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1 Maintainer’s note

The reference should read1..

Schafer, J.L. (1997) Imputation of missing covariates under a multivariate
linear mixed model. Technical report 97-04, Dept. of Statistics, The Penn-
sylvania State University.

You can also refer to the following paper.

Schafer J L, Yucel RM (2002). Computational strategies for multivariate
linear mixed-effects models with missing values. Journal of Computational
and Graphical Statistics. 11:437-457

The marijuana data in the package is reproduced here,

Table 1: Change in heart rate recorded 15 and 90 minutes after marijuana
use, measured in beats per minute above baseline

15 minutes 90 minutes
Subject Placebo Low High Placebo Low High

1 16 20 16 20 -6 -4
2 12 24 12 -6 4 -8
3 8 8 26 -4 4 8
4 20 8 - - 20 -4
5 8 4 -8 - 22 -8
6 10 20 28 -20 -4 -4
7 4 28 24 12 8 18
8 -8 20 24 -3 8 -24
9 - 20 24 8 12 -

One can use help(ecme,package=“pan”) to see the example code.

1Note that the technical report is now available from

http://sites.stat.psu.edu/reports/1997/tr9704.pdf and briefly described at

http://stat.psu.edu/research-old/technical-reports/archived-technical-reports
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The technical report starts from next page.
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Imputation of missing covariatesunder a multivariate linear mixed modelJoseph L. Schafer �February 13, 1997
Linear mixed-e�ects models have been widely used in the analysis of longitudinal and clus-tered data. Standard �tting procedures for these models allow for imbalance due to missingresponses, but little has been done for problems of missing covariates. This article presentsa method for creating multiple imputations (Rubin, 1987) of missing covariates, allowingthe imputed data to be analyzed by current complete-data methods. The imputation pro-cedure relies on a multivariate extension of a popular linear mixed-e�ects model (Laird andWare, 1982). The multivariate model is consistent with a conditional linear mixed modelfor each covariate, with �xed e�ects for all other covariates. The technique is illustratedon a longitudinal study of adolescent substance use with large amounts of data missing bydesign.Key Words: Gibbs sampling, linear mixed-e�ects model, longitudinal data, random ef-fects, repeated measures
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1 IntroductionLet yi denote an ni � r matrix of multivariate data for sample unit i, i = 1; : : : ; m, whereeach row of yi is a joint realization of variables Y1; : : : ; Yr. Let us assume that yi follows amultivariate linear mixed model of the formyi = Xi� + Zibi + "i; (1)where Xi (ni � p) and Zi (ni � q) are known covariate matrices, � (p � r) is a matrix ofregression coe�cients common to all units (the \�xed e�ects"), and bi (q � r) is a matrixof coe�cients speci�c to unit i (the \random e�ects"). We will assume that the ni rows of"i are independently distributed as N(0;�), and that the random e�ects are distributed asbVi � N(0;	) independently for i = 1; : : : ; m. The superscript \V " indicates vectorizationof a matrix by stacking its columns. No further structure will be imposed on the covariancematrices or �xed e�ects; we will assume only that � 2 Rpr, � > 0, and 	 > 0. Withoutconditioning on b1; : : : ; bm, the model becomesy Vi � N( (Xi�)V ; (Ir 
 Zi)	(Ir 
 Zi)T + (�
 Ini) ): (2)The univariate (r = 1) version,yi � N(Xi�; Zi	ZTi + �2Ini ); (3)and more general univariate models have been extensively treated by Laird and Ware(1982); Jennrich and Schluchter (1986); Laird, Lange, and Stram (1987); Lindstrom andBates (1988); and others. Estimation procedures|both ordinary and restricted maximum-likelihood|for the univariate versions are available in major statistical packages. Thepresent article discusses inference for the multivariate version when arbitrary portions ofthe yi may be ignorably missing or missing at random, in the sense described by Rubin(1976) and Little and Rubin (1987). 2



Natural applications for model (2) include (a) analyses of multivariate longitudinal datain which a set of r variables is measured for subject i at ni occasions; and (b) analyses ofclustered multivariate cross-sectional data in which subjects are nested within groups i =1; : : : ; m of varying sizes ni. In (a), the measurements times will typically be incorporated insome fashion into Xi and Zi; because these matrices are not assumed to have any particularform, the model allows time-varying covariates and measurement times that vary by subject.In (b), Xi and Zi may contain descriptors of both the subjects and the groups to which theybelong, allowing simultaneous estimation of e�ects due to characteristics at the subject andgroup levels.In many analyses, it is natural to regard one of the variables (say Yr) as a responseand the remaining variables (Y1; : : : ; Yr�1) as potential predictors; interest is focused onthe conditional distribution of Yr given Y1; : : : ; Yr�1, and the parameters governing thejoint distribution of Y1; : : : ; Yr�1 are of little interest. Given that, multivariate models forY1; : : : ; Yr are still worth considering in many situations. One such situation is longitudinalmodeling with missing covariates. Notice that the multivariate model (2) for Y1; : : : ; Yrimplies a conditional univariate model of the form (3) for Yr, where the covariate matrixXi has been augmented to include columns for Y1; : : : ; Yr�1. When missing values occur onY1; : : : ; Yr�1, a full parametric model for Y1; : : : ; Yr provides a vehicle for inference in theconditional univariate submodel.More generally, a full multivariate model for Y1; : : : ; Yr can be quite useful when imput-ing for nonresponse in multivariate panel data. Imputation, especially multiple imputation(Rubin, 1987), has many important advantages over other methods for handling nonre-sponse. If values for the missing responses can be imputed in a statistically sound manner,the imputed dataset may be used for a variety of subsequent analyses. Many multivariateincomplete-data problems that were formerly troublesome can now be handled quite rou-tinely through model-based multiple imputation (Schafer, 1996). In a multivariate panel3



study, an imputation model should simultaneously preserve the relationships among vari-ables measured for a subject at a single point in time, and among measurements of thesame variable for a subject at di�erent points in time. Multivariate mixed-e�ects modelssuch as (2) are a natural choice, because they can e�ectively pool information within andacross panels without a massive proliferation of parameters. The assumptions of a stableresidual covariance matrix � and errors that are conditionally (given bi) independent acrosstime seems especially helpful; more general structures may be computationally troublesomeor di�cult to estimate (see Section 5). When this model is used for imputation, only thevariables to be imputed need be included among Y1; : : : ; Yr; additional covariates that arecompletely observed may be incorporated into Xi or Zi without distributional assumptions.A motivating example, to be discussed in Section 4, comes from a study of adolescentsubstance use. For a period of six years, school children received questionnaires designedto measure attitudes and behaviors regarding the use of controlled substances. Researcherswanted to examine interrelationships among three time-varying covariates: a compositemeasure of self-reported alcohol use (Y1), and measures of the perceived positive (Y2) andnegative (Y3) consequences of alcohol use. Large amounts of data were missing by design,because Y2 and Y3 were measured for at most a subsample of students in each year. Usingthe techniques described below, values for the missing items were multiply imputed, allow-ing us to subsequently �t a conventional linear growth-curve model for alcohol use giventhe perceived consequences of use.A recent paper by Liu, Taylor and Belin (1995) discussed the use of a multivariatemodel similar to (1) for imputation of missing covariates in longitudinal studies. Theirmodel was less general, however, because it imposed special structure upon Xi, Zi, and �.In particular, they assumed a diagonal form for � which is often unrealistic and undesirable.Correlations among the columns of �i can be a crucial aspect of an imputation procedure,because individual-level deviations from a norm in one variable may be highly predictive of4



