Package 'bkmr'

October 12, 2022
Title Bayesian Kernel Machine Regression
Version 0.2.2
Description Implementation of a statistical approach for estimating the joint health effects of multiple concurrent exposures, as described in Bobb et al (2015) <doi:10.1093 biostatistics="" kxu058="">.</doi:10.1093>
<pre>URL https://github.com/jenfb/bkmr</pre>
<pre>BugReports https://github.com/jenfb/bkmr/issues</pre>
Depends R (>= $3.1.2$)
License GPL-2
Imports dplyr, magrittr, nlme, fields, truncnorm, tidyr, MASS, tmvtnorm, tibble
RoxygenNote 7.1.2
NeedsCompilation no
Author Jennifer F. Bobb [aut, cre]
Maintainer Jennifer F. Bobb < jenniferfederbobb@gmail.com>
Repository CRAN
Date/Publication 2022-03-28 07:30:01 UTC
R topics documented:
ComputePostmeanHnew
ExtractEsts
ExtractPIPs
ExtractSamps
InvestigatePrior
kmbayes
OverallRiskSummaries 10 PlotPriorFits 1
PredictorResponseBivar
PredictorResponseBivarLevels
1 redictorresponse Divarectes

Comp	utePostmeanHnew	Comput	e th	ie j	pos	teri	ior	m	ıea	n o	ane	d ı	ar	ia	nc	е (of	h	ai	t a	ın	ev	v <i>1</i>	ore	di	cto	or
Index																											28
	TracePlot			٠						٠			٠	•	•		•		•			•				•	26
	summary.bkmrfit .																										
	SingVarRiskSumma	iries																									24
	SingVarIntSummari	es																									22
	SimData																										21
	SamplePred																										19
	print.bkmrfit																										18
	PredictorResponseU	Jnivar																									17
	PredictorResponseE	BivarPair																									15

Description

Compute the posterior mean and variance of h at a new predictor values

Usage

```
ComputePostmeanHnew(
  fit,
  y = NULL,
  Z = NULL,
  X = NULL,
  Znew = NULL,
  sel = NULL,
  method = "approx"
)
```

fit	An object containing the results returned by a the kmbayes function
у	a vector of outcome data of length n.
Z	an n-by-M matrix of predictor variables to be included in the h function. Each row represents an observation and each column represents an predictor.
X	an n-by-K matrix of covariate data where each row represents an observation and each column represents a covariate. Should not contain an intercept column.
Znew	matrix of new predictor values at which to predict new h, where each row represents a new observation. If set to NULL then will default to using the observed exposures Z.
sel	selects which iterations of the MCMC sampler to use for inference; see details
method	method for obtaining posterior summaries at a vector of new points. Options are "approx" and "exact"; defaults to "approx", which is faster particularly for large datasets; see details

ExtractEsts 3

Details

- If method == "approx", the argument sel defaults to the second half of the MCMC iterations.
- If method == "exact", the argument sel defaults to keeping every 10 iterations after dropping the first 50% of samples, or if this results in fewer than 100 iterations, than 100 iterations are kept

For guided examples and additional information, go to https://jenfb.github.io/bkmr/overview.html

Value

a list of length two containing the posterior mean vector and posterior variance matrix

Examples

```
set.seed(111)
dat <- SimData(n = 50, M = 4)
y <- dat$y
Z <- dat$Z
X <- dat$X

## Fit model with component-wise variable selection
## Using only 100 iterations to make example run quickly
## Typically should use a large number of iterations for inference
set.seed(111)
fitkm <- kmbayes(y = y, Z = Z, X = X, iter = 100, verbose = FALSE, varsel = TRUE)

med_vals <- apply(Z, 2, median)
Znew <- matrix(med_vals, nrow = 1)
h_true <- dat$HFun(Znew)
h_est1 <- ComputePostmeanHnew(fitkm, Znew = Znew, method = "approx")
h_est2 <- ComputePostmeanHnew(fitkm, Znew = Znew, method = "exact")</pre>
```

ExtractEsts

Extract summary statistics

Description

Obtain summary statistics of each parameter from the BKMR fit

Usage

```
ExtractEsts(fit, q = c(0.025, 0.25, 0.5, 0.75, 0.975), sel = NULL)
```

fit	An object containing the results returned by a the kmbayes function
q	vector of quantiles
sel	logical expression indicating samples to keep; defaults to keeping the second
	half of all samples

4 ExtractPIPs

Value

a list where each component is a data frame containing the summary statistics of the posterior distribution of one of the parameters (or vector of parameters) being estimated

