformatics/btu660.

Cross validating extensions of kernel, sparse or regular partial least squares regression models to
censored data, Bertrand, F., Bastien, Ph. and Maumy-Bertrand, M. (2018), https://arxiv.org/
abs/1810.01005.

See Also

See Also coxDKgplsDR

Examples

data(micro.censure)
data(Xmicro.censure_compl_imp)
set.seed(123456)
X_train_micro <- apply((as.matrix(Xmicro.censure_compl_imp)),
FUN="as.numeric",MARGIN=2)[1:80,]
X_train_micro_df <- data.frame(X_train_micro)
Y_train_micro <- micro.censure$survyear[1:80]
C_train_micro <- micro.censure$DC[1:80]

#Should be run with a higher value of nt (at least 10)
(cv.coxDKgplsDR.res=cv.coxDKgplsDR(list(x=X_train_micro,time=Y_train_micro,
status=C_train_micro),ind.block.x=c(3,10,15),nt=2))

https://fbertran.github.io/homepage/
https://arxiv.org/abs/1810.01005
https://arxiv.org/abs/1810.01005

64 cv.coxDKsgplsDR

cv.coxDKsgplsDR Cross-validating a Direct Kernel group sparse PLS model fitted on the
(Deviance) Residuals

Description

This function cross-validates coxDKsgplsDR models.

Usage

cv.coxDKsgplsDR(
data,
method = c("efron", "breslow"),
nfold = 5,
nt = 10,
plot.it = TRUE,
se = TRUE,
givefold,
scaleX = TRUE,
folddetails = FALSE,
allCVcrit = FALSE,
details = FALSE,
namedataset = "data",
save = FALSE,
verbose = TRUE,
...

)

Arguments

data A list of three items:

• x the explanatory variables passed to coxDKsgplsDR’s Xplan argument,
• time passed to coxDKsgplsDR’s time argument,
• status coxDKsgplsDR’s status argument.

method A character string specifying the method for tie handling. If there are no tied
death times all the methods are equivalent. The Efron approximation is used as
the default here, it is more accurate when dealing with tied death times, and is
as efficient computationally.

nfold The number of folds to use to perform the cross-validation process.

nt The number of components to include in the model. It this is not supplied, 10
components are fitted.

plot.it Shall the results be displayed on a plot ?

se Should standard errors be plotted ?

givefold Explicit list of omited values in each fold can be provided using this argument.

cv.coxDKsgplsDR 65

scaleX Shall the predictors be standardized ?

folddetails Should values and completion status for each folds be returned ?

allCVcrit Should the other 13 CV criteria be evaled and returned ?

details Should all results of the functions that perform error computations be returned ?

namedataset Name to use to craft temporary results names

save Should temporary results be saved ?

verbose Should some CV details be displayed ?

... Other arguments to pass to coxDKsgplsDR.

Details

It only computes the recommended iAUCSurvROC criterion. Set allCVcrit=TRUE to retrieve the
13 other ones.

Value

nt The number of components requested

cv.error1 Vector with the mean values, across folds, of, per fold unit, Cross-validated log-
partial-likelihood for models with 0 to nt components.

cv.error2 Vector with the mean values, across folds, of, per fold unit, van Houwelingen
Cross-validated log-partial-likelihood for models with 0 to nt components.

cv.error3 Vector with the mean values, across folds, of iAUC_CD for models with 0 to nt
components.

cv.error4 Vector with the mean values, across folds, of iAUC_hc for models with 0 to nt
components.

cv.error5 Vector with the mean values, across folds, of iAUC_sh for models with 0 to nt
components.

cv.error6 Vector with the mean values, across folds, of iAUC_Uno for models with 0 to nt
components.

cv.error7 Vector with the mean values, across folds, of iAUC_hz.train for models with 0
to nt components.

cv.error8 Vector with the mean values, across folds, of iAUC_hz.test for models with 0 to
nt components.

cv.error9 Vector with the mean values, across folds, of iAUC_survivalROC.train for mod-
els with 0 to nt components.

cv.error10 Vector with the mean values, across folds, of iAUC_survivalROC.test for models
with 0 to nt components.

cv.error11 Vector with the mean values, across folds, of iBrierScore unw for models with
0 to nt components.

cv.error12 Vector with the mean values, across folds, of iSchmidScore (robust BS) unw for
models with 0 to nt components.

cv.error13 Vector with the mean values, across folds, of iBrierScore w for models with 0 to
nt components.

66 cv.coxDKsgplsDR

cv.error14 Vector with the mean values, across folds, of iSchmidScore (robust BS) w for
models with 0 to nt components.

cv.se1 Vector with the standard error values, across folds, of, per fold unit, Cross-
validated log-partial-likelihood for models with 0 to nt components.

cv.se2 Vector with the standard error values, across folds, of, per fold unit, van Houwelin-
gen Cross-validated log-partial-likelihood for models with 0 to nt components.

cv.se3 Vector with the standard error values, across folds, of iAUC_CD for models with
0 to nt components.

cv.se4 Vector with the standard error values, across folds, of iAUC_hc for models with
0 to nt components.

cv.se5 Vector with the standard error values, across folds, of iAUC_sh for models with
0 to nt components.

cv.se6 Vector with the standard error values, across folds, of iAUC_Uno for models
with 0 to nt components.

cv.se7 Vector with the standard error values, across folds, of iAUC_hz.train for models
with 0 to nt components.

cv.se8 Vector with the standard error values, across folds, of iAUC_hz.test for models
with 0 to nt components.

cv.se9 Vector with the standard error values, across folds, of iAUC_survivalROC.train
for models with 0 to nt components.

cv.se10 Vector with the standard error values, across folds, of iAUC_survivalROC.test
for models with 0 to nt components.

cv.se11 Vector with the standard error values, across folds, of iBrierScore unw for mod-
els with 0 to nt components.

cv.se12 Vector with the standard error values, across folds, of iSchmidScore (robust BS)
unw for models with 0 to nt components.

cv.se13 Vector with the standard error values, across folds, of iBrierScore w for models
with 0 to nt components.

cv.se14 Vector with the standard error values, across folds, of iSchmidScore (robust BS)
w for models with 0 to nt components.

folds Explicit list of the values that were omited values in each fold.

lambda.min1 Vector with the standard error values, across folds, of, per fold unit, Cross-
validated log-partial-likelihood for models with 0 to nt components.

lambda.min2 Vector with the standard error values, across folds, of, per fold unit, van Houwelin-
gen Cross-validated log-partial-likelihood for models with 0 to nt components.

lambda.min1 Optimal Nbr of components, min Cross-validated log-partial-likelihood crite-
rion.

lambda.se1 Optimal Nbr of components, min+1se Cross-validated log-partial-likelihood cri-
terion.

lambda.min2 Optimal Nbr of components, min van Houwelingen Cross-validated log-partial-
likelihood.

lambda.se2 Optimal Nbr of components, min+1se van Houwelingen Cross-validated log-
partial-likelihood.

cv.coxDKsgplsDR 67

lambda.min3 Optimal Nbr of components, max iAUC_CD criterion.

lambda.se3 Optimal Nbr of components, max+1se iAUC_CD criterion.

lambda.min4 Optimal Nbr of components, max iAUC_hc criterion.

lambda.se4 Optimal Nbr of components, max+1se iAUC_hc criterion.

lambda.min5 Optimal Nbr of components, max iAUC_sh criterion.

lambda.se5 Optimal Nbr of components, max+1se iAUC_sh criterion.

lambda.min6 Optimal Nbr of components, max iAUC_Uno criterion.

lambda.se6 Optimal Nbr of components, max+1se iAUC_Uno criterion.

lambda.min7 Optimal Nbr of components, max iAUC_hz.train criterion.

lambda.se7 Optimal Nbr of components, max+1se iAUC_hz.train criterion.

lambda.min8 Optimal Nbr of components, max iAUC_hz.test criterion.

lambda.se8 Optimal Nbr of components, max+1se iAUC_hz.test criterion.

lambda.min9 Optimal Nbr of components, max iAUC_survivalROC.train criterion.

lambda.se9 Optimal Nbr of components, max+1se iAUC_survivalROC.train criterion.

lambda.min10 Optimal Nbr of components, max iAUC_survivalROC.test criterion.

lambda.se10 Optimal Nbr of components, max+1se iAUC_survivalROC.test criterion.

lambda.min11 Optimal Nbr of components, min iBrierScore unw criterion.

lambda.se11 Optimal Nbr of components, min+1se iBrierScore unw criterion.

lambda.min12 Optimal Nbr of components, min iSchmidScore unw criterion.

lambda.se12 Optimal Nbr of components, min+1se iSchmidScore unw criterion.

lambda.min13 Optimal Nbr of components, min iBrierScore w criterion.

lambda.se13 Optimal Nbr of components, min+1se iBrierScore w criterion.

lambda.min14 Optimal Nbr of components, min iSchmidScore w criterion.

lambda.se14 Optimal Nbr of components, min+1se iSchmidScore w criterion.

errormat1-14 If details=TRUE, matrices with the error values for every folds across each of
the components and each of the criteria

completed.cv1-14

If details=TRUE, matrices with logical values for every folds across each of the
components and each of the criteria: TRUE if the computation was completed
and FALSE it is failed.

All_indics All results of the functions that perform error computation, for each fold, each
component and error criterion.

Author(s)

Frédéric Bertrand
<frederic.bertrand@lecnam.net>
https://fbertran.github.io/homepage/

https://fbertran.github.io/homepage/

68 cv.coxDKspls_sgplsDR

References

plsRcox, Cox-Models in a high dimensional setting in R, Frederic Bertrand, Philippe Bastien, Nico-
las Meyer and Myriam Maumy-Bertrand (2014). Proceedings of User2014!, Los Angeles, page 152.

Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Philippe
Bastien, Frederic Bertrand, Nicolas Meyer and Myriam Maumy-Bertrand (2015), Bioinformatics,
31(3):397-404, doi:10.1093/bioinformatics/btu660.

Cross validating extensions of kernel, sparse or regular partial least squares regression models to
censored data, Bertrand, F., Bastien, Ph. and Maumy-Bertrand, M. (2018), https://arxiv.org/
abs/1810.01005.

See Also

See Also coxDKsgplsDR

Examples

data(micro.censure)
data(Xmicro.censure_compl_imp)
set.seed(123456)
X_train_micro <- apply((as.matrix(Xmicro.censure_compl_imp)),
FUN="as.numeric",MARGIN=2)[1:80,]
X_train_micro_df <- data.frame(X_train_micro)
Y_train_micro <- micro.censure$survyear[1:80]
C_train_micro <- micro.censure$DC[1:80]

#Should be run with a higher value of nt (at least 10)

cv.coxDKsgplsDR.res=cv.coxDKsgplsDR(list(x=X_train_micro,
time=Y_train_micro,status=C_train_micro),ind.block.x=c(3,10,15),
alpha.x = rep(0.95, 6),nt=3,plot.it = FALSE)
cv.coxDKsgplsDR.res

cv.coxDKspls_sgplsDR Cross-validating a Direct Kernel sparse PLS model fitted on the (De-
viance) Residuals

Description

This function cross-validates coxDKspls_sgplsDR models.

https://arxiv.org/abs/1810.01005
https://arxiv.org/abs/1810.01005

cv.coxDKspls_sgplsDR 69

Usage

cv.coxDKspls_sgplsDR(
data,
method = c("efron", "breslow"),
nfold = 5,
nt = 10,
plot.it = TRUE,
se = TRUE,
givefold,
scaleX = TRUE,
folddetails = FALSE,
allCVcrit = FALSE,
details = FALSE,
namedataset = "data",
save = FALSE,
verbose = TRUE,
...

)

Arguments

data A list of three items:

• x the explanatory variables passed to coxDKspls_sgplsDR’s Xplan argu-
ment,

• time passed to coxDKspls_sgplsDR’s time argument,
• status coxDKspls_sgplsDR’s status argument.

method A character string specifying the method for tie handling. If there are no tied
death times all the methods are equivalent. The Efron approximation is used as
the default here, it is more accurate when dealing with tied death times, and is
as efficient computationally.

nfold The number of folds to use to perform the cross-validation process.

nt The number of components to include in the model. It this is not supplied, 10
components are fitted.

plot.it Shall the results be displayed on a plot ?

se Should standard errors be plotted ?

givefold Explicit list of omited values in each fold can be provided using this argument.

scaleX Shall the predictors be standardized ?

folddetails Should values and completion status for each folds be returned ?

allCVcrit Should the other 13 CV criteria be evaled and returned ?

details Should all results of the functions that perform error computations be returned ?

namedataset Name to use to craft temporary results names

save Should temporary results be saved ?

verbose Should some CV details be displayed ?

... Other arguments to pass to coxDKspls_sgplsDR.

70 cv.coxDKspls_sgplsDR

Details

It only computes the recommended iAUCSurvROC criterion. Set allCVcrit=TRUE to retrieve the
13 other ones.