deviations on another variable. Imputing under a multivariate model that does not allowresidual correlations among Y1; : : : ; Yr may be essentially no di�erent from imputing eachvariable Yj separately under a univariate model. In the adolescent substance-use exampleof Section 4, the nonzero correlations among the three time-varying covariates are crucialfor predicting a child's missing value for Y1 when Y2 and/or Y3 are observed, and vice-versa.Without missing data, techniques for �tting the multivariate model (1) would be rela-tively straightforward extensions of existing methods for the univariate case. When miss-ing values occur within y1; : : : ; ym in arbitrary patterns, however, direct likelihood-basedinferences about the unknown parameters � = (�;�;	) may be di�cult to obtain. Sec-tion 2 discusses general computational strategies for �tting the multivariate linear mixedmodel. Section 3 presents a Gibbs sampler that may be used to create model-based multi-ple imputations of the missing data for subsequent analyses. The technique is applied tosubstance-use data in Section 4, and Section 5 presents further discussion on the use of thismodel and many possible extensions.2 Strategies for model �ttingLet Y = (y1; : : : ; ym) denote the complete data without missing values. If Y were seen,inferences about the parameters � = (�;�;	) could be based on a likelihood function pro-portional to the product (i = 1; : : : ; m) of the normal density functions implied by (2).The �xed e�ects � can be removed from this likelihood function in one of two ways: pro-�ling, in which � is replaced by its conditional maximum given (�;	); and marginalizing,in which the likelihood is replaced by its inde�nite integral with respect to �. Both thepro�le and marginal likelihoods can be written in closed form as functions of the general-ized least-squares estimate for � given (�;	). Maximizing the former produces ordinarymaximum-likelihood (ML) estimates, whereas maximizing the latter leads to restrictedmaximum-likelihood (RML) estimates. 5



For the univariate (r = 1) version of this model, Lindstrom and Bates (1988) presentNewton-Raphson algorithms for ML and RML estimation. Newton-Raphson has excellentlocal convergence behavior but requires careful implementation. The calculations requiredto obtain derivatives of the loglikelihood at each iteration are complex and can be quiteexpensive. The algorithms of Lindstrom and Bates (1988) are �nely tuned for the univariatemodel, but they do not generalize easily to the multivariate case unless we assume that 	has a special patterned structure, 	 = � 
 � for some q � q matrix �. This structure,which forces the correlation matrices for the r columns of bi to be identical, seems quiteunrealistic in many situations. Consider, for example, a linear growth model in which theslopes and intercepts for each variable Y1; : : : ; Yr vary by subject. The correlation betweenthe slope and intercept of any variable Yj expresses the degree to which individuals withhigh initial values of Yj tend to also have high rates of growth for Yj; there may be noa priori reason to believe that these tendencies should be identical, especially when thevariables Y1; : : : ; Yr are very di�erent in nature.Simpler methods for ML and RML estimation are based on variants of the EM algo-rithm. EM relies on the fact that if the random e�ects B = (bV1 ; : : : ; bVm)T were seen, thelikelihood function would factor into distinct likelihoods for 	 and (�;�),L(� j Y;B) = L(	 j B)L(�;� j Y;B); (4)each of which can be maximized quickly without iteration. EM algorithms tend to be quitestable but may converge very slowly; in many problems, hundreds or even thousands ofiterations are required. EM-type algorithms for ML and RML estimation in the univariatecase were given by Laird and Ware (1982) and Laird, Lange, and Stram (1987). As pointedout by Jennrich and Schluchter (1986) and Liu and Rubin (1995), many variants of EM arepossible in the univariate case; not all of these generalize easily to the multivariate case.The key feature of EM is that at each iteration, the su�cient statistics in (4) pertainingto B must be replaced by their conditional expectations given Y and the current estimate6



of �. In the multivariate model, the pairs (yi; bi) are distributed according toy Vi j bi; � � N( (Xi� + Zibi)V ; (�
 Ini) ); (5)b Vi j � � N(0;	); (6)independently for i = 1; : : : ; m. It follows from Bayes's Theorem that b Vi j yi; � �N(~b Vi ;�i), where ~b Vi = �i (��1 
 ZTi ) (yi �Xi�)V ; (7)�i = (	�1 + (��1 
 ZTi Zi) )�1: (8)Calculating �i by (8) requires inversion of rq � rq matrices and is the preferred methodin most cases where q < ni. The su�cient statistics for B required by EM are linear inthe elements of B and BTB, whose expectations are ~B = (~b V1 ; : : : ;~b Vm )T and Pmi=1(�i +~b Vi (~b Vi )T ), respectively.Now consider what happens when portions of Y = (y1; : : : ; ym) are ignorably missing.Let yi(obs) and yi(mis) denote the observed and missing parts of yi, respectively, and letYobs = fyi(obs)g and Ymis = fyi(mis)g. The simplest EM-type algorithms for ML and RMLestimation still rely on the factorization (4). At each iteration, however, one must now �ndthe conditional expectation given Yobs of su�cient statistics that are linear and quadraticfunctions of bi and yi(mis). From (5){(6) we see that y Vi and bVi are jointly normal withcovariance matrix 24 (Ir 
 Zi)	(Ir 
 Zi)T + (�
 Ini) (Ir 
 Zi)		(Ir 
 Zi)T 	 35 : (9)To �nd the expectations necessary for EM, one would have to repeatedly apply a sweepoperator or similar orthogonalization method to these matrices of dimension (rq + rni) �(rq+ rni) for i = 1; : : : ; m. Without imposing further structure (e.g. equality of the Zi) onthe model, the computations for even the simplest variants of EM can thus be exceedinglyexpensive. 7



3 Inference by multiple imputationIn typical applications, many of the parameters in this multivariate model are a nuisance,and obtaining quality estimates of every component of � is not of high priority. Rather thanattempting direct likelihood-based inferences about �, let us consider inference by multipleimputation. In multiple imputation, one must generate k independent draws Y (1)mis ; : : : ; Y (k)from a posterior predictive distribution of the missing data,P (Ymis j Yobs) = Z P (Ymis j Yobs ; �)P (� j Yobs) d�; (10)where P (� j Yobs) is proportional to the product of the observed-data likelihood functionP (� j Yobs) = Z L(� j Y ) dYmisand a prior density function �(�). After imputation, the resulting k versions of the completedata are separately analyzed using complete-data methods, and the results are combinedto obtain inferences that e�ectively incorporate uncertainty due to missing data. As shownby Rubin (1987), quality inferences can often be obtained with a very small number (e.g.k = 5) of imputations. Methods for combining the results of the complete-data analysesare reviewed by Schafer (1996).Except in trivial situations, the posterior predictive distribution (10) cannot be simu-lated directly. It is possible, however, to create random draws of Ymis from P (Ymis j Yobs)using techniques of Markov chain Monte Carlo (MCMC). In MCMC, one generates a se-quence of dependent random variates whose distribution converges to the desired target.Overviews of MCMC methods are given by Gelfand and Smith (1990); Smith and Roberts(1993); Tanner (1993); and in the chapters of Gilks, Richardson, and Spiegelhalter (1996).Applications of MCMC to univariate linear mixed models have been made by a number ofauthors, including Gelfand et al. (1990); Zeger and Karim (1991); Liu and Rubin (1995);and Carlin (1996). Like EM, these MCMC methods rely simpli�cations to the likelihood8



