
Package ‘icardaFIGSr’
October 13, 2022

Type Package

Title Subsetting using Focused Identification of the Germplasm
Strategy (FIGS)

Version 1.0.2

Description Running Focused Identification of the Germplasm Strategy (FIGS) to make best sub-
sets from Genebank Collection.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Imports caret, doParallel, dplyr, ggplot2,foreach, httr, magrittr,
methods, plotROC, plyr, raster, reshape2, sp, leaflet

RoxygenNote 7.1.1

Suggests
NeedsCompilation no

Depends R (>= 3.5.0)

Author Khadija Aziz [aut],
Zakaria Kehel [aut, cre],
Bancy Ngatia [aut],
Khadija Aouzal [aut],
Zainab Azough [ctb],
Amal Ibnelhobyb [ctb],
Fawzy Nawar [ctb]

Maintainer Zakaria Kehel <z.kehel@cgiar.org>

Repository CRAN

Date/Publication 2021-12-10 12:10:02 UTC

R topics documented:
durumDaily . 2
durumWC . 3

1

2 durumDaily

extractWCdata . 3
FIGS . 4
getAccessions . 5
getCrops . 7
getDaily . 7
getGrowthPeriod . 9
getMetrics . 10
getMetricsPCA . 12
getOnset . 13
getTraits . 15
getTraitsData . 17
mapAccessions . 18
modelingSummary . 19
septoriaDurumWC . 21
splitData . 21
tuneTrain . 22
varimpPred . 25

Index 28

durumDaily durumDaily

Description

200 sites from durum wheat collection and their daily climatic data.

Usage

data(durumDaily)

Format

The data includes the site unique identifier and daily data for 4 climatic variables (tmin, tmax,
precipitation and relative humidity)

Examples

if(interactive()){
Load durum wheat data with their daily climatic variables obtained from ICARDA database
data(durumDaily)

}

durumWC 3

durumWC durumWC

Description

200 sites from durum wheat collection and their world clim data.

Usage

data(durumWC)

Format

The data includes the site unique identifier, longitude, latitude and 55 worldclim data worldclim

Examples

if(interactive()){
Load durum wheat data with world climatic variables obtained from WorldClim database
data(durumWC)
}

extractWCdata Extracting World Climatic Data

Description

extractWCdata returns a data frame based on specified climatic variables.

Usage

extractWCdata(sites, long, lat, var, res = 2.5)

Arguments

sites object of class "data.frame" with coordinates of sites from which to extract data.

long character. Name of column from sites with longitude.

lat character. Name of column from sites with latitude.

var character. Climatic variable(s) to be extracted: ’tavg’, ’tmin’, ’tmax’, ’prec’,
’bio’, ’srad’, ’vapr’, ’wind’

res numeric. Spatial resolution. Default 2.5

https://www.worldclim.org

4 FIGS

Details

A grid can be created with any particular coordinates and used as input for sites (see section
’Examples’). extractWCdata will use the given coordinates to extract data from the WorldClim2.1
database. The extracted data will most likely contain NA’s for sites where climatic data is not
available. These should be removed or imputed before using the data to make predictions.

Value

An object of class "data.frame" with specified climatic variables for coordinates in sites.

Author(s)

Zakaria Kehel, Fawzy Nawar, Bancy Ngatia, Khadija Aouzal

Examples

if(interactive()){
Create grid
sp1 <- seq(-16, 115, length = 10)
sp2 <- seq(25, 59, length = 10)
sp <- expand.grid(x = sp1, y = sp2)

Extract data using grid
sp.df0 <- extractWCdata(sp, long = 'x', lat = 'y', var = 'tavg')
sp.df <- na.omit(sp.df0)
}

FIGS FIGS subset for wheat sodicity resistance

Description

FIGS subset for wheat sodicity resistance constructed using the harmonized world soil database
HWSD

Usage

data(FIGS)

Format

A data frame with 201 rows and 15 variables

References

HWSD

https://www.fao.org/3/aq361e/aq361e.pdf

getAccessions 5

Examples

if(interactive()){
data(FIGS)

}

getAccessions Getting Accession Data from ICARDA’s Genebank Documentation
System

Description

Return a data frame with accession data for the specified crop.