Value

nt The number of components requested

cv.error1 Vector with the mean values, across folds, of, per fold unit, Cross-validated log-
partial-likelihood for models with 0 to nt components.

cv.error2 Vector with the mean values, across folds, of, per fold unit, van Houwelingen
Cross-validated log-partial-likelihood for models with 0 to nt components.

cv.error3 Vector with the mean values, across folds, of iAUC_CD for models with 0 to nt
components.

cv.error4 Vector with the mean values, across folds, of iAUC_hc for models with 0 to nt
components.

cv.error5 Vector with the mean values, across folds, of iAUC_sh for models with 0 to nt
components.

cv.error6 Vector with the mean values, across folds, of iAUC_Uno for models with 0 to nt
components.

cv.error7 Vector with the mean values, across folds, of iAUC_hz.train for models with 0
to nt components.

cv.error8 Vector with the mean values, across folds, of iAUC_hz.test for models with 0 to
nt components.

cv.error9 Vector with the mean values, across folds, of iAUC_survivalROC.train for mod-
els with 0 to nt components.

cv.error10 Vector with the mean values, across folds, of iAUC_survivalROC.test for models
with 0 to nt components.

cv.error11 Vector with the mean values, across folds, of iBrierScore unw for models with
0 to nt components.

cv.error12 Vector with the mean values, across folds, of iSchmidScore (robust BS) unw for
models with 0 to nt components.

cv.error13 Vector with the mean values, across folds, of iBrierScore w for models with 0 to
nt components.

cv.error14 Vector with the mean values, across folds, of iSchmidScore (robust BS) w for
models with 0 to nt components.

cv.se1 Vector with the standard error values, across folds, of, per fold unit, Cross-
validated log-partial-likelihood for models with 0 to nt components.

cv.se2 Vector with the standard error values, across folds, of, per fold unit, van Houwelin-
gen Cross-validated log-partial-likelihood for models with 0 to nt components.

cv.se3 Vector with the standard error values, across folds, of iAUC_CD for models with
0 to nt components.

cv.se4 Vector with the standard error values, across folds, of iAUC_hc for models with
0 to nt components.

cv.coxDKspls_sgplsDR 71

cv.se5 Vector with the standard error values, across folds, of iAUC_sh for models with
0 to nt components.

cv.se6 Vector with the standard error values, across folds, of iAUC_Uno for models
with 0 to nt components.

cv.se7 Vector with the standard error values, across folds, of iAUC_hz.train for models
with 0 to nt components.

cv.se8 Vector with the standard error values, across folds, of iAUC_hz.test for models
with 0 to nt components.

cv.se9 Vector with the standard error values, across folds, of iAUC_survivalROC.train
for models with 0 to nt components.

cv.se10 Vector with the standard error values, across folds, of iAUC_survivalROC.test
for models with 0 to nt components.

cv.se11 Vector with the standard error values, across folds, of iBrierScore unw for mod-
els with 0 to nt components.

cv.se12 Vector with the standard error values, across folds, of iSchmidScore (robust BS)
unw for models with 0 to nt components.

cv.se13 Vector with the standard error values, across folds, of iBrierScore w for models
with 0 to nt components.

cv.se14 Vector with the standard error values, across folds, of iSchmidScore (robust BS)
w for models with 0 to nt components.

folds Explicit list of the values that were omited values in each fold.

lambda.min1 Vector with the standard error values, across folds, of, per fold unit, Cross-
validated log-partial-likelihood for models with 0 to nt components.

lambda.min2 Vector with the standard error values, across folds, of, per fold unit, van Houwelin-
gen Cross-validated log-partial-likelihood for models with 0 to nt components.

lambda.min1 Optimal Nbr of components, min Cross-validated log-partial-likelihood crite-
rion.

lambda.se1 Optimal Nbr of components, min+1se Cross-validated log-partial-likelihood cri-
terion.

lambda.min2 Optimal Nbr of components, min van Houwelingen Cross-validated log-partial-
likelihood.

lambda.se2 Optimal Nbr of components, min+1se van Houwelingen Cross-validated log-
partial-likelihood.

lambda.min3 Optimal Nbr of components, max iAUC_CD criterion.

lambda.se3 Optimal Nbr of components, max+1se iAUC_CD criterion.

lambda.min4 Optimal Nbr of components, max iAUC_hc criterion.

lambda.se4 Optimal Nbr of components, max+1se iAUC_hc criterion.

lambda.min5 Optimal Nbr of components, max iAUC_sh criterion.

lambda.se5 Optimal Nbr of components, max+1se iAUC_sh criterion.

lambda.min6 Optimal Nbr of components, max iAUC_Uno criterion.

lambda.se6 Optimal Nbr of components, max+1se iAUC_Uno criterion.

72 cv.coxDKspls_sgplsDR

lambda.min7 Optimal Nbr of components, max iAUC_hz.train criterion.

lambda.se7 Optimal Nbr of components, max+1se iAUC_hz.train criterion.

lambda.min8 Optimal Nbr of components, max iAUC_hz.test criterion.

lambda.se8 Optimal Nbr of components, max+1se iAUC_hz.test criterion.

lambda.min9 Optimal Nbr of components, max iAUC_survivalROC.train criterion.

lambda.se9 Optimal Nbr of components, max+1se iAUC_survivalROC.train criterion.

lambda.min10 Optimal Nbr of components, max iAUC_survivalROC.test criterion.

lambda.se10 Optimal Nbr of components, max+1se iAUC_survivalROC.test criterion.

lambda.min11 Optimal Nbr of components, min iBrierScore unw criterion.

lambda.se11 Optimal Nbr of components, min+1se iBrierScore unw criterion.

lambda.min12 Optimal Nbr of components, min iSchmidScore unw criterion.

lambda.se12 Optimal Nbr of components, min+1se iSchmidScore unw criterion.

lambda.min13 Optimal Nbr of components, min iBrierScore w criterion.

lambda.se13 Optimal Nbr of components, min+1se iBrierScore w criterion.

lambda.min14 Optimal Nbr of components, min iSchmidScore w criterion.

lambda.se14 Optimal Nbr of components, min+1se iSchmidScore w criterion.

errormat1-14 If details=TRUE, matrices with the error values for every folds across each of
the components and each of the criteria

completed.cv1-14

If details=TRUE, matrices with logical values for every folds across each of the
components and each of the criteria: TRUE if the computation was completed
and FALSE it is failed.

All_indics All results of the functions that perform error computation, for each fold, each
component and error criterion.

Author(s)

Frédéric Bertrand
<frederic.bertrand@lecnam.net>
https://fbertran.github.io/homepage/

References

plsRcox, Cox-Models in a high dimensional setting in R, Frederic Bertrand, Philippe Bastien, Nico-
las Meyer and Myriam Maumy-Bertrand (2014). Proceedings of User2014!, Los Angeles, page 152.

Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Philippe
Bastien, Frederic Bertrand, Nicolas Meyer and Myriam Maumy-Bertrand (2015), Bioinformatics,
31(3):397-404, doi:10.1093/bioinformatics/btu660.

Cross validating extensions of kernel, sparse or regular partial least squares regression models to
censored data, Bertrand, F., Bastien, Ph. and Maumy-Bertrand, M. (2018), https://arxiv.org/
abs/1810.01005.

https://fbertran.github.io/homepage/
https://arxiv.org/abs/1810.01005
https://arxiv.org/abs/1810.01005

cv.coxgpls 73

See Also

See Also coxDKspls_sgplsDR

Examples

data(micro.censure)
data(Xmicro.censure_compl_imp)
set.seed(123456)
X_train_micro <- apply((as.matrix(Xmicro.censure_compl_imp)),
FUN="as.numeric",MARGIN=2)[1:80,]
X_train_micro_df <- data.frame(X_train_micro)
Y_train_micro <- micro.censure$survyear[1:80]
C_train_micro <- micro.censure$DC[1:80]

#Should be run with a higher value of nt (at least 10)
(cv.coxDKspls_sgplsDR.res=cv.coxDKspls_sgplsDR(list(x=X_train_micro,
time=Y_train_micro,status=C_train_micro),ind.block.x=c(3,10,15),
alpha.x = rep(0.95, 3),nt=3))

cv.coxgpls Cross-validating a Cox-Model fitted on group PLSR components

Description

This function cross-validates coxgpls models.

Usage

cv.coxgpls(
data,
method = c("efron", "breslow"),
nfold = 5,
nt = 10,
plot.it = TRUE,
se = TRUE,
givefold,
scaleX = TRUE,
folddetails = FALSE,
allCVcrit = FALSE,
details = FALSE,
namedataset = "data",
save = FALSE,
verbose = TRUE,
...

)

74 cv.coxgpls

Arguments

data A list of three items:

• x the explanatory variables passed to coxgpls’s Xplan argument,
• time passed to coxgpls’s time argument,
• status coxgpls’s status argument.

method A character string specifying the method for tie handling. If there are no tied
death times all the methods are equivalent. The Efron approximation is used as
the default here, it is more accurate when dealing with tied death times, and is
as efficient computationally.

nfold The number of folds to use to perform the cross-validation process.

nt The number of components to include in the model. It this is not supplied, 10
components are fitted.

plot.it Shall the results be displayed on a plot ?

se Should standard errors be plotted ?

givefold Explicit list of omited values in each fold can be provided using this argument.

scaleX Shall the predictors be standardized ?

folddetails Should values and completion status for each folds be returned ?

allCVcrit Should the other 13 CV criteria be evaled and returned ?

details Should all results of the functions that perform error computations be returned ?

namedataset Name to use to craft temporary results names

save Should temporary results be saved ?

verbose Should some CV details be displayed ?

... Other arguments to pass to coxgpls.

Details

It only computes the recommended iAUCSurvROC criterion. Set allCVcrit=TRUE to retrieve the
13 other ones.

Value

nt The number of components requested

cv.error1 Vector with the mean values, across folds, of, per fold unit, Cross-validated log-
partial-likelihood for models with 0 to nt components.

cv.error2 Vector with the mean values, across folds, of, per fold unit, van Houwelingen
Cross-validated log-partial-likelihood for models with 0 to nt components.

cv.error3 Vector with the mean values, across folds, of iAUC_CD for models with 0 to nt
components.

cv.error4 Vector with the mean values, across folds, of iAUC_hc for models with 0 to nt
components.

cv.error5 Vector with the mean values, across folds, of iAUC_sh for models with 0 to nt
components.

cv.coxgpls 75

cv.error6 Vector with the mean values, across folds, of iAUC_Uno for models with 0 to nt
components.

cv.error7 Vector with the mean values, across folds, of iAUC_hz.train for models with 0
to nt components.

cv.error8 Vector with the mean values, across folds, of iAUC_hz.test for models with 0 to
nt components.

cv.error9 Vector with the mean values, across folds, of iAUC_survivalROC.train for mod-
els with 0 to nt components.

cv.error10 Vector with the mean values, across folds, of iAUC_survivalROC.test for models
with 0 to nt components.

cv.error11 Vector with the mean values, across folds, of iBrierScore unw for models with
0 to nt components.

cv.error12 Vector with the mean values, across folds, of iSchmidScore (robust BS) unw for
models with 0 to nt components.

cv.error13 Vector with the mean values, across folds, of iBrierScore w for models with 0 to
nt components.

cv.error14 Vector with the mean values, across folds, of iSchmidScore (robust BS) w for
models with 0 to nt components.

cv.se1 Vector with the standard error values, across folds, of, per fold unit, Cross-
validated log-partial-likelihood for models with 0 to nt components.

cv.se2 Vector with the standard error values, across folds, of, per fold unit, van Houwelin-
gen Cross-validated log-partial-likelihood for models with 0 to nt components.

cv.se3 Vector with the standard error values, across folds, of iAUC_CD for models with
0 to nt components.

cv.se4 Vector with the standard error values, across folds, of iAUC_hc for models with
0 to nt components.

cv.se5 Vector with the standard error values, across folds, of iAUC_sh for models with
0 to nt components.

cv.se6 Vector with the standard error values, across folds, of iAUC_Uno for models
with 0 to nt components.

cv.se7 Vector with the standard error values, across folds, of iAUC_hz.train for models
with 0 to nt components.

cv.se8 Vector with the standard error values, across folds, of iAUC_hz.test for models
with 0 to nt components.

cv.se9 Vector with the standard error values, across folds, of iAUC_survivalROC.train
for models with 0 to nt components.

cv.se10 Vector with the standard error values, across folds, of iAUC_survivalROC.test
for models with 0 to nt components.

cv.se11 Vector with the standard error values, across folds, of iBrierScore unw for mod-
els with 0 to nt components.

cv.se12 Vector with the standard error values, across folds, of iSchmidScore (robust BS)
unw for models with 0 to nt components.

76 cv.coxgpls

cv.se13 Vector with the standard error values, across folds, of iBrierScore w for models
with 0 to nt components.

cv.se14 Vector with the standard error values, across folds, of iSchmidScore (robust BS)
w for models with 0 to nt components.

folds Explicit list of the values that were omited values in each fold.

lambda.min1 Vector with the standard error values, across folds, of, per fold unit, Cross-
validated log-partial-likelihood for models with 0 to nt components.

lambda.min2 Vector with the standard error values, across folds, of, per fold unit, van Houwelin-
gen Cross-validated log-partial-likelihood for models with 0 to nt components.

lambda.min1 Optimal Nbr of components, min Cross-validated log-partial-likelihood crite-
rion.

lambda.se1 Optimal Nbr of components, min+1se Cross-validated log-partial-likelihood cri-
terion.

lambda.min2 Optimal Nbr of components, min van Houwelingen Cross-validated log-partial-
likelihood.

lambda.se2 Optimal Nbr of components, min+1se van Houwelingen Cross-validated log-
partial-likelihood.

lambda.min3 Optimal Nbr of components, max iAUC_CD criterion.

lambda.se3 Optimal Nbr of components, max+1se iAUC_CD criterion.

lambda.min4 Optimal Nbr of components, max iAUC_hc criterion.

lambda.se4 Optimal Nbr of components, max+1se iAUC_hc criterion.

lambda.min5 Optimal Nbr of components, max iAUC_sh criterion.

lambda.se5 Optimal Nbr of components, max+1se iAUC_sh criterion.

lambda.min6 Optimal Nbr of components, max iAUC_Uno criterion.

lambda.se6 Optimal Nbr of components, max+1se iAUC_Uno criterion.

lambda.min7 Optimal Nbr of components, max iAUC_hz.train criterion.

lambda.se7 Optimal Nbr of components, max+1se iAUC_hz.train criterion.

lambda.min8 Optimal Nbr of components, max iAUC_hz.test criterion.

lambda.se8 Optimal Nbr of components, max+1se iAUC_hz.test criterion.

lambda.min9 Optimal Nbr of components, max iAUC_survivalROC.train criterion.

lambda.se9 Optimal Nbr of components, max+1se iAUC_survivalROC.train criterion.

lambda.min10 Optimal Nbr of components, max iAUC_survivalROC.test criterion.

lambda.se10 Optimal Nbr of components, max+1se iAUC_survivalROC.test criterion.

lambda.min11 Optimal Nbr of components, min iBrierScore unw criterion.

lambda.se11 Optimal Nbr of components, min+1se iBrierScore unw criterion.

lambda.min12 Optimal Nbr of components, min iSchmidScore unw criterion.

lambda.se12 Optimal Nbr of components, min+1se iSchmidScore unw criterion.

lambda.min13 Optimal Nbr of components, min iBrierScore w criterion.

lambda.se13 Optimal Nbr of components, min+1se iBrierScore w criterion.

cv.coxgpls 77

lambda.min14 Optimal Nbr of components, min iSchmidScore w criterion.

lambda.se14 Optimal Nbr of components, min+1se iSchmidScore w criterion.

errormat1-14 If details=TRUE, matrices with the error values for every folds across each of
the components and each of the criteria

completed.cv1-14

If details=TRUE, matrices with logical values for every folds across each of the
components and each of the criteria: TRUE if the computation was completed
and FALSE it is failed.