that result when the random e�ects are assumed known. Unlike EM, however, MCMC al-lows us to circumvent manipulations on the large matrices (9) by alternately conditioningon simulated values of the random e�ects and the missing data.In a slight abuse of notation, let A� � P (A) denote simulation of a random variate A�from a distribution or density function P (A). Consider an iterative simulation algorithm inwhich the current version of the unknown parameter �(t) = (�(t);�(t);	(t)) and the missingdata Y (t)mis are updated in three steps:b(t+1)i � P (bi j Yobs ; Y (t)mis ; �(t)); i = 1; : : : ; m; (11)�(t+1) � P (� j Yobs ; Y (t)mis ; B(t+1)); (12)y(t+1)i(mis) � P (yi(mis) j Yobs ; B(t+1); �(t+1)) i = 1; : : : ; m: (13)Given starting values �(0) and Y (0)mis , these three steps de�ne a Gibbs sampler in which thesequences f�(t)g and fY (t)misg converge in distribution to P (� j Yobs) and P (Ymis j Yobs),respectively.This is not the only Gibbs sampler that could be implemented for this problem; asnoted by Liu and Rubin (1995) in the univariate case, a wide variety of alternative MCMCalgorithms are possible. If any of the steps (11){(13) could be carried out without con-ditioning on simulated values of Ymis or B then the algorithm could be made to convergemore quickly. De-conditioning may greatly increase the computational cost per iteration,however, and some limited experience suggests that the additional e�ort required to do sois usually not worthwhile. The three-step algorithm (11){(13) is actually among the slowestto converge in terms of number of iterations required, but iterations can be executed on acomputer quickly provided that su�cient physical memory is available to store Yobs , Y (t)mis ,and the covariate matrices Xi and Zi. If the algorithm is believed to have converged tostationarity by T cycles, then k imputations of Ymis can be generated in kT cycles. Conver-gence can be informally assessed by examining the time-series plots, autocorrelations, etc.for functions of �(t). Formal and informal convergence diagnostics for MCMC are discussed9



by Schafer (1996) and in the chapters of Gilks, Richardson, and Spiegelhalter (1996).Implementation of (11){(13) requires us to specify a prior distribution for �. It is knownthat in mixed-e�ects models, improper prior distributions for the covariance componentsmay lead to Gibbs samplers that do not converge to proper posteriors, even though eachstep of the cycle is well-de�ned. For this reason, proper prior distributions for the covariancematrices are highly recommended. For simplicity, let us apply independent inverse-Wishartdistributions ��1 � W (�1;�1) and 	�1 � W (�2;�2), where W (�;�) denotes a Wishartwith � > 0 degrees of freedom and mean �� > 0. These priors are proper providedthat �1 � r and �2 � qr. In choosing values for the hyperparameters, it is helpful toregard ��11 ��11 and ��12 ��12 as prior guesses for � and 	 with con�dence based on �1 and�2 degrees of freedom, respectively. Small values for �1 and �2 make the prior densitiesrelatively di�use, reducing their impact on the �nal inferences. For �, we use an improperuniform density over Rpr.Under these priors, deriving each of the distributions in (11){(13) becomes a straight-forward application of classical Bayesian methods. The random e�ects bi in (11) are drawnfrom multivariate normal distributions with means and covariances calculated as in (7){(8).Simulation of � in (12) proceeds as follows: First, draw 	�1 from a Wishart distributionwith parameters � 02 = �2 +m and �02 = (��12 + BTB)�1, respectively. Next, calculate theordinary least-squares coe�cients�̂ =  mXi=1XTi Xi!�1  mXi=1XTi (yi � Zibi)!and residuals "̂ = yi �Xi�̂ �Zibi, and draw ��1 from a Wishart distribution with degreesof freedom � 01 = �1�p+Pmi=1 ni and scale matrix �01 = ���11 +Pmi=1 "̂Ti "̂i��1. Finally, draw� from a multivariate normal distribution centered at �̂ with covariance matrix � 
 V ,where V = �Pmi=1XTi Xi��1. For simulating �, it is helpful to note that if G and H areupper-triangular square roots of � and V , respectively (GTG = � and HTH = V ), thenG
H is an upper-triangular square root of �
 V .10



To carry out the �nal step (13) of the Gibbs sampler, notice that the rows of "i = yi �Xi��Zibi are independent and normally distributed with mean zero and covariance matrix�. Therefore, in any row of "i, the missing elements have an intercept-free multivariatenormal regression on the observed elements; the slopes and residual covariances for thisregression can be quickly calculated by inverting the square submatrix of � correspondingto the observed variables. Drawing the missing elements in "i from these regressions andadding them to the corresponding elements of Xi�+Zibi completes the simulation of yi(mis).The convergence behavior of this algorithm is governed by two factors: the amount ofinformation about � carried in Ymis relative to Yobs ; and the degree to which the randome�ects bi can be estimated from the yi. If the missing portions of Y exert high leverage overcomponents of �, or if the bi are poorly estimated (i.e. if the within-unit precision matrices��1 
 ZTi Zi tend to be small relative to  �1), then convergence can be slow. Notice thatany row of yi that is completely missing may be omitted from consideration, along with thecorresponding rows of Xi and Zi, without changing the form of the complete-data model(1). Ignoring these rows will eliminate unnecessary computation at each cycle and reducethe rate of missing information, speeding the overall convergence. These rows of data maybe restored at the �nal imputation step (13) to produce a fully completed dataset.This Gibbs sampler has been implemented by the author in Fortran-77 as a functionwithin the statistical languages S and Splus (Becker, Chambers, and Wilks, 1988). Asequence of T � 1 Gibbs cycles is performed with a single Fortran call; the functionreturns the �nal imputed dataset (Yobs ; Y (T )mis ) and the history �(1); : : : ; �(T ) of parameteriterates. Starting values for � and Ymis may be supplied, or the function may be allowed tochoose its own starting value. Source code and documentation for this function will soon beavailable at the S archive in Statlib, the statistical software distribution service located atCarnegie Mellon University (http://lib.stat.cmu.edu/S/). The package will be calledipan, for imputation of multivariate panel data.11



Table 1: Missingness rates (%) by gradeGrade5 6 7 8 9 10DRINKING 2 24 24 33 35 44POSCON 47 55 62 100 66 63NEGCON 48 56 62 100 100 1004 Application: Adolescent Alcohol Prevention TrialData for this example were drawn from the Adolescent Alcohol Prevention Trial, a longi-tudinal school-based intervention study of substance use in the Los Angeles area (Hansenand Graham, 1991). Attitudes and behaviors pertaining to the use of alcohol, tobacco,and marijuana were measured by self-report questionnaires administered yearly in grades5{10. The data exhibit typical rates of uncontrolled nonresponse due to absenteeism, at-trition, etc. which we will assume to be ignorable; this assumption has been given carefulconsideration and is not entirely implausible (Graham, Hofer, and Piccinin, 1994). In ad-dition, large amounts of truly ignorably missing data arose by design, because each studentreceived only a subset of the attitudinal items in any year; in some years, certain atti-tudinal questions were omitted entirely. For the present analysis, we examined a cohortof m = 3; 574 children and focused attention on three variables: DRINKING, a compositemeasure of self-reported alcohol use; POSCON, the perceived positive consequences of alcoholuse; and NEGCON, the perceived negative consequences of use. DRINKING appeared on thequestionnaire every year, whereas POSCON was omitted in grade 8 and NEGCON was omittedin grades 8{10. Missingness rates for the three variables by grade are shown in Table 1;observed means and standard deviations appear in Table 2.An analysis was performed to assess the possible inuences of POSCON and NEGCON onDRINKING. In this analysis, missing responses were imputed under a multivariate lineargrowth model with random slopes and intercepts for each of the r = 3 variables, plus �xede�ects for gender on both the slope and intercept. Each Xi matrix had p = 4 columns12