Examples

```
## First generate dataset
set.seed(111)
dat <- SimData(n = 50, M = 4)
y <- dat$y
Z <- dat$Z
X <- dat$X

## Fit model with component-wise variable selection
## Using only 100 iterations to make example run quickly
## Typically should use a large number of iterations for inference
set.seed(111)
fitkm <- kmbayes(y = y, Z = Z, X = X, iter = 100, verbose = FALSE, varsel = TRUE)
ests <- ExtractEsts(fitkm)
names(ests)
ests$beta</pre>
```

ExtractPIPs

Extract posterior inclusion probabilities (PIPs) from BKMR model fit

Description

Extract posterior inclusion probabilities (PIPs) from Bayesian Kernel Machine Regression (BKMR) model fit

Usage

```
ExtractPIPs(fit, sel = NULL, z.names = NULL)
```

Arguments

fit	An object containing the results returned by a the kmbayes function
sel	logical expression indicating samples to keep; defaults to keeping the second half of all samples
z.names	optional argument providing the names of the variables included in the h function.

Details

For guided examples, go to https://jenfb.github.io/bkmr/overview.html

ExtractSamps 5

Value

a data frame with the variable-specific PIPs for BKMR fit with component-wise variable selection, and with the group-specific and conditional (within-group) PIPs for BKMR fit with hierarchical variable selection.

Examples

```
## First generate dataset
set.seed(111)
dat <- SimData(n = 50, M = 4)
y <- dat$y
Z <- dat$Z
X <- dat$X

## Fit model with component-wise variable selection
## Using only 100 iterations to make example run quickly
## Typically should use a large number of iterations for inference
set.seed(111)
fitkm <- kmbayes(y = y, Z = Z, X = X, iter = 100, verbose = FALSE, varsel = TRUE)
ExtractPIPs(fitkm)</pre>
```

ExtractSamps

Extract samples

Description

Extract samples of each parameter from the BKMR fit

Usage

```
ExtractSamps(fit, sel = NULL)
```

Arguments

fit	An object containing the results returned by a the kmbayes function
sel	logical expression indicating samples to keep; defaults to keeping the second half of all samples

Value

a list where each component contains the posterior samples of one of the parameters (or vector of parameters) being estimated

6 InvestigatePrior

Examples

```
## First generate dataset
set.seed(111)
dat <- SimData(n = 50, M = 4)
y <- dat$y
Z <- dat$Z
X <- dat$X

## Fit model with component-wise variable selection
## Using only 100 iterations to make example run quickly
## Typically should use a large number of iterations for inference
set.seed(111)
fitkm <- kmbayes(y = y, Z = Z, X = X, iter = 100, verbose = FALSE, varsel = TRUE)
samps <- ExtractSamps(fitkm)</pre>
```

InvestigatePrior

Investigate prior

Description

Investigate the impact of the r[m] parameters on the smoothness of the exposure-response function h(z[m]).

Usage

```
InvestigatePrior(
   y,
   Z,
   X,
   ngrid = 50,
   q.seq = c(2, 1, 1/2, 1/4, 1/8, 1/16),
   r.seq = NULL,
   Drange = NULL,
   verbose = FALSE
)
```

У	a vector of outcome data of length n.
Z	an n-by-M matrix of predictor variables to be included in the h function. Each row represents an observation and each column represents an predictor.
X	an n-by-K matrix of covariate data where each row represents an observation and each column represents a covariate. Should not contain an intercept column.
ngrid	Number of grid points over which to plot the exposure-response function

kmbayes 7

q.seq	Sequence of values corresponding to different degrees of smoothness in the estimated exposure-response function. A value of q corresponds to fractions of the range of the data over which there is a decay in the correlation cor(h[i],h[j]) between two subjects by 50%.
r.seq	sequence of values at which to fix r for estimating the exposure-response function
Drange	the range of the z_m data over which to apply the values of q. seq. If not specified, will be calculated as the maximum of the ranges of z_1 through z_M.
verbose	TRUE or FALSE: flag indicating whether to print to the screen which exposure variable and q value has been completed

Details

For guided examples, go to https://jenfb.github.io/bkmr/overview.html

Value

a list containing the predicted values, residuals, and estimated predictor-response function for each degree of smoothness being considered

Examples

```
## First generate dataset
set.seed(111)
dat <- SimData(n = 50, M = 4)
y <- dat$y
Z <- dat$Z
X <- dat$X

priorfits <- InvestigatePrior(y = y, Z = Z, X = X, q.seq = c(2, 1/2, 1/4, 1/16))
PlotPriorFits(y = y, Z = Z, X = X, fits = priorfits)</pre>
```

kmbayes

Fit Bayesian kernel machine regression

Description

Fits the Bayesian kernel machine regression (BKMR) model using Markov chain Monte Carlo (MCMC) methods.

```
kmbayes(
   y,
   Z,
   X = NULL,
   iter = 1000,
```

8 kmbayes

```
family = "gaussian",
  id = NULL,
  verbose = TRUE,
  Znew = NULL,
  starting.values = NULL,
  control.params = NULL,
  varsel = FALSE,
  groups = NULL,
  knots = NULL,
  ztest = NULL,
  rmethod = "varying",
  est.h = FALSE
)
```

Arguments

y a vector of outcome data of length	n.
--------------------------------------	----

Z an n-by-M matrix of predictor variables to be included in the h function. Each

row represents an observation and each column represents an predictor.

