
Package ‘greta.dynamics’
October 13, 2022

Type Package

Title Modelling Structured Dynamical Systems in 'greta'

Version 0.2.0

Description A 'greta' extension for analysing transition matrices and
ordinary differential equations representing dynamical systems. Provides
functions for analysing transition matrices by iteration, and solving
ordinary differential equations. This is an extension to the 'greta'
software, Golding (2019) <doi:10.21105/joss.01601>.

License Apache License (>= 2)

URL https://github.com/greta-dev/greta.dynamics,

https://greta-dev.github.io/greta.dynamics/

BugReports https://github.com/greta-dev/greta.dynamics/issues

Imports cli, glue, tensorflow (>= 1.14.0)

Depends greta (>= 0.4.2), R (>= 3.1.0)

Suggests covr, knitr, rmarkdown, spelling, testthat (>= 3.1.0),
deSolve, abind

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

Language en-GB

RoxygenNote 7.2.0

SystemRequirements Python (>= 2.7.0) with header files and shared
library; TensorFlow (v1.14; https://www.tensorflow.org/);
TensorFlow Probability (v0.7.0;
https://www.tensorflow.org/probability/)

NeedsCompilation no

Author Nick Golding [aut, cph] (<https://orcid.org/0000-0001-8916-5570>),
Nicholas Tierney [aut, cre] (<https://orcid.org/0000-0003-1460-8722>)

Maintainer Nicholas Tierney <nicholas.tierney@gmail.com>

Repository CRAN

Date/Publication 2022-09-05 08:00:05 UTC

1

https://doi.org/10.21105/joss.01601
https://github.com/greta-dev/greta.dynamics
https://greta-dev.github.io/greta.dynamics/
https://github.com/greta-dev/greta.dynamics/issues
https://orcid.org/0000-0001-8916-5570
https://orcid.org/0000-0003-1460-8722

2 iterate_matrix

R topics documented:

greta.dynamics . 2
iterate_matrix . 2
ode_solve . 4

Index 7

greta.dynamics greta.dynamics: a greta extension for modelling dynamical systems

Description

an extension to greta with functions for simulating dynamical systems, defined by of ordinary dif-
ferential equations (see ode_solve()) or transition matrices (iterate_matrix()).

iterate_matrix iterate transition matrices

Description

Calculate the intrinsic growth rate(s) and stable stage distribution(s) for a stage-structured dynami-
cal system, encoded as state_t = matrix \%*\% state_tm1.

Usage

iterate_matrix(
matrix,
initial_state = rep(1, ncol(matrix)),
niter = 100,
tol = 1e-06

)

Arguments

matrix either a square 2D transition matrix (with dimensions m x m), or a 3D array
(with dimensions n x m x m), giving one or more transition matrices to iterate

initial_state either a column vector (with m elements) or a 3D array (with dimensions n x m
x 1) giving one or more initial states from which to iterate the matrix

niter a positive integer giving the maximum number of times to iterate the matrix

tol a scalar giving a numerical tolerance, below which the algorithm is determined
to have converged to the same growth rate in all stages

https://greta-stats.org/

iterate_matrix 3

Details

iterate_matrix can either act on a single transition matrix and initial state (if matrix is 2D and
initial_state is a column vector), or it can simultaneously act on n different matrices and/or n
different initial states (if matrix and initial_state are 3D arrays). In the latter case, the first
dimension of both objects should be the batch dimension n.

To ensure the matrix is iterated for a specific number of iterations, you can set that number as niter,
and set tol to 0 or a negative number to ensure that the iterations are not stopped early.

Value

a named list with five greta arrays:

• lambda a scalar or vector giving the ratio of the first stage values between the final two itera-
tions.

• stable_state a vector or matrix (with the same dimensions as initial_state) giving the
state after the final iteration, normalised so that the values for all stages sum to one.

• all_states an n x m x niter matrix of the state values at each iteration. This will be 0 for all
entries after iterations.

• converged an integer scalar or vector indicating whether the iterations for each matrix have
converged to a tolerance less than tol (1 if so, 0 if not) before the algorithm finished.

• iterations a scalar of the maximum number of iterations completed before the algorithm
terminated. This should match niter if converged is FALSE.

Note

because greta vectorises across both MCMC chains and the calculation of greta array values, the
algorithm is run until all chains (or posterior samples), sites and stages have converged to stable
growth. So a single value of both converged and iterations is returned, and the value of this
will always have the same value in an mcmc.list object. So inspecting the MCMC trace of these
parameters will only tell you whether the iteration converged in all posterior samples, and the
maximum number of iterations required to do so across all these samples

Examples

Not run:
simulate from a probabilistic 4-stage transition matrix model
k <- 4

component variables
survival probability for all stages
survival <- uniform(0, 1, dim = k)
conditional (on survival) probability of staying in a stage
stasis <- c(uniform(0, 1, dim = k - 1), 1)
marginal probability of staying/progressing
stay <- survival * stasis
progress <- (survival * (1 - stay))[1:(k - 1)]
recruitment rate for the largest two stages
recruit <- exponential(c(3, 5))