Table 2: Means (standard deviations) of observed variablesby grade Grade5 6 7 8 9 10DRINKING �1:43 �1:12 �0:57 0:09 1:29 1:97(1.33) (1.96) (2.73) (3.47) (4.40) (4.78)POSCON 1.30 1.34 1.48 | 1.84 1.96(0.61) (0.62) (0.74) | (0.89) (0.91)NEGCON 2.94 3.05 3.07 | | |(0.76) (0.75) (0.77) | | |corresponding to an intercept, grade, gender, and gender � grade; and each Zi had q = 2columns corresponding to intercept and grade. Notice from Table 2 that both the averagelevel of DRINKING and its variation increase dramatically over time. To make the assumptionof a constant residual covariance matrix � more plausible, alcohol use was re-expressed asthe logarithm of (DRINKING+5). Because NEGCON is entirely missing for the last three yearsof the study, the likely values of this variable for grades 8{10 are being inferred from twosources: extrapolation from grades 5{7 based on the assumption of linear growth, and theresidual covariances among the three response variables which are assumed to be constantacross time. Neither of these assumptions can be e�ectively tested from the data at hand,so inferences pertaining to NEGCON are heavily model-based.Due to the high rates of missing information, it was anticipated that the Gibbs samplerwould converge slowly. To assess convergence, the algorithm was run for an initial 2,000cycles under a very mild prior with �1 = 3, ��11 = 3I, �2 = 6, ��12 = 6I. Time-series plotsand sample autocorrelations for the components of � were then examined. As anticipated,the elements of 	 pertaining to the slopes and intercepts of NEGCON were among the slowestto converge because of the extreme sensitivity of these parameters to missing data. Based onthis exploratory run, it appeared that several hundred cycles might be su�cient to achieveapproximate stationarity. The Gibbs sampler was then run for an additional 9,000 cycles,13



with the simulated value of Ymis stored at cycles 2,000, 3,000, . . . , 11,000. Autocorrelationsestimated from cycles 1,001{11,000 veri�ed that the dependence in all components of � hadindeed died down by lag 200, so the ten stored imputations could be reasonably regardedas independent draws from P (Ymis j Yobs). Each 1,000 cycles required approximately 17minutes on a Sun UltraSPARC-1 workstation, approximately one cycle per second.After imputation, the data were analyzed by a conventional linear growth-curve modelfor the logarithm of (DRINKING + 5). The model was a version of (3) with �xed e�ects forgender, grade, gender � grade, POSCON and NEGCON, plus random intercepts and slopes forgrade. ML estimates were computed for each imputed dataset using an ECME algorithm,an extension of EM described by Liu and Rubin (1994). In this version of ECME, theparameters were partitioned as � = (�1; �2) where �1 = (�; �2) and �2 = 	=�2 (here �2denotes the univariate version of �). Each cycle of ECME consisted of (a) an E-step, inwhich the conditional expectations of B = (b1; : : : ; bm)T and BTB given Y were calculatedunder the current value of �; (b) a constrained maximization of the expected loglikelihoodfor �2 given the previous estimate of �1, in which B = (b1; : : : ; bm)T and BTB are replacedby their expectations; and (c) a constrained maximization of the actual loglikelihood for �1given the updated estimate of �2. The updating formulas areV (t)i = ��(t)2 �1 + ZTi Zi��1 ;~b(t)i = V (t)i ZTi ( yi �Xi�(t) );W (t)i = Ini � ZiV (t)i ZTi ;�(t+1)2 = 1m�2(t) mXi=1 �~b(t)i ~b(t)i T + V (t)i � ;�(t+1) =  mXi=1XTi W (t)i Xi!�1  mXi=1XTi W (t)i yi! ;�2(t+1) = N�1 mXi=1(yi �Xi�(t+1))TW (t)i (yi �Xi�(t+1));where N = Pmi=1 ni. This simple algorithm, which does not seem to have appeared beforein the literature, ran slightly faster than any of the three ECME algorithms described by14



Table 3: Estimated coe�cients, standard errors, degreesof freedom and percent missing information from multiply-imputed growth-curve analysisest. SE df % missingintercept �2.572 0.084 19 71grade (1=5th, . . . , 6=10th) 0.386 0.011 35 53sex (0=female, 1=male) 0.370 0.046 324 17sex � grade �0.105 0.013 88 33POSCON 0.549 0.023 17 76NEGCON �0.090 0.023 15 80Liu and Rubin (1995) on this dataset and several others. Another virtue of this algorithmis that the value of the actual loglikelihood function at each iteration is available essentiallyno cost. Except for additive constants, the loglikelihood can be shown to bel(�(t) j Y ) = � N2 log �2(t) � m2 log j�(t)2 j + 12 mXi=1 log jV (t)i j ; (14)and the determinants in (14) can be obtained as byproducts of the inversions required forV (t)i .Using this algorithm, ML estimates were quickly obtained from the ten imputed datasets;convergence of the parameters to four signi�cant �gures required an average of just 36iterations. Standard errors for the �xed e�ects were obtained from the �nal value of�2(Pmi=1XTi WiXi)�1. The ten sets of �xed-e�ects estimates and their standard errors werethen combined using Rubin's (1987) rules for multiple-imputation inference for scalar es-timands; these and other rules for combining multiply-imputed analyses are reviewed bySchafer (1996). Results of this procedure are summarized in Table 3. The point estimatesare simply the averages of the ML estimates across the ten imputations. The standarderrors incorporate uncertainty due to missing data as well as ordinary sampling variability.The degrees of freedom shown are the estimated degrees of freedom appropriate for hy-pothesis tests and interval estimates based on a Student's t-approximation. All coe�cientsare highly statistically signi�cant.Table 3 also shows the estimated percentage of missing information for each estimand as15



derived by Rubin (1987). The high rates of missing information indicate that the inferencesfor all coe�cients (except sex) may be highly dependent upon the form of the imputationmodel and the assumption of ignorable nonresponse. The latter assumption is not particu-larly troubling for these data, because the majority of missing values are missing by design.Certain assumptions of the imputation model, however|in particular, the assumed lineargrowth for NEGCON and constancy of the residual covariances across time|are not reallytestable from the observed data, so results from this analysis should be interpreted withcaution.Despite these caveats, the estimates in Table 3 provide some intriguing and plausibleinterpretations about the behavior of this cohort. The positive coe�cient for sex indicatesthat boys reported higher average rates of alcohol use than girls in the initial years of thestudy. The negative e�ect for sex � grade, however, shows that girls exhibit higher rates ofincrease than boys, so that the girls' average overtakes the boys' by grade 8. The large pos-itive e�ect of POSCON indicates that increasing perceptions about the positive consequencesof alcohol use are highly associated with increasing levels of reported use. The negativecoe�cient for NEGCON suggests that increasing beliefs about negative consequences do tendto reduce levels of use, but the e�ect is much smaller than that of POSCON. These results areconsistent with those of previous studies (MacKinnon et al., 1991) which demonstrated thatperceived positive consequences may be inuential determinants of substance-use behavior,but beliefs about negative consequences have little or no discernible e�ect.5 Discussion and extensionsThe multivariate mixed model (1) is a natural extension of the simple univariate model (3)which has been quite popular in the analysis of longitudinal data. The imputation proce-dures described in Section 3 are appropriate for longitudinal analyses with partially missingcovariates, when those covariates are going to be incorporated into an analytic model as16