X an n-by-K matrix of covariate data where each row represents an observation and

each column represents a covariate. Should not contain an intercept column.

iter number of iterations to run the sampler

family a description of the error distribution and link function to be used in the model.

Currently implemented for gaussian and binomial families.

id optional vector (of length n) of grouping factors for fitting a model with a ran-

dom intercept. If NULL then no random intercept will be included.

verbose TRUE or FALSE: flag indicating whether to print intermediate diagnostic infor-

mation during the model fitting.

Znew optional matrix of new predictor values at which to predict h, where each row

represents a new observation. This will slow down the model fitting, and can be

done as a post-processing step using SamplePred

starting.values

list of starting values for each parameter. If not specified default values will be

chosen.

control.params list of parameters specifying the prior distributions and tuning parameters for

the MCMC algorithm. If not specified default values will be chosen.

varsel TRUE or FALSE: indicator for whether to conduct variable selection on the Z

variables in h

groups optional vector (of length M) of group indicators for fitting hierarchical vari-

able selection if varsel=TRUE. If varsel=TRUE without group specification,

component-wise variable selections will be performed.

knots optional matrix of knot locations for implementing the Gaussian predictive pro-

cess of Banerjee et al. (2008). Currently only implemented for models without

a random intercept.

kmbayes 9

ztest	optional vector indicating on which variables in Z to conduct variable selection (the remaining variables will be forced into the model).
rmethod	for those predictors being forced into the h function, the method for sampling the $r[m]$ values. Takes the value of 'varying' to allow separate $r[m]$ for each predictor; 'equal' to force the same $r[m]$ for each predictor; or 'fixed' to fix the $r[m]$ to their starting values
est.h	TRUE or FALSE: indicator for whether to sample from the posterior distribution of the subject-specific effects h_i within the main sampler. This will slow down the model fitting.

Value

an object of class "bkmrfit" (containing the posterior samples from the model fit), which has the associated methods:

```
print (i.e., print.bkmrfit)summary (i.e., summary.bkmrfit)
```

References

Bobb, JF, Valeri L, Claus Henn B, Christiani DC, Wright RO, Mazumdar M, Godleski JJ, Coull BA (2015). Bayesian Kernel Machine Regression for Estimating the Health Effects of Multi-Pollutant Mixtures. Biostatistics 16, no. 3: 493-508.

Banerjee S, Gelfand AE, Finley AO, Sang H (2008). Gaussian predictive process models for large spatial data sets. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(4), 825-848.

See Also

For guided examples, go to https://jenfb.github.io/bkmr/overview.html

```
## First generate dataset
set.seed(111)
dat <- SimData(n = 50, M = 4)
y <- dat$y
Z <- dat$Z
X <- dat$X

## Fit model with component-wise variable selection
## Using only 100 iterations to make example run quickly
## Typically should use a large number of iterations for inference
set.seed(111)
fitkm <- kmbayes(y = y, Z = Z, X = X, iter = 100, verbose = FALSE, varsel = TRUE)</pre>
```

10 OverallRiskSummaries

OverallRiskSummaries Calculate overall risk summaries

Description

Compare estimated h function when all predictors are at a particular quantile to when all are at a second fixed quantile

Usage

```
OverallRiskSummaries(
  fit,
  y = NULL,
  Z = NULL,
  X = NULL,
  qs = seq(0.25, 0.75, by = 0.05),
  q.fixed = 0.5,
  method = "approx",
  sel = NULL
)
```

Arguments

fit	An object containing the results returned by a the kmbayes function
У	a vector of outcome data of length n.
Z	an n-by-M matrix of predictor variables to be included in the h function. Each row represents an observation and each column represents an predictor.
X	an n-by-K matrix of covariate data where each row represents an observation and each column represents a covariate. Should not contain an intercept column.
qs	vector of quantiles at which to calculate the overall risk summary
q.fixed	a second quantile at which to compare the estimated h function
method	method for obtaining posterior summaries at a vector of new points. Options are "approx" and "exact"; defaults to "approx", which is faster particularly for large datasets; see details
sel	selects which iterations of the MCMC sampler to use for inference; see details

Details

- If method == "approx", the argument sel defaults to the second half of the MCMC iterations.
- If method == "exact", the argument sel defaults to keeping every 10 iterations after dropping the first 50% of samples, or if this results in fewer than 100 iterations, than 100 iterations are kept