All_indics All results of the functions that perform error computation, for each fold, each
component and error criterion.

Author(s)

Frédéric Bertrand
<frederic.bertrand@lecnam.net>
https://fbertran.github.io/homepage/

References

plsRcox, Cox-Models in a high dimensional setting in R, Frederic Bertrand, Philippe Bastien, Nico-
las Meyer and Myriam Maumy-Bertrand (2014). Proceedings of User2014!, Los Angeles, page 152.

Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Philippe
Bastien, Frederic Bertrand, Nicolas Meyer and Myriam Maumy-Bertrand (2015), Bioinformatics,
31(3):397-404, doi:10.1093/bioinformatics/btu660.

Cross validating extensions of kernel, sparse or regular partial least squares regression models to
censored data, Bertrand, F., Bastien, Ph. and Maumy-Bertrand, M. (2018), https://arxiv.org/
abs/1810.01005.

See Also

See Also coxgpls

Examples

data(micro.censure)
data(Xmicro.censure_compl_imp)
set.seed(123456)
X_train_micro <- apply((as.matrix(Xmicro.censure_compl_imp)),
FUN="as.numeric",MARGIN=2)[1:80,]
X_train_micro_df <- data.frame(X_train_micro)
Y_train_micro <- micro.censure$survyear[1:80]
C_train_micro <- micro.censure$DC[1:80]

#Should be run with a higher value of nt (at least 10)
(cv.coxgpls.res=cv.coxgpls(list(x=X_train_micro,time=Y_train_micro,
status=C_train_micro),ind.block.x=c(3,10,15),nt=3))

https://fbertran.github.io/homepage/
https://arxiv.org/abs/1810.01005
https://arxiv.org/abs/1810.01005

78 cv.coxgplsDR

cv.coxgplsDR Cross-validating a Cox-Model fitted on group PLSR components using
(Deviance) Residuals

Description

This function cross-validates coxgplsDR models.

Usage

cv.coxgplsDR(
data,
method = c("efron", "breslow"),
nfold = 5,
nt = 10,
plot.it = TRUE,
se = TRUE,
givefold,
scaleX = TRUE,
folddetails = FALSE,
allCVcrit = FALSE,
details = FALSE,
namedataset = "data",
save = FALSE,
verbose = TRUE,
...

)

Arguments

data A list of three items:

• x the explanatory variables passed to coxgpls’s Xplan argument,
• time passed to coxgpls’s time argument,
• status coxgpls’s status argument.

method A character string specifying the method for tie handling. If there are no tied
death times all the methods are equivalent. The Efron approximation is used as
the default here, it is more accurate when dealing with tied death times, and is
as efficient computationally.

nfold The number of folds to use to perform the cross-validation process.

nt The number of components to include in the model. It this is not supplied, 10
components are fitted.

plot.it Shall the results be displayed on a plot ?

se Should standard errors be plotted ?

givefold Explicit list of omited values in each fold can be provided using this argument.

cv.coxgplsDR 79

scaleX Shall the predictors be standardized ?

folddetails Should values and completion status for each folds be returned ?

allCVcrit Should the other 13 CV criteria be evaled and returned ?

details Should all results of the functions that perform error computations be returned ?

namedataset Name to use to craft temporary results names

save Should temporary results be saved ?

verbose Should some CV details be displayed ?

... Other arguments to pass to coxgpls.

Details

It only computes the recommended iAUCSurvROC criterion. Set allCVcrit=TRUE to retrieve the
13 other ones.

Value

nt The number of components requested

cv.error1 Vector with the mean values, across folds, of, per fold unit, Cross-validated log-
partial-likelihood for models with 0 to nt components.

cv.error2 Vector with the mean values, across folds, of, per fold unit, van Houwelingen
Cross-validated log-partial-likelihood for models with 0 to nt components.

cv.error3 Vector with the mean values, across folds, of iAUC_CD for models with 0 to nt
components.

cv.error4 Vector with the mean values, across folds, of iAUC_hc for models with 0 to nt
components.

cv.error5 Vector with the mean values, across folds, of iAUC_sh for models with 0 to nt
components.

cv.error6 Vector with the mean values, across folds, of iAUC_Uno for models with 0 to nt
components.

cv.error7 Vector with the mean values, across folds, of iAUC_hz.train for models with 0
to nt components.

cv.error8 Vector with the mean values, across folds, of iAUC_hz.test for models with 0 to
nt components.

cv.error9 Vector with the mean values, across folds, of iAUC_survivalROC.train for mod-
els with 0 to nt components.

cv.error10 Vector with the mean values, across folds, of iAUC_survivalROC.test for models
with 0 to nt components.

cv.error11 Vector with the mean values, across folds, of iBrierScore unw for models with
0 to nt components.

cv.error12 Vector with the mean values, across folds, of iSchmidScore (robust BS) unw for
models with 0 to nt components.

cv.error13 Vector with the mean values, across folds, of iBrierScore w for models with 0 to
nt components.

80 cv.coxgplsDR

cv.error14 Vector with the mean values, across folds, of iSchmidScore (robust BS) w for
models with 0 to nt components.

cv.se1 Vector with the standard error values, across folds, of, per fold unit, Cross-
validated log-partial-likelihood for models with 0 to nt components.

cv.se2 Vector with the standard error values, across folds, of, per fold unit, van Houwelin-
gen Cross-validated log-partial-likelihood for models with 0 to nt components.

cv.se3 Vector with the standard error values, across folds, of iAUC_CD for models with
0 to nt components.

cv.se4 Vector with the standard error values, across folds, of iAUC_hc for models with
0 to nt components.

cv.se5 Vector with the standard error values, across folds, of iAUC_sh for models with
0 to nt components.

cv.se6 Vector with the standard error values, across folds, of iAUC_Uno for models
with 0 to nt components.

cv.se7 Vector with the standard error values, across folds, of iAUC_hz.train for models
with 0 to nt components.

cv.se8 Vector with the standard error values, across folds, of iAUC_hz.test for models
with 0 to nt components.

cv.se9 Vector with the standard error values, across folds, of iAUC_survivalROC.train
for models with 0 to nt components.

cv.se10 Vector with the standard error values, across folds, of iAUC_survivalROC.test
for models with 0 to nt components.

cv.se11 Vector with the standard error values, across folds, of iBrierScore unw for mod-
els with 0 to nt components.

cv.se12 Vector with the standard error values, across folds, of iSchmidScore (robust BS)
unw for models with 0 to nt components.

cv.se13 Vector with the standard error values, across folds, of iBrierScore w for models
with 0 to nt components.

cv.se14 Vector with the standard error values, across folds, of iSchmidScore (robust BS)
w for models with 0 to nt components.

folds Explicit list of the values that were omited values in each fold.

lambda.min1 Vector with the standard error values, across folds, of, per fold unit, Cross-
validated log-partial-likelihood for models with 0 to nt components.

lambda.min2 Vector with the standard error values, across folds, of, per fold unit, van Houwelin-
gen Cross-validated log-partial-likelihood for models with 0 to nt components.

lambda.min1 Optimal Nbr of components, min Cross-validated log-partial-likelihood crite-
rion.

lambda.se1 Optimal Nbr of components, min+1se Cross-validated log-partial-likelihood cri-
terion.

lambda.min2 Optimal Nbr of components, min van Houwelingen Cross-validated log-partial-
likelihood.

lambda.se2 Optimal Nbr of components, min+1se van Houwelingen Cross-validated log-
partial-likelihood.

cv.coxgplsDR 81

lambda.min3 Optimal Nbr of components, max iAUC_CD criterion.

lambda.se3 Optimal Nbr of components, max+1se iAUC_CD criterion.

lambda.min4 Optimal Nbr of components, max iAUC_hc criterion.

lambda.se4 Optimal Nbr of components, max+1se iAUC_hc criterion.

lambda.min5 Optimal Nbr of components, max iAUC_sh criterion.

lambda.se5 Optimal Nbr of components, max+1se iAUC_sh criterion.

lambda.min6 Optimal Nbr of components, max iAUC_Uno criterion.

lambda.se6 Optimal Nbr of components, max+1se iAUC_Uno criterion.

lambda.min7 Optimal Nbr of components, max iAUC_hz.train criterion.

lambda.se7 Optimal Nbr of components, max+1se iAUC_hz.train criterion.

lambda.min8 Optimal Nbr of components, max iAUC_hz.test criterion.

lambda.se8 Optimal Nbr of components, max+1se iAUC_hz.test criterion.

lambda.min9 Optimal Nbr of components, max iAUC_survivalROC.train criterion.

lambda.se9 Optimal Nbr of components, max+1se iAUC_survivalROC.train criterion.

lambda.min10 Optimal Nbr of components, max iAUC_survivalROC.test criterion.

lambda.se10 Optimal Nbr of components, max+1se iAUC_survivalROC.test criterion.

lambda.min11 Optimal Nbr of components, min iBrierScore unw criterion.

lambda.se11 Optimal Nbr of components, min+1se iBrierScore unw criterion.

lambda.min12 Optimal Nbr of components, min iSchmidScore unw criterion.

lambda.se12 Optimal Nbr of components, min+1se iSchmidScore unw criterion.

lambda.min13 Optimal Nbr of components, min iBrierScore w criterion.

lambda.se13 Optimal Nbr of components, min+1se iBrierScore w criterion.

lambda.min14 Optimal Nbr of components, min iSchmidScore w criterion.

lambda.se14 Optimal Nbr of components, min+1se iSchmidScore w criterion.

errormat1-14 If details=TRUE, matrices with the error values for every folds across each of
the components and each of the criteria

completed.cv1-14

If details=TRUE, matrices with logical values for every folds across each of the
components and each of the criteria: TRUE if the computation was completed
and FALSE it is failed.

All_indics All results of the functions that perform error computation, for each fold, each
component and error criterion.

Author(s)

Frédéric Bertrand
<frederic.bertrand@lecnam.net>
https://fbertran.github.io/homepage/

https://fbertran.github.io/homepage/

82 cv.coxsgpls

References

plsRcox, Cox-Models in a high dimensional setting in R, Frederic Bertrand, Philippe Bastien, Nico-
las Meyer and Myriam Maumy-Bertrand (2014). Proceedings of User2014!, Los Angeles, page 152.

Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Philippe
Bastien, Frederic Bertrand, Nicolas Meyer and Myriam Maumy-Bertrand (2015), Bioinformatics,
31(3):397-404, doi:10.1093/bioinformatics/btu660.

Cross validating extensions of kernel, sparse or regular partial least squares regression models to
censored data, Bertrand, F., Bastien, Ph. and Maumy-Bertrand, M. (2018), https://arxiv.org/
abs/1810.01005.

See Also

See Also coxgpls

Examples

data(micro.censure)
data(Xmicro.censure_compl_imp)
set.seed(123456)
X_train_micro <- apply((as.matrix(Xmicro.censure_compl_imp)),
FUN="as.numeric",MARGIN=2)[1:80,]
X_train_micro_df <- data.frame(X_train_micro)
Y_train_micro <- micro.censure$survyear[1:80]
C_train_micro <- micro.censure$DC[1:80]

#Should be run with a higher value of nt (at least 10)
(cv.coxgplsDR.res=cv.coxgplsDR(list(x=X_train_micro,time=Y_train_micro,
status=C_train_micro),ind.block.x=c(3,10,15),nt=3))

cv.coxsgpls Cross-validating a Cox-Model fitted on sparse group PLSR compo-
nents

Description

This function cross-validates coxsgpls models.

Usage

cv.coxsgpls(
data,
method = c("efron", "breslow"),
nfold = 5,
nt = 10,

https://arxiv.org/abs/1810.01005
https://arxiv.org/abs/1810.01005

cv.coxsgpls 83

plot.it = TRUE,
se = TRUE,
givefold,
scaleX = TRUE,
folddetails = FALSE,
allCVcrit = FALSE,
details = FALSE,
namedataset = "data",
save = FALSE,
verbose = TRUE,
...

