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Abstract

The brms package implements Bayesian multilevel models in R using the probabilis-
tic programming language Stan. A wide range of distributions and link functions are
supported, allowing users to fit – among others – linear, robust linear, binomial, Pois-
son, survival, response times, ordinal, quantile, zero-inflated, hurdle, and even non-linear
models all in a multilevel context. Further modeling options include autocorrelation of
the response variable, user defined covariance structures, censored data, as well as meta-
analytic standard errors. Prior specifications are flexible and explicitly encourage users
to apply prior distributions that actually reflect their beliefs. In addition, model fit can
easily be assessed and compared using posterior-predictive checks and leave-one-out cross-
validation. If you use brms, please cite this article as published in the Journal of Statistical
Software (Bürkner 2017).
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1. Introduction

Multilevel models (MLMs) offer a great flexibility for researchers across sciences (Brown and
Prescott 2015; Demidenko 2013; Gelman and Hill 2006; Pinheiro and Bates 2006). They
allow the modeling of data measured on different levels at the same time – for instance data
of students nested within classes and schools – thus taking complex dependency structures
into account. It is not surprising that many packages for R (R Core Team 2015b) have been
developed to fit MLMs. Possibly the most widely known package in this area is lme4 (Bates,
Mächler, Bolker, and Walker 2015), which uses maximum likelihood or restricted maximum
likelihood methods for model fitting. Although alternative Bayesian methods have several
advantages over frequentist approaches (e.g., the possibility of explicitly incorporating prior
knowledge about parameters into the model), their practical use was limited for a long time
because the posterior distributions of more complex models (such as MLMs) could not be
found analytically. Markov chain Monte Carlo (MCMC) algorithms allowing to draw ran-
dom samples from the posterior were not available or too time-consuming. In the last few
decades, however, this has changed with the development of new algorithms and the rapid
increase of general computing power. Today, several software packages implement these tech-
niques, for instance WinBugs (Lunn, Thomas, Best, and Spiegelhalter 2000; Spiegelhalter,
Thomas, Best, and Lunn 2003), OpenBugs (Spiegelhalter, Thomas, Best, and Lunn 2007),
JAGS (Plummer 2013), MCMCglmm (Hadfield 2010) and Stan (Stan Development Team
2017a; Carpenter, Gelman, Hoffman, Lee, Goodrich, Betancourt, Brubaker, Guo, Li, and
Ridell 2017) to mention only a few. With the exception of the latter, all of these programs
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are primarily using combinations of Metropolis-Hastings updates (Metropolis, Rosenbluth,
Rosenbluth, Teller, and Teller 1953; Hastings 1970) and Gibbs-sampling (Geman and Ge-
man 1984; Gelfand and Smith 1990), sometimes also coupled with slice-sampling (Damien,
Wakefield, and Walker 1999; Neal 2003). One of the main problems of these algorithms is
their rather slow convergence for high-dimensional models with correlated parameters (Neal
2011; Hoffman and Gelman 2014; Gelman, Carlin, Stern, and Rubin 2014). Furthermore,
Gibbs-sampling requires priors to be conjugate to the likelihood of parameters in order to
work efficiently (Gelman et al. 2014), thus reducing the freedom of the researcher in choosing
a prior that reflects his or her beliefs. In contrast, Stan implements Hamiltonian Monte Carlo
(Duane, Kennedy, Pendleton, and Roweth 1987; Neal 2011) and its extension, the No-U-Turn
Sampler (NUTS) (Hoffman and Gelman 2014). These algorithms converge much more quickly
especially for high-dimensional models regardless of whether the priors are conjugate or not
(Hoffman and Gelman 2014).

Similar to software packages like WinBugs, Stan comes with its own programming language,
allowing for great modeling flexibility (cf., Stan Development Team 2017b; Carpenter et al.
2017). Many researchers may still hesitate to use Stan directly, as every model has to be
written, debugged and possibly also optimized. This may be a time-consuming and error prone
process even for researchers familiar with Bayesian inference. The package brms, presented in
this paper, aims at closing this gap (at least for MLMs) allowing the user to benefit from the
merits of Stan only by using simple, lme4-like formula syntax. brms supports a wide range
of distributions and link functions, allows for multiple grouping factors each with multiple
group-level effects, autocorrelation of the response variable, user defined covariance structures,
as well as flexible and explicit prior specifications.

The purpose of the present article is to provide a general overview of the brms package (version
0.10.0). We begin by explaining the underlying structure of MLMs. Next, the software is
introduced in detail using recurrence times of infection in kidney patients (McGilchrist and
Aisbett 1991) and ratings of inhaler instructions (Ezzet and Whitehead 1991) as examples.
We end by comparing brms to other R packages implementing MLMs and describe future
plans for extending the package.

2. Model description

The core of every MLM is the prediction of the response y through the linear combination
η of predictors transformed by the inverse link function f assuming a certain distribution D

for y. We write
yi ∼ D(f(ηi), θ)

to stress the dependency on the ith data point. In many R packages, D is also called the
‘family’ and we will use this term in the following. The parameter θ describes additional
family specific parameters that typically do not vary across data points, such as the standard
deviation σ in normal models or the shape α in Gamma or negative binomial models. The
linear predictor can generally be written as

η = Xβ + Zu

In this equation, β and u are the coefficients at population-level and group-level respectively
and X, Z are the corresponding design matrices. The response y as well as X and Z make



Paul-Christian Bürkner 3

up the data, whereas β, u, and θ are the model parameters being estimated. The coefficients
β and u may be more commonly known as fixed and random effects. However, we avoid
these terms in the present paper following the recommendations of Gelman and Hill (2006),
as they are not used unambiguously in the literature. Also, we want to make explicit that
u is a model parameter in the same manner as β so that uncertainty in its estimates can
be naturally evaluated. In fact, this is an important advantage of Bayesian MCMC methods
as compared to maximum likelihood approaches, which do not treat u as a parameter, but
assume that it is part of the error term instead (cf., Fox and Weisberg, 2011).

