This vignette is still work in progress. But the examples are hopefully already helpful and inspiring.
Epi Gantt plots are used to visualize exposure times in infectious disease outbreaks. Hospital outbreaks are a common example for their use. Lying times of patients on different wards can be visualized and potential transmission routes identified. Like this:
linelist_hospital_outbreak
#> # A tibble: 8 × 9
#> Patient ward_name_1 ward_start_of_stay_1 ward_end_of_stay_1 ward_name_2
#> <chr> <chr> <date> <date> <chr>
#> 1 0 intensive care un… 2024-06-12 2024-07-25 <NA>
#> 2 1 intensive care un… 2024-06-26 2024-07-03 <NA>
#> 3 2 intensive care un… 2024-06-28 2024-07-06 <NA>
#> 4 3 intensive care un… 2024-06-19 2024-06-26 general wa…
#> 5 4 general ward 2024-07-03 2024-07-12 <NA>
#> 6 5 general ward 2024-07-04 2024-07-15 <NA>
#> 7 6 general ward 2024-07-06 2024-07-11 <NA>
#> 8 7 general ward 2024-06-30 2024-07-05 <NA>
#> # ℹ 4 more variables: ward_start_of_stay_2 <date>, ward_end_of_stay_2 <date>,
#> # pathogen_detection_1 <date>, pathogen_detection_2 <date>
linelist_hospital_outbreak |>
pivot_longer(
cols = starts_with("ward"),
names_to = c(".value", "num"),
names_pattern = "ward_(name|start_of_stay|end_of_stay)_([0-9]+)",
values_drop_na = TRUE
) -> df_stays_long
df_stays_long |> select(Patient, num:end_of_stay)
#> # A tibble: 9 × 5
#> Patient num name start_of_stay end_of_stay
#> <chr> <chr> <chr> <date> <date>
#> 1 0 1 intensive care unit 2024-06-12 2024-07-25
#> 2 1 1 intensive care unit 2024-06-26 2024-07-03
#> 3 2 1 intensive care unit 2024-06-28 2024-07-06
#> 4 3 1 intensive care unit 2024-06-19 2024-06-26
#> 5 3 2 general ward 2024-06-26 2024-07-13
#> 6 4 1 general ward 2024-07-03 2024-07-12
#> 7 5 1 general ward 2024-07-04 2024-07-15
#> 8 6 1 general ward 2024-07-06 2024-07-11
#> 9 7 1 general ward 2024-06-30 2024-07-05
linelist_hospital_outbreak |>
pivot_longer(cols = starts_with("pathogen"), values_to = "date", values_drop_na = TRUE) -> df_detections_long
df_detections_long |> select(Patient, name, date)
#> # A tibble: 9 × 3
#> Patient name date
#> <chr> <chr> <date>
#> 1 0 pathogen_detection_1 2024-06-30
#> 2 0 pathogen_detection_2 2024-07-09
#> 3 1 pathogen_detection_1 2024-07-01
#> 4 2 pathogen_detection_1 2024-07-01
#> 5 3 pathogen_detection_1 2024-07-06
#> 6 4 pathogen_detection_1 2024-07-07
#> 7 5 pathogen_detection_1 2024-07-07
#> 8 6 pathogen_detection_1 2024-07-08
#> 9 7 pathogen_detection_1 2024-07-13
ggplot(df_stays_long) +
geom_epigantt(aes(y = Patient, xmin = start_of_stay, xmax = end_of_stay, color = name)) +
geom_point(aes(y = Patient, x = date, shape = "Date of pathogen detection"), data = df_detections_long) +
scale_y_discrete_reverse() +
theme_bw() +
theme(legend.position = "bottom")
outbreaks::varicella_sim_berlin |>
filter(center1 == "Platz der Luftbruecke") |>
arrange(onset) |>
slice_head(n = 20) |>
mutate(
fullname = paste(firstname, lastname),
fullname = factor(fullname, levels = rev(fullname))
) |>
pivot_longer(
cols = starts_with(c("arrival", "leave", "center")),
names_to = c(".value", "group"),
names_pattern = "(\\w+)(\\d+)"
) |>
ggplot(aes(y = fullname)) +
geom_epigantt(aes(xmin = arrival, xmax = leave, colour = center), lw_scaling_factor = 100) + # linewidth = 4
# geom_point(aes(x = onset)) +
theme_bw() +
theme(legend.position = "top")
ggplot(outbreaks::measles_hagelloch_1861, aes(y = case_ID, xmin = date_of_prodrome, xmax = date_of_rash, fill = class)) +
geom_vline_year(color = "grey50") +
geom_epigantt() +
scale_x_date(date_breaks = "2 weeks", date_labels = "W%V'%G") +
theme_bw()