Usage

getAccessions(
crop = "",
ori = NULL,
IG = "",
doi = FALSE,
taxon = FALSE,
collectionYear = FALSE,
coor = FALSE,
available = FALSE

)

Arguments

crop character. Crop for which to get accession data. See section ’Details’ for avail-
able crops or use getCrops function. Default: "".

ori string. Country of origin using the ISO 3166-1 alpha-3 country codes. Default:
NULL.

IG integer. Unique identifier of accession. Default: "".

doi boolean. If TRUE , the function will return the digital object identifiers DOI for
the accessions. Default: FALSE.

taxon boolean. If TRUE, the function will return the taxon information of the acces-
sions. Default: FALSE.

collectionYear boolean. If TRUE, the function will return the year of the collecting mission.
Default: FALSE.

coor boolean. If TRUE, returns only georeferenced accessions containing longitude
and latitude. Default: FALSE.

available boolean. If TRUE, returns the availability of accessions for distribution, Default:
FALSE.

6 getAccessions

Details

Types of crops available include:

• ’Aegilops’

• ’Barley’

• ’Bread wheat’

• ’Chickpea’

• ’Durum wheat’

• ’Faba bean’

• ’Faba bean BPL’

• ’Forage and range’

• ’Lathyrus’

• ’Lentil’

• ’Medicago annual’

• ’Not mandate cereals’

• ’Pisum’

• ’Primitive wheat’

• ’Trifolium’

• ’Vicia’

• ’Wheat hybrids’

• ’Wheat wild relatives’

• ’Wild Cicer’

• ’Wild Hordeum’

• ’Wild Lens’

• ’Wild Triticum’

Alternatively, the list of available crops can be fetched from ICARDA’s online server using getCrops.

Value

A data frame with accession passport data for specified crop in crop from the locations in ori.

Author(s)

Khadija Aouzal, Amal Ibnelhobyb, Zakaria Kehel, Fawzy Nawar

Examples

if(interactive()){
Obtain accession data for durum wheat
durum <- getAccessions(crop = 'Durum wheat', coor = TRUE)

}

getCrops 7

getCrops Crops Available in ICARDA’s Genebank

Description

this function allows to obtain a list of crops available in ICARDA’s Genebank Documentation Sys-
tem, it returns a list with codes and names of available crops.

Usage

getCrops()

Details

The crop codes and names are fetched from ICARDA’s online server.

Value

A list containing all crops available in ICARDA’s Genebank Documentation System.

Author(s)

Zakaria Kehel, Fawzy Nawar

Examples

if(interactive()){
Get list of available crops
crops <- getCrops()
}

getDaily Extracting Daily Climatic Variables

Description

this function extracts daily values of climatic variables from ICARDA Data, it returns a list or data
frame based on specified climatic variables. Each variable will have 365 values for each day of the
calendar year.

Usage

getDaily(sites, var, cv = FALSE)

8 getDaily

Arguments

sites character. Names of sites from which to extract data.

var character. Climatic variable(s) to be extracted.

cv boolean. If TRUE, returns a data frame with coefficient of variation for each
variable for each day of the calendar year. Default: FALSE.

Details

ICARDA data has to be accessible either from a local directory on the computer or from an online
repository. getDaily will extract the climatic variables specified in var for the sites specified in
sites.

For daily data, the function extracts average daily values starting from the first day of the calendar
year, i.e. January 1, until the last day of the calendar year, i.e. December 31. Thus, 365 columns
with daily values are created for each variable.

Value

An object with specified climatic variables for names in sites.

If cv = TRUE, the object is a list containing two data frames: the first one with average daily values of
climatic variables, and the second one with daily coefficient of variation for each climatic variable.

If cv = FALSE, the object is a data frame with average daily values of climatic variables.

Author(s)

Zakaria Kehel, Bancy Ngatia

See Also

cast

Examples

if(interactive()){
Extract daily data for durum wheat
durum <- getAccessions(crop = 'Durum wheat', coor = TRUE)
daily <- getDaily(sites = levels(as.factor(durum$SiteCode)),

var = c('tavg', 'prec', 'rh'), cv = TRUE)

Get data frame with coefficient of variation from list object
returned (when cv = TRUE)
daily.cv <- daily[[2]]
}

getGrowthPeriod 9

getGrowthPeriod Calculating Growing Degree Days and Lengths of Growth Stages for
Various Crops Using Onset Data from ICARDA’s Database

Description

Calculates growing degree days (GDD) as well as cumulative GDD, and returns a list of various
data frames based on specified arguments.

