
Package ‘nprotreg’
September 28, 2023

Title Nonparametric Rotations for Sphere-Sphere Regression

Version 1.1.1

Description Fits sphere-sphere regression models by estimating locally weighted
rotations. Simulation of sphere-sphere data according to non-rigid rotation
models. Provides methods for bias reduction applying iterative procedures
within a Newton-Raphson learning scheme. Cross-validation is exploited to select
smoothing parameters. See Marco Di Marzio, Agnese Panzera & Charles C. Taylor
(2018) <doi:10.1080/01621459.2017.1421542>.

Depends R (>= 3.3.0)

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.3

Suggests testthat

Imports foreach, methods, stats

NeedsCompilation no

Author Charles C. Taylor [aut],
Giovanni Lafratta [aut, cre],
Stefania Fensore [aut]

Maintainer Giovanni Lafratta <giovanni.lafratta@unich.it>

Repository CRAN

Date/Publication 2023-09-28 08:40:02 UTC

R topics documented:
convert_cartesian_to_spherical . 2
convert_spherical_to_cartesian . 3
cross_validate_concentration . 4
expm . 6
fit_regression . 7
get_equally_spaced_points . 12
get_skew_symmetric_matrix . 13

1

https://doi.org/10.1080/01621459.2017.1421542

2 convert_cartesian_to_spherical

logm . 14
nprotreg . 14
simulate_regression . 15
simulate_rigid_regression . 17
weight_explanatory_points . 19

Index 22

convert_cartesian_to_spherical

Converts Cartesian to Spherical Coordinates.

Description

The Cartesian coordinates of points on a 3-dimensional sphere with unit radius and center at the
origin are converted to the equivalent longitude and latitude coordinates, measured in radians.

Usage

convert_cartesian_to_spherical(cartesian_coords)

Arguments

cartesian_coords

A matrix whose rows contain the Cartesian coordinates of the specified points.

Value

A matrix of rows containing the longitude and latitude of specific points on a 3-dimensional sphere.

See Also

http://mathworld.wolfram.com/SphericalCoordinates.html.

Other Conversion functions: convert_spherical_to_cartesian()

Examples

library(nprotreg)

Define the Cartesian coordinates of the North and South Poles.

north_pole <- cbind(0, 0, 1)
south_pole <- cbind(0, 0, -1)
cartesian_coords <- rbind(north_pole, south_pole)

Get the corresponding Spherical coordinates.

spherical_coords <- convert_cartesian_to_spherical(cartesian_coords)

http://mathworld.wolfram.com/SphericalCoordinates.html

convert_spherical_to_cartesian 3

convert_spherical_to_cartesian

Converts Spherical to Cartesian Coordinates.

Description

The longitude and latitude coordinates of points on a 3-dimensional sphere with unit radius and
center at the origin are converted to the equivalent Cartesian coordinates.

Usage

convert_spherical_to_cartesian(spherical_coords)

Arguments

spherical_coords

A matrix of rows containing the longitude and latitude, measured in radians, of
specific points on a 3-dimensional sphere.

Value

A matrix whose rows contain the Cartesian coordinates of the specified points.

See Also

http://mathworld.wolfram.com/SphericalCoordinates.html.

Other Conversion functions: convert_cartesian_to_spherical()

Examples

library(nprotreg)

Define the Spherical coordinates of the North and South Poles.

north_pole <- cbind(0, pi / 2)
south_pole <- cbind(0, - pi / 2)
spherical_coords <- rbind(north_pole, south_pole)

Get the corresponding Cartesian coordinates.

cartesian_coords <- convert_spherical_to_cartesian(spherical_coords)

http://mathworld.wolfram.com/SphericalCoordinates.html

4 cross_validate_concentration

cross_validate_concentration

Cross-validates The Concentration Parameter In A 3D Spherical Re-
gression.

Description

Returns a cross-validated value for the concentration parameter in a 3D regression, relating specific
explanatory points to response ones, given a weighting scheme for the observed data set. This
function supports the method for sphere-sphere regression proposed by Di Marzio et al. (2018).