Except for linear models, we do not incorporate an additional error term for every observation
by default. If desired, such an error term can always be modeled using a grouping factor with
as many levels as observations in the data.

2.1. Prior distributions

Regression parameters at population-level

In brms, population-level parameters are not restricted to have normal priors. Instead, every
parameter can have every one-dimensional prior implemented in Stan, for instance uniform,
Cauchy or even Gamma priors. As a negative side effect of this flexibility, correlations between
them cannot be modeled as parameters. If desired, point estimates of the correlations can
be obtained after sampling has been done. By default, population level parameters have an
improper flat prior over the reals.

Regression parameters at group-level

The group-level parameters u are assumed to come from a multivariate normal distribution
with mean zero and unknown covariance matrix Σ:

u ∼ N(0, Σ)

As is generally the case, covariances between group-level parameters of different grouping
factors are assumed to be zero. This implies that Z and u can be split up into several
matrices Zk and parameter vectors uk, where k indexes grouping factors, so that the model
can be simplified to

uk ∼ N(0, Σk)

Usually, but not always, we can also assume group-level parameters associated with different
levels (indexed by j) of the same grouping factor to be independent leading to

ukj ∼ N(0, Vk)

The covariance matrices Vk are modeled as parameters. In most packages, an Inverse-Wishart
distribution is used as a prior for Vk. This is mostly because its conjugacy leads to good
properties of Gibbs-Samplers (Gelman et al. 2014). However, there are good arguments
against the Inverse-Wishart prior (Natarajan and Kass 2000; Kass and Natarajan 2006). The
NUTS-Sampler implemented in Stan does not require priors to be conjugate. This advantage
is utilized in brms: Vk is parameterized in terms of a correlation matrix Ωk and a vector of
standard deviations σk through

Vk = D(σk)ΩkD(σk)
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where D(σk) denotes the diagonal matrix with diagonal elements σk. Priors are then specified
for the parameters on the right hand side of the equation. For Ωk, we use the LKJ-Correlation
prior with parameter ζ > 0 by Lewandowski, Kurowicka, and Joe (2009)1:

Ωk ∼ LKJ(ζ)

The expected value of the LKJ-prior is the identity matrix (implying correlations of zero) for
any positive value of ζ, which can be interpreted like the shape parameter of a symmetric beta
distribution (Stan Development Team 2017b). If ζ = 1 (the default in brms) the density is
uniform over correlation matrices of the respective dimension. If ζ > 1, the identity matrix is
the mode of the prior, with a sharper peak in the density for larger values of ζ. If 0 < ζ < 1 the
prior is U-shaped having a trough at the identity matrix, which leads to higher probabilities
for non-zero correlations. For every element of σk, any prior can be applied that is defined on
the non-negative reals only. As default in brms, we use a half Student-t prior with 3 degrees
of freedom. This prior often leads to better convergence of the models than a half Cauchy
prior, while still being relatively weakly informative.

Sometimes – for instance when modeling pedigrees – different levels of the same grouping
factor cannot be assumed to be independent. In this case, the covariance matrix of uk

becomes

Σk = Vk ⊗ Ak

where Ak is the known covariance matrix between levels and ⊗ is the Kronecker product.

Family specific parameters

For some families, additional parameters need to be estimated. In the current section, we
only name the most important ones. Normal and Student’s distributions need the parameter
σ to account for residual error variance. By default, σ has a half Cauchy prior with a
scale parameter that depends on the standard deviation of the response variable to remain
only weakly informative regardless of response variable’s scaling. Furthermore, Student’s
distributions needs the parameter ν representing the degrees of freedom. By default, ν has a
wide gamma prior as proposed by Juárez and Steel (2010). Gamma, Weibull, and negative
binomial distributions need the shape parameter α that also has a wide gamma prior by
default.

3. Parameter estimation

The brms package does not fit models itself but uses Stan on the back-end. Accordingly,
all samplers implemented in Stan can be used to fit brms models. Currently, these are
the static Hamiltonian Monte-Carlo (HMC) Sampler sometimes also referred to as Hybrid
Monte-Carlo (Neal 2011, 2003; Duane et al. 1987) and its extension the No-U-Turn Sampler
(NUTS) by Hoffman and Gelman (2014). HMC-like algorithms produce samples that are
much less autocorrelated than those of other samplers such as the random-walk Metropolis
algorithm (Hoffman and Gelman 2014; Creutz 1988). The main drawback of this increased
efficiency is the need to calculate the gradient of the log-posterior, which can be automated

1Internally, the Cholesky factor of the correlation matrix is used, as it is more efficient and numerically
stable.
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using algorithmic differentiation (Griewank and Walther 2008) but is still a time-consuming
process for more complex models. Thus, using HMC leads to higher quality samples but takes
more time per sample than other algorithms typically applied. Another drawback of HMC is
the need to pre-specify at least two parameters, which are both critical for the performance of
HMC. The NUTS Sampler allows setting these parameters automatically thus eliminating the
need for any hand-tuning, while still being at least as efficient as a well tuned HMC (Hoffman
and Gelman 2014). For more details on the sampling algorithms applied in Stan, see the Stan

user’s manual (Stan Development Team 2017b) as well as Hoffman and Gelman (2014).

