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as.ebm Coerce to an EBM object

Description

If possible, coerces its input to an ebm object.

Usage

as.ebm(x, ...)

Arguments

x An object that inherits from class "interpret.glassbox._ebm._ebm.ExplainableBoostingClassifier"
or "interpret.glassbox._ebm._ebm.ExplainableBoostingRegressor". For
instance, the result of calling fit$copy() where fit is a fitted ebm() object.

... Additional optional arguments. (Currently ignored.)

Value

An ebm object that can be used with the associated methods plot() and so forth.

ebm Explainable Boosting Machine (EBM)

Description

This function is an R wrapper for the explainable boosting functions in the Python interpret library.
It trains an Explainable Boosting Machine (EBM) model, which is a tree-based, cyclic gradient
boosting generalized additive model with automatic interaction detection. EBMs are often as accu-
rate as state-of-the-art blackbox models while remaining completely interpretable.

https://github.com/interpretml/interpret
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Usage

ebm(
formula,
data,
max_bins = 1024L,
max_interaction_bins = 64L,
interactions = 0.9,
exclude = NULL,
validation_size = 0.15,
outer_bags = 16L,
inner_bags = 0L,
learning_rate = 0.04,
greedy_ratio = 10,
cyclic_progress = FALSE,
smoothing_rounds = 500L,
interaction_smoothing_rounds = 100L,
max_rounds = 25000L,
early_stopping_rounds = 100L,
early_stopping_tolerance = 1e-05,
min_samples_leaf = 4L,
min_hessian = 0,
reg_alpha = 0,
reg_lambda = 0,
max_delta_step = 0,
gain_scale = 5,
min_cat_samples = 10L,
cat_smooth = 10,
missing = "separate",
max_leaves = 2L,
monotone_constraints = NULL,
objective = c("auto", "log_loss", "rmse", "poisson_deviance",
"tweedie_deviance:variance_power=1.5", "gamma_deviance", "pseudo_huber:delta=1.0",
"rmse_log"),

n_jobs = -1L,
random_state = 42L,
...

)

Arguments

formula A formula of the form y ~ x1 + x2 + ....

data A data frame containing the variables in the model.

max_bins Max number of bins per feature for the main effects stage. Default is 1024.
max_interaction_bins

Max number of bins per feature for interaction terms. Default is 64.

interactions Interaction terms to be included in the model. Default is 0.9. Current options
include:
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• Integer (1 <= interactions): Count of interactions to be automatically se-
lected.

• Percentage (interactions < 1.0): Determine the integer count of interactions
by multiplying the number of features by this percentage.

• List of numeric pairs: The pairs contain the indices of the features within
each additive term. In addition to pairs, the interactions parameter accepts
higher order interactions. It also accepts univariate terms which will cause
the algorithm to boost the main terms at the same time as the interactions.
When boosting mains at the same time as interactions, the exclude param-
eter should be set to "mains" and currently max_bins needs to be equal to
max_interaction_bins.

exclude Features or terms to be excluded. Default is NULL.
validation_size

Validation set size. Used for early stopping during boosting, and is needed to
create outer bags. Default is 0.15. Options are:

• Integer (1 <= validation_size): Count of samples to put in the validation
sets.

• Percentage (validation_size < 1.0): Percentage of the data to put in the
validation sets.

• 0: Turns off early stopping. Outer bags have no utility. Error bounds will

outer_bags Number of outer bags. Outer bags are used to generate error bounds and help
with smoothing the graphs.

inner_bags Number of inner bags. Default is 0 which turns off inner bagging.

learning_rate Learning rate for boosting. Deafult is 0.04.

greedy_ratio The proportion of greedy boosting steps relative to cyclic boosting steps. A
value of 0 disables greedy boosting, effectively turning it off. Default is 10.

cyclic_progress

This parameter specifies the proportion of the boosting cycles that will actively
contribute to improving the model’s performance. It is expressed as a logical
or numeric between 0 and 1, with the default set to TRUE (1.0), meaning 100%
of the cycles are expected to make forward progress. If forward progress is not
achieved during a cycle, that cycle will not be wasted; instead, it will be used
to update internal gain calculations related to how effective each feature is in
predicting the target variable. Setting this parameter to a value less than 1.0 can
be useful for preventing overfitting. Default is FALSE.

smoothing_rounds

Number of initial highly regularized rounds to set the basic shape of the main
effect feature graphs. Default is 500.

interaction_smoothing_rounds

Number of initial highly regularized rounds to set the basic shape of the interac-
tion effect feature graphs during fitting. Default is 100.

max_rounds Total number of boosting rounds with n_terms boosting steps per round. De-
fault is 25000.