�xed e�ects. These methods are also appropriate for multivariate cross-sectional studieswhere units are nested within naturally occurring groups (e.g. children within schools). Thealgorithm and software described in this article provide a principled solution to missing-dataproblems for this somewhat limited but important class of analyses.The imputation model and Gibbs sampler can be extended in a number of importantways. The use of an unstructured covariance matrix 	 for the random e�ects may belimiting in situations where some aspects of 	 may be poorly estimated|for example, inmultivariate cluster samples with many variables, many units per cluster, but relatively fewclusters. A more parsimonious block-diagonal structure, which assumes that the randome�ects pertaining to the r response variables are independent, can be handled easily. Undera block-diagonal structure, the likelihood function in (4) pertaining to 	 factors into rdistinct likelihoods for the diagonal blocks, so a Gibbs sampler can draw these blocksindependently. Another extension which can be easily implemented pertains to linearmodels with additional random e�ects due to higher levels of clustering; this would arise,for example, in multivariate studies where individuals are grouped into larger units andmultiple observations on individuals are taken over time. Both of these features will beincorporated into future versions of the software.We are currently investigating a number of additional extensions the model. The �rstextension pertains to columns of yi that are necessarily constant across the rows 1; : : : ; ni.In longitudinal studies, these columns would represent covariates that do not vary over time;in clustered applications, they would represent characteristics of the clusters rather thanthe units nested with them. If these covariates have no missing values, they can be handledunder the current model by simply moving them to the matrix Xi. When missing valuesare present, however, they must be explicitly modeled for purposes of imputation. If weare willing to impose a simple parametric distribution on these covariates (e.g. multivariatenormal), then it will be straightforward to extend the Gibbs sampling procedure to impute17



these as well.Another useful extension involves interactions among the columns of yi. The multi-variate normal model allows only simple linear associations among the variables Y1; : : : ; Yr,but in many studies one would like to preserve and detect certain nonlinear associationsand interactions. In the data example of Section 4, for example, it may have been usefulto see whether the strong e�ect of POSCON on DRINKING may have been increasing or de-creasing over time; the imputation model, however, imputed the missing values under anassumption of a constant POSCON � DRINKING association. Extensions of the multivariatemodel to allow more elaborate �xed associations such as POSCON � DRINKING � grade, orrandom associations such as POSCON � DRINKING � subject, are an important topic forfuture research.Finally, it will be important to extend the imputation procedures to include time-varying responses that are categorical. Under the current procedure, ordinal responses canbe handled in an ad hoc fashion, imputing under a normal model and rounding o� the resultsto the nearest category. Some evidence suggests that ad hoc rounding procedures oftenwork well in practice (Schafer, 1996). In other situations, however, a normal model will beclearly unacceptable|for example, with nominal (unordered) responses or binary variablesthat are heavily skewed. Imputation methods for multivariate datasets with continuousand/or categorical variables (Schafer, 1996) should be extended to include random e�ectsthat arise from longitudinal or clustered structure.In the current model the rows of each response matrix yi are assumed to be condition-ally independent given bi with common covariance matrix �. This assumption has beenrelaxed by Jennrich and Schluchter (1986), Lindstrom and Bates (1988), and others inthe univariate case to allow a residual covariance matrix of the form �2Vi, where Vi hasa simple (e.g. autoregressive or banded) pattern dependent upon one or more unknownparameters. Sensible multivariate extensions of these patterned covariance structures to a18



tends to produce models and algorithms that are complex even apart from missing data.For example, the obvious extension of �Vi � N(0; (�
 Ini) ) to �Vi � N(0; (�
 Vi) ) seemstoo restrictive for many longitudinal datasets, because the response variables Y1; : : : ; Yr arethen required to have identical autocorrelations. Accounting for autocorrelated residualsin a sensible manner may prove be a daunting task in the multivariate case. In practice,nonzero correlations among the rows of �i may arise because of a misspeci�ed model forthe mean structure over time. The problem may sometimes be reduced or eliminated byincluding additional (e.g. higher-order polynomial) terms for time in the covariate matricesXi or Zi.6 ReferencesBecker, R.A., Chambers, J.M. and Wilks, A.R. (1988) The New S Language: A program-ming environment for data analysis and graphics. Wadsworth and Brooks/Cole AdvancedBooks and Software, Paci�c Grove, CA.Carlin, B.P. (1996) Hierarchical longitudinal modelling. Markov Chain Monte Carlo inPractice (eds. W.R. Gilks, S. Richardson and D.J. Spiegelhalter), 303{319, Chapman &Hall, London.Gelfand, A.E., Hills, S.E., Racine-Poon, A. and Smith, A.F.M. (1990) Illustration ofBayesian inference in normal data models using Gibbs sampling. Journal of the Amer-ican Statistical Association, 85, 972{985.Gelfand, A.E. and Smith, A.F.M. (1990) Sampling-based approaches to calculatingmarginaldensities. Journal of the American Statistical Association, 85, 398{409.Gilks, W.R., Richardson, S., and Spiegelhalter, D.J., eds. (1996), Markov-Chain MonteCarlo in Practice. Chapman & Hall, London.Graham, J.W., Hofer, S.M., and Piccinin, A.M. (1994) Analysis with missing data in drugprevention research. Advances in Data Analysis for Prevention Intervention Research (eds.L.M. Collins and L.A. Seitz), 13{63, National Institute on Drug Abuse.19
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CHAPTER 12 

Joseph L. Schafer 

issing values are a nuisance in efforts so in 

the collection and of longitudinal data. Multiple occasions M greater opportunities for missed measurements. 

is one area have made in recent 

In this chapter, I present a for 

multiple imputation Schafer, 

Missing data pose a the of 

digms and for statistical that the input data are 

plete. For this reason, the and most convenient method for handling 

incomplete is case deletion, that is, ignoring participants 

missing information. Case deletion suffers from a of serious 

have documented Little Or For multivariate 

a large numDer of items case deletion can 

discarding an proportion of participants; even if the 

rates of missingness are participants complete data for all 

items. Moreover, case deletion leads to valid inferences in general 

missing data are missing at random in the sense that the 

discarded cases are a random of all cases. If the discarded cases 

differ the rest, then the resulting estimates have 

serious 

A natural alternative to case deletion is imputation, the practice of replacing 

missing data Various forms of imputation have 

plied in federal and censuses for decades Nisselson, Q 

Imputation has the method of choice for 

dling item nonresponse, situations in a participant provides some 

This research supported Grant from the National Institute on 
Drug and Grant from the National Cancer Institute. I 
tend special to John Graham for providing data from the Adolescent Alcohol 
Prevention Trial and advice on their 
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mation fails to respond to one or more individual items on a questionnaire. 

Imputation is attractive solves the 

at the outset; once the missing values have imputed, the data set can 

and methods. Another 

tive feature of imputation is its case deletion, imputation 

one to full use of the data at hand. 

Methods of imputation range from simple procedures, such as mean 

for that 

algorithms that replace missing items 

data from donor cases chosen to match the original on selected items 

Chapman, In longitudinal data sets 

stantial filled in 

missed measurements interpolation, extrapolation, or 

ried these ad hoc imputation procedures 

distort important aspects of the of a 

relationships other it is for the 

of imputed values to the of the 

Even if an imputation method important aspects of 

the data serious Imputation adds 

fictitious information to a data set. If imputed values are treated the same 

as in then the resulting inferences 

precise, the imputed values are imperfect proxies for the 

data represent. single imputation, there is no simple to reflect 

in the imputed values. In response, proposed 

the method of multiple imputation, is represented 

a set of rn 1 simulated values. Let Y (Y&,, Y,,,) denote a generic data set, 

in Yobl is the and Y,,, is the missing part. Multiple 

tation replaces Y,,, a set of simulated Y::, Yz,),, . . . , Yz: from a 

predictive P(Ym,s 1 Yobr) arising from a model. After 

tiple imputation, one has m simulated complete data sets, YcJ) (Yobsr Y:b), j 

1, 2, . . . , rn, are methods. The 

results are then using simple arithmetic rules, to produce overall 

estimates and standard errors that account for I 

these rules and demonstrate them in the example near 

the end of this chapter. 

