
Package ‘eyeris’
March 31, 2025

Type Package

Title Flexible, Extensible, & Reproducible Processing of Pupil Data

Version 1.0.0

Date 2025-03-28

Description Pupillometry offers a non-invasive window into the mind and has been used exten-
sively as a psychophysiological readout of arousal signals linked with cognitive processes like at-
tention, stress, and emotional states (see Clewett et al., 2020 <doi:10.1038/s41467-020-17851-
9>; Kret & Sjak-Shie, 2018 <doi:10.3758/s13428-018-1075-
y>; Strauch, 2024 <doi:10.1016/j.tins.2024.06.002>). Yet, despite decades of pupillometry re-
search, many established packages and workflows to date unfortunately lack design pat-
terns based on Findability, Accessibility, Interoperability, and Reusability (FAIR) princi-
ples (see Wilkinson et al., 2016 <doi:10.1038/sdata.2016.18> for more information). 'eye-
ris', on the other hand, follows a design philosophy that provides users with an intuitive, modu-
lar, performant, and extensible pupillometry data preprocessing framework out-of-the-box. 'eye-
ris' introduces a Brain Imaging Data Structure (BIDS)-like organization for derivative (i.e., pre-
processed) pupillometry data as well as an intuitive workflow for inspecting prepro-
cessed pupil epochs using interactive output report files (Este-
ban et al., 2019 <doi:10.1038/s41592-018-0235-4>; Gor-
golewski et al., 2016 <doi:10.1038/sdata.2016.44>).

Encoding UTF-8

Depends R (>= 4.1)

Imports eyelinker, dplyr, gsignal, purrr, zoo, cli, rlang, stringr,
utils, stats, graphics, grDevices, tidyr, progress, data.table,
withr

RoxygenNote 7.3.2

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

License MIT + file LICENSE

Config/testthat/edition 3

URL https://shawnschwartz.com/eyeris/,

https://github.com/shawntz/eyeris/

1

https://doi.org/10.1038/s41467-020-17851-9
https://doi.org/10.1038/s41467-020-17851-9
https://doi.org/10.3758/s13428-018-1075-y
https://doi.org/10.3758/s13428-018-1075-y
https://doi.org/10.1016/j.tins.2024.06.002
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1038/sdata.2016.44
https://shawnschwartz.com/eyeris/
https://github.com/shawntz/eyeris/

2 bidsify

BugReports https://github.com/shawntz/eyeris/issues

NeedsCompilation no

Author Shawn Schwartz [aut, cre, cph]
(<https://orcid.org/0000-0001-6444-8451>)

Maintainer Shawn Schwartz <stschwartz@stanford.edu>

Repository CRAN

Date/Publication 2025-03-31 10:00:06 UTC

Contents
bidsify . 2
deblink . 4
detransient . 5
detrend . 7
epoch . 8
glassbox . 12
interpolate . 15
load_asc . 15
lpfilt . 17
pipeline_handler . 18
plot.eyeris . 19
zscore . 21

Index 24

bidsify Save out pupil timeseries data in a BIDS-like structure

Description

This method provides a structured way to save out pupil data in a BIDS-like structure. The method
saves out epoched data as well as the raw pupil timeseries, and formats the directory and filename
structures based on the metadata you provide.

Usage

bidsify(
eyeris,
save_all = TRUE,
epochs_list = NULL,
merge_epochs = FALSE,
bids_dir = NULL,
participant_id = NULL,
session_num = NULL,
task_name = NULL,
run_num = NULL,

https://github.com/shawntz/eyeris/issues
https://orcid.org/0000-0001-6444-8451

bidsify 3

merge_runs = FALSE,
save_raw = TRUE,
html_report = FALSE,
pdf_report = FALSE,
report_seed = 0,
report_epoch_grouping_var_col = "matched_event",
verbose = TRUE

)

Arguments

eyeris An object of class eyeris dervived from load().
save_all Logical flag indicating whether all epochs are to be saved or only a subset of

them. Defaults to TRUE.
epochs_list List of epochs to be saved. Defaults to NULL.
merge_epochs Logical flag indicating whether epochs should be saved as one file or as separate

files. Defaults to FLASE (no merge).
bids_dir Base bids_directory.
participant_id BIDS subject ID.
session_num BIDS session ID.
task_name BIDS task ID.
run_num BIDS run ID. For single files without blocks (i.e., runs), run_num specifies

which run this file represents. However, for files with multiple recording blocks
embedded within the same .asc file, this parameter is ignored and blocks are
automatically numbered as runs (block 1 = run-01, block 2 = run-02, etc.) in the
order they appeared/were recorded.