)

Arguments

data A list of three items:

• x the explanatory variables passed to coxsgpls’s Xplan argument,
• time passed to coxsgpls’s time argument,
• status coxsgpls’s status argument.

method A character string specifying the method for tie handling. If there are no tied
death times all the methods are equivalent. The Efron approximation is used as
the default here, it is more accurate when dealing with tied death times, and is
as efficient computationally.

nfold The number of folds to use to perform the cross-validation process.

nt The number of components to include in the model. It this is not supplied, 10
components are fitted.

plot.it Shall the results be displayed on a plot ?

se Should standard errors be plotted ?

givefold Explicit list of omited values in each fold can be provided using this argument.

scaleX Shall the predictors be standardized ?

folddetails Should values and completion status for each folds be returned ?

allCVcrit Should the other 13 CV criteria be evaled and returned ?

details Should all results of the functions that perform error computations be returned ?

namedataset Name to use to craft temporary results names

save Should temporary results be saved ?

verbose Should some CV details be displayed ?

... Other arguments to pass to coxsgpls.

Details

It only computes the recommended iAUCSurvROC criterion. Set allCVcrit=TRUE to retrieve the
13 other ones.

84 cv.coxsgpls

Value

nt The number of components requested

cv.error1 Vector with the mean values, across folds, of, per fold unit, Cross-validated log-
partial-likelihood for models with 0 to nt components.

cv.error2 Vector with the mean values, across folds, of, per fold unit, van Houwelingen
Cross-validated log-partial-likelihood for models with 0 to nt components.

cv.error3 Vector with the mean values, across folds, of iAUC_CD for models with 0 to nt
components.

cv.error4 Vector with the mean values, across folds, of iAUC_hc for models with 0 to nt
components.

cv.error5 Vector with the mean values, across folds, of iAUC_sh for models with 0 to nt
components.

cv.error6 Vector with the mean values, across folds, of iAUC_Uno for models with 0 to nt
components.

cv.error7 Vector with the mean values, across folds, of iAUC_hz.train for models with 0
to nt components.

cv.error8 Vector with the mean values, across folds, of iAUC_hz.test for models with 0 to
nt components.

cv.error9 Vector with the mean values, across folds, of iAUC_survivalROC.train for mod-
els with 0 to nt components.

cv.error10 Vector with the mean values, across folds, of iAUC_survivalROC.test for models
with 0 to nt components.

cv.error11 Vector with the mean values, across folds, of iBrierScore unw for models with
0 to nt components.

cv.error12 Vector with the mean values, across folds, of iSchmidScore (robust BS) unw for
models with 0 to nt components.

cv.error13 Vector with the mean values, across folds, of iBrierScore w for models with 0 to
nt components.

cv.error14 Vector with the mean values, across folds, of iSchmidScore (robust BS) w for
models with 0 to nt components.

cv.se1 Vector with the standard error values, across folds, of, per fold unit, Cross-
validated log-partial-likelihood for models with 0 to nt components.

cv.se2 Vector with the standard error values, across folds, of, per fold unit, van Houwelin-
gen Cross-validated log-partial-likelihood for models with 0 to nt components.

cv.se3 Vector with the standard error values, across folds, of iAUC_CD for models with
0 to nt components.

cv.se4 Vector with the standard error values, across folds, of iAUC_hc for models with
0 to nt components.

cv.se5 Vector with the standard error values, across folds, of iAUC_sh for models with
0 to nt components.

cv.se6 Vector with the standard error values, across folds, of iAUC_Uno for models
with 0 to nt components.

cv.coxsgpls 85

cv.se7 Vector with the standard error values, across folds, of iAUC_hz.train for models
with 0 to nt components.

cv.se8 Vector with the standard error values, across folds, of iAUC_hz.test for models
with 0 to nt components.

cv.se9 Vector with the standard error values, across folds, of iAUC_survivalROC.train
for models with 0 to nt components.

cv.se10 Vector with the standard error values, across folds, of iAUC_survivalROC.test
for models with 0 to nt components.

cv.se11 Vector with the standard error values, across folds, of iBrierScore unw for mod-
els with 0 to nt components.

cv.se12 Vector with the standard error values, across folds, of iSchmidScore (robust BS)
unw for models with 0 to nt components.

cv.se13 Vector with the standard error values, across folds, of iBrierScore w for models
with 0 to nt components.

cv.se14 Vector with the standard error values, across folds, of iSchmidScore (robust BS)
w for models with 0 to nt components.

folds Explicit list of the values that were omited values in each fold.

lambda.min1 Vector with the standard error values, across folds, of, per fold unit, Cross-
validated log-partial-likelihood for models with 0 to nt components.

lambda.min2 Vector with the standard error values, across folds, of, per fold unit, van Houwelin-
gen Cross-validated log-partial-likelihood for models with 0 to nt components.

lambda.min1 Optimal Nbr of components, min Cross-validated log-partial-likelihood crite-
rion.

lambda.se1 Optimal Nbr of components, min+1se Cross-validated log-partial-likelihood cri-
terion.

lambda.min2 Optimal Nbr of components, min van Houwelingen Cross-validated log-partial-
likelihood.

lambda.se2 Optimal Nbr of components, min+1se van Houwelingen Cross-validated log-
partial-likelihood.

lambda.min3 Optimal Nbr of components, max iAUC_CD criterion.

lambda.se3 Optimal Nbr of components, max+1se iAUC_CD criterion.

lambda.min4 Optimal Nbr of components, max iAUC_hc criterion.

lambda.se4 Optimal Nbr of components, max+1se iAUC_hc criterion.

lambda.min5 Optimal Nbr of components, max iAUC_sh criterion.

lambda.se5 Optimal Nbr of components, max+1se iAUC_sh criterion.

lambda.min6 Optimal Nbr of components, max iAUC_Uno criterion.

lambda.se6 Optimal Nbr of components, max+1se iAUC_Uno criterion.

lambda.min7 Optimal Nbr of components, max iAUC_hz.train criterion.

lambda.se7 Optimal Nbr of components, max+1se iAUC_hz.train criterion.

lambda.min8 Optimal Nbr of components, max iAUC_hz.test criterion.

86 cv.coxsgpls

lambda.se8 Optimal Nbr of components, max+1se iAUC_hz.test criterion.

lambda.min9 Optimal Nbr of components, max iAUC_survivalROC.train criterion.

lambda.se9 Optimal Nbr of components, max+1se iAUC_survivalROC.train criterion.

lambda.min10 Optimal Nbr of components, max iAUC_survivalROC.test criterion.

lambda.se10 Optimal Nbr of components, max+1se iAUC_survivalROC.test criterion.

lambda.min11 Optimal Nbr of components, min iBrierScore unw criterion.

lambda.se11 Optimal Nbr of components, min+1se iBrierScore unw criterion.

lambda.min12 Optimal Nbr of components, min iSchmidScore unw criterion.

lambda.se12 Optimal Nbr of components, min+1se iSchmidScore unw criterion.

lambda.min13 Optimal Nbr of components, min iBrierScore w criterion.

lambda.se13 Optimal Nbr of components, min+1se iBrierScore w criterion.

lambda.min14 Optimal Nbr of components, min iSchmidScore w criterion.

lambda.se14 Optimal Nbr of components, min+1se iSchmidScore w criterion.

errormat1-14 If details=TRUE, matrices with the error values for every folds across each of
the components and each of the criteria

completed.cv1-14

If details=TRUE, matrices with logical values for every folds across each of the
components and each of the criteria: TRUE if the computation was completed
and FALSE it is failed.

All_indics All results of the functions that perform error computation, for each fold, each
component and error criterion.

Author(s)

Frédéric Bertrand
<frederic.bertrand@lecnam.net>
https://fbertran.github.io/homepage/

References

plsRcox, Cox-Models in a high dimensional setting in R, Frederic Bertrand, Philippe Bastien, Nico-
las Meyer and Myriam Maumy-Bertrand (2014). Proceedings of User2014!, Los Angeles, page 152.

Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Philippe
Bastien, Frederic Bertrand, Nicolas Meyer and Myriam Maumy-Bertrand (2015), Bioinformatics,
31(3):397-404, doi:10.1093/bioinformatics/btu660.

Cross validating extensions of kernel, sparse or regular partial least squares regression models to
censored data, Bertrand, F., Bastien, Ph. and Maumy-Bertrand, M. (2018), https://arxiv.org/
abs/1810.01005.

See Also

See Also coxsgpls

https://fbertran.github.io/homepage/
https://arxiv.org/abs/1810.01005
https://arxiv.org/abs/1810.01005

cv.coxsgplsDR 87

Examples

data(micro.censure)
data(Xmicro.censure_compl_imp)
set.seed(123456)
X_train_micro <- apply((as.matrix(Xmicro.censure_compl_imp)),
FUN="as.numeric",MARGIN=2)[1:80,]
X_train_micro_df <- data.frame(X_train_micro)
Y_train_micro <- micro.censure$survyear[1:80]
C_train_micro <- micro.censure$DC[1:80]

#Should be run with a higher value of nt (at least 10)
(cv.coxsgpls.res=cv.coxsgpls(list(x=X_train_micro,time=Y_train_micro,
status=C_train_micro),ind.block.x=c(3,10,15), alpha.x = rep(0.95, 6),nt=3))

cv.coxsgplsDR Cross-validating a Cox-Model fitted on sparse group PLSR compo-
nents using (Deviance) Residuals

Description

This function cross-validates coxsgplsDR models.

Usage

cv.coxsgplsDR(
data,
method = c("efron", "breslow"),
nfold = 5,
nt = 10,
plot.it = TRUE,
se = TRUE,
givefold,
scaleX = TRUE,
folddetails = FALSE,
allCVcrit = FALSE,
details = FALSE,
namedataset = "data",
save = FALSE,
verbose = TRUE,
...

)

Arguments

data A list of three items:

88 cv.coxsgplsDR

• x the explanatory variables passed to coxsgplsDR’s Xplan argument,
• time passed to coxsgplsDR’s time argument,
• status coxsgplsDR’s status argument.

method A character string specifying the method for tie handling. If there are no tied
death times all the methods are equivalent. The Efron approximation is used as
the default here, it is more accurate when dealing with tied death times, and is
as efficient computationally.

nfold The number of folds to use to perform the cross-validation process.

nt The number of components to include in the model. It this is not supplied, 10
components are fitted.

plot.it Shall the results be displayed on a plot ?

se Should standard errors be plotted ?

givefold Explicit list of omited values in each fold can be provided using this argument.

scaleX Shall the predictors be standardized ?

folddetails Should values and completion status for each folds be returned ?

allCVcrit Should the other 13 CV criteria be evaled and returned ?

details Should all results of the functions that perform error computations be returned ?

namedataset Name to use to craft temporary results names

save Should temporary results be saved ?

verbose Should some CV details be displayed ?

... Other arguments to pass to coxsgplsDR.

Details

It only computes the recommended iAUCSurvROC criterion. Set allCVcrit=TRUE to retrieve the
13 other ones.

Value

nt The number of components requested

cv.error1 Vector with the mean values, across folds, of, per fold unit, Cross-validated log-
partial-likelihood for models with 0 to nt components.

cv.error2 Vector with the mean values, across folds, of, per fold unit, van Houwelingen
Cross-validated log-partial-likelihood for models with 0 to nt components.

cv.error3 Vector with the mean values, across folds, of iAUC_CD for models with 0 to nt
components.

cv.error4 Vector with the mean values, across folds, of iAUC_hc for models with 0 to nt
components.

cv.error5 Vector with the mean values, across folds, of iAUC_sh for models with 0 to nt
components.

cv.error6 Vector with the mean values, across folds, of iAUC_Uno for models with 0 to nt
components.

cv.coxsgplsDR 89

cv.error7 Vector with the mean values, across folds, of iAUC_hz.train for models with 0
to nt components.

cv.error8 Vector with the mean values, across folds, of iAUC_hz.test for models with 0 to
nt components.

cv.error9 Vector with the mean values, across folds, of iAUC_survivalROC.train for mod-
els with 0 to nt components.

cv.error10 Vector with the mean values, across folds, of iAUC_survivalROC.test for models
with 0 to nt components.

cv.error11 Vector with the mean values, across folds, of iBrierScore unw for models with
0 to nt components.

cv.error12 Vector with the mean values, across folds, of iSchmidScore (robust BS) unw for
models with 0 to nt components.

cv.error13 Vector with the mean values, across folds, of iBrierScore w for models with 0 to
nt components.

cv.error14 Vector with the mean values, across folds, of iSchmidScore (robust BS) w for
models with 0 to nt components.

cv.se1 Vector with the standard error values, across folds, of, per fold unit, Cross-
validated log-partial-likelihood for models with 0 to nt components.

cv.se2 Vector with the standard error values, across folds, of, per fold unit, van Houwelin-
gen Cross-validated log-partial-likelihood for models with 0 to nt components.

cv.se3 Vector with the standard error values, across folds, of iAUC_CD for models with
0 to nt components.

cv.se4 Vector with the standard error values, across folds, of iAUC_hc for models with
0 to nt components.

cv.se5 Vector with the standard error values, across folds, of iAUC_sh for models with
0 to nt components.

cv.se6 Vector with the standard error values, across folds, of iAUC_Uno for models
with 0 to nt components.

cv.se7 Vector with the standard error values, across folds, of iAUC_hz.train for models
with 0 to nt components.

cv.se8 Vector with the standard error values, across folds, of iAUC_hz.test for models
with 0 to nt components.

cv.se9 Vector with the standard error values, across folds, of iAUC_survivalROC.train
for models with 0 to nt components.

cv.se10 Vector with the standard error values, across folds, of iAUC_survivalROC.test
for models with 0 to nt components.

cv.se11 Vector with the standard error values, across folds, of iBrierScore unw for mod-
els with 0 to nt components.

cv.se12 Vector with the standard error values, across folds, of iSchmidScore (robust BS)
unw for models with 0 to nt components.

cv.se13 Vector with the standard error values, across folds, of iBrierScore w for models
with 0 to nt components.