early_stopping_rounds

Number of rounds with no improvement to trigger early stopping. 0 turns off
early stopping and boosting will occur for exactly max_rounds. Default is 100.
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early_stopping_tolerance

Tolerance that dictates the smallest delta required to be considered an improve-
ment which prevents the algorithm from early stopping. early_stopping_tolerance
is expressed as a percentage of the early stopping metric. Negative values indi-
cate that the individual models should be overfit before stopping. EBMs are a
bagged ensemble of models. Setting the early_stopping_tolerance to zero
(or even negative), allows learning to overfit each of the individual models a
little, which can improve the accuracy of the ensemble as a whole. Overfitting
each of the individual models reduces the bias of each model at the expense of
increasing the variance (due to overfitting) of the individual models. But averag-
ing the models in the ensemble reduces variance without much change in bias.
Since the goal is to find the optimum bias-variance tradeoff for the ensemble of
models—not the individual models—a small amount of overfitting of the indi-
vidual models can improve the accuracy of the ensemble as a whole. Default is
1e-05.

min_samples_leaf

Minimum number of samples allowed in the leaves. Default is 4.

min_hessian Minimum hessian required to consider a potential split valid. Default is 0.0.

reg_alpha L1 regularization. Default is 0.0.

reg_lambda L2 regularization. Default is 0.0.

max_delta_step Used to limit the max output of tree leaves; <=0.0 means no constraint. Default
is 0.0.

gain_scale Scale factor to apply to nominal categoricals. A scale factor above 1.0 will cause
the algorithm focus more on the nominal categoricals. Default is 5.0.

min_cat_samples

Minimum number of samples in order to treat a category separately. If lower
than this threshold the category is combined with other categories that have low
numbers of samples. Default is 10.

cat_smooth Used for the categorical features. This can reduce the effect of noises in cate-
gorical features, especially for categories with limited data. Default is 10.0.

missing Method for handling missing values during boosting. Default is "separate".
The placement of the missing value bin can influence the resulting model graphs.
For example, placing the bin on the "low" side may cause missing values to af-
fect lower bins, and vice versa. This parameter does not affect the final place-
ment of the missing bin in the model (the missing bin will remain at index 0 in
the term_scores_ attribute). Possible values for missing are:

• "low": Place the missing bin on the left side of the graphs.
• "high": Place the missing bin on the right side of the graphs.
• "separate": Place the missing bin in its own leaf during each boosting

step, effectively making it location-agnostic. This can lead to overfitting,
especially when the proportion of missing values is small.

• "gain": Choose the best leaf for the missing value contribution at each
boosting step, based on gain.

max_leaves Maximum number of leaves allowed in each tree. Default is 2.
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monotone_constraints

Default is NULL. This parameter allows you to specify monotonic constraints
for each feature’s relationship with the target variable during model fitting. How-
ever, it is generally recommended to apply monotonic constraints post-fit using
the monotonize() attribute rather than setting them during the fitting process.
This recommendation is based on the observation that, during fitting, the boost-
ing algorithm may compensate for a monotone constraint on one feature by
utilizing another correlated feature, potentially obscuring any monotonic vio-
lations. If you choose to define monotone constraints, monotone_constraints
should be a numeric vector with a length equal to the number of features. Each
element in the list corresponds to a feature and should take one of the following
values:

• 0: No monotonic constraint is imposed on the corresponding feature’s par-
tial response.

• +1: The partial response of the corresponding feature should be monotoni-
cally increasing with respect to the target.

• -1: The partial response of the corresponding feature should be monotoni-
cally decreasing with respect to the target.

objective The objective function to optimize. Current options include:

• "auto" (try to determine automatically between "log_loss" and "rmse").
• "rmse" (root mean squared error).
• "poisson_deviance" (e.g., for counts or non-negative integers).
• "tweedie_deviance:variance_power=1.5" (e.g., for modeling total loss

in insurance applications).
• "gamma_deviance" (e.g., for positive continuous response).
• "pseudo_huber:delta=1.0" (e.g., for robust regression).
• "rmse_log" ("rmse" with a log link function).

Default is "auto" which assumes "log_loss" if the response is a factor or
character string and "rmse" otherwise. It’s a good idea to always explicitly set
this argument.

n_jobs Number of jobs to run in parallel. Default is -1. Negative integers are interpreted
as following joblib’s formula (n_cpus + 1 + n_jobs), just like scikit-learn. For
example, n_jobs = -2 means using all threads except 1.

random_state Random state. Setting to NULL generates non-repeatable sequences. Default is
42 to remain consistent with the corresponding Python module.

... Additional optional argument. (Currently ignored.)