merge_runs Logical flag indicating whether multiple runs (either from multiple recording
blocks existing within the same .asc file (see above), or manually specified)
should be combined into a single output file. When TRUE, adds a ’run’ column
to identify the source run. Defaults to FALSE (i.e., separate files per block/run
– the standard BIDS-like-behavior).

save_raw Logical flag indicating whether to save_raw pupil data in addition to epoched
data. Defaults to TRUE.

html_report Logical flag indicating whether to save out the eyeris preprocessing summary
report as an HTML file. Defaults to FALSE.

pdf_report Logical flag indicating whether to save out the eyeris preprocessing summary
report as a PDF file. Note, a valid TeX distribution must already be installed.
Defaults to FALSE.

report_seed Random seed for the plots that will appear in the report. Defaults to 0. See
plot() for a more detailed description.

report_epoch_grouping_var_col

String name of grouping column to use for epoch-by-epoch diagnostic plots in
an interactive rendered HTML report. Column name must exist (i.e., be a custom
grouping variable name set within the metadata template of your epoch() call).
Defaults to "matched_event", which all epoched dataframes have as a valid
column name. To disable these epoch-level diagnostic plots, set to NULL.

4 deblink

verbose A flag to indicate whether to print detailed logging messages. Defaults to TRUE.
Set to False to suppress messages about the current processing step and run
silently.

Details

In the future, we intend for this function to save out the data in an official BIDS format for eyetrack-
ing data (see the proposal currently under review here). At this time, however, this function instead
takes a more BIDS-inspired approach to organizing the output files for preprocessed pupil data.

Value

Invisibly returns NULL. Called for its side effects.

Examples

Bleed around blink periods just long enough to remove majority of
deflections due to eyelid movements

system.file("extdata", "memory.asc", package = "eyeris") |>
eyeris::load_asc() |>
eyeris::deblink(extend = 50) |>
eyeris::detransient() |>
eyeris::interpolate() |>
eyeris::lpfilt(plot_freqz = TRUE) |>
eyeris::zscore() |>
eyeris::epoch(
events = "PROBE_{type}_{trial}",
limits = c(-1, 1), # grab 1 second prior to and 1 second post event
label = "prePostProbe" # custom epoch label name

) |>
eyeris::bidsify(

bids_dir = tempdir(),
participant_id = "001",
session_num = "01",
task_name = "assocret",
run_num = "01",
save_raw = TRUE, # save out raw timeseries
html_report = TRUE, # generate interactive report document
report_seed = 0 # make randomly selected plot epochs reproducible

)

deblink NA-pad blink events / missing data

https://github.com/bids-standard/bids-specification/pull/1128

detransient 5

Description

Deblinking (a.k.a. NA-padding) of time series data. The intended use of this method is to remove
blink-related artifacts surrounding periods of missing data. For instance, when an individual blinks,
there are usually rapid decreases followed by increases in pupil size, with a chunk of data missing
in-between these ’spike’-looking events. The deblinking procedure here will NA-pad each missing
data point by your specified number of ms.

Usage

deblink(eyeris, extend = 40)

Arguments

eyeris An object of class eyeris dervived from load().

extend Either a single number indicating the number of milliseconds to pad forward/backward
around each missing sample, or, a vector of length two indicating different num-
bers of milliseconds pad forward/backward around each missing sample, in the
format c(backward, forward).

Value

An eyeris object with a new column: pupil_raw_{...}_deblink.

Examples

system.file("extdata", "memory.asc", package = "eyeris") |>
eyeris::load_asc() |>
eyeris::deblink(extend = 40) |> # 40 ms in both directions
plot(seed = 0)

system.file("extdata", "memory.asc", package = "eyeris") |>
eyeris::load_asc() |>
eyeris::deblink(extend = c(40, 50)) |> # 40 ms backward, 50 ms forward
plot(seed = 0)

detransient Remove pupil samples that are physiologically unlikely

Description

The intended use of this method is for removing pupil samples that emerge more quickly than would
be physiologically expected. This is accomplished by rejecting samples that exceed a "speed"-based
threshold (i.e., median absolute deviation from sample-to-sample). This threshold is computed
based on the constant n, which defaults to the value 16.

6 detransient

Usage

detransient(eyeris, n = 16, mad_thresh = NULL)

Arguments

eyeris An object of class eyeris dervived from load().

n A constant used to compute the median absolute deviation (MAD) threshold.

mad_thresh Default NULL. This parameter provides alternative options for handling edge
cases where the computed properties here within detransient()mad_val and
median_speed are very small. For example, if

mad_val = 0 and median_speed = 1,

then, with the default multiplier n = 16,

mad_thresh = median_speed+ (n×mad_val) = 1 + (16× 0) = 1.