90 cv.coxsgplsDR

cv.se14 Vector with the standard error values, across folds, of iSchmidScore (robust BS)
w for models with 0 to nt components.

folds Explicit list of the values that were omited values in each fold.

lambda.min1 Vector with the standard error values, across folds, of, per fold unit, Cross-
validated log-partial-likelihood for models with 0 to nt components.

lambda.min2 Vector with the standard error values, across folds, of, per fold unit, van Houwelin-
gen Cross-validated log-partial-likelihood for models with 0 to nt components.

lambda.min1 Optimal Nbr of components, min Cross-validated log-partial-likelihood crite-
rion.

lambda.se1 Optimal Nbr of components, min+1se Cross-validated log-partial-likelihood cri-
terion.

lambda.min2 Optimal Nbr of components, min van Houwelingen Cross-validated log-partial-
likelihood.

lambda.se2 Optimal Nbr of components, min+1se van Houwelingen Cross-validated log-
partial-likelihood.

lambda.min3 Optimal Nbr of components, max iAUC_CD criterion.

lambda.se3 Optimal Nbr of components, max+1se iAUC_CD criterion.

lambda.min4 Optimal Nbr of components, max iAUC_hc criterion.

lambda.se4 Optimal Nbr of components, max+1se iAUC_hc criterion.

lambda.min5 Optimal Nbr of components, max iAUC_sh criterion.

lambda.se5 Optimal Nbr of components, max+1se iAUC_sh criterion.

lambda.min6 Optimal Nbr of components, max iAUC_Uno criterion.

lambda.se6 Optimal Nbr of components, max+1se iAUC_Uno criterion.

lambda.min7 Optimal Nbr of components, max iAUC_hz.train criterion.

lambda.se7 Optimal Nbr of components, max+1se iAUC_hz.train criterion.

lambda.min8 Optimal Nbr of components, max iAUC_hz.test criterion.

lambda.se8 Optimal Nbr of components, max+1se iAUC_hz.test criterion.

lambda.min9 Optimal Nbr of components, max iAUC_survivalROC.train criterion.

lambda.se9 Optimal Nbr of components, max+1se iAUC_survivalROC.train criterion.

lambda.min10 Optimal Nbr of components, max iAUC_survivalROC.test criterion.

lambda.se10 Optimal Nbr of components, max+1se iAUC_survivalROC.test criterion.

lambda.min11 Optimal Nbr of components, min iBrierScore unw criterion.

lambda.se11 Optimal Nbr of components, min+1se iBrierScore unw criterion.

lambda.min12 Optimal Nbr of components, min iSchmidScore unw criterion.

lambda.se12 Optimal Nbr of components, min+1se iSchmidScore unw criterion.

lambda.min13 Optimal Nbr of components, min iBrierScore w criterion.

lambda.se13 Optimal Nbr of components, min+1se iBrierScore w criterion.

lambda.min14 Optimal Nbr of components, min iSchmidScore w criterion.

lambda.se14 Optimal Nbr of components, min+1se iSchmidScore w criterion.

cv.coxsgplsDR 91

errormat1-14 If details=TRUE, matrices with the error values for every folds across each of
the components and each of the criteria

completed.cv1-14

If details=TRUE, matrices with logical values for every folds across each of the
components and each of the criteria: TRUE if the computation was completed
and FALSE it is failed.

All_indics All results of the functions that perform error computation, for each fold, each
component and error criterion.

Author(s)

Frédéric Bertrand
<frederic.bertrand@lecnam.net>
https://fbertran.github.io/homepage/

References

plsRcox, Cox-Models in a high dimensional setting in R, Frederic Bertrand, Philippe Bastien, Nico-
las Meyer and Myriam Maumy-Bertrand (2014). Proceedings of User2014!, Los Angeles, page 152.

Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Philippe
Bastien, Frederic Bertrand, Nicolas Meyer and Myriam Maumy-Bertrand (2015), Bioinformatics,
31(3):397-404, doi:10.1093/bioinformatics/btu660.

Cross validating extensions of kernel, sparse or regular partial least squares regression models to
censored data, Bertrand, F., Bastien, Ph. and Maumy-Bertrand, M. (2018), https://arxiv.org/
abs/1810.01005.

See Also

See Also coxsgplsDR

Examples

data(micro.censure)
data(Xmicro.censure_compl_imp)
set.seed(123456)
X_train_micro <- apply((as.matrix(Xmicro.censure_compl_imp)),
FUN="as.numeric",MARGIN=2)[1:80,]
X_train_micro_df <- data.frame(X_train_micro)
Y_train_micro <- micro.censure$survyear[1:80]
C_train_micro <- micro.censure$DC[1:80]

#Should be run with a higher value of nt (at least 10)
(cv.coxsgplsDR.res=cv.coxsgplsDR(list(x=X_train_micro,time=Y_train_micro,
status=C_train_micro),ind.block.x=c(3,10,15), alpha.x = rep(0.95, 6),nt=2))

https://fbertran.github.io/homepage/
https://arxiv.org/abs/1810.01005
https://arxiv.org/abs/1810.01005

92 cv.coxspls_sgpls

cv.coxspls_sgpls Cross-validating a Cox-Model fitted on sparse PLSR components

Description

This function cross-validates coxspls_sgpls models.

Usage

cv.coxspls_sgpls(
data,
method = c("efron", "breslow"),
nfold = 5,
nt = 10,
plot.it = TRUE,
se = TRUE,
givefold,
scaleX = TRUE,
folddetails = FALSE,
allCVcrit = FALSE,
details = FALSE,
namedataset = "data",
save = FALSE,
verbose = TRUE,
...

)

Arguments

data A list of three items:

• x the explanatory variables passed to coxspls_sgpls’s Xplan argument,
• time passed to coxspls_sgpls’s time argument,
• status coxspls_sgpls’s status argument.

method A character string specifying the method for tie handling. If there are no tied
death times all the methods are equivalent. The Efron approximation is used as
the default here, it is more accurate when dealing with tied death times, and is
as efficient computationally.

nfold The number of folds to use to perform the cross-validation process.

nt The number of components to include in the model. It this is not supplied, 10
components are fitted.

plot.it Shall the results be displayed on a plot ?

se Should standard errors be plotted ?

givefold Explicit list of omited values in each fold can be provided using this argument.

cv.coxspls_sgpls 93

scaleX Shall the predictors be standardized ?

folddetails Should values and completion status for each folds be returned ?

allCVcrit Should the other 13 CV criteria be evaled and returned ?

details Should all results of the functions that perform error computations be returned ?

namedataset Name to use to craft temporary results names

save Should temporary results be saved ?

verbose Should some CV details be displayed ?

... Other arguments to pass to coxspls_sgpls.

Details

It only computes the recommended iAUCSurvROC criterion. Set allCVcrit=TRUE to retrieve the
13 other ones.

Value

nt The number of components requested

cv.error1 Vector with the mean values, across folds, of, per fold unit, Cross-validated log-
partial-likelihood for models with 0 to nt components.

cv.error2 Vector with the mean values, across folds, of, per fold unit, van Houwelingen
Cross-validated log-partial-likelihood for models with 0 to nt components.

cv.error3 Vector with the mean values, across folds, of iAUC_CD for models with 0 to nt
components.

cv.error4 Vector with the mean values, across folds, of iAUC_hc for models with 0 to nt
components.

cv.error5 Vector with the mean values, across folds, of iAUC_sh for models with 0 to nt
components.

cv.error6 Vector with the mean values, across folds, of iAUC_Uno for models with 0 to nt
components.

cv.error7 Vector with the mean values, across folds, of iAUC_hz.train for models with 0
to nt components.

cv.error8 Vector with the mean values, across folds, of iAUC_hz.test for models with 0 to
nt components.

cv.error9 Vector with the mean values, across folds, of iAUC_survivalROC.train for mod-
els with 0 to nt components.

cv.error10 Vector with the mean values, across folds, of iAUC_survivalROC.test for models
with 0 to nt components.

cv.error11 Vector with the mean values, across folds, of iBrierScore unw for models with
0 to nt components.

cv.error12 Vector with the mean values, across folds, of iSchmidScore (robust BS) unw for
models with 0 to nt components.

cv.error13 Vector with the mean values, across folds, of iBrierScore w for models with 0 to
nt components.

94 cv.coxspls_sgpls

cv.error14 Vector with the mean values, across folds, of iSchmidScore (robust BS) w for
models with 0 to nt components.

cv.se1 Vector with the standard error values, across folds, of, per fold unit, Cross-
validated log-partial-likelihood for models with 0 to nt components.

cv.se2 Vector with the standard error values, across folds, of, per fold unit, van Houwelin-
gen Cross-validated log-partial-likelihood for models with 0 to nt components.

cv.se3 Vector with the standard error values, across folds, of iAUC_CD for models with
0 to nt components.

cv.se4 Vector with the standard error values, across folds, of iAUC_hc for models with
0 to nt components.

cv.se5 Vector with the standard error values, across folds, of iAUC_sh for models with
0 to nt components.

cv.se6 Vector with the standard error values, across folds, of iAUC_Uno for models
with 0 to nt components.

cv.se7 Vector with the standard error values, across folds, of iAUC_hz.train for models
with 0 to nt components.

cv.se8 Vector with the standard error values, across folds, of iAUC_hz.test for models
with 0 to nt components.

cv.se9 Vector with the standard error values, across folds, of iAUC_survivalROC.train
for models with 0 to nt components.

cv.se10 Vector with the standard error values, across folds, of iAUC_survivalROC.test
for models with 0 to nt components.

cv.se11 Vector with the standard error values, across folds, of iBrierScore unw for mod-
els with 0 to nt components.

cv.se12 Vector with the standard error values, across folds, of iSchmidScore (robust BS)
unw for models with 0 to nt components.

cv.se13 Vector with the standard error values, across folds, of iBrierScore w for models
with 0 to nt components.

cv.se14 Vector with the standard error values, across folds, of iSchmidScore (robust BS)
w for models with 0 to nt components.

folds Explicit list of the values that were omited values in each fold.

lambda.min1 Vector with the standard error values, across folds, of, per fold unit, Cross-
validated log-partial-likelihood for models with 0 to nt components.

lambda.min2 Vector with the standard error values, across folds, of, per fold unit, van Houwelin-
gen Cross-validated log-partial-likelihood for models with 0 to nt components.

lambda.min1 Optimal Nbr of components, min Cross-validated log-partial-likelihood crite-
rion.

lambda.se1 Optimal Nbr of components, min+1se Cross-validated log-partial-likelihood cri-
terion.

lambda.min2 Optimal Nbr of components, min van Houwelingen Cross-validated log-partial-
likelihood.

lambda.se2 Optimal Nbr of components, min+1se van Houwelingen Cross-validated log-
partial-likelihood.

cv.coxspls_sgpls 95

lambda.min3 Optimal Nbr of components, max iAUC_CD criterion.

lambda.se3 Optimal Nbr of components, max+1se iAUC_CD criterion.

lambda.min4 Optimal Nbr of components, max iAUC_hc criterion.

lambda.se4 Optimal Nbr of components, max+1se iAUC_hc criterion.

lambda.min5 Optimal Nbr of components, max iAUC_sh criterion.

lambda.se5 Optimal Nbr of components, max+1se iAUC_sh criterion.

lambda.min6 Optimal Nbr of components, max iAUC_Uno criterion.

lambda.se6 Optimal Nbr of components, max+1se iAUC_Uno criterion.

lambda.min7 Optimal Nbr of components, max iAUC_hz.train criterion.

lambda.se7 Optimal Nbr of components, max+1se iAUC_hz.train criterion.

lambda.min8 Optimal Nbr of components, max iAUC_hz.test criterion.

lambda.se8 Optimal Nbr of components, max+1se iAUC_hz.test criterion.

lambda.min9 Optimal Nbr of components, max iAUC_survivalROC.train criterion.

lambda.se9 Optimal Nbr of components, max+1se iAUC_survivalROC.train criterion.

lambda.min10 Optimal Nbr of components, max iAUC_survivalROC.test criterion.

lambda.se10 Optimal Nbr of components, max+1se iAUC_survivalROC.test criterion.

lambda.min11 Optimal Nbr of components, min iBrierScore unw criterion.

lambda.se11 Optimal Nbr of components, min+1se iBrierScore unw criterion.

lambda.min12 Optimal Nbr of components, min iSchmidScore unw criterion.

lambda.se12 Optimal Nbr of components, min+1se iSchmidScore unw criterion.

lambda.min13 Optimal Nbr of components, min iBrierScore w criterion.

lambda.se13 Optimal Nbr of components, min+1se iBrierScore w criterion.

lambda.min14 Optimal Nbr of components, min iSchmidScore w criterion.

lambda.se14 Optimal Nbr of components, min+1se iSchmidScore w criterion.

errormat1-14 If details=TRUE, matrices with the error values for every folds across each of
the components and each of the criteria

completed.cv1-14

If details=TRUE, matrices with logical values for every folds across each of the
components and each of the criteria: TRUE if the computation was completed
and FALSE it is failed.

All_indics All results of the functions that perform error computation, for each fold, each
component and error criterion.

Author(s)

Frédéric Bertrand
<frederic.bertrand@lecnam.net>
https://fbertran.github.io/homepage/

https://fbertran.github.io/homepage/

96 cv.coxspls_sgplsDR

References

plsRcox, Cox-Models in a high dimensional setting in R, Frederic Bertrand, Philippe Bastien, Nico-
las Meyer and Myriam Maumy-Bertrand (2014). Proceedings of User2014!, Los Angeles, page 152.

Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Philippe
Bastien, Frederic Bertrand, Nicolas Meyer and Myriam Maumy-Bertrand (2015), Bioinformatics,
31(3):397-404, doi:10.1093/bioinformatics/btu660.

Cross validating extensions of kernel, sparse or regular partial least squares regression models to
censored data, Bertrand, F., Bastien, Ph. and Maumy-Bertrand, M. (2018), https://arxiv.org/
abs/1810.01005.

See Also

See Also coxspls_sgpls

Examples

data(micro.censure)
data(Xmicro.censure_compl_imp)
set.seed(123456)
X_train_micro <- apply((as.matrix(Xmicro.censure_compl_imp)),
FUN="as.numeric",MARGIN=2)[1:80,]
X_train_micro_df <- data.frame(X_train_micro)
Y_train_micro <- micro.censure$survyear[1:80]
C_train_micro <- micro.censure$DC[1:80]

#Should be run with a higher value of nt (at least 10)
(cv.coxspls_sgpls.res=cv.coxspls_sgpls(list(x=X_train_micro,
time=Y_train_micro,status=C_train_micro),ind.block.x=c(3,10,15),
alpha.x = rep(0.95, 6),nt=3))

cv.coxspls_sgplsDR Cross-validating a Cox-Model fitted on sparse PLSR components com-
ponents using (Deviance) Residuals

Description

This function cross-validates coxspls_sgplsDR models.

Usage

cv.coxspls_sgplsDR(
data,
method = c("efron", "breslow"),
nfold = 5,

https://arxiv.org/abs/1810.01005
https://arxiv.org/abs/1810.01005

cv.coxspls_sgplsDR 97

nt = 10,
plot.it = TRUE,
se = TRUE,
givefold,
scaleX = TRUE,
folddetails = FALSE,
allCVcrit = FALSE,
details = FALSE,
namedataset = "data",
save = FALSE,
verbose = TRUE,
...

)

Arguments

data A list of three items:

• x the explanatory variables passed to coxspls_sgplsDR’s Xplan argument,
• time passed to coxspls_sgplsDR’s time argument,
• status coxspls_sgplsDR’s status argument.

method A character string specifying the method for tie handling. If there are no tied
death times all the methods are equivalent. The Efron approximation is used as
the default here, it is more accurate when dealing with tied death times, and is
as efficient computationally.

nfold The number of folds to use to perform the cross-validation process.

nt The number of components to include in the model. It this is not supplied, 10
components are fitted.

plot.it Shall the results be displayed on a plot ?

se Should standard errors be plotted ?

givefold Explicit list of omited values in each fold can be provided using this argument.

scaleX Shall the predictors be standardized ?

folddetails Should values and completion status for each folds be returned ?

allCVcrit Should the other 13 CV criteria be evaled and returned ?

details Should all results of the functions that perform error computations be returned ?

namedataset Name to use to craft temporary results names

save Should temporary results be saved ?

verbose Should some CV details be displayed ?

... Other arguments to pass to coxspls_sgplsDR.

Details

It only computes the recommended iAUCSurvROC criterion. Set allCVcrit=TRUE to retrieve the
13 other ones.

98 cv.coxspls_sgplsDR

Value

nt The number of components requested

cv.error1 Vector with the mean values, across folds, of, per fold unit, Cross-validated log-
partial-likelihood for models with 0 to nt components.

cv.error2 Vector with the mean values, across folds, of, per fold unit, van Houwelingen
Cross-validated log-partial-likelihood for models with 0 to nt components.

cv.error3 Vector with the mean values, across folds, of iAUC_CD for models with 0 to nt
components.

cv.error4 Vector with the mean values, across folds, of iAUC_hc for models with 0 to nt
components.

cv.error5 Vector with the mean values, across folds, of iAUC_sh for models with 0 to nt
components.

cv.error6 Vector with the mean values, across folds, of iAUC_Uno for models with 0 to nt
components.

cv.error7 Vector with the mean values, across folds, of iAUC_hz.train for models with 0
to nt components.

cv.error8 Vector with the mean values, across folds, of iAUC_hz.test for models with 0 to
nt components.

cv.error9 Vector with the mean values, across folds, of iAUC_survivalROC.train for mod-
els with 0 to nt components.

cv.error10 Vector with the mean values, across folds, of iAUC_survivalROC.test for models
with 0 to nt components.

cv.error11 Vector with the mean values, across folds, of iBrierScore unw for models with
0 to nt components.

cv.error12 Vector with the mean values, across folds, of iSchmidScore (robust BS) unw for
models with 0 to nt components.

cv.error13 Vector with the mean values, across folds, of iBrierScore w for models with 0 to
nt components.

cv.error14 Vector with the mean values, across folds, of iSchmidScore (robust BS) w for
models with 0 to nt components.

cv.se1 Vector with the standard error values, across folds, of, per fold unit, Cross-
validated log-partial-likelihood for models with 0 to nt components.

cv.se2 Vector with the standard error values, across folds, of, per fold unit, van Houwelin-
gen Cross-validated log-partial-likelihood for models with 0 to nt components.

cv.se3 Vector with the standard error values, across folds, of iAUC_CD for models with
0 to nt components.

cv.se4 Vector with the standard error values, across folds, of iAUC_hc for models with
0 to nt components.

cv.se5 Vector with the standard error values, across folds, of iAUC_sh for models with
0 to nt components.

cv.se6 Vector with the standard error values, across folds, of iAUC_Uno for models
with 0 to nt components.

cv.coxspls_sgplsDR 99

cv.se7 Vector with the standard error values, across folds, of iAUC_hz.train for models
with 0 to nt components.

cv.se8 Vector with the standard error values, across folds, of iAUC_hz.test for models
with 0 to nt components.

cv.se9 Vector with the standard error values, across folds, of iAUC_survivalROC.train
for models with 0 to nt components.

cv.se10 Vector with the standard error values, across folds, of iAUC_survivalROC.test
for models with 0 to nt components.

cv.se11 Vector with the standard error values, across folds, of iBrierScore unw for mod-
els with 0 to nt components.

cv.se12 Vector with the standard error values, across folds, of iSchmidScore (robust BS)
unw for models with 0 to nt components.

cv.se13 Vector with the standard error values, across folds, of iBrierScore w for models
with 0 to nt components.

cv.se14 Vector with the standard error values, across folds, of iSchmidScore (robust BS)
w for models with 0 to nt components.

folds Explicit list of the values that were omited values in each fold.

lambda.min1 Vector with the standard error values, across folds, of, per fold unit, Cross-
validated log-partial-likelihood for models with 0 to nt components.

lambda.min2 Vector with the standard error values, across folds, of, per fold unit, van Houwelin-
gen Cross-validated log-partial-likelihood for models with 0 to nt components.

lambda.min1 Optimal Nbr of components, min Cross-validated log-partial-likelihood crite-
rion.

lambda.se1 Optimal Nbr of components, min+1se Cross-validated log-partial-likelihood cri-
terion.

lambda.min2 Optimal Nbr of components, min van Houwelingen Cross-validated log-partial-
likelihood.

lambda.se2 Optimal Nbr of components, min+1se van Houwelingen Cross-validated log-
partial-likelihood.

lambda.min3 Optimal Nbr of components, max iAUC_CD criterion.

lambda.se3 Optimal Nbr of components, max+1se iAUC_CD criterion.

lambda.min4 Optimal Nbr of components, max iAUC_hc criterion.

lambda.se4 Optimal Nbr of components, max+1se iAUC_hc criterion.

lambda.min5 Optimal Nbr of components, max iAUC_sh criterion.

lambda.se5 Optimal Nbr of components, max+1se iAUC_sh criterion.

lambda.min6 Optimal Nbr of components, max iAUC_Uno criterion.

lambda.se6 Optimal Nbr of components, max+1se iAUC_Uno criterion.

lambda.min7 Optimal Nbr of components, max iAUC_hz.train criterion.

lambda.se7 Optimal Nbr of components, max+1se iAUC_hz.train criterion.

lambda.min8 Optimal Nbr of components, max iAUC_hz.test criterion.

100 cv.coxspls_sgplsDR

lambda.se8 Optimal Nbr of components, max+1se iAUC_hz.test criterion.

lambda.min9 Optimal Nbr of components, max iAUC_survivalROC.train criterion.

lambda.se9 Optimal Nbr of components, max+1se iAUC_survivalROC.train criterion.

lambda.min10 Optimal Nbr of components, max iAUC_survivalROC.test criterion.

lambda.se10 Optimal Nbr of components, max+1se iAUC_survivalROC.test criterion.

lambda.min11 Optimal Nbr of components, min iBrierScore unw criterion.

lambda.se11 Optimal Nbr of components, min+1se iBrierScore unw criterion.

lambda.min12 Optimal Nbr of components, min iSchmidScore unw criterion.

lambda.se12 Optimal Nbr of components, min+1se iSchmidScore unw criterion.

lambda.min13 Optimal Nbr of components, min iBrierScore w criterion.

lambda.se13 Optimal Nbr of components, min+1se iBrierScore w criterion.

lambda.min14 Optimal Nbr of components, min iSchmidScore w criterion.

lambda.se14 Optimal Nbr of components, min+1se iSchmidScore w criterion.

errormat1-14 If details=TRUE, matrices with the error values for every folds across each of
the components and each of the criteria

completed.cv1-14

If details=TRUE, matrices with logical values for every folds across each of the
components and each of the criteria: TRUE if the computation was completed
and FALSE it is failed.

All_indics All results of the functions that perform error computation, for each fold, each
component and error criterion.

Author(s)

Frédéric Bertrand
<frederic.bertrand@lecnam.net>
https://fbertran.github.io/homepage/

References

plsRcox, Cox-Models in a high dimensional setting in R, Frederic Bertrand, Philippe Bastien, Nico-
las Meyer and Myriam Maumy-Bertrand (2014). Proceedings of User2014!, Los Angeles, page 152.

Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Philippe
Bastien, Frederic Bertrand, Nicolas Meyer and Myriam Maumy-Bertrand (2015), Bioinformatics,
31(3):397-404, doi:10.1093/bioinformatics/btu660.

Cross validating extensions of kernel, sparse or regular partial least squares regression models to
censored data, Bertrand, F., Bastien, Ph. and Maumy-Bertrand, M. (2018), https://arxiv.org/
abs/1810.01005.

See Also

See Also coxspls_sgplsDR

https://fbertran.github.io/homepage/
https://arxiv.org/abs/1810.01005
https://arxiv.org/abs/1810.01005

dataCox 101

Examples

data(micro.censure)
data(Xmicro.censure_compl_imp)
set.seed(123456)
X_train_micro <- apply((as.matrix(Xmicro.censure_compl_imp)),
FUN="as.numeric",MARGIN=2)[1:80,]
X_train_micro_df <- data.frame(X_train_micro)
Y_train_micro <- micro.censure$survyear[1:80]
C_train_micro <- micro.censure$DC[1:80]

#Should be run with a higher value of nt (at least 10)
(cv.coxspls_sgplsDR.res=cv.coxspls_sgplsDR(list(x=X_train_micro,
time=Y_train_micro,status=C_train_micro),ind.block.x=c(3,10,15),
alpha.x = rep(0.95, 6),nt=3))

dataCox Cox Proportional Hazards Model Data Generation From Weibull Dis-
tribution

Description

Function dataCox generaters random survivaldata from Weibull distribution (with parameters lambda
and rho for given input x data, model coefficients beta and censoring rate for censoring that comes
from exponential distribution with parameter cens.rate.

Usage

dataCox(n, lambda, rho, x, beta, cens.rate)

Arguments

n Number of observations to generate.

lambda lambda parameter for Weibull distribution.

rho rho parameter for Weibull distribution.

x A data.frame with an input data to generate the survival times for.

beta True model coefficients.

cens.rate Parameter for exponential distribution, which is responsible for censoring.

Details

For each observation true survival time is generated and a censroing time. If censoring time is less
then survival time, then the survival time is returned and a status of observations is set to 0 which
means the observation had censored time. If the survival time is less than censoring time, then for
this observation the true survival time is returned and the status of this observation is set to 1 which
means that the event has been noticed.

102 dCox_sim

Value

A data.frame containing columns:

• id an integer.

• time survival times.

• status observation status (event occured (1) or not (0)).

• x a data.frame with an input data to generate the survival times for.

References

http://onlinelibrary.wiley.com/doi/10.1002/sim.2059/abstract

Generating survival times to simulate Cox proportional hazards models, 2005 by Ralf Ben-
der, Thomas Augustin, Maria Blettner.

Examples

x <- matrix(sample(0:1, size = 20000, replace = TRUE), ncol = 2)
dCox <- dataCox(10^4, lambda = 3, rho = 2, x,
beta = c(1,3), cens.rate = 5)

dCox_sim Simulated survival dataset for Cox models

Description

The dCox_sim dataset contains simulated survival times, censoring indicators and two binary co-
variates for demonstrating the Cox-related procedures included in bigPLScox.

Format

A data frame with 10000 observations on the following 5 variables.

id observation identifier

time simulated survival time

status event indicator (1 = event, 0 = censored)

x.1 first binary covariate

x.2 second binary covariate

Examples

data(dCox_sim)
with(dCox_sim, table(status))

http://onlinelibrary.wiley.com/doi/10.1002/sim.2059/abstract

micro.censure 103

micro.censure Microsat features and survival times

Description

This dataset provides Microsat specifications and survival times.

