
A drop-in replacement for dplyr, powered by DuckDB for speed.
dplyr is the grammar of data manipulation in the tidyverse. The duckplyr package will run all of your existing dplyr code with identical results, using DuckDB where possible to compute the results faster. In addition, you can analyze larger-than-memory datasets straight from files on your disk or from the web.
If you are new to dplyr, the best place to start is the data transformation chapter in R for Data Science.
Install duckplyr from CRAN with:
install.packages("duckplyr")You can also install the development version of duckplyr from R-universe:
install.packages("duckplyr", repos = c("https://tidyverse.r-universe.dev", "https://cloud.r-project.org"))Or from GitHub with:
# install.packages("pak")
pak::pak("tidyverse/duckplyr")Calling library(duckplyr) overwrites dplyr methods,
enabling duckplyr for the entire session.
library(conflicted)
library(duckplyr)
#> Loading required package: dplyr
#> ✔ Overwriting dplyr methods with duckplyr methods.
#> ℹ Turn off with `duckplyr::methods_restore()`.conflict_prefer("filter", "dplyr")
#> [conflicted] Will prefer dplyr::filter
#> over any other package.The following code aggregates the inflight delay by year and month
for the first half of the year. We use a variant of the
nycflights13::flights dataset, where the timezone has been
set to UTC to work around a current limitation of duckplyr, see vignette("limits").
flights_df()
#> # A tibble: 336,776 × 19
#>     year month   day dep_time sched_d…¹ dep_d…² arr_t…³ sched…⁴ arr_d…⁵
#>    <int> <int> <int>    <int>     <int>   <dbl>   <int>   <int>   <dbl>
#>  1  2013     1     1      517       515       2     830     819      11
#>  2  2013     1     1      533       529       4     850     830      20
#>  3  2013     1     1      542       540       2     923     850      33
#>  4  2013     1     1      544       545      -1    1004    1022     -18
#>  5  2013     1     1      554       600      -6     812     837     -25
#>  6  2013     1     1      554       558      -4     740     728      12
#>  7  2013     1     1      555       600      -5     913     854      19
#>  8  2013     1     1      557       600      -3     709     723     -14
#>  9  2013     1     1      557       600      -3     838     846      -8
#> 10  2013     1     1      558       600      -2     753     745       8
#> # ℹ 336,766 more rows
#> # ℹ abbreviated names: ¹sched_dep_time, ²dep_delay, ³arr_time,
#> #   ⁴sched_arr_time, ⁵arr_delay
#> # ℹ 10 more variables: carrier <chr>, flight <int>, tailnum <chr>,
#> #   origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
#> #   hour <dbl>, minute <dbl>, time_hour <dttm>
out <-
  flights_df() |>
  filter(!is.na(arr_delay), !is.na(dep_delay)) |>
  mutate(inflight_delay = arr_delay - dep_delay) |>
  summarize(
    .by = c(year, month),
    mean_inflight_delay = mean(inflight_delay),
    median_inflight_delay = median(inflight_delay),
  ) |>
  filter(month <= 6)The result is a plain tibble:
class(out)
#> [1] "tbl_df"     "tbl"        "data.frame"Nothing has been computed yet. Querying the number of rows, or a column, starts the computation:
out$month
#> [1] 1 2 3 4 5 6Note that, unlike dplyr, the results are not ordered, see
?config for details. However, once materialized, the
results are stable:
out
#> # A tibble: 6 × 4
#>    year month mean_inflight_delay median_inflight_delay
#>   <int> <int>               <dbl>                 <dbl>
#> 1  2013     1               -3.86                    -5
#> 2  2013     2               -5.15                    -6
#> 3  2013     3               -7.36                    -9
#> 4  2013     4               -2.67                    -5
#> 5  2013     5               -9.37                   -10
#> 6  2013     6               -4.24                    -7If a computation is not supported by DuckDB, duckplyr will automatically fall back to dplyr.