Usage

cross_validate_concentration(
concentration_upper_bound = 10,
explanatory_points,
response_points,
weights_generator = weight_explanatory_points,
number_of_expansion_terms = 1,
number_of_iterations = 1,
allow_reflections = FALSE

)

Arguments

concentration_upper_bound

A scalar numeric value representing the upper end-point of the interval to be
searched for the required minimizer. Defaults to 10.

explanatory_points

An m-by-3 matrix whose rows contain the Cartesian coordinates of the explana-
tory points used to calculate the regression estimators.

response_points

An m-by-3 matrix whose rows contain the Cartesian coordinates of the response
points corresponding to the explanatory points.

weights_generator

A function that, given a matrix of n evaluation points, returns an m-by-n matrix
whose j-th column contains the weights assigned to the explanatory points while
analyzing the j-th evaluation point. Defaults to weight_explanatory_points.

number_of_expansion_terms

The number of terms to be included in the expansion of the matrix exponential
applied while approximating a local rotation matrix. Must be 1 or 2. Defaults to
1.

number_of_iterations

The number of rotation fitting steps to be executed. At each step, the points es-
timated during the previous step are exploited as the current explanatory points.
Defaults to 1.

cross_validate_concentration 5

allow_reflections

A logical scalar value. If set to TRUE signals that reflections are allowed. De-
faults to FALSE. It is ignored if number_of_expansion_terms is 2.

Details

Function weights_generator must be prototyped as having the following three arguments:

evaluation_points a matrix whose n rows are the Cartesian coordinates of given evaluation
points.

explanatory_points a matrix whose m rows are the Cartesian coordinates of given explanatory
points.

concentration A non negative scalar whose reciprocal value is proportional to the bandwidth
applied while estimating a spherical regression model.

It is also expected that weights_generator will return a non NULL numerical m-by-n matrix whose
j-th column contains the weights assigned to the explanatory points while analyzing the j-th evalu-
ation point.

Value

A list having two components, concentration, a scalar, numeric value representing the cross-
validated concentration for the specified 3D regression, and objective, the value of the cross-
validating objective function at argument concentration.

References

Marco Di Marzio, Agnese Panzera & Charles C. Taylor (2018) Nonparametric rotations for sphere-
sphere regression, Journal of the American Statistical Association, <doi:10.1080/01621459.2017.1421542>.

See Also

Other Regression functions: fit_regression(), get_equally_spaced_points(), get_skew_symmetric_matrix(),
simulate_regression(), simulate_rigid_regression(), weight_explanatory_points()

Examples

library(nprotreg)

Define a matrix of explanatory points.

number_of_explanatory_points <- 50

explanatory_points <- get_equally_spaced_points(
number_of_explanatory_points)

Define a matrix of response points by simulation.

local_rotation_composer <- function(point) {
independent_components <- (1 / 2) *
c(exp(2.0 * point[3]), - exp(2.0 * point[2]), exp(2.0 * point[1]))

6 expm

}

local_error_sampler <- function(point) {
rnorm(3)

}

response_points <- simulate_regression(explanatory_points,
local_rotation_composer,
local_error_sampler)

Define an upper bound for concentration.

concentration_upper_bound <- 1

Use default weights generator.

weights_generator <- weight_explanatory_points

Cross-validate concentration parameter.

cv_info <- cross_validate_concentration(
concentration_upper_bound,
explanatory_points,
response_points,
weights_generator,
number_of_expansion_terms = 1,
number_of_iterations = 2,
allow_reflections = FALSE

)

Get the cross-validated concentration value.

cat("cross-validated concentration value: \n")
print(cv_info$concentration)

expm Computes the Exponential of a 3D Skew Symmetric Matrix.

Description

The exponential of a skew-symmetric matrix is computed by means of the Rodrigues’ formula.

Usage

expm(skew_symmetric_matrix)

Arguments

skew_symmetric_matrix

A 3-by-3 skew-symmetric matrix.

fit_regression 7

Value

A 3-by-3 rotation matrix representing the exponential of the specified skew-symmetric matrix.

fit_regression Fits a 3D Spherical Regression.

Description

Returns 3D spherical points obtained by locally rotating the specified evaluation points, given an
approximated model for local rotations and a weighting scheme for the observed data set. This
function implements the method for sphere-sphere regression proposed by Di Marzio et al. (2018).