Format

A data frame with 117 observations on the following 43 variables.

numpat a factor with levels B1006 B1017 B1028 B1031 B1046 B1059 B1068 B1071 B1102 B1115
B1124 B1139 B1157 B1161 B1164 B1188 B1190 B1192 B1203 B1211 B1221 B1225 B1226
B1227 B1237 B1251 B1258 B1266 B1271 B1282 B1284 B1285 B1286 B1287 B1290 B1292
B1298 B1302 B1304 B1310 B1319 B1327 B1353 B1357 B1363 B1368 B1372 B1373 B1379
B1388 B1392 B1397 B1403 B1418 B1421t1 B1421t2 B1448 B1451 B1455 B1460 B1462 B1466
B1469 B1493 B1500 B1502 B1519 B1523 B1529 B1530 B1544 B1548 B500 B532 B550 B558
B563 B582 B605 B609 B634 B652 B667 B679 B701 B722 B728 B731 B736 B739 B744 B766
B771 B777 B788 B800 B836 B838 B841 B848 B871 B873 B883 B889 B912 B924 B925 B927
B938 B952 B954 B955 B968 B972 B976 B982 B984

D18S61 a numeric vector

D17S794 a numeric vector

D13S173 a numeric vector

D20S107 a numeric vector

TP53 a numeric vector

D9S171 a numeric vector

D8S264 a numeric vector

D5S346 a numeric vector

D22S928 a numeric vector

D18S53 a numeric vector

D1S225 a numeric vector

D3S1282 a numeric vector

D15S127 a numeric vector

D1S305 a numeric vector

D1S207 a numeric vector

D2S138 a numeric vector

D16S422 a numeric vector

D9S179 a numeric vector

D10S191 a numeric vector

D4S394 a numeric vector

D1S197 a numeric vector

104 micro.censure

D6S264 a numeric vector

D14S65 a numeric vector

D17S790 a numeric vector

D5S430 a numeric vector

D3S1283 a numeric vector

D4S414 a numeric vector

D8S283 a numeric vector

D11S916 a numeric vector

D2S159 a numeric vector

D16S408 a numeric vector

D6S275 a numeric vector

D10S192 a numeric vector

sexe a numeric vector

Agediag a numeric vector

Siege a numeric vector

T a numeric vector

N a numeric vector

M a numeric vector

STADE a factor with levels 0 1 2 3 4

survyear a numeric vector

DC a numeric vector

Source

Allelotyping identification of genomic alterations in rectal chromosomally unstable tumors without
preoperative treatment, #’ Benoît Romain, Agnès Neuville, Nicolas Meyer, Cécile Brigand, Serge
Rohr, Anne Schneider, Marie-Pierre Gaub and Dominique Guenot, BMC Cancer 2010, 10:561,
doi:10.1186/1471-2407-10-561.

References

plsRcox, Cox-Models in a high dimensional setting in R, Frederic Bertrand, Philippe Bastien, Nico-
las Meyer and Myriam Maumy-Bertrand (2014). Proceedings of User2014!, Los Angeles, page 152.

Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Philippe
Bastien, Frederic Bertrand, Nicolas Meyer and Myriam Maumy-Bertrand (2015), Bioinformatics,
31(3):397-404, doi:10.1093/bioinformatics/btu660.

partialbigSurvSGDv0 105

Examples

data(micro.censure)
Y_train_micro <- micro.censure$survyear[1:80]
C_train_micro <- micro.censure$DC[1:80]
Y_test_micro <- micro.censure$survyear[81:117]
C_test_micro <- micro.censure$DC[81:117]
rm(Y_train_micro,C_train_micro,Y_test_micro,C_test_micro)

partialbigSurvSGDv0 Incremental Survival Model Fitting with Pre-Scaled Data

Description

Loads a previously scaled design matrix and continues the stochastic gradient optimisation for a
subset of variables.

Usage

partialbigSurvSGDv0(
name.col,
datapath,
ncores = 1,
resBigscale,
bigmemory.flag = FALSE,
parallel.flag = FALSE,
inf.mth = "none"

)

Arguments

name.col Character vector containing the column names that should be included in the
partial fit.

datapath File system path or connection where the big-memory backing file for the scaled
design matrix is stored.

ncores Number of processor cores allocated to the partial fitting procedure. Defaults to
1.

resBigscale Result object returned by bigscale containing scaling statistics to be reused. By
default the helper reuses the globally cached resultsBigscale object created
by bigscale.

bigmemory.flag Logical flag determining whether big-memory backed matrices are used when
loading and updating the design matrix. Defaults to FALSE.

parallel.flag Logical flag toggling the use of parallelised stochastic gradient updates. Defaults
to FALSE.

inf.mth Inference method requested for the partial fit, such as "none", "asymptotic",
or bootstrap summaries. Defaults to "none".

106 predict.big_pls_cox

Value

Either a numeric vector of log hazard-ratio coefficients or, when inference is requested, a matrix
whose columns correspond to the inferred coefficient summaries for each penalisation setting.

See Also

bigscale(), bigSurvSGD.na.omit() and bigSurvSGD.

Examples

data(micro.censure, package = "bigPLScox")
surv_data <- stats::na.omit(

micro.censure[, c("survyear", "DC", "sexe", "Agediag")]
)
scaled <- bigscale(

survival::Surv(survyear, DC) ~ .,
data = surv_data,
norm.method = "standardize",
batch.size = 16

)
datapath <- tempfile(fileext = ".csv")
utils::write.csv(surv_data, datapath, row.names = FALSE)

continued <- partialbigSurvSGDv0(
name.col = c("Agediag", "sexe"),
datapath = datapath,
ncores = 1,
resBigscale = scaled,
bigmemory.flag = FALSE,
parallel.flag = FALSE,
inf.mth = "none"

)
unlink(datapath)

predict.big_pls_cox Predict method for big-memory PLS-Cox models

Description

Predict method for big-memory PLS-Cox models

Usage

S3 method for class 'big_pls_cox'
predict(
object,
newdata = NULL,

predict.big_pls_cox 107

type = c("link", "risk", "response", "components"),
comps = NULL,
coef = NULL,
...

)

S3 method for class 'big_pls_cox_gd'
predict(
object,
newdata = NULL,
type = c("link", "risk", "response", "components"),
comps = NULL,
coef = NULL,
...

)

Arguments

object A model fitted with big_pls_cox().

newdata Optional matrix, data frame or bigmemory::big.matrix containing predictors
to project on the latent space. When NULL the training scores are used.

type Type of prediction: "link" for the linear predictor, "risk" or "response" for
the exponential of the linear predictor, or "components" to obtain latent scores.

comps Integer vector indicating which components to use. Defaults to all available
components.

coef Optional coefficient vector overriding the fitted Cox model coefficients.

... Unused.

Value

Depending on type, either a numeric vector of predictions or a matrix of component scores.

References

Maumy, M., Bertrand, F. (2023). PLS models and their extension for big data. Joint Statistical
Meetings (JSM 2023), Toronto, ON, Canada.

Maumy, M., Bertrand, F. (2023). bigPLS: Fitting and cross-validating PLS-based Cox models
to censored big data. BioC2023 — The Bioconductor Annual Conference, Dana-Farber Cancer
Institute, Boston, MA, USA. Poster. https://doi.org/10.7490/f1000research.1119546.1

Bastien, P., Bertrand, F., Meyer, N., & Maumy-Bertrand, M. (2015). Deviance residuals-based
sparse PLS and sparse kernel PLS for censored data. Bioinformatics, 31(3), 397–404. doi:10.
1093/bioinformatics/btu660

Bertrand, F., Bastien, P., Meyer, N., & Maumy-Bertrand, M. (2014). PLS models for censored data.
In Proceedings of UseR! 2014 (p. 152).

doi:10.1093/bioinformatics/btu660
doi:10.1093/bioinformatics/btu660

108 predict_cox_pls

See Also

big_pls_cox(), big_pls_cox_gd(), select_ncomp(), computeDR().

predict_cox_pls Predict survival summaries from legacy Cox-PLS fits

Description

These methods extend stats::predict() for Cox models fitted with the original PLS engines
exposed by coxgpls(), coxsgpls(), and their deviance-residual or kernel variants. They provide
access to latent component scores alongside linear predictors and risk estimates, ensuring consistent
behaviour with the newer big-memory solvers.

Usage

S3 method for class 'coxgpls'
predict(
object,
newdata = NULL,
type = c("link", "risk", "response", "components"),
comps = NULL,
coef = NULL,
...

)

S3 method for class 'coxgplsDR'
predict(
object,
newdata = NULL,
type = c("link", "risk", "response", "components"),
comps = NULL,
coef = NULL,
...

)

S3 method for class 'coxsgpls'
predict(
object,
newdata = NULL,
type = c("link", "risk", "response", "components"),
comps = NULL,
coef = NULL,
...

)

S3 method for class 'coxsgplsDR'

predict_cox_pls 109

predict(
object,
newdata = NULL,
type = c("link", "risk", "response", "components"),
comps = NULL,
coef = NULL,
...

)

S3 method for class 'coxspls_sgpls'
predict(
object,
newdata = NULL,
type = c("link", "risk", "response", "components"),
comps = NULL,
coef = NULL,
...

)

S3 method for class 'coxDKgplsDR'
predict(
object,
newdata = NULL,
type = c("link", "risk", "response", "components"),
comps = NULL,
coef = NULL,
...

)

S3 method for class 'coxDKsgplsDR'
predict(
object,
newdata = NULL,
type = c("link", "risk", "response", "components"),
comps = NULL,
coef = NULL,
...

)

S3 method for class 'coxDKspls_sgplsDR'
predict(
object,
newdata = NULL,
type = c("link", "risk", "response", "components"),
comps = NULL,
coef = NULL,
...

)

110 predict_cox_pls

Arguments

object A fitted model returned by coxgpls(), coxsgpls(), coxspls_sgpls(), or any
of their deviance-residual/kernel counterparts with allres = TRUE.

newdata Optional matrix or data frame of predictors. When NULL, the training compo-
nents stored in object are reused.

type Type of prediction requested: "link" for linear predictors, "risk"/"response"
for exponentiated scores, or "components" to return latent PLS scores.

comps Optional integer vector specifying which latent components to retain. Defaults
to all available components.

coef Optional coefficient vector overriding the Cox model coefficients stored in object.

... Unused arguments for future extensions.

Value

When type is "components", a matrix of latent scores; otherwise a numeric vector containing the
requested prediction with names inherited from the supplied data.

References

Bastien, P., Bertrand, F., Meyer, N., & Maumy-Bertrand, M. (2015). Deviance residuals-based
sparse PLS and sparse kernel PLS for censored data. Bioinformatics, 31(3), 397–404. doi:10.
1093/bioinformatics/btu660

Bertrand, F., Bastien, P., & Maumy-Bertrand, M. (2018). Cross validating extensions of kernel,
sparse or regular partial least squares regression models to censored data. https://arxiv.org/
abs/1810.01005.

See Also

coxgpls(), coxsgpls(), coxspls_sgpls(), coxDKgplsDR(), predict.big_pls_cox(), computeDR().

Examples

if (requireNamespace("survival", quietly = TRUE)) {
data(micro.censure, package = "bigPLScox")
data(Xmicro.censure_compl_imp, package = "bigPLScox")

X <- as.matrix(Xmicro.censure_compl_imp[1:60, 1:10])
time <- micro.censure$survyear[1:60]
status <- micro.censure$DC[1:60]

set.seed(321)
fit <- coxgpls(
Xplan = X,
time = time,
status = status,
ncomp = 2,
allres = TRUE

)

doi:10.1093/bioinformatics/btu660
doi:10.1093/bioinformatics/btu660
https://arxiv.org/abs/1810.01005
https://arxiv.org/abs/1810.01005

predict_pls_latent 111

predict(fit, newdata = X[1:5,], type = "risk")
head(predict(fit, type = "components"))

}

predict_pls_latent Predict responses and latent scores from PLS fits

Description

These prediction helpers reconstruct the response matrix and latent component scores for partial
least squares (PLS) models fitted inside the Cox-PLS toolbox. They support group PLS, sparse
PLS, sparse-group PLS, and classical PLS models created by sgPLS::gPLS(), sgPLS::sPLS(),
sgPLS::sgPLS(), or plsRcox::pls.cox().

Usage

S3 method for class 'gPLS'
predict(object, newdata, scale.X = TRUE, scale.Y = TRUE, ...)

S3 method for class 'pls.cox'
predict(object, newdata, scale.X = TRUE, scale.Y = TRUE, ...)

S3 method for class 'sPLS'
predict(object, newdata, scale.X = TRUE, scale.Y = TRUE, ...)

S3 method for class 'sgPLS'
predict(object, newdata, scale.X = TRUE, scale.Y = TRUE, ...)

Arguments

object A fitted PLS model returned by sgPLS::gPLS(), sgPLS::sPLS(), sgPLS::sgPLS(),
or plsRcox::pls.cox().

newdata Numeric matrix or data frame with the same number of columns as the training
design matrix used when fitting object.

scale.X, scale.Y
Logical flags indicating whether the predictors and responses supplied in newdata
should be centred and scaled according to the training statistics stored in object.

... Unused arguments included for compatibility with the generic stats::predict()
signature.

Value

A list containing reconstructed responses, latent component scores, and regression coefficients.
The exact elements depend on the specific PLS algorithm but always include components named
predict, variates, and B.hat.

112 predict_pls_latent

References

Bastien, P., Bertrand, F., Meyer, N., & Maumy-Bertrand, M. (2015). Deviance residuals-based
sparse PLS and sparse kernel PLS for censored data. Bioinformatics, 31(3), 397–404. doi:10.
1093/bioinformatics/btu660

See Also

coxgpls(), coxsgpls(), coxspls_sgpls(), and coxDKgplsDR() for Cox model wrappers that
return PLS fits using these prediction methods.