For guided examples and additional information, go to https://jenfb.github.io/bkmr/overview.html

PlotPriorFits 11

Value

a data frame containing the (posterior mean) estimate and posterior standard deviation of the overall risk measures

Examples

```
## First generate dataset
set.seed(111)
dat <- SimData(n = 50, M = 4)
y <- dat$y
Z <- dat$Z
X <- dat$X

## Fit model with component-wise variable selection
## Using only 100 iterations to make example run quickly
## Typically should use a large number of iterations for inference
set.seed(111)
fitkm <- kmbayes(y = y, Z = Z, X = X, iter = 100, verbose = FALSE, varsel = TRUE)

risks.overall <- OverallRiskSummaries(fit = fitkm, qs = seq(0.25, 0.75, by = 0.05),
q.fixed = 0.5, method = "exact")</pre>
```

PlotPriorFits

Plot of exposure-response function from univariate KMR fit

Description

Plot the estimated h(z[m]) estimated from frequentist KMR for r[m] fixed to specific values

Usage

```
PlotPriorFits(
   y,
   X,
   Z,
   fits,
   which.z = NULL,
   which.q = NULL,
   plot.resid = TRUE,
   ylim = NULL,
   ...
)
```

Arguments

y a vector of outcome data of length n.

X an n-by-K matrix of covariate data where each row represents an observation and each column represents a covariate. Should not contain an intercept column.

an n-by-M matrix of predictor variables to be included in the h function. Each row represents an observation and each column represents an predictor.

fits output from InvestigatePrior

which.z which predictors (columns in Z) to plot

which.q which q.values to plot; defaults to all possible

plot.resid whether to plot the data points

ylim plotting limits for the y-axis

other plotting arguments

Value

No return value, generates plot

Examples

```
## First generate dataset
set.seed(111)
dat <- SimData(n = 50, M = 4)
y <- dat$y
Z <- dat$Z
X <- dat$X

priorfits <- InvestigatePrior(y = y, Z = Z, X = X, q.seq = c(2, 1/2, 1/4, 1/16))
PlotPriorFits(y = y, Z = Z, X = X, fits = priorfits)</pre>
```

PredictorResponseBivar

Predict the exposure-response function at a new grid of points

Description

Predict the exposure-response function at a new grid of points

```
PredictorResponseBivar(
  fit,
  y = NULL,
  Z = NULL,
  X = NULL,
  z.pairs = NULL,
  method = "approx",
  ngrid = 50,
  q.fixed = 0.5,
  sel = NULL,
  min.plot.dist = 0.5,
```

```
center = TRUE,
z.names = colnames(Z),
verbose = TRUE,
...
)
```

Arguments

fit	An object containing the results returned by a the kmbayes function
У	a vector of outcome data of length n.
Z	an n-by-M matrix of predictor variables to be included in the h function. Each row represents an observation and each column represents an predictor.
X	an n-by-K matrix of covariate data where each row represents an observation and each column represents a covariate. Should not contain an intercept column.
z.pairs	data frame showing which pairs of predictors to plot
method	method for obtaining posterior summaries at a vector of new points. Options are "approx" and "exact"; defaults to "approx", which is faster particularly for large datasets; see details
ngrid	number of grid points in each dimension
q.fixed	vector of quantiles at which to fix the remaining predictors in Z
sel	logical expression indicating samples to keep; defaults to keeping the second half of all samples
min.plot.dist	specifies a minimum distance that a new grid point needs to be from an observed data point in order to compute the prediction; points further than this will not be computed
center	flag for whether to scale the exposure-response function to have mean zero
z.names	optional vector of names for the columns of z
verbose	TRUE or FALSE: flag of whether to print intermediate output to the screen
	other arguments to pass on to the prediction function

Details

For guided examples, go to https://jenfb.github.io/bkmr/overview.html

Value

a long data frame with the name of the first predictor, the name of the second predictor, the value of the first predictor, the value of the second predictor, the posterior mean estimate, and the posterior standard deviation of the estimated exposure response function

```
## First generate dataset
set.seed(111)
dat <- SimData(n = 50, M = 4)
y <- dat$y</pre>
```

```
Z <- dat$Z
X <- dat$X

## Fit model with component-wise variable selection
## Using only 100 iterations to make example run quickly
## Typically should use a large number of iterations for inference
set.seed(111)
fitkm <- kmbayes(y = y, Z = Z, X = X, iter = 100, verbose = FALSE, varsel = TRUE)

## Obtain predicted value on new grid of points for each pair of predictors
## Using only a 10-by-10 point grid to make example run quickly
pred.resp.bivar <- PredictorResponseBivar(fit = fitkm, min.plot.dist = 1, ngrid = 10)</pre>
```

PredictorResponseBivarLevels

Plot cross-sections of the bivariate predictor-response function

Description

Function to plot the h function of a particular variable at different levels (quantiles) of a second variable