Usage

fit_regression(
evaluation_points,
explanatory_points,
response_points,
concentration,
weights_generator = weight_explanatory_points,
number_of_expansion_terms = 1,
number_of_iterations = 1,
allow_reflections = FALSE

)

Arguments

evaluation_points

An n-by-3 matrix whose rows contain the Cartesian coordinates of the points at
which the regression will be estimated.

explanatory_points

An m-by-3 matrix whose rows contain the Cartesian coordinates of the explana-
tory points used to calculate the regression estimators.

response_points

An m-by-3 matrix whose rows contain the Cartesian coordinates of the response
points corresponding to the explanatory points.

concentration A non negative scalar whose reciprocal value is proportional to the bandwidth
applied while estimating a spherical regression model.

weights_generator

A function that, given a matrix of n evaluation points, returns an m-by-n matrix
whose j-th column contains the weights assigned to the explanatory points while
analyzing the j-th evaluation point. Defaults to weight_explanatory_points.

number_of_expansion_terms

The number of terms to be included in the expansion of the matrix exponential
applied while approximating a local rotation matrix. Must be 1 or 2. Defaults to
1.

8 fit_regression

number_of_iterations

The number of rotation fitting steps to be executed. At each step, the points es-
timated during the previous step are exploited as the current explanatory points.
Defaults to 1.

allow_reflections

A logical scalar value. If set to TRUE signals that reflections are allowed. De-
faults to FALSE. It is ignored if number_of_expansion_terms is 2.

Details

Function weights_generator must be prototyped as having the following three arguments:

evaluation_points a matrix whose n rows are the Cartesian coordinates of given evaluation
points.

explanatory_points a matrix whose m rows are the Cartesian coordinates of given explanatory
points.

concentration A non negative scalar whose reciprocal value is proportional to the bandwidth
applied while estimating a spherical regression model.

It is also expected that weights_generator will return a non NULL numerical m-by-n matrix whose
j-th column contains the weights assigned to the explanatory points while analyzing the j-th evalu-
ation point.

Function fit_regression supports parallel execution. To setup parallelization, you can exploit the
doParallel package. Otherwise, fit_regression will be executed sequentially and, when called
the first time, you will receive the following

Warning: executing %dopar% sequentially: no parallel backend registered

This is completely safe and by design.

Value

A number_of_iterations-length vector of lists, with the s-th list having two components, fitted_response_points,
an n-by-3 matrix whose rows contain the Cartesian coordinates of the fitted points at iteration s,
and explanatory_points, an m-by-3 matrix whose rows contain the Cartesian coordinates of the
points exploited as explanatory at iteration s.

References

Marco Di Marzio, Agnese Panzera & Charles C. Taylor (2018) Nonparametric rotations for sphere-
sphere regression, Journal of the American Statistical Association, <doi:10.1080/01621459.2017.1421542>.

See Also

Other Regression functions: cross_validate_concentration(), get_equally_spaced_points(),
get_skew_symmetric_matrix(), simulate_regression(), simulate_rigid_regression(), weight_explanatory_points()

https://cran.r-project.org/package=doParallel

fit_regression 9

Examples

library(nprotreg)

Create 100 equally spaced design points on the sphere.

number_of_explanatory_points <- 100

explanatory_points <- get_equally_spaced_points(
number_of_explanatory_points

)

Define the regression model, where the rotation for a given "point"
is obtained from the exponential of a skew-symmetric matrix with the
following components.

local_rotation_composer <- function(point) {
independent_components <- (1 / 8) *
c(exp(2.0 * point[3]), - exp(2.0 * point[2]), exp(2.0 * point[1]))

}

Define an error term given by a small rotation, similarly defined
from a skew-symmetric matrix with random entries.

local_error_sampler <- function(point) {
rnorm(3, sd = .01)

}

Generate the matrix of responses, using the regression model
and the error model.

response_points <- simulate_regression(
explanatory_points,
local_rotation_composer,
local_error_sampler

)

Create some "test data" for which the response will be predicted.

evaluation_points <- rbind(
cbind(.5, 0, .8660254),
cbind(-.5, 0, .8660254),
cbind(1, 0, 0),
cbind(0, 1, 0),
cbind(-1, 0, 0),
cbind(0, -1, 0),
cbind(.5, 0, -.8660254),
cbind(-.5, 0, -.8660254)

)

Define a weight function for nonparametric fit.

weights_generator <- weight_explanatory_points

10 fit_regression

Set the concentration parameter.

concentration <- 5

Or obtain this by cross-validation: see
the `cross_validate_concentration` function.