Usage

getGrowthPeriod(sitecode, crop, base, max, gdd = FALSE)

Arguments

sitecode expression. Vector with names of sites from which to extract onset data.

crop character. Type of crop in ICARDA database. See section ’Details’ for crops
which have calculations available.

base integer. Minimum temperature constraint for the crop.

max integer. Maximum temperature constraint for the crop.

gdd boolean. If TRUE, returns a data frame containing calculated GDD and accumu-
lated GDD together with climatic variables used for the calculations. Default:
FALSE.

Details

Growing degree days for various crops are calculated using average daily minimum and maximum
temperature values obtained from onset data. The temperature constraints specified in base and
max are first applied before the calculations are done. These constraints ensure very low or high
temperatures which prevent growth of a particular crop are not included. Crops for which GDD
calculations are available include: ’Durum wheat’, ’Bread wheat’, ’Barley’, ’Chickpea’, ’Lentil’.
Each of these can be supplied as options for the argument crop. Cumulative GDD values determine
the length of different growing stages. Growing stages vary depending on the type of crop. Durum
wheat, bread wheat and barley have five growth stages, i.e. beginning of heading, beginning and
completion of flowering, and beginning and completion of grain filling. Chickpea and lentil have
four growth stages, i.e. beginning of flowering, completion of 50 The length of the full growth cycle
of the crop for each site is also given in the output data frame.

Value

A list object with different data frames depending on specified option in gdd. If gdd = TRUE, the
object is a list containing three data frames: the first one with lengths of different growing stages, the
second one with original onset data with phenological variables, and the third one with calculated
GDD and accumulated GDD for the sites specified in sitecode. If gdd = FALSE, the object is a list
containing two data frames: the first one with lengths of different growing stages, and the second
one with original onset data with phenological variables for the sites specified in sitecode.

10 getMetrics

Author(s)

Khadija Aouzal, Zakaria Kehel, Bancy Ngatia

Examples

if(interactive()){
Calculate GDD for durum wheat
data(durumDaily)
growth <- getGrowthPeriod(sitecode = durumDaily$site_code,

crop = 'Durum wheat', base = 0,
max = 35, gdd = TRUE)

Get data frame with lengths of growth stages from list
object returned
growth.lengths <- growth[[1]]

Get data frame with phenotypic variables from list
object returned
growth.pheno <- growth[[2]]

Get data frame with GDD, cumulative GDD and climatic
variables from list object returned (when gdd = TRUE)
growth.gdd <- growth[[3]]
}

getMetrics Performance Measures

Description

this function allows to obtain performance measures from Confusion Matrix, it returns a data frame
containing performance measures from the confusion matrix given by the caret package.

Usage

getMetrics(y, yhat, classtype)

Arguments

y expression. The class variable.

yhat expression. The vector of predicted values.

classtype character or numeric. The number of levels in y.

getMetrics 11

Details

getMetrics works with target variables that have two, three, four, six or eight classes.

The function relies on the caret package to obtain the confusion matrix from which performance
measures are extracted. It can be run for several algorithms, and the results combined into one data
frame for easier comparison (see section ’Examples’).

Predictions have to be obtained beforehand and used as input for yhat. The predict.train func-
tion in caret should be run without argument type when obtaining the predictions.

Value

Outputs an object with performance measures calculated from the confusion matrix given by the
caret package. A data frame is the resulting output with the first column giving the name of the
performance measure, and the second column giving the corresponding value.

Author(s)

Zakaria Kehel, Bancy Ngatia, Khadija Aziz

See Also

confusionMatrix

Examples

if(interactive()){
Obtain predictions from previous models

data(septoriaDurumWC)
split.data <- splitData(septoriaDurumWC, seed = 1234, y = "ST_S", p = 0.7)
data.train <- split.data$trainset
data.test <- split.data$testset

knn.mod <- tuneTrain(data = septoriaDurumWC,y = 'ST_S',method = 'knn',positive = 'R')
nnet.mod <- tuneTrain(data = septoriaDurumWC,y = 'ST_S',method = 'nnet',positive = 'R')

pred.knn <- predict(knn.mod$Model, newdata = data.test[, -1])
pred.nnet <- predict(nnet.mod$Model, newdata = data.test[, -1])

metrics.knn <- getMetrics(y = data.test$ST_S, yhat = pred.knn, classtype = 2)
metrics.nnet <- getMetrics(y = data.test$ST_S, yhat = pred.nnet, classtype = 2)
}

12 getMetricsPCA

getMetricsPCA Performance Measures with PCA pre-processing

Description

getMetricsPCA allows to obtain performance measures from Confusion Matrix for algorithms with
PCA pre-processing,it returns a data frame containing performance measures from the confusion
matrix given by the caret package when algorithms have been run with PCA pre-processing.