In this situation, any speed pi ≥ 1 would be flagged as a transient, which might
be overly sensitive. To reduce this sensitivity, two possible adjustments are avail-
able:

1. If mad_thresh = 1, the transient detection criterion is modified from

pi ≥ mad_thresh

to
pi > mad_thresh.

2. If mad_thresh is very small, the user may manually adjust the sensitivity
by supplying an alternative threshold value here directly via this mad_thresh
parameter.

Details

Computed properties:

• pupil_speed: Compute speed of pupil by approximating the derivative of x (pupil) with
respect to y (time) using finite differences.

– Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two numeric vectors with n ≥ 2;
then, the finite differences are computed as:

δi =
xi+1 − xi

yi+1 − yi
, i = 1, 2, . . . , n− 1.

– This produces an output vector p = (p1, p2, . . . , pn) defined by:

* For the first element:
p1 = |δ1|,

* For the last element:
pn = |δn−1|,

detrend 7

* For the intermediate elements (i = 2, 3, . . . , n− 1):

pi = max{|δi−1|, |δi|}.

• median_speed: The median of the computed pupil_speed:

median_speed = median(p)

• mad_val: The median absolute deviation (MAD) of pupil_speed from the median:

mad_val = median(|p−median_speed|)

• mad_thresh: A threshold computed from the median speed and the MAD, using a constant
multiplier n (default value: 16):

mad_thresh = median_speed+ (n×mad_val)

Value

An eyeris object with a new column in timeseries: pupil_raw_{...}_detransient.

Examples

system.file("extdata", "memory.asc", package = "eyeris") |>
eyeris::load_asc() |>
eyeris::deblink(extend = 50) |>
eyeris::detransient() |>
plot(seed = 0)

detrend Detrend the pupil time series

Description

Linearly detrend_pupil data by fitting a linear model of pupil_data ~ time, and return the fitted
betas and the residuals (pupil_data - fitted_values).

Usage

detrend(eyeris)

Arguments

eyeris An object of class eyeris dervived from load().

Value

An eyeris object with two new columns in timeseries: detrend_fitted_betas, and pupil_raw_{...}_detrend.

8 epoch

Examples

system.file("extdata", "memory.asc", package = "eyeris") |>
eyeris::load_asc() |>
eyeris::deblink(extend = 50) |>
eyeris::detransient() |>
eyeris::interpolate() |>
eyeris::lpfilt(plot_freqz = TRUE) |>
eyeris::detrend() |>
plot(seed = 0)

epoch Epoch (and baseline) pupil data based on custom event message struc-
ture

Description

Intended to be used as the final preprocessing step. This function creates data epochs of either
fixed or dynamic durations with respect to provided events and time limits, and also includes an
intuitive metadata parsing feature where additional trial data embedded within event messages can
easily be identified and joined into the resulting epoched data frames.

Usage

epoch(
eyeris,
events,
limits = NULL,
label = NULL,
calc_baseline = FALSE,
apply_baseline = FALSE,
baseline_type = c("sub", "div"),
baseline_events = NULL,
baseline_period = NULL,
hz = NULL,
verbose = TRUE

)

Arguments

eyeris An object of class eyeris derived from load().

events Either (1) a single string representing the event message to perform trial extrac-
tion around, using specified limits to center the epoch around or no limits
(which then just grabs the data epochs between each subsequent event string
of the same type); (2) a vector containing both start and end event message
strings – here, limits will be ignored and the duration of each trial epoch will

epoch 9

be the number of samples between each matched start and end event mes-
sage pair; or (3) a list of 2 dataframes that manually specify start/end event
timestamp-message pairs to pull out of the raw timeseries data – here, it is re-
quired that each raw timestamp and event message be provided in the following
format:
list(data.frame(time = c(...), msg = c(...)), # start events data.frame(time = c(...),
msg = c(...)), # end events 1 # block number)
where the first data.frame indicates the start event timestamp and message
string pairs, and the second data.frame indicates the end event timestamp and
message string pairs. Additionally, manual epoching only words with 1 block
at a time for event-modes 2 and 3; thus, please be sure to explicitly indicate the
block number in your input list (for examples, see above as well as example #9
below for more details).
For event-modes 1 and 2, the way in which you pass in the event message string
must conform to a standardized protocol so that eyeris knows how to find your
events and (optionally) parse any included metadata into the tidy epoch data
outputs. You have two primary choices: either (a) specify a string followed
by a * wildcard expression (e.g., "PROBE_START*), which will match any mes-
sages that have "PROBE_START ..." (... referring to potential metadata, such
as trial number, stim file, etc.); or (b) specify a string using the eyeris syntax:
(e.g., "PROBE_{type}_{trial}"), which will match the messages that follow
a structure like this "PROBE_START_1" and "PROBE_STOP_1", and generate
two additional metadata columns: type and trial, which would contain the fol-
lowing values based on these two example strings: type: ('START', 'STOP'),
and trial: (1, 1).