Fit regression.

fitted_model <- fit_regression(
evaluation_points,
explanatory_points,
response_points,
concentration,
weights_generator,
number_of_expansion_terms = 1,
number_of_iterations = 2

)

Extract the point corresponding to the
second evaluation point fitted at
the first iteration.

cat("Point fitted at iteration 1 corresponding to the second evaluation point: \n")
cat(fitted_model[[1]]$fitted_response_points[2,], "\n")

Not run:
Create some plots to view the results.

3D plot.

library(rgl)

plot3d(
explanatory_points,
type = "n",
xlab = "x",
ylab = "y",
zlab = "z",
box = TRUE,
axes = TRUE

)
spheres3d(0, 0, 0, radius = 1, lit = FALSE, color = "white")
spheres3d(0, 0, 0, radius = 1.01, lit = FALSE, color = "black", front = "culled")
text3d(c(0, 0, 1), text = "N", adj = 0)

ll <- 10
vv1 <- (ll - (0:(ll))) / ll
vv2 <- 1 - vv1
plot3d(explanatory_points, add = TRUE, col = 2)
for (i in 1:dim(explanatory_points)[1]) {

m <- outer(vv1, explanatory_points[i,], "*") +

fit_regression 11

outer(vv2, response_points[i,], "*")
m <- m / sqrt(apply(m ^ 2, 1, sum))
lines3d(m, col = 3)

}

plot3d(evaluation_points, add = TRUE, col = 4)

for (i in 1:dim(evaluation_points)[1]) {
m <- outer(vv1, evaluation_points[i,], "*") +

outer(vv2, fitted_model[[1]]$fitted_response_points[i,], "*")
m <- m / sqrt(apply(m ^ 2, 1, sum))
lines3d(m, col = 1)

}

2D plot.

explanatory_spherical_coords <- convert_cartesian_to_spherical(explanatory_points)
response_spherical_coords <- convert_cartesian_to_spherical(response_points)

plot(
x = explanatory_spherical_coords[, 1],
y = explanatory_spherical_coords[, 2],
pch = 20,
cex = .7,
col = 2,
xlab = "longitude",
ylab = "latitude"

)

for (i in 1:dim(explanatory_spherical_coords)[1]) {
column <- 1
if ((explanatory_spherical_coords[i, 1] - response_spherical_coords[i, 1]) ^ 2 +

(explanatory_spherical_coords[i, 2] - response_spherical_coords[i, 2]) ^ 2 > 4)
column <- "grey"

lines(
c(explanatory_spherical_coords[i, 1], response_spherical_coords[i, 1]),
c(explanatory_spherical_coords[i, 2], response_spherical_coords[i, 2]),
col = column

)
}

evaluation_spherical_coords <- convert_cartesian_to_spherical(
evaluation_points

)

fitted_response_spherical_coords <- convert_cartesian_to_spherical(
fitted_model[[1]]$fitted_response_points

)

points(
x = evaluation_spherical_coords[, 1],
y = evaluation_spherical_coords[, 2],
pch = 20,

12 get_equally_spaced_points

cex = .7,
col = 4

)

for (i in 1:dim(evaluation_spherical_coords)[1]) {
column <- 3
if ((evaluation_spherical_coords[i, 1] - fitted_response_spherical_coords[i, 1]) ^ 2 +

(evaluation_spherical_coords[i, 2] - fitted_response_spherical_coords[i, 2]) ^ 2 > 4)
column <- "grey"

lines(
c(evaluation_spherical_coords[i, 1], fitted_response_spherical_coords[i, 1]),
c(evaluation_spherical_coords[i, 2], fitted_response_spherical_coords[i, 2]),
col = column

)
}

End(Not run)

get_equally_spaced_points

Generates Equally Spaced Points On A 3D Sphere.

Description

Generates points approximately equally spaced on a 3D sphere.