Usage

getMetricsPCA(yhat, y, classtype, model)

Arguments

yhat expression. The vector of predicted values.

y expression. The class variable.

classtype character or numeric. The number of levels in y.

model expression. The model object to which output of the model has been assigned.

Details

Works with target variables that have two, three, four, six or eight classes. Similar to getMetrics
but used in the case where models have been run with PCA specified as an option for the preProcess
argument in the train function of caret.

Value

Outputs an object with performance measures calculated from the confusion matrix given by the
caret package. A data frame is the resulting output with the first column giving the name of the
performance measure, and the second column giving the corresponding value.

Author(s)

Khadija Aziz, Zainab Azough, Zakaria Kehel, Bancy Ngatia

See Also

confusionMatrix, predict.train

Examples

if(interactive()){
Obtain predictions from several previously run models
dataX <- subset(data, select = -y)
pred.knn <- predict(model.knn, newdata = dataX)
pred.rf <- predict(model.rf, newdata = dataX)

getOnset 13

Get metrics for several algorithms
metrics.knn <- getMetricsPCA(y = data$y, yhat = pred.knn,

classtype = 2, model = model.knn)
metrics.rf <- getMetricsPCA(y = data$y, yhat = pred.rf,

classtype = 2, model = model.rf)

Indexing for 2-class models to remove extra column with
names of performance measures
metrics.all <- cbind(metrics.knn, metrics.rf[, 2])

No indexing needed for 3-, 4-, 6- or 8-class models
metrics.all <- cbind(metrics.knn, metrics.rf)
}

getOnset Extracting Daily Climatic Variables Based on Onset of Planting

Description

this function Extracts Daily values of climatic variables from remote ICARDA data based on Onset
of Planting, it returns a list based on specified climatic variables. Each variable will have 365 values
for each day of the (onset) year beginning with planting day.

Usage

getOnset(sites, crop, var, cv = FALSE)

Arguments

sites character. Names of sites from which to extract data.

crop character. Crop code in ICARDA database. See section ’Details’ for a list of
crops.

var character. Climatic variable(s) to be extracted.

cv boolean. If TRUE, returns a data frame with coefficient of variation for each
variable for each day of the onset year. Default: FALSE.

Details

Similar to getDaily except the extracted data is based on 365 days starting from the onset of
planting. Crops available in ICARDA’s genebank documentation system include the following:

• ’ICAG’ = Aegilops

• ’ICB’ = Barley

• ’ICBW’ = Bread wheat

• ’ILC’ = Chickpea

• ’ICDW’ = Durum wheat

14 getOnset

• ’ILB’ = Faba bean

• ’BPL’ = Faba bean BPL

• ’IFMI’ = Forage and range

• ’IFLA’ = Lathyrus

• ’ILL’ = Lentil

• ’IFMA’ = Medicago annual

• ’IC’ = Not mandate cereals

• ’IFPI’ = Pisum

• ’ICPW’ = Primitive wheat

• ’IFTR’ = Trifolium

• ’IFVI’ = Vicia

• ’ICWH’ = Wheat hybrids

• ’ICWW’ = Wheat wild relatives

• ’ILWC’ = Wild Cicer

• ’ICWB’ = Wild Hordeum

• ’ILWL’ = Wild Lens

• ’ICWT’ = Wild Triticum

Alternatively, the list of available crops can be fetched from ICARDA’s online server using getCrops.

Value

An object of class "data.frame" with specified climatic variables for names in sites.

If cv = TRUE, the object is a list containing three data frames: the first one with average daily values
of climatic variables, the second one with daily coefficient of variation for each climatic variable,
and the third one with phenotypic variables and number of day in calendar year when each occurs
at the sites specified in sites.

If cv = FALSE, the object is a list containing two data frames: the first one with average daily values
of climatic variables, and the second one with phenotypic variables and number of day in calendar
year when each occurs at the sites specified in sites.