Examples

n <- 100
sigma.gamma <- 1
sigma.e <- 1.5
p <- 400
q <- 500
theta.x1 <- c(rep(1, 15), rep(0, 5), rep(-1, 15), rep(0, 5), rep(1.5,15),

rep(0, 5), rep(-1.5, 15), rep(0, 325))
theta.x2 <- c(rep(0, 320), rep(1, 15), rep(0, 5), rep(-1, 15), rep(0, 5),

rep(1.5, 15), rep(0, 5), rep(-1.5, 15), rep(0, 5))
theta.y1 <- 1
theta.y2 <- 1

Sigmax <- matrix(0, nrow = p, ncol = p)
diag(Sigmax) <- sigma.e ^ 2
Sigmay <- matrix(0,nrow = 1, ncol = 1)
diag(Sigmay) <- sigma.e ^ 2

set.seed(125)

gam1 <- rnorm(n)
gam2 <- rnorm(n)

X <- matrix(c(gam1, gam2), ncol = 2, byrow = FALSE) %*% matrix(c(theta.x1, theta.x2),
nrow = 2, byrow = TRUE) + mvtnorm::rmvnorm(n, mean = rep(0, p), sigma =
Sigmax, method = "svd")

Y <- matrix(c(gam1, gam2), ncol = 2, byrow = FALSE) %*% matrix(c(theta.y1, theta.y2),
nrow = 2, byrow = TRUE) + rnorm(n,0,sd=sigma.e)

ind.block.x <- seq(20, 380, 20)

model.gPLS <- sgPLS::gPLS(X, Y, ncomp = 2, mode = "regression", keepX = c(4, 4),
keepY = c(4, 4), ind.block.x = ind.block.x)

head(predict(model.gPLS, newdata = X)$variates)

doi:10.1093/bioinformatics/btu660
doi:10.1093/bioinformatics/btu660

sim_data 113

sim_data Simulated dataset

Description

This dataset provides explantory variables simulations and censoring status.

Format

A data frame with 1000 observations on the following 11 variables.

status a binary vector

X1 a numeric vector

X2 a numeric vector

X3 a numeric vector

X4 a numeric vector

X5 a numeric vector

X6 a numeric vector

X7 a numeric vector

X8 a numeric vector

X9 a numeric vector

X10 a numeric vector

References

Maumy, M., Bertrand, F. (2023). PLS models and their extension for big data. Joint Statistical
Meetings (JSM 2023), Toronto, ON, Canada.

Maumy, M., Bertrand, F. (2023). bigPLS: Fitting and cross-validating PLS-based Cox models
to censored big data. BioC2023 — The Bioconductor Annual Conference, Dana-Farber Cancer
Institute, Boston, MA, USA. Poster. https://doi.org/10.7490/f1000research.1119546.1

Bastien, P., Bertrand, F., Meyer, N., and Maumy-Bertrand, M. (2015). Deviance residuals-based
sparse PLS and sparse kernel PLS for binary classification and survival analysis. BMC Bioinfor-
matics, 16, 211.

Examples

data(sim_data)
X_sim_data_train <- sim_data[1:800,2:11]
C_sim_data_train <- sim_data$status[1:800]
X_sim_data_test <- sim_data[801:1000,2:11]
C_sim_data_test <- sim_data$status[801:1000]
rm(X_sim_data_train,C_sim_data_train,X_sim_data_test,C_sim_data_test)

114 Xmicro.censure_compl_imp

Xmicro.censure_compl_imp

Imputed Microsat features

Description

This dataset provides imputed microsat specifications. Imputations were computed using Multi-
variate Imputation by Chained Equations (MICE) using predictive mean matching for the numeric
columns, logistic regression imputation for the binary data or the factors with 2 levels and polyto-
mous regression imputation for categorical data i.e. factors with three or more levels.

Format

A data frame with 117 observations on the following 40 variables.

D18S61 a numeric vector

D17S794 a numeric vector

D13S173 a numeric vector

D20S107 a numeric vector

TP53 a numeric vector

D9S171 a numeric vector

D8S264 a numeric vector

D5S346 a numeric vector

D22S928 a numeric vector

D18S53 a numeric vector

D1S225 a numeric vector

D3S1282 a numeric vector

D15S127 a numeric vector

D1S305 a numeric vector

D1S207 a numeric vector

D2S138 a numeric vector

D16S422 a numeric vector

D9S179 a numeric vector

D10S191 a numeric vector

D4S394 a numeric vector

D1S197 a numeric vector

D6S264 a numeric vector

D14S65 a numeric vector

D17S790 a numeric vector

D5S430 a numeric vector

Xmicro.censure_compl_imp 115

D3S1283 a numeric vector

D4S414 a numeric vector

D8S283 a numeric vector

D11S916 a numeric vector

D2S159 a numeric vector

D16S408 a numeric vector

D6S275 a numeric vector

D10S192 a numeric vector

sexe a numeric vector

Agediag a numeric vector

Siege a numeric vector

T a numeric vector

N a numeric vector

M a numeric vector

STADE a factor with levels 0 1 2 3 4

Source

Allelotyping identification of genomic alterations in rectal chromosomally unstable tumors without
preoperative treatment, Benoît Romain, Agnès Neuville, Nicolas Meyer, Cécile Brigand, Serge
Rohr, Anne Schneider, Marie-Pierre Gaub and Dominique Guenot, BMC Cancer 2010, 10:561,
doi:10.1186/1471-2407-10-561.

References

plsRcox, Cox-Models in a high dimensional setting in R, Frederic Bertrand, Philippe Bastien, Nico-
las Meyer and Myriam Maumy-Bertrand (2014). Proceedings of User2014!, Los Angeles, page 152.

Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data, Philippe
Bastien, Frederic Bertrand, Nicolas Meyer and Myriam Maumy-Bertrand (2015), Bioinformatics,
31(3):397-404, doi:10.1093/bioinformatics/btu660.

Examples

data(Xmicro.censure_compl_imp)
X_train_micro <- Xmicro.censure_compl_imp[1:80,]
X_test_micro <- Xmicro.censure_compl_imp[81:117,]
rm(X_train_micro,X_test_micro)

Index

∗ datasets
dCox_sim, 102
micro.censure, 103
sim_data, 113
Xmicro.censure_compl_imp, 114

∗ methods
bigmatrix-operations, 4

∗ models
computeDR, 14
coxDKgplsDR, 17
coxDKsgplsDR, 21
coxDKspls_sgplsDR, 26
coxgpls, 31
coxgplsDR, 35
coxsgpls, 39
coxsgplsDR, 43
coxspls_sgpls, 47
coxspls_sgplsDR, 51
cv.coxDKgplsDR, 59
cv.coxDKsgplsDR, 64
cv.coxDKspls_sgplsDR, 68
cv.coxgpls, 73
cv.coxgplsDR, 78
cv.coxsgpls, 82
cv.coxsgplsDR, 87
cv.coxspls_sgpls, 92
cv.coxspls_sgplsDR, 96

∗ regression
computeDR, 14
coxDKgplsDR, 17
coxDKsgplsDR, 21
coxDKspls_sgplsDR, 26
coxgpls, 31
coxgplsDR, 35
coxsgpls, 39
coxsgplsDR, 43
coxspls_sgpls, 47
coxspls_sgplsDR, 51
cv.coxDKgplsDR, 59

cv.coxDKsgplsDR, 64
cv.coxDKspls_sgplsDR, 68
cv.coxgpls, 73
cv.coxgplsDR, 78
cv.coxsgpls, 82
cv.coxsgplsDR, 87
cv.coxspls_sgpls, 92
cv.coxspls_sgplsDR, 96

%*%,big.matrix,big.matrix-method
(bigmatrix-operations), 4

%*%,big.matrix,matrix-method
(bigmatrix-operations), 4

%*%,matrix,big.matrix-method
(bigmatrix-operations), 4

%*%, 4

Arith,big.matrix,big.matrix-method
(bigmatrix-operations), 4

Arith,big.matrix,matrix-method
(bigmatrix-operations), 4

Arith,big.matrix,numeric-method
(bigmatrix-operations), 4

Arith,matrix,big.matrix-method
(bigmatrix-operations), 4

Arith,numeric,big.matrix-method
(bigmatrix-operations), 4

Arithmetic, 4
as.data.frame, 19, 24, 29, 34, 37, 42, 46, 50,

54

bench::mark, 56, 57
benchmark_deviance_residuals, 56
benchmark_deviance_residuals

(cox_deviance_residuals), 56
benchmark_deviance_residuals(), 57
big.matrix, 4
big_pls_cox, 10
big_pls_cox(), 3, 13, 57–59, 107, 108
big_pls_cox_gd, 11
big_pls_cox_gd(), 3, 11, 13, 57–59, 108

116

INDEX 117

bigalgebra::dadd(), 5
bigalgebra::daxpy(), 5
bigalgebra::dgemm(), 5
bigmatrix-operations, 4
bigmemory::big.matrix, 10–12, 14, 15, 56,

58, 107
bigmemory::big.matrix(), 5
bigPLScox (bigPLScox-package), 3
bigPLScox-package, 3
bigscale, 5, 9, 105
bigscale(), 106
bigSurvSGD, 9, 106
bigSurvSGD.na.omit, 7
bigSurvSGD.na.omit(), 6, 106

component_information, 13
component_information(), 14
component_information,

(component_information), 13
component_information.big_pls_cox

(component_information), 13
component_information.big_pls_cox,

(component_information), 13
component_information.big_pls_cox_gd

(component_information), 13
component_information.big_pls_cox_gd,

(component_information), 13
computeDR, 14
computeDR(), 11, 13, 108, 110
cox_deviance_details

(cox_deviance_residuals), 56
cox_deviance_details(), 57
cox_deviance_residuals, 56
cox_deviance_residuals(), 56, 57
cox_deviance_residuals_big

(cox_deviance_residuals), 56
cox_deviance_residuals_big(), 57
cox_partial_deviance_big

(cox_deviance_residuals), 56
cox_partial_deviance_big(), 57
coxDKgplsDR, 17, 59, 60, 63
coxDKgplsDR(), 110, 112
coxDKsgplsDR, 21, 64, 65, 68
coxDKspls_sgplsDR, 26, 68, 69, 73
coxgpls, 31, 73, 74, 77–79, 82
coxgpls(), 108, 110, 112
coxgplsDR, 35, 78
coxph, 16, 21, 26, 31, 35, 38, 43, 47, 51, 55
coxsgpls, 39, 82, 83, 86

coxsgpls(), 108, 110, 112
coxsgplsDR, 43, 87, 88, 91
coxspls_sgpls, 47, 92, 93, 96
coxspls_sgpls(), 110, 112
coxspls_sgplsDR, 51, 96, 97, 100
cv.big_pls_cox, 57
cv.big_pls_cox_gd (cv.big_pls_cox), 57
cv.coxDKgplsDR, 59
cv.coxDKsgplsDR, 64
cv.coxDKspls_sgplsDR, 68
cv.coxgpls, 73
cv.coxgplsDR, 78
cv.coxsgpls, 82
cv.coxsgplsDR, 87
cv.coxspls_sgpls, 92
cv.coxspls_sgplsDR, 96

dataCox, 101
dCox_sim, 102

gPLS, 19, 21, 24, 26, 29, 31, 33, 35, 37, 38, 41,
43, 45, 47, 50, 51, 54, 55

kernels, 19, 24, 29

micro.censure, 103

partialbigSurvSGDv0, 9, 105
plsRcox::pls.cox(), 111
predict.big_pls_cox, 106
predict.big_pls_cox(), 11, 13, 110
predict.big_pls_cox_gd

(predict.big_pls_cox), 106
predict.coxDKgplsDR (predict_cox_pls),

108
predict.coxDKsgplsDR (predict_cox_pls),

108
predict.coxDKspls_sgplsDR

(predict_cox_pls), 108
predict.coxgpls (predict_cox_pls), 108
predict.coxgplsDR (predict_cox_pls), 108
predict.coxsgpls (predict_cox_pls), 108
predict.coxsgplsDR (predict_cox_pls),

108
predict.coxspls_sgpls

(predict_cox_pls), 108
predict.gPLS (predict_pls_latent), 111
predict.pls.cox (predict_pls_latent),

111

118 INDEX

predict.sgPLS (predict_pls_latent), 111
predict.sPLS (predict_pls_latent), 111
predict_cox_pls, 108
predict_pls_latent, 111

select_ncomp (component_information), 13
select_ncomp(), 11, 13, 108
sgPLS, 54
sgPLS::gPLS(), 111
sgPLS::sgPLS(), 111
sgPLS::sPLS(), 111
sim_data, 113
stats::predict(), 108, 111
survival::coxph, 58
survival::coxph(), 14, 15
survival::coxph.control, 10
survival::coxph.fit, 11

tibble::tibble, 57

Xmicro.censure_compl_imp, 114

	bigPLScox-package
	bigmatrix-operations
	bigscale
	bigSurvSGD.na.omit
	big_pls_cox
	big_pls_cox_gd
	component_information
	computeDR
	coxDKgplsDR
	coxDKsgplsDR
	coxDKspls_sgplsDR
	coxgpls
	coxgplsDR
	coxsgpls
	coxsgplsDR
	coxspls_sgpls
	coxspls_sgplsDR
	cox_deviance_residuals
	cv.big_pls_cox
	cv.coxDKgplsDR
	cv.coxDKsgplsDR
	cv.coxDKspls_sgplsDR
	cv.coxgpls
	cv.coxgplsDR
	cv.coxsgpls
	cv.coxsgplsDR
	cv.coxspls_sgpls
	cv.coxspls_sgplsDR
	dataCox
	dCox_sim
	micro.censure
	partialbigSurvSGDv0
	predict.big_pls_cox
	predict_cox_pls
	predict_pls_latent
	sim_data
	Xmicro.censure_compl_imp
	Index