Usage

get_equally_spaced_points(number_of_points)

Arguments

number_of_points

A scalar, positive integer representing the number of points to get.

Value

A number_of_points-by-3 matrix whose rows contain the Cartesian coordinates of the equally
spaced points.

See Also

Other Regression functions: cross_validate_concentration(), fit_regression(), get_skew_symmetric_matrix(),
simulate_regression(), simulate_rigid_regression(), weight_explanatory_points()

get_skew_symmetric_matrix 13

Examples

library(nprotreg)

Define the number of points to get.

number_of_points <- 5

Get the Cartesian coordinates of the equally spaced points.

equally_spaced_points <- get_equally_spaced_points(number_of_points)

get_skew_symmetric_matrix

Gets a 3-by-3 Skew Symmetric Matrix.

Description

Returns the 3-by-3 skew symmetric matrix having the specified independent components.

Usage

get_skew_symmetric_matrix(independent_components)

Arguments

independent_components

A vector containing the independent components of the matrix to get.

Details

Given a vector of components, say [x, y, z], this function will return matrix

0 −z y
z 0 −x

−y x 0

Value

The 3-by-3 skew symmetric matrix corresponding to the specified independent components.

See Also

https://en.wikipedia.org/wiki/Skew-symmetric_matrix.

Other Regression functions: cross_validate_concentration(), fit_regression(), get_equally_spaced_points(),
simulate_regression(), simulate_rigid_regression(), weight_explanatory_points()

https://en.wikipedia.org/wiki/Skew-symmetric_matrix

14 nprotreg

Examples

library(nprotreg)

Define a vector of independent components.

independent_components <- cbind(1, 2, 3)

Get the corresponding 3-by-3 skew symmetric matrix.

m <- get_skew_symmetric_matrix(independent_components)

logm Computes the Logarithm of a 3D Rotation Matrix.

Description

Computes the Logarithm of a 3D Rotation Matrix.

Usage

logm(rotation_matrix)

Arguments

rotation_matrix

A 3-by-3 rotation matrix.

Value

A 3-by-3 skew-symmetric matrix representing the logarithm of the specified rotation matrix.

nprotreg nprotreg: Nonparametric Rotations for Sphere-Sphere Regression.

Description

The nprotreg package provides several categories of functions.

simulate_regression 15

Regression functions

Regression functions provide support for simulating and fitting 3-dimensional spherical regression
models.

• cross_validate_concentration

• fit_regression

• get_equally_spaced_points

• get_skew_symmetric_matrix

• simulate_regression

• simulate_rigid_regression

• weight_explanatory_points

Conversion functions

Conversion functions transform coordinates of points on a 3-dimensional sphere with unit radius
and center at the origin.

• convert_cartesian_to_spherical

• convert_spherical_to_cartesian

simulate_regression Simulates a 3D Spherical Regression.

Description

Returns the response points corresponding to the specified explanatory points, given a model for
local rotations and an error term sampler.

Usage

simulate_regression(
explanatory_points,
local_rotation_composer,
local_error_sampler

)

Arguments

explanatory_points

An m-by-3 matrix whose rows contain the Cartesian coordinates of the points at
which the regression will be simulated.

local_rotation_composer

A function that returns a 3-length numeric vector representing the independent
components of a skew symmetric matrix local to an explanatory point, given its
Cartesian coordinates.

local_error_sampler

A function that returns a 3-length numeric vector representing a sampled error
term local to an explanatory point, given its Cartesian coordinates.

16 simulate_regression

Details

LetE be the m-by-3 matrix of explanatory points. This function will return an m-by-3 matrix whose
i-th row is obtained by transposition of the following expression:

exp(Φ(ε(x)))exp(Φ(s(x)))x

where x is the transpose of the i-th row of E. Terms ε(x) and s(x) are obtained by evaluating
at x functions local_error_sampler and local_rotation_composer, respectively, while matrix
Φ(c), for a 3-length numeric vector c, is the skew symmetric matrix having its independent compo-
nents represented by the entries of c (for a thorough discussion, see function get_skew_symmetric_matrix).

Functions local_error_sampler and local_rotation_composer must be prototyped as having
one argument, point, representing the Cartesian coordinates of a point on a 3D sphere, and return-
ing a non NULL numerical object having length equal to 3.