In addition to the estimation of model parameters, brms allows drawing samples from the
posterior predictive distribution as well as from the pointwise log-likelihood. Both can be used
to assess model fit. The former allows a comparison between the actual response y and the
response ŷ predicted by the model. The pointwise log-likelihood can be used, among others, to
calculate the widely applicable information criterion (WAIC) proposed by Watanabe (2010)
and leave-one-out cross-validation (LOO; Gelfand, Dey, and Chang 1992; Vehtari, Gelman,
and Gabry 2015; see also Ionides 2008) both allowing to compare different models applied
to the same data (lower WAICs and LOOs indicate better model fit). The WAIC can be
viewed as an improvement of the popular deviance information criterion (DIC), which has
been criticized by several authors (Vehtari et al. 2015; Plummer 2008; van der Linde 2005;
see also the discussion at the end of the original DIC paper by Spiegelhalter, Best, Carlin,
and Van Der Linde 2002) in part because of problems arising from fact that the DIC is only
a point estimate. In brms, WAIC and LOO are implemented using the loo package (Vehtari,
Gelman, and Gabry 2016) also following the recommendations of Vehtari et al. (2015).

4. Software

The brms package provides functions for fitting MLMs using Stan for full Bayesian inference.
To install the latest release version of brms from CRAN, type install.packages("brms")

within R. The current developmental version can be downloaded from GitHub via

devtools::install_github("paul-buerkner/brms")

Additionally, a C++ compiler is required. This is because brms internally creates Stan code,
which is translated to C++ and compiled afterwards. The program Rtools (R Core Team
2015a) comes with a C++ compiler for Windows2. On OS X, one should use Xcode (Ap-
ple Inc. 2015) from the App Store. To check whether the compiler can be called within R,
run system("g++ -v") when using Rtools or system("clang++ -v") when using Xcode.
If no warning occurs and a few lines of difficult to read system code are printed out, the
compiler should work correctly. For more detailed instructions on how to get the compil-
ers running, see the prerequisites section on https://github.com/stan-dev/rstan/wiki/

RStan-Getting-Started.

Models are fitted in brms using the following procedure, which is also summarized in Figure 1.
First, the user specifies the model using the brm function in a way typical for most model fitting
R functions, that is by defining formula, data, and family, as well as some other optional
arguments. Second, this information is processed and the make_stancode and make_standata

2During the installation process, there is an option to change the system PATH. Please make sure to check
this options, because otherwise Rtools will not be available within R.

https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started
https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started
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functions are called. The former generates the model code in Stan language and the latter
prepares the data for use in Stan. These two are the mandatory parts of every Stan model
and without brms, users would have to specify them themselves. Third, Stan code and data
as well as additional arguments (such as the number of iterations and chains) are passed to
functions of the rstan package (the R interface of Stan; Stan Development Team, 2017a).
Fourth, the model is fitted by Stan after translating and compiling it in C++. Fifth, after
the model has been fitted and returned by rstan, the fitted model object is post-processed in
brms among others by renaming the model parameters to be understood by the user. Sixth,
the results can be investigated in R using various methods such as summary, plot, or predict

(for a complete list of methods type methods(class = "brmsfit")).

The user passes all model

information to brm

brm calls make stancode

and make standata

Model code, data, and additional

arguments are passed to rstan

The model is translated to C++,

compiled, and fitted in Stan

The fitted model is post-

processed within brms

Results can be investigated

using various R methods defined

on the fitted model object

Figure 1: High level description of the model fitting procedure used in brms.

4.1. A worked example

In the following, we use an example about the recurrence time of an infection in kidney
patients initially published by McGilchrist and Aisbett (1991). The data set consists of 76
entries of 7 variables:

R> library("brms")

R> data("kidney")

R> head(kidney, n = 3)

time censored patient recur age sex disease

1 8 0 1 1 28 male other

2 23 0 2 1 48 female GN

3 22 0 3 1 32 male other
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Variable time represents the recurrence time of the infection, censored indicates if time is
right censored (1) or not censored (0), variable patient is the patient id, and recur indicates
if it is the first or second recurrence in that patient. Finally, variables age, sex, and disease

make up the predictors.

4.2. Fitting models with brms

The core of the brms package is the brm function and we will explain its argument structure
using the example above. Suppose we want to predict the (possibly censored) recurrence time
using a log-normal model, in which the intercept as well as the effect of age is nested within
patients. Then, we may use the following code:

fit1 <- brm(formula = time | cens(censored) ~ age * sex + disease

+ (1 + age|patient),

data = kidney, family = lognormal(),

prior = c(set_prior("normal(0,5)", class = "b"),

set_prior("cauchy(0,2)", class = "sd"),

set_prior("lkj(2)", class = "cor")),

warmup = 1000, iter = 2000, chains = 4,

control = list(adapt_delta = 0.95))

4.3. formula: Information on the response and predictors

Without doubt, formula is the most complicated argument, as it contains information on
the response variable as well as on predictors at different levels of the model. Everything
before the ∼ sign relates to the response part of formula. In the usual and most simple case,
this is just one variable name (e.g., time). However, to incorporate additional information
about the response, one can add one or more terms of the form | fun(variable). fun may
be one of a few functions defined internally in brms and variable corresponds to a variable
in the data set supplied by the user. In this example, cens makes up the internal function
that handles censored data, and censored is the variable that contains information on the
censoring. Other available functions in this context are weights and disp to allow different
sorts of weighting, se to specify known standard errors primarily for meta-analysis, trunc to
define truncation boundaries, trials for binomial models3, and cat to specify the number
of categories for ordinal models.

Everything on the right side of ∼ specifies predictors. Here, the syntax exactly matches that
of lme4. For both, population-level and group-level terms, the + is used to separate different
effects from each other. Group-level terms are of the form (coefs | group), where coefs

contains one or more variables whose effects are assumed to vary with the levels of the grouping
factor given in group. Multiple grouping factors each with multiple group-level coefficients
are possible. In the present example, only one group-level term is specified in which 1 + age

are the coefficients varying with the grouping factor patient. This implies that the intercept
of the model as well as the effect of age is supposed to vary between patients. By default,
group-level coefficients within a grouping factor are assumed to be correlated. Correlations

3In functions such as glm or glmer, the binomial response is typically passed as cbind(success, failure).
In brms, the equivalent syntax is success | trials(success + failure).
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can be set to zero by using the (coefs || group) syntax4. Everything on the right side of
formula that is not recognized as part of a group-level term is treated as a population-level
effect. In this example, the population-level effects are age, sex, and disease.