limits A vector of 2 values (start, end) in seconds, indicating where trial extraction
should occur centered around any given start message string in the events
parameter.

label An (optional) string you can provide to customize the name of the resulting
eyeris class object containing the epoched data frame. If left as NULL (default),
then list item will be called epoch_xyz, where xyz will be a sanitized version
of the original start event string you provided for matching. If you choose
to specify a label here, then the resulting list object name will take the form:
epoch_label. Warning: if no label is specified and there are no event mes-
sage strings to sanitize, then you may obtain a strange-looking epoch list
element in your output object (e.g., $epoch_, or $epoch_nana, etc.). The
data should still be accessible within this nested lists, however, to avoid am-
biguous list objects, we recommend you provide an epoch label here to be
safe.

calc_baseline A flag indicated whether to perform baseline correction. Note, setting calc_baseline
to TRUE alone will only compute the baseline period, but will not apply it to the
preprocessed timeseries unless apply_baseline is also set to TRUE.

apply_baseline A flag indicating whether to apply the calculated baseline to the pupil timeseries.
The baseline correction will be applied to the pupil from the latest preprocessing
step.

baseline_type Whether to perform subtractive (sub) or divisive (div) baseline correction. De-
faults to sub.

10 epoch

baseline_events

Similar to events, baseline_events, you can supply either (1) a single string
representing the event message to center the baseline calculation around, as indi-
cated by baseline_period; or (2) a single vector containing both a start and
an end event message string – here, baseline_period will be ignored and the
duration of each baseline period that the mean will be calculated on will be the
number of samples between each matched start and end event message pair,
as opposed to a specified fixed duration (as described in 1). Please note, pro-
viding a list of trial-level start/end message pairs (like in the events parameter)
to manually indicate unique start/end chunks for baselining is currently unsup-
ported. Though, we intend to add this feature in a later version of eyeris, given
it likely won’t be a heavily utilized / in demand feature.

baseline_period

A vector of 2 values (start, end) in seconds, indicating the window of data that
will be used to perform the baseline correction, which will be centered around
the single string "start" message string provided in baseline_events. Again,
baseline_period will be ignored if both a "start" and "end" message string are
provided to the baseline_events argument.

hz Data sampling rate. If not specified, will use the value contained within the
tracker’s metadata.

verbose A flag to indicate whether to print detailed logging messages. Defaults to TRUE.
Set to False to suppress messages about the current processing step and run
silently.

Value

Updated eyeris object with dataframes containing the epoched data (epoch_).

Examples

eye_preproc <- system.file("extdata", "memory.asc", package = "eyeris") |>
eyeris::load_asc() |>
eyeris::deblink(extend = 50) |>
eyeris::detransient() |>
eyeris::interpolate() |>
eyeris::lpfilt(plot_freqz = TRUE) |>
eyeris::zscore()

example 1: select 1 second before/after matched event message "PROBE*"
eye_preproc |>

eyeris::epoch(events = "PROBE*", limits = c(-1, 1))

example 2: select all samples between each trial
eye_preproc |>

eyeris::epoch(events = "TRIALID {trial}")

example 3: grab the 1 second following probe onset
eye_preproc |>

eyeris::epoch(
events = "PROBE_START_{trial}",

epoch 11

limits = c(0, 1)
)

example 4: 1 second prior to and 1 second after probe onset
eye_preproc |>

eyeris::epoch(
events = "PROBE_START_{trial}",
limits = c(-1, 1),
label = "prePostProbe" # custom epoch label name

)

example 5: manual start/end event pairs
note: here, the `msg` column of each data frame is optional
eye_preproc |>

eyeris::epoch(
events = list(

data.frame(time = c(11334491), msg = c("TRIALID 22")), # start events
data.frame(time = c(11337158), msg = c("RESPONSE_22")), # end events
1 # block number

),
label = "example5"

)

example 6: manual start/end event pairs
note: set `msg` to NA if you only want to pass in start/end timestamps
eye_preproc |>

eyeris::epoch(
events = list(

data.frame(time = c(11334491), msg = NA), # start events
data.frame(time = c(11337158), msg = NA), # end events
1 # block number

),
label = "example6"

)

examples with baseline arguments enabled

example 7: use mean of 1-s preceding "PROBE_START" (i.e. "DELAY_STOP")
to perform subtractive baselining of the 1-s PROBE epochs.
eye_preproc |>

eyeris::epoch(
events = "PROBE_START_{trial}",
limits = c(0, 1), # grab 0 seconds prior to and 1 second post PROBE event
label = "prePostProbe", # custom epoch label name
calc_baseline = TRUE,
apply_baseline = TRUE,
baseline_type = "sub", # "sub"tractive baseline calculation is default
baseline_events = "DELAY_STOP_*",
baseline_period = c(-1, 0)