Value

An m-by-3 matrix whose rows contain the Cartesian coordinates of the response points correspond-
ing to the explanatory points.

See Also

Other Regression functions: cross_validate_concentration(), fit_regression(), get_equally_spaced_points(),
get_skew_symmetric_matrix(), simulate_rigid_regression(), weight_explanatory_points()

Examples

library(nprotreg)

Define a matrix of explanatory points.

explanatory_points <- rbind(
cbind(.5, 0, .8660254),
cbind(-.5, 0, .8660254),
cbind(1, 0, 0),
cbind(0, 1, 0),
cbind(-1, 0, 0),
cbind(0, -1, 0),
cbind(.5, 0, -.8660254),
cbind(-.5, 0, -.8660254)

)

Define a local rotation composer.

local_rotation_composer <- function(point) {
independent_components <- (1 / 2) *
c(exp(2.0 * point[3]), - exp(2.0 * point[2]), exp(2.0 * point[1]))

}

Define a local error sampler.

simulate_rigid_regression 17

local_error_sampler <- function(point) {
rnorm(3)

}

Get the corresponding 8-by-3 matrix of response points.
Rows corresponds to explanatory points,
columns to Cartesian coordinates.

response_points <- simulate_regression(explanatory_points,
local_rotation_composer,
local_error_sampler)

Get the response point corresponding to the second
explanatory point.

cat("Response point corresponding to the second explanatory point: \n")
cat(response_points[2,], "\n")

simulate_rigid_regression

Simulates a Rigid 3D Spherical Regression.

Description

Returns the response points corresponding to the specified explanatory points, given a rigid rotation
model and an error term sampler.

Usage

simulate_rigid_regression(
explanatory_points,
rotation_matrix,
local_error_sampler

)

Arguments

explanatory_points

An m-by-3 matrix whose rows contain the Cartesian coordinates of the points at
which the regression will be simulated.

rotation_matrix

A 3-by-3 rotation matrix.

local_error_sampler

A function that returns a 3-length numeric vector representing a sampled error
term local to an explanatory point, given its Cartesian coordinates.

18 simulate_rigid_regression

Details

LetE be the m-by-3 matrix of explanatory points. This function will return an m-by-3 matrix whose
i-th row is obtained by transposition of the following expression:

exp(Φ(ε(x)))Rx

where x is the transpose of the i-th row of E and R is rotation_matrix. Term ε(x) is obtained by
evaluating at x function local_error_sampler, while matrix Φ(c), for a 3-length numeric vector
c, is the skew symmetric matrix having its independent components represented by the entries of c
(for a thorough discussion, see function get_skew_symmetric_matrix).

Function local_error_sampler must be prototyped as having one argument, point, representing
the Cartesian coordinates of a point on a 3D sphere, and returning a non NULL numerical object
having length equal to 3.

Value

An m-by-3 matrix whose rows contain the Cartesian coordinates of the response points correspond-
ing to the explanatory points.

See Also

Other Regression functions: cross_validate_concentration(), fit_regression(), get_equally_spaced_points(),
get_skew_symmetric_matrix(), simulate_regression(), weight_explanatory_points()

Examples

library(nprotreg)

Define a matrix of explanatory points.

explanatory_points <- rbind(
cbind(.5, 0, .8660254),
cbind(-.5, 0, .8660254),
cbind(1, 0, 0),
cbind(0, 1, 0),
cbind(-1, 0, 0),
cbind(0, -1, 0),
cbind(.5, 0, -.8660254),
cbind(-.5, 0, -.8660254)

)

Define a rotation matrix.

rotation_matrix <- rbind(
cbind(-0.69492055764131177575, 0.71352099052778772403, 0.08929285886191218324),
cbind(-0.19200697279199935297, -0.30378504433947051133, 0.93319235382364695841),
cbind(0.69297816774177023458, 0.63134969938371787723, 0.34810747783026463331)

)

Define a local error sampler.

weight_explanatory_points 19

local_error_sampler <- function(point) {
rnorm(3)

}

Get the corresponding 8-by-3 matrix of response points.
Rows corresponds to explanatory points,
columns to Cartesian coordinates.

response_points <- simulate_rigid_regression(explanatory_points,
rotation_matrix,
local_error_sampler)

Get the response point corresponding to the second
explanatory point.

cat("Response point corresponding to the second explanatory point: \n")
cat(response_points[2,], "\n")

weight_explanatory_points

Weights the Specified Explanatory Points in a 3D Spherical Regres-
sion.