Usage

```
PredictorResponseBivarLevels(
  pred.resp.df,
  Z = NULL,
  qs = c(0.25, 0.5, 0.75),
  both_pairs = TRUE,
  z.names = NULL
)
```

Arguments

pred.resp.df	object obtained from running the function PredictorResponseBivar
Z	an n-by-M matrix of predictor variables to be included in the h function. Each row represents an observation and each column represents an predictor.
qs	vector of quantiles at which to fix the second variable
both_pairs	flag indicating whether, if $h(z1)$ is being plotted for $z2$ fixed at different levels, that they should be plotted in the reverse order as well (for $h(z2)$ at different levels of $z1$)
z.names	optional vector of names for the columns of z

Details

For guided examples, go to https://jenfb.github.io/bkmr/overview.html

Value

a long data frame with the name of the first predictor, the name of the second predictor, the value of the first predictor, the quantile at which the second predictor is fixed, the posterior mean estimate, and the posterior standard deviation of the estimated exposure response function

Examples

```
## First generate dataset
set.seed(111)
dat \leftarrow SimData(n = 50, M = 4)
y <- dat$y
Z <- dat$Z
X <- dat$X
## Fit model with component-wise variable selection
## Using only 100 iterations to make example run quickly
## Typically should use a large number of iterations for inference
set.seed(111)
fitkm <- kmbayes(y = y, Z = Z, X = X, iter = 100, verbose = FALSE, varsel = TRUE)
## Obtain predicted value on new grid of points for each pair of predictors
## Using only a 10-by-10 point grid to make example run quickly
pred.resp.bivar <- PredictorResponseBivar(fit = fitkm, min.plot.dist = 1, ngrid = 10)</pre>
pred.resp.bivar.levels <- PredictorResponseBivarLevels(pred.resp.df = pred.resp.bivar,</pre>
Z = Z, qs = c(0.1, 0.5, 0.9))
```

PredictorResponseBivarPair

Plot bivariate predictor-response function on a new grid of points

Description

Plot bivariate predictor-response function on a new grid of points

```
PredictorResponseBivarPair(
  fit,
  y = NULL,
  Z = NULL,
  X = NULL,
  whichz1 = 1,
  whichz2 = 2,
  whichz3 = NULL,
  method = "approx",
  prob = 0.5,
  q.fixed = 0.5,
  sel = NULL,
```

```
ngrid = 50,
min.plot.dist = 0.5,
center = TRUE,
...
)
```

Arguments

An object containing the results returned by a the kmbayes function
a vector of outcome data of length n.
an n-by-M matrix of predictor variables to be included in the h function. Each row represents an observation and each column represents an predictor.
an n-by-K matrix of covariate data where each row represents an observation and each column represents a covariate. Should not contain an intercept column.
vector identifying the first predictor that (column of Z) should be plotted
vector identifying the second predictor that (column of Z) should be plotted
vector identifying the third predictor that will be set to a pre-specified fixed quantile (determined by prob)
method for obtaining posterior summaries at a vector of new points. Options are "approx" and "exact"; defaults to "approx", which is faster particularly for large datasets; see details
pre-specified quantile to set the third predictor (determined by whichz3); defaults to 0.5 (50th percentile)
vector of quantiles at which to fix the remaining predictors in Z
logical expression indicating samples to keep; defaults to keeping the second half of all samples
number of grid points to cover the range of each predictor (column in Z)
specifies a minimum distance that a new grid point needs to be from an observed data point in order to compute the prediction; points further than this will not be computed
flag for whether to scale the exposure-response function to have mean zero
other arguments to pass on to the prediction function

Value

a data frame with value of the first predictor, the value of the second predictor, the posterior mean estimate, and the posterior standard deviation

```
## First generate dataset
set.seed(111)
dat <- SimData(n = 50, M = 4)
y <- dat$y
Z <- dat$Z</pre>
```

```
X <- dat$X

## Fit model with component-wise variable selection
## Using only 100 iterations to make example run quickly
## Typically should use a large number of iterations for inference
set.seed(111)
fitkm <- kmbayes(y = y, Z = Z, X = X, iter = 100, verbose = FALSE, varsel = TRUE)

## Obtain predicted value on new grid of points
## Using only a 10-by-10 point grid to make example run quickly
pred.resp.bivar12 <- PredictorResponseBivarPair(fit = fitkm, min.plot.dist = 1, ngrid = 10)</pre>
```