Details

In short, EBMs have the general form

E [g (Y |x)] = θ0 +
∑
i

fi (xi) +
∑
ij

fij (xi, xj) (i ̸= j) ,

where,

https://github.com/joblib/joblib
https://scikit-learn.org/stable/
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• g is a link function that allows the model to handle various response types (e.g., the logit link
for logistic regression or Poisson deviance for modeling counts and rates);

• θ0 is a constant intercept (or bias term); ?

• fi is the term contribution (or shape function) for predictor xi (i.e., it captures the main effect
of xi on E [Y |x]);

• fij is the term contribution for the pair of predictors xi and xj (i.e., it captures the joint effect,
or pairwise interaction effect of xi and xj on E [Y |x]).

Value

An object of class "EBM" for which there are print, predict, plot, and merge methods.

Examples

## Not run:
#
# Regression example
#

# Fit a default EBM regressor
fit <- ebm(mpg ~ ., data = mtcars, objective = "rmse")

# Generate some predictions
head(predict(fit, newdata = mtcars))
head(predict(fit, newdata = mtcars, se_fit = TRUE))

# Show global summary and GAM shape functions
plot(fit) # term importance scores
plot(fit, term = "cyl")
plot(fit, term = "cyl", interactive = TRUE)

# Explain prediction for first observation
plot(fit, local = TRUE, X = subset(mtcars, select = -mpg)[1L, ])

## End(Not run)

geom_stepribbon Step ribbons and area plots

Description

A combination of geom_ribbon() and geom_step().
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Usage

geom_stepribbon(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, either as a ggproto
Geom subclass or as a string naming the stat stripped of the stat_ prefix (e.g.
"count" rather than "stat_count")

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

Source

Taken from ldatools.

https://github.com/adibender/ldatools/tree/master
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install_interpret Install interpret

Description

This function will install interpret along with all of its dependencies.

Usage

install_interpret(
envname = "r-ebm",
...,
extra_packages = c("plotly>=3.8.1"),
python_version = ">=3.9,<=3.12",
restart_session = TRUE

)

Arguments

envname Name of or path to a Python virtual environment.

... Additional optional arguments. (Currently ignored.)

extra_packages Additional Python packages to install alongside interpret.

python_version Passed on to virtualenv_starter().
restart_session

Whether to restart the R session after installing (note this will only occur within
RStudio).

Value

No return value, called for side effects.

merge.EBM Merge method for EBM objects

Description

Merge multiple EBMs together.

Usage

## S3 method for class 'EBM'
merge(x, y, ...)
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Arguments

x, y Fitted ebm objects that have been trained on similar data sets that have the same
set of features.

... Additional ebm objects to be merged.

Value

A merged ebm object.

Note

As of right now, the merge() function produces the following error message:

Error in py_repr(x) :
AttributeError: 'ExplainableBoostingRegressor' object has no attribute 'cat_smooth'

Run `reticulate::py_last_error()` for details.

This seems to be a bug in the underlying interpret library and does not prevent this function from
working. The error message is seemingly just a side effect.

Examples

## Not run:
# Generate list of EBMs with different random seeds
ebms <- lapply(1:3, FUN = function(i) {

ebm(mpg ~ ., data = mtcars, outer_bags = 1, random_state = i, obj = "rmse")
})

# Merge EBMs into one and plot term contribution for `cyl`
merged <- do.call(merge, args = ebms)
plot(merged, term = "cyl")

## End(Not run)

plot.EBM Interpret plots for fitted EBM objects

Description

Provides an interactive visualization for a given explanation(s).

https://github.com/interpretml/interpret/
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Usage

## S3 method for class 'EBM'
plot(
x,
term = NULL,
local = FALSE,
X = NULL,
y = NULL,
init_score = NULL,
interactive = FALSE,
n_terms = NULL,
geom = c("point", "col", "bar"),
mapping = NULL,
aesthetics = list(),
horizontal = FALSE,
uncertainty = TRUE,
width = 0.5,
alpha = 0.5,
fill = "grey",
display = c("viewer", "markdown", "url"),
viewer = c("browser", "rstudio"),
full_dashboard = FALSE,
...

)

Arguments

x A fitted ebm() object.

term Character string specifying which term to plot. For interaction effect, you can
supply a pair (e.g., term = c("x1", "x2")). Default is NULL which will just
display the overall importance of each term.

local Logocial indicating whether to display local explanations (TRUE) or global ex-
planations (FALSE). Default is FALSE.