Author(s)

Khadija Aouzal, Amal Ibnelhobyb, Zakaria Kehel, Bancy Ngatia

See Also

dcast, getCrops

getTraits 15

Examples

if(interactive()){
Extract onset data for durum wheat
durum <- getAccessions(crop = 'Durum wheat', coor = TRUE)
onset <- getOnset(sites = levels(as.factor(durum$SiteCode)), crop = 'ICDW',

var = c('tavg', 'prec', 'rh'), cv = TRUE)

Get data frame with climatic variables from list object returned
onset.clim <- onset[[1]]

Get data frame with coefficient of variation from list object
returned (when cv = TRUE)
onset.cv <- onset[[2]]

Get data frame with phenotypic variables from list object returned
onset.pheno <- onset[[3]]
}

getTraits Getting Traits Associated with Crops from the ICARDA’s Genebank
Documentation System

Description

Return a data frame containing traits associated with a particular crop, their description and related
identifiers.

Usage

getTraits(crop)

Arguments

crop character. Crop for which to get available traits.

Details

getTraits returns a data frame of traits together with their IDs and coding system used for each
trait.

Possible inputs for crop include:

• ’Aegilops’

• ’Barley’

• ’Bread wheat’

• ’Chickpea’

• ’Durum wheat’

• ’Faba bean’

16 getTraits

• ’Faba bean BPL’

• ’Forage and range’

• ’Lathyrus’

• ’Lentil’

• ’Medicago annual’

• ’Not mandate cereals’

• ’Pisum’

• ’Primitive wheat’

• ’Trifolium’

• ’Vicia’

• ’Wheat hybrids’

• ’Wheat wild relatives’

• ’Wild Cicer’

• ’Wild Hordeum’

• ’Wild Lens’

• ’Wild Triticum’

A list of available crops to use as input for crop can also be obtained from ICARDA’s online server
using getCrops.

Value

A data frame with traits that are associated with the crop specified in crop.

Author(s)

Khadija Aouzal, Amal Ibnelhobyb, Zakaria Kehel, Fawzy Nawar

Examples

if(interactive()){
Get traits for bread wheat
breadTraits <- getTraits(crop = 'Bread wheat')

}

getTraitsData 17

getTraitsData Getting Trait Values of Accessions for a Specific Trait

Description

Return a data frame with observed values of accessions for associated Trait

Usage

getTraitsData(IG, traitID)

Arguments

IG factor. Unique identifier of accession.

traitID integer. Unique identifier of trait (from getTraits).

Details

Possible inputs for traitID can be found using the getTraits function (see section ’Examples’).

Value

A data frame with scores for the trait specified in traitID for the accessions given in IG.

Author(s)

Khadija Aouzal, Amal Ibnelhobyb, Zakaria Kehel, Fawzy Nawar

Examples

if(interactive()){
Check trait ID for septoria and get septoria data for durum wheat
durum <- getAccessions(crop = 'Durum wheat', coor = TRUE)
durumTraits <- getTraits(crop = 'Durum wheat')
septoria <- getTraitsData(IG = durum$IG, traitID = 145)

}

18 mapAccessions

mapAccessions Plotting Accessions on Map.

Description

this function returns a map with points showing where accessions are located.

Usage

mapAccessions(df, long, lat, y = NULL)

Arguments

df object of class "data.frame" with coordinates of accessions and target variable.

long character. Column name from df representing longitude.

lat character. Column name from df representing latitude.

y Default: NULL, column name from df representing the target variable.

Value

A world map with plotted points showing locations of accessions.

Author(s)

Khadija Aouzal, Zakaria Kehel

Examples

if(interactive()){
Loading FIGS subset for wheat sodicity resistance
data(FIGS)
World Map showing locations of accessions
mapAccessions(df = FIGS, long = "Longitude", lat = "Latitude")

Map plotting locations of accessions with points coloured
based on a gradient scale of SodicityIndex values
mapAccessions(FIGS, long = "Longitude", lat = "Latitude",

y = "SodicityIndex")
Map plotting locations of accessions with points
coloured based on levels of y
mapAccessions(FIGS, long = "Longitude", lat = "Latitude",
y = "PopulationType")
}

modelingSummary 19

modelingSummary Get modeling metrics

Description

modelingSummary is an automatic function for modeling data, it returns a dataframe containing
the metrics of the modeling using five machine learning algorithms: KNN, SVM, RF, NNET, and
Bcart. This function is based on spliData, tuneTrain, predict, and getMetrics functions.