PredictorResponseUnivar

Plot univariate predictor-response function on a new grid of points

Description

Plot univariate predictor-response function on a new grid of points

Usage

```
PredictorResponseUnivar(
   fit,
   y = NULL,
   Z = NULL,
   X = NULL,
   which.z = 1:ncol(Z),
   method = "approx",
   ngrid = 50,
   q.fixed = 0.5,
   sel = NULL,
   min.plot.dist = Inf,
   center = TRUE,
   z.names = colnames(Z),
   ...
)
```

fit	An object containing the results returned by a the kmbayes function
у	a vector of outcome data of length n.
Z	an n-by-M matrix of predictor variables to be included in the h function. Each row represents an observation and each column represents an predictor.
X	an n-by-K matrix of covariate data where each row represents an observation and each column represents a covariate. Should not contain an intercept column.
which.z	vector identifying which predictors (columns of Z) should be plotted

18 print.bkmrfit

method	method for obtaining posterior summaries at a vector of new points. Options are "approx" and "exact"; defaults to "approx", which is faster particularly for large datasets; see details
ngrid	number of grid points to cover the range of each predictor (column in Z)
q.fixed	vector of quantiles at which to fix the remaining predictors in Z
sel	logical expression indicating samples to keep; defaults to keeping the second half of all samples
min.plot.dist	specifies a minimum distance that a new grid point needs to be from an observed data point in order to compute the prediction; points further than this will not be computed
center	flag for whether to scale the exposure-response function to have mean zero
z.names	optional vector of names for the columns of z
• • •	other arguments to pass on to the prediction function

Details

For guided examples, go to https://jenfb.github.io/bkmr/overview.html

Value

a long data frame with the predictor name, predictor value, posterior mean estimate, and posterior standard deviation

Examples

```
## First generate dataset
set.seed(111)
dat <- SimData(n = 50, M = 4)
y <- dat$y
Z <- dat$Z
X <- dat$X

## Fit model with component-wise variable selection
## Using only 100 iterations to make example run quickly
## Typically should use a large number of iterations for inference
set.seed(111)
fitkm <- kmbayes(y = y, Z = Z, X = X, iter = 100, verbose = FALSE, varsel = TRUE)
pred.resp.univar <- PredictorResponseUnivar(fit = fitkm)</pre>
```

print.bkmrfit

Print basic summary of BKMR model fit

Description

print method for class "bkmrfit"

SamplePred 19

Usage

```
## S3 method for class 'bkmrfit'
print(x, digits = 5, ...)
```

Arguments

```
x an object of class "bkmrfit"digits the number of digits to show when printing... further arguments passed to or from other methods.
```

Value

No return value, prints basic summary of fit to console

Examples

```
## First generate dataset
set.seed(111)
dat <- SimData(n = 50, M = 4)
y <- dat$y
Z <- dat$Z
X <- dat$X

## Fit model with component-wise variable selection
## Using only 100 iterations to make example run quickly
## Typically should use a large number of iterations for inference
set.seed(111)
fitkm <- kmbayes(y = y, Z = Z, X = X, iter = 100, verbose = FALSE, varsel = TRUE)
fitkm</pre>
```

SamplePred

Obtain posterior samples of predictions at new points

Description

```
Obtains posterior samples of E(Y) = h(Znew) + beta*Xnew or of g^{-1}[E(y)]
```

```
SamplePred(
  fit,
  Znew = NULL,
  Xnew = NULL,
  Z = NULL,
  X = NULL,
  y = NULL,
  sel = NULL,
```

20 SamplePred

```
type = c("link", "response"),
    ...
)
```

Arguments

fit	An object containing the results returned by a the kmbayes function
Znew	optional matrix of new predictor values at which to predict new h, where each row represents a new observation. If not specified, defaults to using observed Z values
Xnew	optional matrix of new covariate values at which to obtain predictions. If not specified, defaults to using observed X values
Z	an n-by-M matrix of predictor variables to be included in the h function. Each row represents an observation and each column represents an predictor.
X	an n-by-K matrix of covariate data where each row represents an observation and each column represents a covariate. Should not contain an intercept column.
у	a vector of outcome data of length n.
sel	A vector selecting which iterations of the BKMR fit should be retained for inference. If not specified, will default to keeping every 10 iterations after dropping the first 50% of samples, or if this results in fewer than 100 iterations, than 100 iterations are kept
type	whether to make predictions on the scale of the link or of the response; only relevant for the binomial outcome family
	other arguments; not currently used

Details

For guided examples, go to https://jenfb.github.io/bkmr/overview.html

Value

a matrix with the posterior samples at the new points

```
set.seed(111)
dat <- SimData(n = 50, M = 4)
y <- dat$y
Z <- dat$Z
X <- dat$X

## Fit model with component-wise variable selection
## Using only 100 iterations to make example run quickly
## Typically should use a large number of iterations for inference
set.seed(111)
fitkm <- kmbayes(y = y, Z = Z, X = X, iter = 100, verbose = FALSE, varsel = TRUE)
med_vals <- apply(Z, 2, median)</pre>
```

