| Type: | Package | 
| Title: | Test for Equality of Covariance Matrices | 
| Version: | 0.1.0 | 
| Description: | Computes p-values using the largest root test using an approximation to the null distribution by Johnstone (2008) <doi:10.1214/08-AOS605>. | 
| Depends: | R (≥ 3.0.0) | 
| Imports: | RMTstat, stats, corpcor | 
| License: | MIT + file LICENSE | 
| LazyData: | true | 
| URL: | http://github.com/turgeonmaxime/covequal | 
| BugReports: | http://github.com/turgeonmaxime/covequal/issues | 
| Suggests: | testthat, covr | 
| RoxygenNote: | 6.0.1 | 
| NeedsCompilation: | no | 
| Packaged: | 2017-10-12 12:57:44 UTC; mturgeon | 
| Author: | Maxime Turgeon [aut, cre] | 
| Maintainer: | Maxime Turgeon <maxime.turgeon@mail.mcgill.ca> | 
| Repository: | CRAN | 
| Date/Publication: | 2017-10-14 13:11:11 UTC | 
Test for equality of covariance matrices
Description
Uses Roy's union-intersection principle for testing for equality of covariance matrices between two samples. Also provides p-values.
Usage
test_covequal(X, Y, inference = c("TW", "permutation"), nperm)
Arguments
| X | matrix of size n1 x p | 
| Y | matrix of size n2 x p | 
| inference | Method for computing p-value. | 
| nperm | Number of permutations. See details. | 
Value
A list containing the test statistic and the p-value.
Examples
X <- matrix(rnorm(50*100), ncol = 100)
Y <- matrix(rnorm(40*100), ncol = 100)
test_covequal(X, Y, inference = "TW", nperm = 10)