Usage

modelingSummary(
data,
y,
p = 0.7,
length = 10,
control = "repeatedcv",
number = 10,
repeats = 10,
process = c("center", "scale"),
summary = multiClassSummary,
positive,
parallelComputing = FALSE,
classtype,
...

)

Arguments

data object of class "data.frame" with target variable and predictor variables.

y character. Target variable.

p numeric. Proportion of data to be used for training. Default: 0.7

length integer. Number of values to output for each tuning parameter. If search =
"random" is passed to trainControl through ..., this becomes the maximum
number of tuning parameter combinations that are generated by the random
search. Default: 10.

control character. Resampling method to use. Choices include: "boot", "boot632", "op-
timism_boot", "boot_all", "cv", "repeatedcv", "LOOCV", "LGOCV", "none",
"oob", timeslice, "adaptive_cv", "adaptive_boot", or "adaptive_LGOCV". De-
fault: "repeatedcv". See train for specific details on the resampling methods.

number integer. Number of cross-validation folds or number of resampling iterations.
Default: 10.

repeats integer. Number of folds for repeated k-fold cross-validation if "repeatedcv" is
chosen as the resampling method in control. Default: 10.

20 modelingSummary

process character. Defines the pre-processing transformation of predictor variables to be
done. Options are: "BoxCox", "YeoJohnson", "expoTrans", "center", "scale",
"range", "knnImpute", "bagImpute", "medianImpute", "pca", "ica", or "spatial-
Sign". See preProcess for specific details on each pre-processing transforma-
tion. Default: c(’center’, ’scale’).

summary expression. Computes performance metrics across resamples. For numeric y,
the mean squared error and R-squared are calculated. For factor y, the overall
accuracy and Kappa are calculated. See trainControl and defaultSummary
for details on specification and summary options. Default: multiClassSummary.

positive character. The positive class for the target variable if y is factor. Usually, it is
the first level of the factor.

parallelComputing

logical. indicates whether to also use the parallel processing. Default: False

classtype integer.indicates the number of classes of the traits.

... additional arguments to be passed to createDataPartition, trainControl
and train functions in the package caret.

Details

Types of classification and regression models available for use with tuneTrain can be found using
names(getModelInfo()). The results given depend on the type of model used.

Value

A dataframe contains the metrics of the modeling of five machine learning algorithms: KNN, SVM,
RF, NNET, and Bcart.

tuneTrain relies on package caret to perform the modeling.

Author(s)

Zakaria Kehel, Khadija Aziz

See Also

createDataPartition, trainControl, train, predict.train, confusionMatrix

Examples

if(interactive()){
data(septoriaDurumWC)
models <- modelingSummary(data = septoriaDurumWC, y = "ST_S", positive = "R", classtype = 2)
}

septoriaDurumWC 21

septoriaDurumWC septoriaDurumWC

Description

A sample data including daily data for 4 climatic variables (tmin, tmax, precipitation and relative
humidity) and evaluation for Septoria Tritici

Usage

data(septoriaDurumWC)

Format

200 sites from durum wheat collection and their daily climatic data and evaluation for Septoria
Tritici.

Examples

if(interactive()){
#Load durum wheat data with septoria scores and climatic variables obtained from WorldClim database
data(septoriaDurumWC)

}

splitData Splitting Data

Description

this function splits the Data into Train and Test Sets, it returns a list containing two data frames for
the train and test sets.

Usage

splitData(data, seed = NULL, y, p, ...)

Arguments

data object of class "data.frame" with target variable and predictor variables.

seed integer. Values for the random number generator. Default: NULL.

y character. Target variable.

p numeric. Proportion of data to be used for training.

... additional arguments to be passed to createDataPartition function in caret
package to control the way the data is split.

22 tuneTrain

Details

splitData relies on the createDataPartition function from the caret package to perform the
data split.

If y is a factor, the sampling of observations for each set is done within the levels of y such that the
class distributions are more or less balanced for each set.

If y is numeric, the data is split into groups based on percentiles and the sampling done within
these subgroups. See createDataPartition for more details on additional arguments that can be
passed.

Value

A list with two data frames: the first as train set, and the second as test set.