SimData 21

```
Znew <- matrix(med_vals, nrow = 1)
h_true <- dat$HFun(Znew)
set.seed(111)
samps3 <- SamplePred(fitkm, Znew = Znew, Xnew = cbind(0))
head(samps3)</pre>
```

SimData

Simulate dataset

Description

Simulate predictor, covariate, and continuous outcome data

Usage

```
SimData(
    n = 100,
    M = 5,
    sigsq.true = 0.5,
    beta.true = 2,
    hfun = 3,
    Zgen = "norm",
    ind = 1:2,
    family = "gaussian"
)
```

Arguments

n	Number of observations
М	Number of predictor variables to generate
sigsq.true	Variance of normally distributed residual error
beta.true	Coefficient on the covariate
hfun	An integer from 1 to 3 identifying which predictor-response function to generate
Zgen	Method for generating the matrix Z of exposure variables, taking one of the values c("unif", "norm", "corr", "realistic")
ind	select which predictor(s) will be included in the h function; how many predictors that can be included will depend on which h function is being used.
family	a description of the error distribution and link function to be used in the model. Currently implemented for gaussian and binomial families.

Details

- hfun = 1: A nonlinear function of the first predictor
- hfun = 2: A linear function of the first two predictors and their product term
- hfun = 3: A nonlinear and nonadditive function of the first two predictor variables

Value

a list containing the parameter values and generated variables of the simulated datasets

Examples

```
set.seed(5)
dat <- SimData()</pre>
```

SingVarIntSummaries

Single Variable Interaction Summaries

Description

Compare the single-predictor health risks when all of the other predictors in Z are fixed to their a specific quantile to when all of the other predictors in Z are fixed to their a second specific quantile.

Usage

```
SingVarIntSummaries(
   fit,
   y = NULL,
   Z = NULL,
   X = NULL,
   which.z = 1:ncol(Z),
   qs.diff = c(0.25, 0.75),
   qs.fixed = c(0.25, 0.75),
   method = "approx",
   sel = NULL,
   z.names = colnames(Z),
   ...
)
```

fit	An object containing the results returned by a the kmbayes function
у	a vector of outcome data of length n.
Z	an n-by-M matrix of predictor variables to be included in the h function. Each row represents an observation and each column represents an predictor.
X	an n-by-K matrix of covariate data where each row represents an observation and each column represents a covariate. Should not contain an intercept column.
which.z	vector indicating which variables (columns of Z) for which the summary should be computed
qs.diff	vector indicating the two quantiles at which to compute the single-predictor risk summary

Sing VarIntSummaries 23

qs.fixed	vector indicating the two quantiles at which to fix all of the remaining exposures in Z
method	method for obtaining posterior summaries at a vector of new points. Options are "approx" and "exact"; defaults to "approx", which is faster particularly for large datasets; see details
sel	logical expression indicating samples to keep; defaults to keeping the second half of all samples
z.names	optional vector of names for the columns of z
	other arguments to pass on to the prediction function

Details

- If method == "approx", the argument sel defaults to the second half of the MCMC iterations.
- If method == "exact", the argument sel defaults to keeping every 10 iterations after dropping the first 50% of samples, or if this results in fewer than 100 iterations, than 100 iterations are kept

For guided examples and additional information, go to https://jenfb.github.io/bkmr/overview.html

Value

a data frame containing the (posterior mean) estimate and posterior standard deviation of the single-predictor risk measures

```
## First generate dataset
set.seed(111)
dat <- SimData(n = 50, M = 4)
y <- dat$y
Z <- dat$Z
X <- dat$X

## Fit model with component-wise variable selection
## Using only 100 iterations to make example run quickly
## Typically should use a large number of iterations for inference
set.seed(111)
fitkm <- kmbayes(y = y, Z = Z, X = X, iter = 100, verbose = FALSE, varsel = TRUE)
risks.int <- SingVarIntSummaries(fit = fitkm, method = "exact")</pre>
```

SingVarRiskSummaries Single Variable Risk Summaries

Description

Compute summaries of the risks associated with a change in a single variable in Z from a single level (quantile) to a second level (quantile), for the other variables in Z fixed to a specific level (quantile)