4.4. family: Distribution of the response variable

Argument family should usually be a family function, a call to a family function or a character
string naming the family. If not otherwise specified, default link functions are applied. brms

comes with a large variety of families. Linear and robust linear regression can be performed
using the gaussian or student family combined with the identity link. For dichotomous
and categorical data, families bernoulli, binomial, and categorical combined with the
logit link, by default, are perfectly suited. Families poisson, negbinomial, and geometric

allow for modeling count data. Families lognormal, Gamma, exponential, and weibull can
be used (among others) for survival regression. Ordinal regression can be performed using the
families cumulative, cratio, sratio, and acat. Finally, families zero_inflated_poisson,
zero_inflated_negbinomial, zero_inflated_binomial, zero_inflated_beta, hurdle_poisson,
hurdle_negbinomial, and hurdle_gamma can be used to adequately model excess zeros in the
response. In our example, we use family = lognormal() implying a log-normal “survival”
model for the response variable time.

4.5. prior: Prior distributions of model parameters

Every population-level effect has its corresponding regression parameter. These parameters
are named as b_<coef>, where <coef> represents the name of the corresponding population-
level effect. The default prior is an improper flat prior over the reals. Suppose, for instance,
that we want to set a normal prior with mean 0 and standard deviation 10 on the effect of
age and a Cauchy prior with location 1 and scale 2 on sexfemale5. Then, we may write

prior <- c(set_prior("normal(0,10)", class = "b", coef = "age"),

set_prior("cauchy(1,2)", class = "b", coef = "sexfemale"))

To put the same prior (e.g., a normal prior) on all population-level effects at once, we may
write as a shortcut set_prior("normal(0,10)", class = "b"). This also leads to faster
sampling, because priors can be vectorized in this case. Note that we could also omit the
class argument for population-level effects, as it is the default class in set_prior.

A special shrinkage prior to be applied on population-level effects is the horseshoe prior
(Carvalho, Polson, and Scott 2009, 2010). It is symmetric around zero with fat tails and
an infinitely large spike at zero. This makes it ideal for sparse models that have many
regression coefficients, although only a minority of them is non-zero. The horseshoe prior

4In contrast to lme4, the || operator in brms splits up the design matrix computed from coefs instead of
decomposing coefs in its terms. This implies that columns of the design matrix originating from the same
factor are also assumed to be uncorrelated, whereas lme4 estimates the correlations in this case. For a way to
achieve brms-like behavior with lme4, see the mixed function of the afex package by Singmann, Bolker, and
Westfall (2015).

5When factors are used as predictors, parameter names will depend on the factor levels. To get an overview
of all parameters and parameter classes for which priors can be specified, use function get_prior. For
the present example, get_prior(time | cens(censored) ∼ age * sex + disease + (1 + age|patient),

data = kidney, family = lognormal()) does the desired.
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can be applied on all population-level effects at once (excluding the intercept) by using
set_prior("horseshoe(1)"). The 1 implies that the Student-t prior of the local shrink-
age parameters has 1 degrees of freedom. In brms it is possible to increase the degrees of
freedom (which will often improve convergence), although the prior no longer resembles a
horseshoe in this case6. For more details see Carvalho et al. (2009, 2010).

Each group-level effect of each grouping factor has a standard deviation parameter, which
is restricted to be non-negative and, by default, has a half Student-t prior with 3 degrees
of freedom and a scale parameter that is minimally 10. For non-ordinal models, brms tries
to evaluate if the scale is large enough to be considered only weakly informative for the
model at hand by comparing it with the standard deviation of the response after applying
the link function. If this is not the case, it will increase the scale based on the aforemen-
tioned standard deviation7. Stan implicitly defines a half Student-t prior by using a Student-t
prior on a restricted parameter (Stan Development Team 2017b). For other reasonable pri-
ors on standard deviations see Gelman (2006). In brms, standard deviation parameters are
named as sd_<group>_<coef> so that sd_patient_Intercept and sd_patient_age are the
parameter names in the example. If desired, it is possible to set a different prior on each pa-
rameter, but statements such as set_prior("student_t(3,0,5)", class = "sd", group

= "patient") or even set_prior("student_t(3,0,5)", class = "sd") may also be used
and are again faster because of vectorization.

If there is more than one group-level effect per grouping factor, correlations between group-
level effects are estimated. As mentioned in Section 2, the LKJ-Correlation prior with pa-
rameter ζ > 0 (Lewandowski et al. 2009) is used for this purpose. In brms, this prior is
abbreviated as "lkj(zeta)" and correlation matrix parameters are named as cor_<group>,
(e.g., cor_patient), so that set_prior("lkj(2)", class = "cor", group = "patient")

is a valid statement. To set the same prior on every correlation matrix in the model,
set_prior("lkj(2)", class = "cor") is also allowed, but does not come with any effi-
ciency increases.

Other model parameters such as the residual standard deviation sigma in normal models
or the shape in Gamma models have their priors defined in the same way, where each of
them is treated as having its own parameter class. A complete overview on possible prior
distributions is given in the Stan user’s manual (Stan Development Team 2017b). Note that
brms does not thoroughly check if the priors are written in correct Stan language. Instead,
Stan will check their syntactical correctness when the model is parsed to C++ and return an
error if they are not. This, however, does not imply that priors are always meaningful if they
are accepted by Stan. Although brms tries to find common problems (e.g., setting bounded
priors on unbounded parameters), there is no guarantee that the defined priors are reasonable
for the model.

4.6. control: Adjusting the sampling behavior of Stan

In addition to choosing the number of iterations, warmup samples, and chains, users can con-

6This class of priors is often referred to as hierarchical shrinkage family, which contains the original horseshoe
prior as a special case.