Author(s)

Zakaria Kehel, Bancy Ngatia

See Also

createDataPartition

Examples

if(interactive()){
Split the data into 70/30 train and test sets for factor y
data(septoriaDurumWC)
split.data <- splitData(septoriaDurumWC, seed = 1234,

y = 'ST_S', p = 0.7)

Get training and test sets from list object returned
trainset <- split.data$trainset
testset <- split.data$testset
}

tuneTrain Tuning and Training the Data

Description

tuneTrain splits the Data, it is an automatic function for tuning, training, and making predictions, it
returns a list containing a model object, data frame and plot.

tuneTrain 23

Usage

tuneTrain(
data,
y,
p = 0.7,
method = method,
parallelComputing = FALSE,
length = 10,
control = "repeatedcv",
number = 10,
repeats = 10,
process = c("center", "scale"),
summary = multiClassSummary,
positive,
...

)

Arguments

data object of class "data.frame" with target variable and predictor variables.

y character. Target variable.

p numeric. Proportion of data to be used for training. Default: 0.7

method character. Type of model to use for classification or regression.
parallelComputing

logical. indicates whether to also use the parallel processing. Default: False

length integer. Number of values to output for each tuning parameter. If search =
"random" is passed to trainControl through ..., this becomes the maximum
number of tuning parameter combinations that are generated by the random
search. Default: 10.

control character. Resampling method to use. Choices include: "boot", "boot632", "op-
timism_boot", "boot_all", "cv", "repeatedcv", "LOOCV", "LGOCV", "none",
"oob", timeslice, "adaptive_cv", "adaptive_boot", or "adaptive_LGOCV". De-
fault: "repeatedcv". See train for specific details on the resampling methods.

number integer. Number of cross-validation folds or number of resampling iterations.
Default: 10.

repeats integer. Number of folds for repeated k-fold cross-validation if "repeatedcv" is
chosen as the resampling method in control. Default: 10.

process character. Defines the pre-processing transformation of predictor variables to be
done. Options are: "BoxCox", "YeoJohnson", "expoTrans", "center", "scale",
"range", "knnImpute", "bagImpute", "medianImpute", "pca", "ica", or "spatial-
Sign". See preProcess for specific details on each pre-processing transforma-
tion. Default: c(’center’, ’scale’).

summary expression. Computes performance metrics across resamples. For numeric y,
the mean squared error and R-squared are calculated. For factor y, the overall
accuracy and Kappa are calculated. See trainControl and defaultSummary
for details on specification and summary options. Default: multiClassSummary.

24 tuneTrain

positive character. The positive class for the target variable if y is factor. Usually, it is
the first level of the factor.

... additional arguments to be passed to createDataPartition, trainControl
and train functions in the package caret.

Details

Types of classification and regression models available for use with tuneTrain can be found using
names(getModelInfo()). The results given depend on the type of model used.

For classification models, class probabilities and ROC curve are given in the results. For regres-
sion models, predictions and residuals versus predicted plot are given. y should be converted to
either factor if performing classification or numeric if performing regression before specifying it in
tuneTrain.

Value

A list object with results from tuning and training the model selected in method, together with
predictions and class probabilities. The training and test data sets obtained from splitting the data
are also returned.

If y is factor, class probabilities are calculated for each class. If y is numeric, predicted values are
calculated.

A ROC curve is created if y is factor. Otherwise, a plot of residuals versus predicted values is
created if y is numeric.

tuneTrain relies on packages caret, ggplot2 and plotROC to perform the modelling and plotting.

Author(s)

Zakaria Kehel, Bancy Ngatia, Khadija Aziz

See Also

createDataPartition, trainControl, train, predict.train, ggplot, geom_roc, calc_auc

Examples

if(interactive()){
data(septoriaDurumWC)
knn.mod <- tuneTrain(data = septoriaDurumWC,y = 'ST_S',method = 'knn',positive = 'R')

nnet.mod <- tuneTrain(data = septoriaDurumWC,y = 'ST_S',method = 'nnet',positive = 'R')

}

varimpPred 25

varimpPred Variable Importance and Predictions

Description

varimpPred calculates Variable Importance and makes predictions, it returns a list containing a data
frame of variable importance scores, predictions or class probabilities, and corresponding plots.

Usage

varimpPred(
newdata,
y,
positive,
model,
scale = FALSE,
auc = FALSE,
predict = FALSE,
...