Usage

```
SingVarRiskSummaries(
  fit,
  y = NULL,
  Z = NULL,
  X = NULL,
  which.z = 1:ncol(Z),
  qs.diff = c(0.25, 0.75),
  q.fixed = c(0.25, 0.5, 0.75),
  method = "approx",
  sel = NULL,
  z.names = colnames(Z),
  ...
)
```

fit	An object containing the results returned by a the kmbayes function
У	a vector of outcome data of length n.
Z	an n-by-M matrix of predictor variables to be included in the h function. Each row represents an observation and each column represents an predictor.
X	an n-by-K matrix of covariate data where each row represents an observation and each column represents a covariate. Should not contain an intercept column.
which.z	vector indicating which variables (columns of Z) for which the summary should be computed
qs.diff	vector indicating the two quantiles q_1 and q_2 at which to compute $h(z_{q2}) - h(z_{q1})$
q.fixed	vector of quantiles at which to fix the remaining predictors in Z
method	method for obtaining posterior summaries at a vector of new points. Options are "approx" and "exact"; defaults to "approx", which is faster particularly for large datasets; see details
sel	logical expression indicating samples to keep; defaults to keeping the second half of all samples
z.names	optional vector of names for the columns of z
• • •	other arguments to pass on to the prediction function

summary.bkmrfit 25

Details

- If method == "approx", the argument sel defaults to the second half of the MCMC iterations.
- If method == "exact", the argument sel defaults to keeping every 10 iterations after dropping the first 50% of samples, or if this results in fewer than 100 iterations, than 100 iterations are kept

For guided examples and additional information, go to https://jenfb.github.io/bkmr/overview.html

Value

a data frame containing the (posterior mean) estimate and posterior standard deviation of the single-predictor risk measures

Examples

```
## First generate dataset
set.seed(111)
dat <- SimData(n = 50, M = 4)
y <- dat$y
Z <- dat$Z
X <- dat$X

## Fit model with component-wise variable selection
## Using only 100 iterations to make example run quickly
## Typically should use a large number of iterations for inference
set.seed(111)
fitkm <- kmbayes(y = y, Z = Z, X = X, iter = 100, verbose = FALSE, varsel = TRUE)
risks.singvar <- SingVarRiskSummaries(fit = fitkm, method = "exact")</pre>
```

summary.bkmrfit

Summarizing BKMR model fits

Description

summary method for class "bkmrfit"

```
## S3 method for class 'bkmrfit'
summary(
   object,
   q = c(0.025, 0.975),
   digits = 5,
   show_ests = TRUE,
   show_MH = TRUE,
   ...
)
```

26 TracePlot

Arguments

object	an object of class "bkmrfit"
q	quantiles of posterior distribution to show
digits	the number of digits to show when printing
show_ests	logical; if TRUE, prints summary statistics of posterior distribution
show_MH	logical; if TRUE, prints acceptance rates from the Metropolis-Hastings algorithm
	further arguments passed to or from other methods.

Value

No return value, prints more detailed summary of fit to console

Examples

```
## First generate dataset
set.seed(111)
dat <- SimData(n = 50, M = 4)
y <- dat$y
Z <- dat$Z
X <- dat$X

## Fit model with component-wise variable selection
## Using only 100 iterations to make example run quickly
## Typically should use a large number of iterations for inference
set.seed(111)
fitkm <- kmbayes(y = y, Z = Z, X = X, iter = 100, verbose = FALSE, varsel = TRUE)
summary(fitkm)</pre>
```

TracePlot

Trace plot

Description

Trace plot

```
TracePlot(
   fit,
   par,
   comp = 1,
   sel = NULL,
   main = "",
   xlab = "iteration",
   ylab = "parameter value",
   ...
)
```

TracePlot 27

Arguments

fit	An object containing the results returned by a the kmbayes function
par	which parameter to plot
comp	which component of the parameter vector to plot
sel	logical expression indicating samples to keep; defaults to keeping the second half of all samples
main	title
xlab	x axis label
ylab	y axis label
	other arguments to pass onto the plotting function

Details

For guided examples, go to https://jenfb.github.io/bkmr/overview.html

Value

No return value, generates plot

```
## First generate dataset
set.seed(111)
dat <- SimData(n = 50, M = 4)
y <- dat$y
Z <- dat$Z
X <- dat$X

## Fit model with component-wise variable selection
## Using only 100 iterations to make example run quickly
## Typically should use a large number of iterations for inference
set.seed(111)
fitkm <- kmbayes(y = y, Z = Z, X = X, iter = 100, verbose = FALSE, varsel = TRUE)

TracePlot(fit = fitkm, par = "beta")
TracePlot(fit = fitkm, par = "sigsq.eps")
TracePlot(fit = fitkm, par = "r", comp = 1)</pre>
```

Index

```
ComputePostmeanHnew, 2
ExtractEsts, 3
ExtractPIPs, 4
ExtractSamps, 5
InvestigatePrior, 6, 12
kmbayes, 7
OverallRiskSummaries, 10
PlotPriorFits, 11
PredictorResponseBivar, 12, 14
PredictorResponseBivarLevels, 14
PredictorResponseBivarPair, 15
PredictorResponseUnivar, 17
print, 9
print.bkmrfit, 9, 18
SamplePred, 8, 19
SimData, 21
SingVarIntSummaries, 22
SingVarRiskSummaries, 24
summary, 9
summary.bkmrfit, 9, 25
TracePlot, 26
```