X Data frame or matrix of samples. Unless display = "url" or full_dashboard
= TRUE, then X can only contain a single row.

y Optional vector of response values corresponding to X.

init_score Optional. Either a model that can generate scores or per-sample initialization
score. If samples scores it should be the same length as X.

interactive Logical indicating whether to produce an interactive plot based on HTML. De-
fault is FALSE. Currently, only interactive graphics (i.e., interactive = TRUE)
are available for multiclass outcomes.

n_terms Integer specifying the maximum number of variable importance scores to plot.
Default is NULL which corresponds to all terms in the fitted model.

geom Character string specifying which type of plot to construct for terms associated
with categorical features. Current options are:
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• geom = "bar" (or "col") uses geom_col to construct a bar chart of the
scores.

• geom = "point" uses geom_point to construct a Cleveland dot plot of the
term scores.

Default is "point".

mapping Set of aesthetic mappings created by aes-related functions and/or tidy eval helpers.
See example usage below.

aesthetics List specifying additional arguments passed on to layer. These are often aes-
thetics, used to set an aesthetic to a fixed value, likecolour = "red" or size =
3. See example usage below.

horizontal Logical indicating whether or not term plots for categorical features should be
flipped horzintally. Default is FALSE.

uncertainty Logical indicating whether or not to also display uncertainty via error bars on
the main effect plots. Default is TRUE. Not very useful unless outer_bags > 1
when calling ebm().

width Numeric specifying the width of the error bars displayed in bar/ dot plots for
categorical features. Default is 0.5.

alpha Numeric between 0 and 1 specifying the level of transparency to use when dis-
playing uncertainty in plots for continuous features. Default is 0.5.

fill Character string specifying the fill color to use when displaying uncertainty in
plots for continuous features. Default is "grey".

display Character string specifying how the results should be displayed whenever interactive
= TRUE. Available options are "viewer" (e.g., RStudio viewer browser), "markdown"
(e.g., for vingettes, Quarto, or Rmarkdown documents), or "url" (e.g., to print
a URL which can be pasted into a browser). When display = "url", a URL for
viewing the entire interpret dashboard is provided (i.e., the term and full_dashboard
arguments are ignored).

viewer Character string specifying how the results should be viewed. Current choices
are "broswer", which calls utils::browseURL() to display the results in an
HTML browser, or "rstudio" for displaying the results within the Viewer pane
in an active RStudio session. Also works in VS Code. Default is "browser".

full_dashboard Logical indicating whether or not to display the full interpret dashboard. Default
is FALSE. Only works when display = "viewer" or display = "url" (e.g.,
paste the resulting URL in your browser).

... Additional optional arguments. Currently only passed onto levelplot() for heatmaps
of interaction effects.

Value

When interactive = FALSE (the default), the output is either a ggplot object when visualizing term
importance scores or main effects, or a trellis object when visualizing pairwise interaction effects.
When interactive = TRUE, the return value depends on display argument. When display =
"url", a character string is returned giving the URL for displaying the HTML-based visualization.
Otherwise, the results are viewed as requested (i.e., in a browser, built-in viewer, or displayed in
rendered HTML output).
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predict.EBM Predict method for EBM objects

Description

Compute predicted values from a fitted explainable boosting machine.

Usage

## S3 method for class 'EBM'
predict(
object,
newdata,
type = c("response", "link", "class", "terms"),
se_fit = FALSE,
init_score = NULL,
...

)

Arguments

object A fitted ebm object.

newdata A data frame in which to look for variables with which to predict.

type The type of prediction required. Current options include:

• "response": Returns predictions on the scale of the response variable.
Thus, for a categorical outcome (i.e., binary or multiclass), a matrix of pre-
dicted probabilities is returned.

• "link": Returns predictions on the link scale. For a binary outcome with
logit link, for example, this results in a vector of logits. For a multiclass
outcome, this will return a matrix with one column for each class. Ignored
for regression problems.

• "class": Returns a vector predicted class label for categorical outcomes.
• "terms": Returns a matrix (or list of matrices for multiclass outcomes) of

the individual term contributions (e.g., the f(x)’s). Note that term contri-
butions are on the link scale, where they are additive.

se_fit Logical indicating whether or not standard errors are required. Ignored for mul-
ticlass outcomes. Note that standard errors are only available on the link scale.

init_score Optional. Either a model that can generate scores or per-sample initialization
score. If samples scores it should be the same length as newdata.

... Additional optional arguments. (Currently ignored.)

Value

Either a vector, matrix, or list of results. See the type argument for details.
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print.EBM Print model summary

Description

Display basic information about a fitted ebm object.

Usage

## S3 method for class 'EBM'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

Arguments

x A fitted ebm object.

digits The number of significant digits to be passed to format() when printing.

... Additional optional arguments to be passed to print.default().

Value

Invisibly returns the printed ebm object.
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