)

Arguments

newdata object of class "data.frame" having test data.

y character. Target variable.

positive character. The positive class for the target variable if y is factor. Usually, it is
the first level of the factor.

model expression. The model object returned after training a model on training data.

scale boolean. If TRUE, scales the variable importance values to between 0-100. De-
fault: FALSE.

auc boolean. If TRUE, calculates the area under the ROC curve and returns the value.
Default: FALSE.

predict boolean. If TRUE, calculates class probabilities and returns them as a data frame.
Default: FALSE

... additional arguments to be passed to varImp function in the package caret.

Details

The importance measure for each variable is calculated based on the type of model.

For example for linear models, the absolute value of the t-statistic of each parameter is used in the
importance calculation.

For classification models, with the exception of classification trees, bagged trees and boosted trees,
a variable importance score is calculated for each class. See varImp for details on model-specific
metrics.

26 varimpPred

varimpPred can be used to obtain either variable importance metrics, predictions, class probabili-
ties, or a combination of these.

For classification models with predict = TRUE, class probabilities and ROC curve are given in the
results.

For regression models with predict = TRUE, predictions and residuals versus predicted plot are
given.

Value

A list object with importance measures for variables in newdata, predictions for regression models,
class probabilities for classification models, and corresponding plots.

newdata should be either the test data that remains after splitting whole data into training and test
sets, or a new data set different from the one used to train the model.

If y is factor, class probabilities are calculated for each class. If y is numeric, predicted values are
calculated.

A ROC curve is created if predict = TRUE and y is factor. Otherwise, a plot of residuals versus
predicted values is created if y is numeric.

varimpPred relies on packages caret, ggplot2 and plotROC to perform the calculations and plot-
ting.

Author(s)

Zakaria Kehel, Bancy Ngatia, Khadija Aziz, Zainab Azough

See Also

varImp, predict.train, ggplot, geom_roc, calc_auc

Examples

if(interactive()){
Calculate variable importance for classification model
data("septoriaDurumWC")
knn.mod <- tuneTrain(data = septoriaDurumWC,y = 'ST_S',method = 'knn')
testdata <- knn.mod$`Test Data`
knn.varimp<- varimpPred(newdata = testdata, y='ST_S', positive = 'R', model = knn.mod$Model)
knn.varimp

Calculate variable importance and obtain class probabilities
data("septoriaDurumWC")
svm.mod <- tuneTrain(data = septoriaDurumWC, y = 'ST_S',method = 'svmLinear2',

predict = TRUE, positive = 'R',summary = twoClassSummary)
testdata <- svm.mod$`Test Data`
svm.varimp <- varimpPred(newdata = testdata, y = 'ST_S',

positive = 'R', model = svm.mod$Model,
ROC = TRUE, predict = TRUE)

svm.varimp
Obtain variable importance plot for only first 20 variables
with highest measure

varimpPred 27

svm.varimp <- varimpPred(newdata = testdata, y = 'ST_S',
positive = 'R', model = svm.mod$Model,
ROC = TRUE, predict = TRUE, top = 20)

svm.varimp
}

Index

∗ datasets
durumDaily, 2
durumWC, 3
FIGS, 4
septoriaDurumWC, 21

calc_auc, 24, 26
cast, 8
confusionMatrix, 11, 12, 20
createDataPartition, 20, 22, 24

dcast, 14
defaultSummary, 20, 23
durumDaily, 2
durumWC, 3

extractWCdata, 3

FIGS, 4

geom_roc, 24, 26
getAccessions, 5
getCrops, 5, 6, 7, 14, 16
getDaily, 7, 13
getGrowthPeriod, 9
getMetrics, 10, 12
getMetricsPCA, 12
getOnset, 13
getTraits, 15, 17
getTraitsData, 17
ggplot, 24, 26

mapAccessions, 18
modelingSummary, 19

predict.train, 12, 20, 24, 26
preProcess, 20, 23

septoriaDurumWC, 21
splitData, 21

train, 19, 20, 23, 24

trainControl, 19, 20, 23, 24
tuneTrain, 22

varImp, 25, 26
varimpPred, 25

28

	durumDaily
	durumWC
	extractWCdata
	FIGS
	getAccessions
	getCrops
	getDaily
	getGrowthPeriod
	getMetrics
	getMetricsPCA
	getOnset
	getTraits
	getTraitsData
	mapAccessions
	modelingSummary
	septoriaDurumWC
	splitData
	tuneTrain
	varimpPred
	Index