Description

Returns the weights assigned to the specified explanatory points for each evaluation point under
study, given a concentration parameter.

Usage

weight_explanatory_points(evaluation_points, explanatory_points, concentration)

Arguments

evaluation_points

An n-by-3 matrix whose rows contain the Cartesian coordinates of the points on
which the regression will be estimated.

explanatory_points

An m-by-3 matrix whose rows contain the Cartesian coordinates of the explana-
tory points used to calculate the regression estimators.

concentration A non negative scalar whose reciprocal value is proportional to the bandwidth
applied while estimating a spherical regression model.

20 weight_explanatory_points

Details

Let X be the m-by-3 matrix of explanatory points, and E the n-by-3 matrix of evaluation points,
and κ the concentration parameter. This function will return an m-by-n matrix whose (i, j) entry is
defined as follows:

exp(κ(s(i, j) − 1))

where s(i, j) is the scalar product of the i-th row of X and the j-th row of E.

Value

An m-by-n matrix whose j-th column contains the weights assigned to the explanatory points while
analyzing the j-th evaluation point.

See Also

Other Regression functions: cross_validate_concentration(), fit_regression(), get_equally_spaced_points(),
get_skew_symmetric_matrix(), simulate_regression(), simulate_rigid_regression()

Examples

library(nprotreg)

Define a matrix of evaluation points.

north_pole <- cbind(0, 0, 1)
south_pole <- cbind(0, 0, -1)
evaluation_points <- rbind(north_pole, south_pole)

Define a matrix of explanatory points

explanatory_points <- rbind(
cbind(.5, 0, .8660254),
cbind(-.5, 0, .8660254),
cbind(1, 0, 0),
cbind(0, 1, 0),
cbind(-1, 0, 0),
cbind(0, -1, 0),
cbind(.5, 0, -.8660254),
cbind(-.5, 0, -.8660254)

)

Define a value for the concentration parameter.

concentration <- 1.0

Get the corresponding 8-by-2 matrix of weights.
Columns corresponds to evaluation points,
rows to explanatory ones.

weights <- weight_explanatory_points(evaluation_points,

weight_explanatory_points 21

explanatory_points,
concentration)

Get the weights assigned to the explanatory points
while analyzing the second evaluation point.

cat("Weights assigned while analyzing the second evaluation point: \n")
cat(weights[, 2], "\n")

Index

∗ Conversion functions
convert_cartesian_to_spherical, 2
convert_spherical_to_cartesian, 3

∗ Regression functions
cross_validate_concentration, 4
fit_regression, 7
get_equally_spaced_points, 12
get_skew_symmetric_matrix, 13
simulate_regression, 15
simulate_rigid_regression, 17
weight_explanatory_points, 19

convert_cartesian_to_spherical, 2, 3, 15
convert_spherical_to_cartesian, 2, 3, 15
cross_validate_concentration, 4, 8, 12,

13, 15, 16, 18, 20

expm, 6

fit_regression, 5, 7, 12, 13, 15, 16, 18, 20

get_equally_spaced_points, 5, 8, 12, 13,
15, 16, 18, 20

get_skew_symmetric_matrix, 5, 8, 12, 13,
15, 16, 18, 20

logm, 14

nprotreg, 14
nprotreg-package (nprotreg), 14

simulate_regression, 5, 8, 12, 13, 15, 15,
18, 20

simulate_rigid_regression, 5, 8, 12, 13,
15, 16, 17, 20

weight_explanatory_points, 4, 5, 7, 8, 12,
13, 15, 16, 18, 19

22

	convert_cartesian_to_spherical
	convert_spherical_to_cartesian
	cross_validate_concentration
	expm
	fit_regression
	get_equally_spaced_points
	get_skew_symmetric_matrix
	logm
	nprotreg
	simulate_regression
	simulate_rigid_regression
	weight_explanatory_points
	Index