4 ode_solve

combine into a matrix:
tmat <- zeros(k, k)
diag(tmat) <- stay
progress_idx <- row(tmat) - col(tmat) == 1
tmat[progress_idx] <- progress
tmat[1, k - (1:0)] <- recruit

analyse this to get the intrinsic growth rate and stable state
iterations <- iterate_matrix(tmat)
iterations$lambda
iterations$stable_distribution
iterations$all_states

Can also do this simultaneously for a collection of transition matrices
k <- 2
n <- 10
survival <- uniform(0, 1, dim = c(n, k))
stasis <- cbind(uniform(0, 1, dim = n), rep(1, n))
stay <- survival * stasis
progress <- (survival * (1 - stasis))[, 1]
recruit_rate <- 1 / seq(0.1, 5, length.out = n)
recruit <- exponential(recruit_rate, dim = n)
tmats <- zeros(10, 2, 2)
tmats[, 1, 1] <- stasis[, 1]
tmats[, 2, 2] <- stasis[, 2]
tmats[, 2, 1] <- progress
tmats[, 1, 2] <- recruit

iterations <- iterate_matrix(tmats)
iterations$lambda
iterations$stable_distribution
iterations$all_states

End(Not run)

ode_solve solve ODEs

Description

Solve a system of ordinary differential equations.

Usage

ode_solve(derivative, y0, times, ..., method = c("ode45", "rk4", "midpoint"))

Arguments

derivative a derivative function. The first two arguments must be ’y’ and ’t’, the state
parameter and scalar timestep respectively. The remaining parameters must be

ode_solve 5

named arguments representing (temporally static) model parameters. Variables
and distributions cannot be defined in the function.

y0 a greta array for the value of the state parameter y at time 0

times a column vector of times at which to evaluate y

... named arguments giving greta arrays for the additional (fixed) parameters

method which solver to use. "ode45" uses adaptive step sizes, whilst "rk4" and "midpoint"
use the fixed grid defined by times; they may be faster but less accurate than
"ode45".

Value

greta array

Examples

Not run:
replicate the Lotka-Volterra example from deSolve
library(deSolve)
LVmod <- function(Time, State, Pars) {

with(as.list(c(State, Pars)), {
Ingestion <- rIng * Prey * Predator
GrowthPrey <- rGrow * Prey * (1 - Prey / K)
MortPredator <- rMort * Predator

dPrey <- GrowthPrey - Ingestion
dPredator <- Ingestion * assEff - MortPredator

return(list(c(dPrey, dPredator)))
})

}

pars <- c(
rIng = 0.2, # /day, rate of ingestion
rGrow = 1.0, # /day, growth rate of prey
rMort = 0.2, # /day, mortality rate of predator
assEff = 0.5, # -, assimilation efficiency
K = 10

) # mmol/m3, carrying capacity

yini <- c(Prey = 1, Predator = 2)
times <- seq(0, 30, by = 1)
out <- ode(yini, times, LVmod, pars)

simulate observations
jitter <- rnorm(2 * length(times), 0, 0.1)
y_obs <- out[, -1] + matrix(jitter, ncol = 2)

~~~~~~~~~
fit a greta model to infer the parameters from this simulated data

greta version of the function

6 ode_solve

lotka_volterra <- function(y, t, rIng, rGrow, rMort, assEff, K) {
Prey <- y[1, 1]
Predator <- y[1, 2]

Ingestion <- rIng * Prey * Predator
GrowthPrey <- rGrow * Prey * (1 - Prey / K)
MortPredator <- rMort * Predator

dPrey <- GrowthPrey - Ingestion
dPredator <- Ingestion * assEff - MortPredator

cbind(dPrey, dPredator)
}

priors for the parameters
rIng <- uniform(0, 2) # /day, rate of ingestion
rGrow <- uniform(0, 3) # /day, growth rate of prey
rMort <- uniform(0, 1) # /day, mortality rate of predator
assEff <- uniform(0, 1) # -, assimilation efficiency
K <- uniform(0, 30) # mmol/m3, carrying capacity

initial values and observation error
y0 <- uniform(0, 5, dim = c(1, 2))
obs_sd <- uniform(0, 1)

solution to the ODE
y <- ode_solve(lotka_volterra, y0, times, rIng, rGrow, rMort, assEff, K)

sampling statement/observation model
distribution(y_obs) <- normal(y, obs_sd)

we can use greta to solve directly, for a fixed set of parameters (the true
ones in this case)
values <- c(

list(y0 = t(1:2)),
as.list(pars)

)
vals <- calculate(y, values = values)[[1]]
plot(vals[, 1] ~ times, type = "l", ylim = range(vals))
lines(vals[, 2] ~ times, lty = 2)
points(y_obs[, 1] ~ times)
points(y_obs[, 2] ~ times, pch = 2)

or we can do inference on the parameters:

build the model (takes a few seconds to define the tensorflow graph)
m <- model(rIng, rGrow, rMort, assEff, K, obs_sd)

compute MAP estimate
o <- opt(m)
o

End(Not run)

Index

greta.dynamics, 2

iterate_matrix, 2
iterate_matrix(), 2

ode_solve, 4
ode_solve(), 2

7

	greta.dynamics
	iterate_matrix
	ode_solve
	Index