flights_df() |>
  summarize(
    .by = origin,
    dest = paste(sort(unique(dest)), collapse = " ")
  )
#> # A tibble: 3 × 2
#>   origin dest                                                          
#>   <chr>  <chr>                                                         
#> 1 EWR    ALB ANC ATL AUS AVL BDL BNA BOS BQN BTV BUF BWI BZN CAE CHS C…
#> 2 LGA    ATL AVL BGR BHM BNA BOS BTV BUF BWI CAE CAK CHO CHS CLE CLT C…
#> 3 JFK    ABQ ACK ATL AUS BHM BNA BOS BQN BTV BUF BUR BWI CHS CLE CLT C…Restart R, or call duckplyr::methods_restore() to revert
to the default dplyr implementation.
duckplyr::methods_restore()
#> ℹ Restoring dplyr methods.An extended variant of the nycflights13::flights dataset
is also available for download as Parquet files.
year <- 2022:2024
base_url <- "https://blobs.duckdb.org/flight-data-partitioned/"
files <- paste0("Year=", year, "/data_0.parquet")
urls <- paste0(base_url, files)
tibble(urls)
#> # A tibble: 3 × 1
#>   urls                                                                 
#>   <chr>                                                                
#> 1 https://blobs.duckdb.org/flight-data-partitioned/Year=2022/data_0.pa…
#> 2 https://blobs.duckdb.org/flight-data-partitioned/Year=2023/data_0.pa…
#> 3 https://blobs.duckdb.org/flight-data-partitioned/Year=2024/data_0.pa…Using the httpfs DuckDB extension, we can query these files directly from R, without even downloading them first.
db_exec("INSTALL httpfs")
db_exec("LOAD httpfs")
flights <- read_parquet_duckdb(urls)Like with local data frames, queries on the remote data are executed
lazily. Unlike with local data frames, the default is to disallow
automatic materialization if the result is too large in order to protect
memory: the results are not materialized until explicitly requested,
with a collect() call for instance.
nrow(flights)
#> Error: Materialization would result in more than 9090 rows. Use collect() or as_tibble() to materialize.For printing, only the first few rows of the result are fetched.
flights
#> # A duckplyr data frame: 110 variables
#>     Year Quarter Month DayofMonth DayOfWeek FlightDate Report…¹ DOT_I…²
#>    <dbl>   <dbl> <dbl>      <dbl>     <dbl> <date>     <chr>      <dbl>
#>  1  2022       1     1         14         5 2022-01-14 YX         20452
#>  2  2022       1     1         15         6 2022-01-15 YX         20452
#>  3  2022       1     1         16         7 2022-01-16 YX         20452
#>  4  2022       1     1         17         1 2022-01-17 YX         20452
#>  5  2022       1     1         18         2 2022-01-18 YX         20452
#>  6  2022       1     1         19         3 2022-01-19 YX         20452
#>  7  2022       1     1         20         4 2022-01-20 YX         20452
#>  8  2022       1     1         21         5 2022-01-21 YX         20452
#>  9  2022       1     1         22         6 2022-01-22 YX         20452
#> 10  2022       1     1         23         7 2022-01-23 YX         20452
#> # ℹ more rows
#> # ℹ abbreviated names: ¹Reporting_Airline, ²DOT_ID_Reporting_Airline
#> # ℹ 102 more variables: IATA_CODE_Reporting_Airline <chr>,
#> #   Tail_Number <chr>, Flight_Number_Reporting_Airline <dbl>,
#> #   OriginAirportID <dbl>, OriginAirportSeqID <dbl>,
#> #   OriginCityMarketID <dbl>, Origin <chr>, OriginCityName <chr>,
#> #   OriginState <chr>, OriginStateFips <chr>, OriginStateName <chr>,
#> #   OriginWac <dbl>, DestAirportID <dbl>, DestAirportSeqID <dbl>,
#> #   DestCityMarketID <dbl>, Dest <chr>, DestCityName <chr>,
#> #   DestState <chr>, DestStateFips <chr>, DestStateName <chr>,
#> #   DestWac <dbl>, CRSDepTime <chr>, DepTime <chr>, DepDelay <dbl>,
#> #   DepDelayMinutes <dbl>, DepDel15 <dbl>, …flights |>
  count(Year)
#> # A duckplyr data frame: 2 variables
#>    Year       n
#>   <dbl>   <int>
#> 1  2022 6729125
#> 2  2023 6847899
#> 3  2024 3461319Complex queries can be executed on the remote data. Note how only the relevant columns are fetched and the 2024 data isn’t even touched, as it’s not needed for the result.