The idea of multiple imputation is that it treats missing data as an 

explicit source of random over to of 

creating imputations, the imputed data sets, and 

sults is a Monte Carlo version of averaging the statistical results over the 
dictive P(Y,,,I Yob5). In practice, a large of multiple 
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tations are not required; 

m 5 10. 

out multiple imputation requires of assumptions. First, one 

must propose a model for the of Y. This data model should 

and should the of to 

For example, one could assume that the in the data set are 

In the case of longitudinal the model should 

of preserving the correlation structure and time trends 

uals. The second set of assumptions pertains to the manner in the 

ing values It is most common to assume that the missing data 

are missing at random in the technical sense defined 

that the of missingness depend on the 

values not on the missing data Y,,,. The MAR assumption is 

a mathematical convenience that one to perform imputation 

the mechanism. In practice, MAR is 

it cannot verified or contradicted examination of the 

data. If the assumption seems prima facie then alternative 

dures can modeling the of missingness. General 

techniques and for creating multiple imputations under 

models have not is an important area for future 

search. Further discussion on the and ramifications of MAR 

given Little and Graham, Hofer, and Piccinin and 

Schafer 

Multiple imputation is not the method for handling missing 

data. For parametric models, a main competitor is the technique of direct 

imum or maximum 

a on the of the 

alone. This 

r 

8 represents the parameters of the data model, and L(O I 
denotes the if no data 

The integration in Equation 12.1 eliminates the dependence on Y,,,,,, 

the reflect the additional due to the fact that 

Y,,,,, is In effect, this integration is 

over I YubJ that place in multiple imputation. Except in simple 

12.1 tends to complicated, often 

requiring complicated numerical techniques or approximations. carried 

out direct maximum can efficient than 

multiple imputation it is a deterministic procedure; no simulation is 



360 IOSEPH L. SCHAFER 

involved, so no extra is introduced into statistics. 

cases, this extra randomness introduced multiple imputation is quite 

In large samples, estimates and standard errors direct maximum 

and multiple imputation tend to similar. 

Applications of direct maximum in 

dinal in 

erarchical linear modeling Congdon, Proc 

Mixed in SAS Stroup, and similar 

ages are designed for data, on each participant 

at a different set of time points. Responses that are missing, either 

or design, are removed from the integration 

as in Equation 12.1. An important limitation of these that the 

missing values must to the response on 

predictors are not If the individuals in the have 

at a common set of occasions, models equivalent to those fit HLM and Proc 

Mixed can Meredith 

structural equations 

recent programs for structural equations, Mx and Amos 

perform direct maximum from a 

missing values. Missing data can in other structural equations 

the technique of multiple groups Duncan Q 

Duncan, Muthen, Hollis, An advantage of the latent 

approach is that missing values occur on predictors as 

as the response; the measurements must at a small 

of common time points. 

a direct procedure is a particular 

indeed the most convenient and attractive method. Despite 

the increasing of direct maximum multiple 

putation still offers some unique advantages for data it 

them to use their favorite models and an imputed data set 

method that appropriate if the data 

complete. As computing environments and statistical models 

complex, the value of using familiar methods and should not 

derestimated. Second, there are still classes of no 

direct procedure is For example, in longitudinal 

is no direct method for incomplete 

iates occasions of measurement 

A third reason multiple imputation can than direct 

maximum is that the separation of the imputation phase from the 

lends a greater to the entire process. multiple 
imputation the imputer is free to use additional helpful 
for imputation that are not of direct interest for the For example, 
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consider a covariate that helps to explain reasons for nonresponse. Using this 

in the imputation procedure tends to reduce in 

even in do not involve that 

an important advantage of multiple imputation over direct 

mum is that it singles out missing data as a source of random 

ation distinct from The 

tion 12.1 lumps these of statistics 

standard do not reveal 

sources. multiple imputation, the overall is 

partitioned into sampling and 

an estimated rate of missing information, can quite 

helpful for assessing the impact of missing data on inferences for 

of interest. 

The purpose of this chapter is not to 

in favor of multiple imputation; rather, it is hope that more 

the important advantages offered of these modern 

data methods and them instead of case deletion or other ad hoc 

procedures. In most applications, missing data are not the main focus 

of scientific unpleasant nuisance. Missing data should handled 

and compromising the of the 

results. Multiple imputation might not optimal choice for 

it is a statistical tool and a addition to a 

odological 

In the remainder of this chapter, I a method for creating multiple 

imputations in longitudinal and for 

multiple imputation, as in Schafer have focused on missing 

data in general multivariate settings. In response to the specific need for 

gitudinal a of algorithms called PAN has 

imputing multivariate panel data, a group of for 

individuals at multiple time points. PAN 

tered data a single point for participants nested 

unit Future versions of 

the to handle repeated measures and clustering 

PAN is at present as a of functions for the statistical 

gramming language Inc., Current efforts are focused 

on developing a version of PAN that operates as a 

environment. 

can free of charge from 
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The PAN Model 

Suppose that a group of continuous Y,, Y2, . . . , Y, is 

measured for individuals i 1, 2, . . . , N at multiple occasions. The responses 

for participant i a matrix column for each 

and one for each occasion, 

i 

denotes the value of Yh at occasion The of occasions 

n, and their temporal spacing participant. I assume that missing 

values occur throughout the matrices . . . , and that these missing 

values are MAR. The immediate goal is to impute the missing values 

so that the data can in a manner. the 

to regard one column of Equation 12.2 as a response and 

the other columns as potential predictors in a conventional model. For 

the moment, I regard all r columns of as random responses and 

model them for the purpose of imputation. I construct a multivariate 

to the of the Y,, Y2, . . . , Y,, 

given other and 

require no imputation. 

The model used PAN designed to preserve the 

ships: among the Y,, Y2, . . . , Y, an individual 

at each time point. These are reflected the covariances among the elements 

of of in Y, an individual 

across time points. This is reflected trends the columns of 

Relationships the response YI, Y2, . . . , Y, and 

tional included in the model. 

The continuous or categorical, must 

on these 
in the current version. Missing values in 

and imputed, provided that included among Y1, 

Y2, . . . , Y,. 

PAN relies on a multivariate extension of a linear model that 

has popular for 20 

X,P Z,b, 

X p) and X are covariate matrices, p contains 

regression coefficients common to all units, and b, contains coefficients specific 

to unit i. Note that Equation 12.3 is a multivariate regression; P and b, are 



Multiple Imputation 363 

matrices r columns, one column for predicting each of the Y,, 

Y2, . , . , Y,, and E, is also a matrix the same dimensions X The 

univariate version, proposed and Rao 

later Laird and Jennrich and Schluchter 

and others, is the for of the linear 

in use The coefficients p and are often called 

and 

univariate versions of this model, it is common to assume that the 

random effects and residuals are from normal 

tions, b, N(0, JI) and E, N(0, i 1, 2, . , . , N, 9 is a q X q 
covariance matrix and I is the X For the multivariate 

case, one assumptions to 

N(0, 

“0, 0 01, 

vec denotes the of a matrix its columns. The 

covariance matrix in Equation 12.4 has dimension qr X qr, and the 

product notation in Equation 12.5 indicates that the of E, are 

as N(0, I; is r X r. 