7Changing priors based on the data is not truly Bayesian and might rightly be criticized. However, it helps
avoiding the problem of too informative default priors without always forcing users to define their own priors.
The latter would also be problematic as not all users can be expected to be well educated Bayesians and
reasonable default priors will help them a lot in using Bayesian methods.
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trol the behavior of the NUTS sampler by using the control argument. The most important
reason to use control is to decrease (or eliminate at best) the number of divergent tran-
sitions that cause a bias in the obtained posterior samples. Whenever you see the warning
"There were x divergent transitions after warmup.", you should really think about
increasing adapt_delta. To do this, write control = list(adapt_delta = <x>), where
<x> should usually be a value between 0.8 (current default) and 1. Increasing adapt_delta

will slow down the sampler but will decrease the number of divergent transitions threatening
the validity of your posterior samples.

Another problem arises when the depth of the tree being evaluated in each iteration is ex-
ceeded. This is less common than having divergent transitions, but may also bias the pos-
terior samples. When it happens, Stan will throw out a warning suggesting to increase
max_treedepth, which can be accomplished by writing control = list(max_treedepth =

<x>) with a positive integer <x> that should usually be larger than the current default of 10.

4.7. Analyzing the results

The example model fit1 is fitted using 4 chains, each with 2000 iterations of which the first
1000 are warmup to calibrate the sampler, leading to a total of 4000 posterior samples8. For
researchers familiar with Gibbs or Metropolis-Hastings sampling, this number may seem far
too small to achieve good convergence and reasonable results, especially for multilevel models.
However, as brms utilizes the NUTS sampler (Hoffman and Gelman 2014) implemented in
Stan, even complex models can often be fitted with not more than a few thousand samples.
Of course, every iteration is more computationally intensive and time-consuming than the
iterations of other algorithms, but the quality of the samples (i.e., the effective sample size
per iteration) is usually higher.

After the posterior samples have been computed, the brm function returns an R object, con-
taining (among others) the fully commented model code in Stan language, the data to fit
the model, and the posterior samples themselves. The model code and data for the present
example can be extracted through stancode(fit1) and standata(fit1) respectively9. A
model summary is readily available using

R> summary(fit1, waic = TRUE)

Family: lognormal (identity)

Formula: time | cens(censored) ~ age * sex + disease + (1 + age | patient)

Data: kidney (Number of observations: 76)

Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup samples = 4000

WAIC: 673.51

Group-Level Effects:

~patient (Number of levels: 38)

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

8To save time, chains may also run in parallel when using argument cluster.
9Both model code and data may be amended and used to fit new models. That way, brms can also serve

as a good starting point in building more complicated models in Stan, directly.



Paul-Christian Bürkner 11

sd(Intercept) 0.40 0.28 0.01 1.01 1731 1

sd(age) 0.01 0.01 0.00 0.02 1137 1

cor(Intercept,age) -0.13 0.46 -0.88 0.76 3159 1

Population-Level Effects:

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

Intercept 2.73 0.96 0.82 4.68 2139 1

age 0.01 0.02 -0.03 0.06 1614 1

sexfemale 2.42 1.13 0.15 4.64 2065 1

diseaseGN -0.40 0.53 -1.45 0.64 2664 1

diseaseAN -0.52 0.50 -1.48 0.48 2713 1

diseasePKD 0.60 0.74 -0.86 2.02 2968 1

age:sexfemale -0.02 0.03 -0.07 0.03 1956 1

Family Specific Parameters:

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

sigma 1.15 0.13 0.91 1.44 4000 1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample

is a crude measure of effective sample size, and Rhat is the potential

scale reduction factor on split chains (at convergence, Rhat = 1).

On the top of the output, some general information on the model is given, such as family,
formula, number of iterations and chains, as well as the WAIC. Next, group-level effects are
displayed separately for each grouping factor in terms of standard deviations and correla-
tions between group-level effects. On the bottom of the output, population-level effects are
displayed. If incorporated, autocorrelation and family specific parameters (e.g., the residual
standard deviation sigma) are also given.

In general, every parameter is summarized using the mean (Estimate) and the standard de-
viation (Est.Error) of the posterior distribution as well as two-sided 95% Credible intervals
(l-95% CI and u-95% CI) based on quantiles. The Eff.Sample value is an estimation of the
effective sample size; that is the number of independent samples from the posterior distri-
bution that would be expected to yield the same standard error of the posterior mean as is
obtained from the dependent samples returned by the MCMC algorithm. The Rhat value
provides information on the convergence of the algorithm (cf., Gelman and Rubin, 1992). If
Rhat is considerably greater than 1 (i.e., > 1.1), the chains have not yet converged and it is
necessary to run more iterations and/or set stronger priors.

To visually investigate the chains as well as the posterior distribution, the plot method can
be used (see Figure 2). An even more detailed investigation can be achieved by applying
the shinystan package (Gabry 2015) through method launch_shiny. With respect to the
above summary, sexfemale seems to be the only population-level effect with considerable
influence on the response. Because the mean of sexfemale is positive, the model predicts
longer periods without an infection for females than for males. Effects of population-level
predictors can also be visualized with the conditional_effects method (see Figure 3).

Looking at the group-level effects, the standard deviation parameter of age is suspiciously
small. To test whether it is smaller than the standard deviation parameter of Intercept, we
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apply the hypothesis method:

R> hypothesis(fit1, "Intercept - age > 0", class = "sd", group = "patient")

Hypothesis Tests for class sd_patient:

Estimate Est.Error l-95% CI u-95% CI Evid.Ratio

Intercept-age > 0 0.39 0.27 0.03 Inf 67.97 *

---

'*': The expected value under the hypothesis lies outside the 95% CI.