out <-
  flights |>
  mutate(InFlightDelay = ArrDelay - DepDelay) |>
  summarize(
    .by = c(Year, Month),
    MeanInFlightDelay = mean(InFlightDelay, na.rm = TRUE),
    MedianInFlightDelay = median(InFlightDelay, na.rm = TRUE),
  ) |>
  filter(Year < 2024)
out |>
  explain()
#> ┌───────────────────────────┐
#> │       HASH_GROUP_BY       │
#> │    ────────────────────   │
#> │          Groups:          │
#> │             #0            │
#> │             #1            │
#> │                           │
#> │        Aggregates:        │
#> │          mean(#2)         │
#> │         median(#3)        │
#> │                           │
#> │       ~6729125 Rows       │
#> └─────────────┬─────────────┘
#> ┌─────────────┴─────────────┐
#> │         PROJECTION        │
#> │    ────────────────────   │
#> │            Year           │
#> │           Month           │
#> │       InFlightDelay       │
#> │       InFlightDelay       │
#> │                           │
#> │       ~13458250 Rows      │
#> └─────────────┬─────────────┘
#> ┌─────────────┴─────────────┐
#> │         PROJECTION        │
#> │    ────────────────────   │
#> │            Year           │
#> │           Month           │
#> │       InFlightDelay       │
#> │                           │
#> │       ~13458250 Rows      │
#> └─────────────┬─────────────┘
#> ┌─────────────┴─────────────┐
#> │       READ_PARQUET        │
#> │    ────────────────────   │
#> │         Function:         │
#> │        READ_PARQUET       │
#> │                           │
#> │        Projections:       │
#> │            Year           │
#> │           Month           │
#> │          DepDelay         │
#> │          ArrDelay         │
#> │                           │
#> │       File Filters:       │
#> │  (CAST(Year AS DOUBLE) <  │
#> │           2024.0)         │
#> │                           │
#> │    Scanning Files: 2/3    │
#> │                           │
#> │       ~13458250 Rows      │
#> └───────────────────────────┘
out |>
  print() |>
  system.time()
#> # A duckplyr data frame: 4 variables
#>     Year Month MeanInFlightDelay MedianInFlightDelay
#>    <dbl> <dbl>             <dbl>               <dbl>
#>  1  2022    11             -5.21                  -7
#>  2  2023    11             -7.10                  -8
#>  3  2022     8             -5.27                  -7
#>  4  2023     4             -4.54                  -6
#>  5  2022     7             -5.13                  -7
#>  6  2022     4             -4.88                  -6
#>  7  2023     8             -5.73                  -7
#>  8  2023     7             -4.47                  -7
#>  9  2022     2             -6.52                  -8
#> 10  2023     5             -6.17                  -7
#> # ℹ more rows
#>    user  system elapsed 
#>   1.145   0.455   9.402Over 10M rows analyzed in about 10 seconds over the internet, that’s not bad. Of course, working with Parquet, CSV, or JSON files downloaded locally is possible as well.
For full compatibility, na.rm = FALSE by default in the
aggregation functions:
flights |>
  summarize(mean(ArrDelay - DepDelay))
#> # A duckplyr data frame: 1 variable
#>   `mean(ArrDelay - DepDelay)`
#>                         <dbl>
#> 1                          NAvignette("large"):
Tools for working with large data
vignette("prudence"):
How duckplyr can help protect memory when working with large
data
vignette("fallback"):
How the fallback to dplyr works internally
vignette("limits"):
Translation of dplyr employed by duckplyr, and current
limitations
vignette("duckdb"):
Using the full power of DuckDB
vignette("developers"):
Using duckplyr for individual data frames and in other packages
vignette("telemetry"):
Telemetry in duckplyr
If you encounter a clear bug, please file an issue with a minimal reproducible example on GitHub. For questions and other discussion, please use forum.posit.co.
Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.