In of measurement are incorporated into X,, 

and perhaps Z,, as linear, quadratic, or higher order and Z, is a 

of the columns of X,. For example, suppose that the first columns 

of X, are 1, . . . , and (tl, t2. . . . , t,,)’, tl, t2, . . . , tn, 

are the times of measurement for participant i; X, have 

additional columns containing static or covariates for participant 

i. Setting Z, equal to the first column of X, produces a model of linear 

individuals; setting Z, equal to the first 

columns of X, produces random intercepts and slopes. Centering the 

of at p to the regression 

coefficients and the random effects . . . , b, due to 

interparticipant variation. 

Note that in this multivariate model all of the covariates in X, and Z, appear 

as predictors for each of the columns of y,. As a result, the same group of 

predictors and the same of trend over time linear mean 
and to of the response 

Y,, Y2, . . . , Y,. The actual coefficients for the response 

in the r columns of p and the same group of predictors is applied 

to each response. At first glance, this appear to a serious limitation of 

the model; in is no reason to that Y,, Y2, 

. . . , Y, should depend on the same set of covariates. One must 

the purpose of PAN is not to construct a 
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meaningful model to impute missing responses in such a that 

tant relations are preserved. If a covariate appears in as a 
potential predictor of one or more of the response Y,, Y2, . . . , Y,, 

then that covariate should included in the imputation model, even though 
its effects on some of the responses irrelevant or null. No 

using an imputation model that is larger or more general than for 

given on the purpose of imputation modeling 

and the and assumptions, see Meng 
Schafer chapter 

The current version of PAN of assumptions 9, the 

covariance matrix for the random effects . . . , One 
the 9 matrix to an unstructured or covariance 

matrix or of the form 

the 9, , 1, . . . , r are covariance matrices of q X 

q. The unstructured the random effects for Y, and 
Yk to the random 

effects for each response are independent of those for other response. 

The choice depends on theoretical and practical 
considerations. Suppose that Y,, Yz . . . , Y, represent achievement scores 
ematics, reading comprehension, recorded for schoolchildren over time, 

and one applies a model of linear intercepts and slopes that 

individual. If there is reason to that patterns for the various 

achievement scores are example, that participants 
of increase for mathematics also tend to have high rates of increase for 

reading it to use an unstructured 9. As 

the of response it often 

to estimate covariances among all of their random effects unless the of 

participants is large; to for 9 one need to 
a structure. Unless the correlations among the random 

effects for some pairs of responses are the potential 
incurred using a rather than an unstructured 9 tend to 

minor. 

The a PAN model can as 
missing values should placed 

in the columns of regardless of as 

in later If a is to imputed, then it must 
included among the Y,, Y,, . . . , Y,. Second, other covariates of interest 
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should included in the columns of X, and, 2,. These include 

that Yl, Y2, . . . , Y, and 

missingness on Y,, Y2, . . . , Y,. Placing a covariate in X, 

the of all of the Y,, Y2, , . . , Y, in the population. 

Placing a covariate in X, and Z, of 

ence on Y,, Y,, . . . , Y, to individuals. Note that static or 

gender or pretest should not included in 

Z, it is effects for such 

such as 1, time, and so on, 

appended to X, and 2, as desired, to levels of Y,, Y,, . . . , Y, 

and the trends in these over time to across individuals. The choice 

of to include depend on of effects are to 

exist and effects in 

Computational Algorithms 

The computational engine of PAN is a 

algorithm called a sampler. MCMC is a class of simulation 

techniques that are useful in statistical A of 

MCMC is the scope of this chapter, gentle introduction is given 

Casella and George and Schafer chapters more 

prehensive references are the volume edited and 

gelhalter and the article and Smith Specific details 

and formulas for the computations used in PAN have me 

Yucel Q Schafer, 

The MCMC algorithm in PAN is on the the model 

specified 12.5 has the components: the 

missing values in . . . , the random effects b,, . . . , the fixed 

effects p, and the covariance matrices 2 and 9. For the purpose of imputation, 

I am interested in simulating the missing data in yL, . . . , the other 

quantities are a nuisance. To simulate the missing data 

must into account the in these other 

tities and it to 

through mathematical formulas is difficult, so one accounts for the 

interdependence among the quantities through a process of iterative 
simulation. 

PAN simulates the quantities in a 

1. random values of b,, . . . , b, on the of some 

for the missing data and the parameters p, 
2, and 9. 

2. random values of the parameters p, 2, and 
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on the of the assumed values for the missing data and the 

values of b,, b,, . . . , in Step 1. 

3. values for the missing data given the values of 

b,, b,, . . . , b, in Step 1 and the parameters in 

Step 2. 

At the end of this the parameters and missing data from Steps 2 and 3 

1 at the start of the next 

Steps 1, 2, and 3 in turn defines a chain, a sequence in 

of the quantities at depends on their simulated 

values at the previous of the process at 2 

correlated 1, at 3, 4, 5, and so 

on, the relationship to the original state a sufficient of 

has independent of the 

original state, then the process is said to have converged or achieved 

On convergence, the final simulated values for the missing data have in fact 

come from the from imputations should 

This algorithm rn multiple imputations in the 

run the 

for k k is large enough to ensure convergence, and final 

simulated version of the missing data as the first imputation; then return to the 

original starting values, run the for another and 

the final simulated version of the missing data as the second imputation; and 

so on. This method requires rn runs of length k each. Another and 

perhaps more convenient is to perform one long run of saving 

the simulated values of the missing data after 2k, . . . , rnk as the rn 

imputations. The latter method differs from the former in that the final 

values from each of length the starting values for the next 

of length 

It is important to note that convergence of an MCMC procedure means 

convergence to a rather than convergence to a set of 

fixed values. To that the algorithm has converged 

that the random state of the process at t is independent 

of its state at t for t 1, 2, . . .. After running the one can 

examine the output stream over see needed to 

achieve this independence. Suppose that one collects and stores the simulated 

values for one parameter e particular element of q, or 2) over a large 

C of consecutive These values e(2), . . . , can 

as a time series. The autocorrelation, the correlation 

pairs and pk) 1, 2, . , . , C can for various values 

of to determine large must for the correlations to die In 

principle, one should examine autocorrelations for each parameter in the model 
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and a value of large enough to guarantee that the 

tions for all parameters are experiences real data, 

I have found that the greatest levels of serial dependence are almost 

seen in variance and covariance parameters, and in particular the 

elements of It is to monitor the of the elements 

of q it is tends to 

converge the most on monitoring the convergence 

of MCMC algorithms, see Schafer chapter 

The rate of convergence of this is influenced a 

nation of factors pertaining to the data and the model. First, it is affected 

the amounts and patterns of missing data in the matrices yr, . . . , greater 

rates of missing information lead to It is also affected 

to estimate the individual random effects b,, . . . , b,; if estimates 

of random effects are then convergence is 

vergence the of participants (N). As the 

sample of the random 9 matrix at each 

comes more around the sample covariance matrix of b,, 

. , . , b, from the previous As this 

elements of q are less free to from their values at the previous 

producing higher correlations from one the next. It is 

ironic that the algorithm converges more 

parameters increases. large of participants and a small 

of occasions per participant, it is not uncommon for the to 

require several hundred or even 1,000 to converge. convergence is 

not a in most cases a 

tations are If k 1,000 are needed to achieve then 

five imputations can produced in 5,000 for a large data 

set requires no more than a hours on a personal computer. 