)

example 8: use mean of time period between set start/end event messages
(i.e. between "DELAY_START" and "DELAY_STOP"). In this case, the

12 glassbox

`baseline_period` argument will be ignored since both a "start" and "end"
message string are provided to the `baseline_events` argument.
eye_preproc |>

eyeris::epoch(
events = "PROBE_START_{trial}",
limits = c(0, 1), # grab 0 seconds prior to and 1 second post PROBE event
label = "prePostProbe", # custom epoch label name
calc_baseline = TRUE,
apply_baseline = TRUE,
baseline_type = "sub", # "sub"tractive baseline calculation is default
baseline_events = c(

"DELAY_START_*",
"DELAY_STOP_*"

)
)

example 9: additional (potentially helpful) example
start_events <- data.frame(

time = c(11334491, 11338691),
msg = c("TRIALID 22", "TRIALID 23")

)
end_events <- data.frame(

time = c(11337158, 11341292),
msg = c("RESPONSE_22", "RESPONSE_23")

)
block_number <- 1

eye_preproc |>
eyeris::epoch(

events = list(start_events, end_events, block_number),
label = "example9"

)

glassbox The opinionated "glass box" eyeris pipeline

Description

This glassbox function (in contrast to a "black box" function where you run it and get a result
but have no (or little) idea as to how you got from input to output) has a few primary benefits over
calling each exported function from eyeris separately.

Usage

glassbox(
file,
confirm = FALSE,
detrend_data = FALSE,
num_previews = 3,

glassbox 13

preview_duration = 5,
preview_window = NULL,
skip_detransient = FALSE,
verbose = TRUE,
...

)

Arguments

file An SR Research EyeLink .asc file generated by the official EyeLink edf2asc
command.

confirm A flag to indicate whether to run the glassbox pipeline autonomously all the
way through (set to FALSE by default), or to interactively provide a visualization
after each pipeline step, where you must also indicate "(y)es" or "(n)o" to either
proceed or cancel the current glassbox pipeline operation (set to TRUE).

detrend_data A flag to indicate whether to run the detrend step (set to FALSE by default).
Detrending your pupil timeseries can have unintended consequences; we thus
recommend that users understand the implications of detrending – in addition
to whether detrending is appropriate for the research design and question(s) –
before using this function.

num_previews Number of random example "epochs" to generate for previewing the effect of
each preprocessing step on the pupil timeseries.

preview_duration

Time in seconds of each randomly selected preview.
preview_window The start and stop raw timestamps used to subset the preprocessed data from

each step of the eyeris workflow for visualization. Defaults to NULL, meaning
random epochs as defined by num_previews and preview_duration will be
plotted. To override the random epochs, set preview_window here to a vector
with relative start and stop times (e.g., c(5000, 6000) to indicate the raw data
from 5-6 seconds on data that were recorded at 1000 Hz). Note, the start/stop
time values indicated here relate to the raw index position of each pupil sample
from 1 to n (which will need to be specified manually by the user depending
on the sampling rate of the recording; i.e., 5000-6000 for the epoch positioned
from 5-6 seconds after the start of the timeseries, sampled at 1000 Hz).

skip_detransient

A flag to indicate whether to skip the detransient step (set to FALSE by de-
fault). In most cases, this should remain FALSE. For a more detailed description
about likely edge cases that would prompt you to set this to TRUE, see the docs
for detransient().

verbose A flag to indicate whether to print detailed logging messages. Defaults to TRUE.
Set to False to suppress messages about the current processing step and run
silently.

... Additional arguments to override the default, prescribed settings.

Details

First, this glassbox function provides a highly opinionated prescription of steps and starting pa-
rameters we believe any pupillometry researcher should use as their defaults when preprocessing

14 glassbox

pupillometry data.

Second, and not mutually exclusive from the first point, using this function should ideally reduce the
probability of accidental mishaps when "reimplementing" the steps from the preprocessing pipeline
both within and across projects. We hope to streamline the process in such a way that you could
collect a pupillometry dataset and within a few minutes assess the quality of those data while simul-
taneously running a full preprocessing pipeline in 1-ish line of code!

Third, glassbox provides an "interactive" framework where you can evaluate the consequences of
the parameters within each step on your data in real time, facilitating a fairly easy-to-use workflow
for parameter optimization on your particular dataset. This process essentially takes each of the
opinionated steps and provides a pre-/post-plot of the timeseries data for each step so you can
adjust parameters and re-run the pipeline until you are satisfied with the choices of your paramters
and their consequences on your pupil timeseries data.