The one-sided 95% credibility interval does not contain zero, thus indicating that the standard
deviations differ from each other in the expected direction. In accordance with this finding,
the Evid.Ratio shows that the hypothesis being tested (i.e., Intercept - age > 0) is about
68 times more likely than the alternative hypothesis Intercept - age < 0. It is important
to note that this kind of comparison is not easily possible when applying frequentist methods,
because in this case only point estimates are available for group-level standard deviations and
correlations.

When looking at the correlation between both group-level effects, its distribution displayed
in Figure 2 and the 95% credibility interval in the summary output appear to be rather
wide. This indicates that there is not enough evidence in the data to reasonably estimate
the correlation. Together, the small standard deviation of age and the uncertainty in the
correlation raise the question if age should be modeled as a group specific term at all. To
answer this question, we fit another model without this term:

R> fit2 <- update(fit1, formula. = ~ . - (1 + age|patient) + (1|patient))

A good way to compare both models is leave-one-out cross-validation (LOO)10, which can be
called in brms using

R> LOO(fit1, fit2)

LOOIC SE

fit1 675.45 45.18

fit2 674.17 45.06

fit1 - fit2 1.28 0.99

In the output, the LOO information criterion for each model as well as the difference of
the LOOs each with its corresponding standard error is shown. Both LOO and WAIC are
approximately normal if the number of observations is large so that the standard errors can
be very helpful in evaluating differences in the information criteria. However, for small sample
sizes, standard errors should be interpreted with care (Vehtari et al. 2015). For the present
example, it is immediately evident that both models have very similar fit, indicating that
there is little benefit in adding group specific coefficients for age.

10The WAIC is an approximation of LOO that is faster and easier to compute. However, according to
Vehtari et al. (2015), LOO may be the preferred method to perform model comparisons.
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4.8. Modeling ordinal data

In the following, we want to briefly discuss a second example to demonstrate the capabilities
of brms in handling ordinal data. Ezzet and Whitehead (1991) analyze data from a two-
treatment, two-period crossover trial to compare 2 inhalation devices for delivering the drug
salbutamol in 286 asthma patients. Patients were asked to rate the clarity of leaflet instruc-
tions accompanying each device, using a four-point ordinal scale. Ratings are predicted by
treat to indicate which of the two inhaler devices was used, period to indicate the time of
administration, and carry to model possible carry over effects.

R> data("inhaler")

R> head(inhaler, n = 1)

subject rating treat period carry

1 1 1 0.5 0.5 0

Typically, the ordinal response is assumed to originate from the categorization of a latent con-
tinuous variable. That is there are K latent thresholds (model intercepts), which partition the
continuous scale into the K + 1 observable, ordered categories. Following this approach leads
to the cumulative or graded-response model (Samejima 1969) for ordinal data implemented
in many R packages. In brms, it is available via family cumulative. Fitting the cumulative
model to the inhaler data, also incorporating an intercept varying by subjects, may look this:

fit3 <- brm(formula = rating ~ treat + period + carry + (1|subject),

data = inhaler, family = cumulative)

While the support for ordinal data in most R packages ends here11, brms allows changes
to this basic model in at least three ways. First of all, three additional ordinal families
are implemented. Families sratio (stopping ratio) and cratio (continuation ratio) are so
called sequential models (Tutz 1990). Both are equivalent to each other for symmetric link
functions such as logit but will differ for asymmetric ones such as cloglog. The fourth
ordinal family is acat (adjacent category) also known as partial credits model (Masters 1982;
Andrich 1978b). Second, restrictions to the thresholds can be applied. By default, thresholds
are ordered for family cumulative or are completely free to vary for the other families. This
is indicated by argument threshold = "flexible" (default) in brm. Using threshold =

"equidistant" forces the distance between two adjacent thresholds to be the same, that is

τk = τ1 + (k − 1)δ

for thresholds τk and distance δ (see also Andrich 1978a; Andrich 1978b; Andersen 1977).
Third, the assumption that predictors have constant effects across categories may be relaxed
for non-cumulative ordinal models (Van Der Ark 2001; Tutz 2000) leading to category specific
effects. For instance, variable treat may only have an impact on the decision between
category 3 and 4, but not on the lower categories. Without using category specific effects,
such a pattern would remain invisible.

11Exceptions known to us are the packages ordinal (Christensen 2015) and VGAM (Yee 2010). The former
supports only cumulative models but with different modeling option for the thresholds. The latter supports all
four ordinal families also implemented in brms as well as category specific effects but no group-specific effects.
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To illustrate all three modeling options at once, we fit a (hardly theoretically justified) stop-
ping ratio model with equidistant thresholds and category specific effects for variable treat

on which we apply an informative prior.

fit4 <- brm(formula = rating ~ period + carry + cs(treat) + (1|subject),

data = inhaler, family = sratio, threshold = "equidistant",

prior = set_prior("normal(-1,2)", coef = "treat"))

Note that priors are defined on category specific effects in the same way as for other population-
level effects. A model summary can be obtained in the same way as before:

R> summary(fit4, waic = TRUE)

Family: sratio (logit)

Formula: rating ~ period + carry + cs(treat) + (1 | subject)

Data: inhaler (Number of observations: 572)

Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup samples = 4000

WAIC: 911.9

Group-Level Effects:

~subject (Number of levels: 286)

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

sd(Intercept) 1.05 0.23 0.56 1.5 648 1

Population-Level Effects:

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

Intercept[1] 0.72 0.13 0.48 0.99 2048 1

Intercept[2] 2.67 0.35 2.00 3.39 969 1

Intercept[3] 4.62 0.66 3.36 5.95 1037 1

period 0.25 0.18 -0.09 0.61 4000 1

carry -0.26 0.22 -0.70 0.17 1874 1

treat[1] -0.96 0.30 -1.56 -0.40 1385 1

treat[2] -0.65 0.49 -1.60 0.27 4000 1

treat[3] -2.65 1.21 -5.00 -0.29 4000 1

Family Specific Parameters:

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

delta 1.95 0.32 1.33 2.6 1181 1

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample

is a crude measure of effective sample size, and Rhat is the potential

scale reduction factor on split chains (at convergence, Rhat = 1).

Trace and density plots of the model parameters as produced by plot(fit4) can be found
in Figure 4. We see that three intercepts (thresholds) and three effects of treat have been
estimated, because a four-point scale was used for the ratings. The treatment effect seems to
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be strongest between category 3 and 4. At the same time, however, the credible interval is also
much larger. In fact, the intervals of all three effects of treat are highly overlapping, which
indicates that there is not enough evidence in the data to support category specific effects.
On the bottom of the output, parameter delta specifies the distance between two adjacent
thresholds and indeed the intercepts differ from each other by the magnitude of delta.

5. Comparison between packages

Over the years, many R packages have been developed that implement MLMs, each being
more or less general in their supported models. Comparing all of them to brms would be too
extensive and barely helpful for the purpose of the present paper. Accordingly, we concentrate
on a comparison with four packages. These are lme4 (Bates et al. 2015) and MCMCglmm

(Hadfield 2010), which are possibly the most general and widely applied R packages for MLMs,
as well as rstanarm (Gabry and Goodrich 2016) and rethinking (McElreath 2016), which are
both based on Stan. As opposed to the other packages, rethinking was primarily written
for teaching purposes and requires the user to specify the full model explicitly using its own
simplified BUGS-like syntax thus helping users to better understand the models that are
fitted to their data.

Regarding model families, all five packages support the most common types such as linear and
binomial models as well as Poisson models for count data. Currently, brms and MCMCglmm

provide more flexibility when modeling categorical and ordinal data. In addition, brms sup-
ports robust linear regression using Student’s distribution, which is also implemented on a
GitHub branch of rstanarm. MCMCglmm allows fitting multinomial models that are cur-
rently not available in the other packages.

Generalizing classical MLMs, brms and MCMCglmm allow fiting zero-inflated and hurdle
models dealing with excess zeros in the response. Furthermore, brms supports non-linear
models similar to the nlme package (Pinheiro, Bates, DebRoy, Sarkar, and R Core Team
2016) providing great flexibility but also requiring more care to produce reasonable results.
Another flexible model class are generalized additive mixed models (Hastie and Tibshirani
1990; Wood 2011; Zuur 2014), which can be fitted with brms and rstanarm.

In all five packages, there are quite a few additional modeling options. Variable link functions
can be specified in all packages except for MCMCglmm, in which only one link is available per
family. MCMCglmm generally supports multivariate responses using data in wide format,
whereas brms currently only offers this option for families gaussian and student. It should
be noted that it is always possible to transform data from wide to long format for compatibility
with the other packages. Autocorrelation of the response can only be fitted in brms, which
supports auto-regressive as well as moving-average effects. For ordinal models in brms, effects
of predictors may vary across different levels of the response as explained in the inhaler
example. A feature currently exclusive to rethinking is the possibility to impute missing
values in the predictor variables.

Information criteria are available in all three packages. The advantage of WAIC and LOO
implemented in brms, rstanarm, and rethinking is that their standard errors can be easily
estimated to get a better sense of the uncertainty in the criteria. Comparing the prior options
of the Bayesian packages, brms and rethinking offer a little more flexibility than MCMCglmm

and rstanarm, as virtually any prior distribution can be applied on population-level effects
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as well as on the standard deviations of group-level effects. In addition, we believe that the
way priors are specified in brms and rethinking is more intuitive as it is directly evident what
prior is actually applied. A more detailed comparison of the packages can be found in Table 1
and Table 2. To facilitate the understanding of the model formulation in brms, Table 3 shows
lme4 function calls to fit sample models along with the equivalent brms syntax.

So far the focus was only on capabilities. Another important topic is speed, especially for
more complex models. Of course, lme4 is usually much faster than the other packages as it
uses maximum likelihood methods instead of MCMC algorithms, which are slower by design.
To compare the efficiency of the four Bayesian packages, we fitted multilevel models on real
data sets using the minimum effective sample size divided by sampling time as a measure of
sampling efficiency. One should always aim at running multiple chains as one cannot be sure
that a single chain really explores the whole posterior distribution. However, as MCMCglmm

does not come with a built-in option to run multiple chains, we used only a single chain to
fit the models after making sure that it leads to the same results as multiple chains. The R

code allowing to replicate the results is available as supplemental material.

The first thing that becomes obvious when fitting the models is that brms and rethinking

need to compile the C++ model before actually fitting it, because the Stan code being parsed
to C++ is generated on the fly based on the user’s input. Compilation takes about a half to
one minute depending on the model complexity and computing power of the machine. This
is not required by rstanarm and MCMCglmm, although the former is also based on Stan, as
compilation takes place only once at installation time. While the latter approach saves the
compilation time, the former is more flexible when it comes to model specification. For small
and simple models, compilation time dominates the overall computation time, but for larger
and more complex models, sampling will take several minutes or hours so that one minute
more or less will not really matter, anymore. Accordingly, the following comparisons do not
include the compilation time.

In models containing only group-specific intercepts, MCMCglmm is usually more efficient
than the Stan packages. However, when also estimating group-specific slopes, MCMCglmm

falls behind the other packages and quite often refuses to sample at all unless one carefully
specifies informative priors. Note that these results are obtained by running only a single
chain. For all three Stan packages, sampling efficiency can easily be increased by running
multiple chains in parallel. Comparing the Stan packages to each other, brms is usually most
efficient for models with group-specific terms, whereas rstanarm tends to be roughly 50%
to 75% as efficient at least for the analyzed data sets. The efficiency of rethinking is more
variable depending on the model formulation and data, sometimes being slightly ahead of
the other two packages, but usually being considerably less efficient. Generally, rethinking

loses efficiency for models with many population-level effects presumably because one cannot
use design matrices and vectorized prior specifications for population-level parameters. Note
that it was not possible to specify the exact same priors across packages due to varying
parameterizations. Of course, efficiency depends heavily on the model, chosen priors, and
data at hand so that the present results should not be over-interpreted.