Value

Preprocessed pupil data contained within an object of class eyeris.

Examples

demo_data <- system.file("extdata", "memory.asc", package = "eyeris")

(1) examples using the default prescribed parameters and pipeline recipe

(a) run an automated pipeline with no real-time inspection of parameters
output <- eyeris::glassbox(demo_data)

plot(
output,
steps = c(1, 5),
preview_window = c(0, nrow(output$timeseries$block_1)),
seed = 0

)

(b) run a interactive workflow (with confirmation prompts after each step)

output <- eyeris::glassbox(demo_data, confirm = TRUE, seed = 0)

(2) examples overriding the default parameters
output <- eyeris::glassbox(

demo_data,
confirm = FALSE, # TRUE if you want to visualize each step in real-time
deblink = list(extend = 40),
lpfilt = list(plot_freqz = FALSE)

)

plot(output, seed = 0)

interpolate 15

interpolate Interpolate missing pupil samples

Description

Linear interpolation of time series data. The intended use of this method is for filling in missing
pupil samples (NAs) in the time series. This method uses "na.approx()" function from the zoo
package, which implements linear interpolation using the "approx()" function from the stats pack-
age. Currently, NAs at the beginning and the end of the data are replaced with values on either end,
respectively, using the "rule = 2" argument in the approx() function.

Usage

interpolate(eyeris, verbose = TRUE)

Arguments

eyeris An object of class eyeris dervived from load().

verbose A flag to indicate whether to print detailed logging messages. Defaults to TRUE.
Set to False to suppress messages about the current processing step and run
silently.

Value

An eyeris object with a new column in timeseries: pupil_raw_{...}_interpolate.

Examples

system.file("extdata", "memory.asc", package = "eyeris") |>
eyeris::load_asc() |>
eyeris::deblink(extend = 50) |>
eyeris::detransient() |>
eyeris::interpolate() |>
plot(seed = 0)

load_asc Load and parse SR Research EyeLink .asc files

Description

This function builds upon the eyelinker::read.asc() function to parse the messages and meta-
data within the EyeLink .asc file. After loading and additional processing, this function returns an
S3 eyeris class for use in all subsequent eyeris pipeline steps and functions.

16 load_asc

Usage

load_asc(file, block = "auto")

Arguments

file An SR Research EyeLink .asc file generated by the official EyeLink edf2asc
command.

block Optional block number specification. The following are valid options:

• "auto" (default): Automatically handles multiple recording segments em-
bedded within the same .asc file. We recommend using this default as this
is likely the safer choice then assuming a single-block recording (unless
you know what you’re doing).

• NULL: Omits block column. Suitable for single-block recordings.
• Numeric value: Manually sets block number based on the value provided

here.

Value

An object of S3 class eyeris with the following attributes:

1. file: Path to the original .asc file.

2. timeseries: Dataframe of all raw timeseries data from the tracker.

3. events: Dataframe of all event messages and their timestamps.

4. blinks: Dataframe of all blink events.

5. info: Dataframe of various metadata parsed from the file header.

6. latest: eyeris variable for tracking pipeline run history.

See Also

eyelinker::read.asc() which this function wraps.

Examples

Basic usage (no block column specified)
system.file("extdata", "memory.asc", package = "eyeris") |>

eyeris::load_asc()

Manual specification of block number
system.file("extdata", "memory.asc", package = "eyeris") |>

eyeris::load_asc(block = 3)

Auto-detect multiple recording segments embedded within the same file
system.file("extdata", "memory.asc", package = "eyeris") |>

eyeris::load_asc(block = "auto")

lpfilt 17

lpfilt Lowpass filtering of time series data

Description

The intended use of this method is for smoothing, although by specifying wp and ws differently one
can achieve highpass or bandpass filtering as well. However, only lowpass filtering should be done
on pupillometry data.

Usage

lpfilt(eyeris, wp = 4, ws = 8, rp = 1, rs = 35, plot_freqz = FALSE)

Arguments

eyeris An object of class eyeris derived from load().

wp The end of passband frequency in Hz (desired lowpass cutoff).

ws The start of stopband frequency in Hz (required lowpass cutoff).

rp Required maximal ripple within passband in dB.

rs Required minimal attenuation within stopband in dB.

plot_freqz Boolean flag for displaying filter frequency response.

Value

An eyeris object with a new column in timeseries: pupil_raw_{...}_lpfilt.

Examples

system.file("extdata", "memory.asc", package = "eyeris") |>
eyeris::load_asc() |>
eyeris::deblink(extend = 50) |>
eyeris::detransient() |>
eyeris::interpolate() |>
eyeris::lpfilt(plot_freqz = TRUE) |>
plot(seed = 0)

18 pipeline_handler

pipeline_handler Build a generic operation (extension) for the eyeris pipeline

Description

pipeline_handler enables flexible integration of custom data processing functions into the eyeris
pipeline. Under the hood, each preprocessing function in eyeris is a wrapper around a core op-
eration that gets tracked, versioned, and stored using this pipeline_handler method. As such,
custom pipeline steps must conform to the eyeris protocol for maximum compatibility with the
downstream functions we provide.

Usage

pipeline_handler(eyeris, operation, new_suffix, ...)

Arguments

eyeris An object of class eyeris containing timeseries data in a list of dataframes
(one per block), various metadata collected by the tracker, and eyeris specific
pointers for tracking the preprocessing history for that specific instance of the
eyeris object.

operation The name of the function to apply to the timeseries data. This custom function
should accept a dataframe x, a string prev_op (i.e., the name of the previous
pupil column – which you DO NOT need to supply as a literal string as this
is inferred from the latest pointer within the eyeris object), and any custom
parameters you would like.

new_suffix A chracter string indicating the suffix you would like to be appended to the name
of the previous operation’s column, which will be used for the new column name
in the updated preprocessed dataframe(s).

... Additional (optional) arguments passed to the operation method.

Details

Following the eyeris protocol also ensures:

• all operations follow a predictable structure, and

• that new pupil data columns based on previous operations in the chain are able to be dynami-
cally constructed within the core timeseries data frame.

Value

An updated eyeris object with the new column added to the timeseries dataframe and the latest
pointer updated to the name of the most recently added column plus all previous columns (ie, the
history "trace" of preprocessing steps from start-to-present).

plot.eyeris 19

See Also

For more details, please check out the following vignettes:

• Anatomy of an eyeris Object

vignette("anatomy", package = "eyeris")

• Building Your Own Custom Pipeline Extensions

vignette("custom-extensions", package = "eyeris")

Examples

first, define your custom data preprocessing function
winsorize_pupil <- function(x, prev_op, lower = 0.01, upper = 0.99) {

vec <- x[[prev_op]]
q <- quantile(vec, probs = c(lower, upper), na.rm = TRUE)
vec[vec < q[1]] <- q[1]
vec[vec > q[2]] <- q[2]
vec

}

second, construct your `pipeline_handler` method wrapper
winsorize <- function(eyeris, lower = 0.01, upper = 0.99) {

pipeline_handler(
eyeris,
winsorize_pupil,
"winsorize",
lower = lower,
upper = upper

)
}

and voilà, you can now connect your custom extension
directly into your custom `eyeris` pipeline definition!
custom_eye <- system.file("extdata", "memory.asc", package = "eyeris") |>

eyeris::load_asc(block = "auto") |>
eyeris::deblink(extend = 50) |>
winsorize()

plot(custom_eye, seed = 1)

plot.eyeris Plot pre-processed pupil data from eyeris

Description

S3 plotting method for objects of class eyeris. Plots a single-panel timeseries for a subset of the
pupil timeseries at each preprocessing step. The intended use of this function is to provide a simple
method for qualitatively assessing the consequences of the preprocessing recipe and parameters on
the raw pupillary signal.

20 plot.eyeris

Usage

S3 method for class 'eyeris'
plot(
x,
...,
steps = NULL,
num_previews = NULL,
preview_duration = NULL,
preview_window = NULL,
seed = NULL,
block = 1,
plot_distributions = TRUE

)

Arguments

x An object of class eyeris derived from load().

... Additional arguments to be passed to plot.

steps Which steps to plot; defaults to all (i.e., plot all steps). Otherwise, pass in a
vector containing the index of the step(s) you want to plot, with index 1 being
the original raw pupil timeseries.

num_previews Number of random example "epochs" to generate for previewing the effect of
each preprocessing step on the pupil timeseries.

preview_duration

Time in seconds of each randomly selected preview.

preview_window The start and stop raw timestamps used to subset the preprocessed data from
each step of the eyeris workflow for visualization. Defaults to NULL, meaning
random epochs as defined by num_examples and example_duration will be
plotted. To override the random epochs, set example_timelim here to a vector
with relative start and stop times (e.g., c(5000, 6000) to indicate the raw data
from 5-6 seconds on data that were recorded at 1000 Hz). Note, the start/stop
time values indicated here relate to the raw index position of each pupil sample
from 1 to n (which will need to be specified manually by the user depending
on the sampling rate of the recording; i.e., 5000-6000 for the epoch positioned
from 5-6 seconds after the start of the timeseries, sampled at 1000 Hz).