6. Conclusion

The present paper is meant to provide a general overview on the R package brms implement-
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brms lme4 MCMCglmm

Supported model types:

Linear models yes yes yes
Robust linear models yes no no
Binomial models yes yes yes
Categorical models yes no yes
Multinomial models no no yes
Count data models yes yes yes
Survival models yes1 yes yes
Ordinal models various no cumulative
Zero-inflated and hurdle models yes no yes
Generalized additive models yes no no
Non-linear models yes no no

Additional modeling options:

Variable link functions various various no
Weights yes yes no
Offset yes yes using priors
Multivariate responses limited no yes
Autocorrelation effects yes no no
Category specific effects yes no no
Standard errors for meta-analysis yes no yes
Censored data yes no yes
Truncated data yes no no
Customized covariances yes no yes
Missing value imputation no no no

Bayesian specifics:

parallelization yes – no
population-level priors flexible –3 normal
group-level priors normal –3 normal
covariance priors flexible –3 restricted4

Other:

Estimator HMC, NUTS ML, REML MH, Gibbs2

Information criterion WAIC, LOO AIC, BIC DIC
C++ compiler required yes no no
Modularized no yes no

Table 1: Comparison of the capabilities of the brms, lme4 and MCMCglmm package. Notes:
(1) Weibull family only available in brms. (2) Estimator consists of a combination of both
algorithms. (3) Priors may be imposed using the blme package (Chung et al. 2013). (4) For
details see Hadfield (2010).
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brms rstanarm rethinking

Supported model types:

Linear models yes yes yes
Robust linear models yes yes1 no
Binomial models yes yes yes
Categorical models yes no no
Multinomial models no no no
Count data models yes yes yes
Survival models yes2 yes yes
Ordinal models various cumulative3 no
Zero-inflated and hurdle models yes no no
Generalized additive models yes yes no
Non-linear models yes no limited4

Additional modeling options:

Variable link functions various various various
Weights yes yes no
Offset yes yes yes
Multivariate responses limited no no
Autocorrelation effects yes no no
Category specific effects yes no no
Standard errors for meta-analysis yes no no
Censored data yes no no
Truncated data yes no yes
Customized covariances yes no no
Missing value imputation no no yes

Bayesian specifics:

parallelization yes yes yes
population-level priors flexible normal, Student-t flexible
group-level priors normal normal normal
covariance priors flexible restricted5 flexible

Other:

Estimator HMC, NUTS HMC, NUTS HMC, NUTS
Information criterion WAIC, LOO AIC, LOO AIC, LOO
C++ compiler required yes no yes
Modularized no no no

Table 2: Comparison of the capabilities of the brms, rstanarm and rethinking package. Notes:
(1) Currently only implemented on a branch on GitHub. (2) Weibull family only available
in brms. (3) No group-level terms allowed. (4) The parser is mainly written for linear
models but also accepts some non-linear model specifications. (5) For details see https:

//github.com/stan-dev/rstanarm/wiki/Prior-distributions.

https://github.com/stan-dev/rstanarm/wiki/Prior-distributions
https://github.com/stan-dev/rstanarm/wiki/Prior-distributions
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Dataset Function call

cake

lme4
lmer(angle ∼ recipe * temperature + (1|recipe:replicate),

data = cake)

brms
brm(angle ∼ recipe * temperature + (1|recipe:replicate),

data = cake)

sleepstudy

lme4 lmer(Reaction ∼ Days + (Days|Subject), data = sleepstudy)

brms brm(Reaction ∼ Days + (Days|Subject), data = sleepstudy)

cbpp1

lme4
glmer(cbind(incidence, size - incidence) ∼ period + (1 | herd),

family = binomial("logit"), data = cbpp)

brms
brm(incidence | trials(size) ∼ period + (1 | herd),

family = binomial("logit"), data = cbpp)

grouseticks1

lme4
glmer(TICKS ∼ YEAR + HEIGHT + (1|BROOD) + (1|LOCATION),

family = poisson("log"), data = grouseticks)

brms
brm(TICKS ∼ YEAR + HEIGHT + (1|BROOD) + (1|LOCATION),

family = poisson("log"), data = grouseticks)

VerbAgg2

lme4
glmer(r2 ∼ (Anger + Gender + btype + situ)ˆ2 + (1|id)

+ (1|item), family = binomial, data = VerbAgg)

brms
brm(r2 ∼ (Anger + Gender + btype + situ)ˆ2 + (1|id)

+ (1|item), family = bernoulli, data = VerbAgg)

Table 3: Comparison of the model syntax of lme4 and brms using data sets included in lme4.
Notes: (1) Default links are used to that the link argument may be omitted. (2) Fitting
this model takes some time. A proper prior on the population-level effects (e.g., prior =

set_prior("normal(0,5)")) may help in increasing sampling speed.
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ing MLMs using the probabilistic programming language Stan for full Bayesian inference.
Although only a small selection of the modeling options available in brms are discussed in
detail, I hope that this article can serve as a good starting point to further explore the
capabilities of the package.

For the future, I have several plans on how to improve the functionality of brms. I want to
include multivariate models that can handle multiple response variables coming from different
distributions as well as new correlation structures for instance for spatial data. Similarily,
distributional regression models as well as mixture response distributions appear to be valu-
able extensions of the package. I am always grateful for any suggestions and ideas regarding
new features.
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Figure 2: Trace and Density plots of all relevant parameters of the kidney model discussed
in Section 4.
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discussed in Section 4.
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Figure 4: Trace and Density plots of all relevant parameters of the inhaler model discussed
in Section 4.
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