seed Random seed for current plotting session. Leave NULL to select num_previews
number of random preview "epochs" (of preview_duration) each time. Other-
wise, choose any seed-integer as you would normally select for base::set.seed(),
and you will be able to continue re-plotting the same random example pupil
epochs each time – which is helpful when adjusting parameters within and
across eyeris workflow steps.

block For multi-block recordings, specifies which block to plot. Defaults to 1. When
a single .asc data file contains multiple recording blocks, this parameter de-
termines which block’s timeseries to visualize. Must be a positive integer not
exceeding the total number of blocks in the recording.

zscore 21

plot_distributions

Logical flag to indicate whether to plot both diagnostic pupil timeseries and
accompanying histograms of the pupil samples at each processing step. Defaults
to TRUE.

Value

No return value; iteratively plots a subset of the pupil timeseries from each preprocessing step run.

Examples

first, generate the preprocessed pupil data
my_eyeris_data <- system.file("extdata", "memory.asc", package = "eyeris") |>

eyeris::load_asc() |>
eyeris::deblink(extend = 50) |>
eyeris::detransient() |>
eyeris::interpolate() |>
eyeris::lpfilt(plot_freqz = TRUE) |>
eyeris::zscore()

controlling the timeseries range (i.e., preview window) in your plots:

example 1: using the default 10000 to 20000 ms time subset
plot(my_eyeris_data, seed = 0)

example 2: using a custom time subset (i.e., 1 to 500 ms)
plot(my_eyeris_data, preview_window = c(1, 500), seed = 0)

controlling which block of data you would like to plot:

example 1: plots first block (default)
plot(my_eyeris_data, seed = 0)

example 2: plots a specific block
plot(my_eyeris_data, block = 1, seed = 0)

example 3: plots a specific block along with a custom preview window
plot(

my_eyeris_data,
block = 1,
preview_window = c(1000, 2000),
seed = 0

)

zscore Z-score pupil timeseries data

22 zscore

Description

The intended use of this method is to scale the arbitrary units of the pupil size timeseries to have a
mean of 0 and a standard deviation of 1. This is accomplished by mean centering the data points and
then dividing them by their standard deviation (i.e., z-scoring the data, similar to base::scale()).
Opting to z-score your pupil data helps with trial-level and between-subjects analyses where arbi-
trary units of pupil size recorded by the tracker do not scale across participants, and therefore make
analyses that depend on data from more than one participant difficult to interpret.

Usage

zscore(eyeris)

Arguments

eyeris An object of class eyeris dervived from load().

Details

In general, it is common to z-score pupil data within any given participant, and furthermore, z-
score that participant’s data as a function of block number (for tasks/experiments where partici-
pants complete more than one block of trials) to account for potential time-on-task effects across
task/experiment blocks.

As such, if you use the eyeris package as intended, you should NOT need to specify any groups
for the participant/block-level situations described above. This is because eyeris is designed to
preprocess a single block of pupil data for a single participant, one at a time. Therefore, when you
later merge all of the preprocessed data from eyeris, each individual, preprocessed block of data
for each participant will have already been independently scaled from the others.

Additionally, if you intend to compare mean z-scored pupil size across task conditions, such as that
for memory successes vs. memory failures, then do NOT set your behavioral outcome (i.e., suc-
cess/failure) variable as a grouping variable within your analysis. If you do, you will consequently
obtain a mean pupil size of 0 and standard deviation of 1 within each group (since the scaled pupil
size would be calculated on the timeseries from each outcome variable group, separately). Instead,
you should compute the z-score on the entire pupil timeseries (before epoching the data), and then
split and take the mean of the z-scored timeseries as a function of condition variable.

Value

An eyeris object with a new column in timeseries: pupil_raw_{...}_z.

Examples

system.file("extdata", "memory.asc", package = "eyeris") |>
eyeris::load_asc() |>
eyeris::deblink(extend = 50) |>
eyeris::detransient() |>
eyeris::interpolate() |>
eyeris::lpfilt(plot_freqz = TRUE) |>
eyeris::zscore() |>
plot(seed = 0)

zscore 23

Index

base::scale(), 22
base::set.seed(), 20
bidsify, 2

deblink, 4
detransient, 5
detransient(), 6, 13
detrend, 7

epoch, 8
eyelinker::read.asc(), 15, 16

glassbox, 12

interpolate, 15

load(), 3, 5–8, 15, 17, 20, 22
load_asc, 15
lpfilt, 17

pipeline_handler, 18
plot(), 3
plot.eyeris, 19

zscore, 21

24

	bidsify
	deblink
	detransient
	detrend
	epoch
	glassbox
	interpolate
	load_asc
	lpfilt
	pipeline_handler
	plot.eyeris
	zscore
	Index