In addition to deciding are needed, the user must also 

prior for the covariance matrices and x. 
ian procedures, popular in of 

statistical parameters as random and assign 

prior to them to reflect of or 

the parameters the data are seen. An excellent introduction to the 

statistical paradigm and for a 
modern of modeling and computation, see Gelman, 

Carlin, and Stem Some statisticians tend to prefer procedures 

on principle, others avoid them on principle. I hold a pragmatic 

accepting the prior as a mathematical device that 

one to generate the imputations in a principled fashion. In applications, I 

to use prior that are dispersed, reflecting a state 

of relative ignorance model parameters. priors tend to 
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the of the prior, for 

themselves. 

The prior most applied to a covariance matrix is 

the inverted The of the 

random matrices, is discussed in standard texts on multivariate 

Anderson, The prior 

for Z is 

B), 

denotes a a degrees of freedom and scale B. The 

scale is a the same dimensions X 

as 2. The degrees of freedom, should than or equal to r, 

govern the spread or of a more 

dispersed. The user of PAN must provide numeric values for a and B-'. Our 

usual practice is to set a r to as and 

then to set B-' 3 is a prior guess or estimate of C. If 

a guess for C. is the data themselves to one. 

Yucel and Schafer a 

algorithm for calculating of the parameters f3, 

and 2, from the incomplete data. Running this EM algorithm the 

is an excellent to a for 2. 
In a similar fashion, I also use inverted for the 

9. If 9 is unstructured, one assumes 

D) D is a qr X qr matrix and c qr. usual practice is to set 

c qr and D-' is a prior guess or estimate of 9. If 9 is 

to 12.6, then independent inverted 

prior are applied to the D,), 1, 

. . . , r, cJ 2 q. To the priors one sets c, q and DJ-' 

qJ is an estimate or guess for JI,. The EM algorithm 

Yucel and Schafer provides a 

structured or estimates of the 9, . . . , 9, is 

diagonal. 

An Example: Exptamies and Alcohol Use in the Adolescent 
Alcohol Prevention Trial 

The Adolescent Alcohol Prevention Trial a longitudinal 

of use carried out in the Los Angeles area 

Q Graham, In one panel of AAPT, attitudes and 

pertaining to the use of alcohol, and 

report questionnaires administered in Grades 10. The data 
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of uncontrolled nonresponse due to attrition, and so 

on, I assume to MAR. This assumption has given careful 

sideration the researchers and appears to for example, much 

of the attrition is due to students moving to other schools or districts, 

is at most patterns al., 

In addition to this uncontrolled nonresponse, large amounts of MAR 

missing data in arose design. The AAPT made use of an 

innovative in each student received a of 

the items in as in chapter 11 of this volume, Graham, 

and Cumsille. In some omitted For 

the present I examine a cohort of m 3,574 children and focus 

tention on three composite measure of 

alcohol use; POSCON, a measure of the degree to the student perceives 

that alcohol use has positive consequences; and NEGCON, a measure of the 

perceived negative consequences of use. appeared on the 

naire POSCON omitted in Grade 8 and NEGCON 

omitted in Grades Missingness rates for the three grade are 

in 12.1; and standard deviations appear in 

12.2. 

focus on the of POSCON and 

NEGCON on missing data, it 

for that includes the 

POSCON and NEGCON as Current for 

tilevel models cannot accommodate missing values on covariates, so 

I first use PAN to the missing values for POSCON, 

and NEGCON. 

Notice in 12.2 that the average level of and its variation 

increase is 

dard 

stant variance in a response over time. To the assumption of constant 

TABLE 12.1 

Missingness Rates I%! for Three Variables by Grade 

GRADE 

VARIABLE 5 6 7 a 9 10 

2 24 24 33 35 44 

POSCON 47 55 62 100 66 63 

NEGCON 48 56 62 100 100 100 

Note. POSCON positive consequences; NEGCON negative consequences. 
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variance more I transformed 

adding a small constant to ensure that all values After this 

formation, the increase in variation much less 

transformed version of used in the imputation procedure 

and in the transformed version 

more fit the assumptions of the imputation procedure and the 

multiple imputation, it is not for to 

imputed and on the same scale. the 

imputation phase can effective tool for preserving important 

of nonnormal of the 

later Olsen, 

To set up the data for PAN, one fi.rst arranges the responses for each 

dividual in the form of a matrix yL of dimension 6 X 3, 

sponding to occasions 5, . . . , and columns for POSCON, 

and NEGCON. In devising the imputation model the is to 

preserve in the and its potential relationships to the 

points, the model for must 

rather simple, so let us posit a linear model and slopes 

is, create a model in 

POSCON, and NEGCON are each a linear trend a random 

intercept and a random slope, for a total of six random effects in each 

Random intercepts and slopes are specified 1, 1, 1, 1, and 

2, 3, 4, 5, into the columns of X, and 2,. to incorporate potential 

gender differences, I population average slopes and intercepts for 

and girls to adding additional columns to each X, matrix: sex, X 

1, 1, 1, 1, and sex, X 2, 3, 4, 5, is a indicator 
for participant gender for girl, 1 for 

In defining a PAN model, there is no particular importance attached to the 

specific coding scheme used to create the design matrices X, and 2,. For 

ample, the linear effect of time could have as 1, 1, 

3, or other set of and the gender effect sex, could 

have coded as and rather than as 0 and 1. 

The particulars of the coding scheme affect the precise meaning of the 

eters in p, 2, and 9, these parameters are not of inherent 

goal at this stage is not to interpret parameters to impute the missing values 

in Changing the coding scheme in X, and 2, does not change the 

of imputed values, provided that the linear space spanned the columns of 

these design matrices does not change. 

12.1 indicates that NEGCON is for the last 3 

of the It seem unusual to impute a that is 

Under this model the values of NEGCON for Grades are 

inferred from sources: extrapolation from Grades on the of the 
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assumption of linear and the residual covariances among the three 

response in 2, are assumed to time. Neither 

of these assumptions can tested data at hand, so 

ences pertaining to NEGCON are model In retrospect, it 

have helpful to collect NEGCON in the final to 

provide more of this 
Before running the I first initial estimates of the 

parameters p, c, and running the EM algorithm. This EM 

procedure, assumed an unstructured form for converged in 134 

erations and less than 1 h on a 400 Pentium I1 computer. The 

resulting for 2, and iP then used to 

mulate as in the Computational Algorithms 

section. 

Because of the high rates of missing information, I anticipated that the 

converge To assess convergence, I ran it for an 

initial 2,000 and examined time series plots and sample autocorrelations 

for a of parameters. As anticipated, the elements of pertaining to the 

slopes and intercepts of NEGCON among the 

of the extreme of these parameters to missing data. On the of 

this run, it appeared that several hundred might sufficient 

to achieve approximate then run for an 

additional simulated value of Y,,, stored at 2,000, 

3,000, . . . , 11,000. Autocorrelations estimated from 1,001 1 1,000 

ified that the dependence in all components of 8 had indeed died lag 

200, so the 10 stored imputations could independent 

from P(Y,,,IY0,,J. The entire imputation procedure less than 2 hr 

400 Pentium 11. 

After imputation, the data a conventional linear 

curve model for the The model 

ilar to the one used for imputation, except that POSCON and NEGCON 

appear as rather than responses. The model included 

an intercept and fixed effects for gender, grade, gender X grade, POSCON, and 

NEGCON, plus random intercepts and slopes for grade. Time coded as 
2, 3, 4, 5, and gender a indicator for girls, 1 

for computed for each imputed data set using 

a procedure equivalent to that used standard such as HLM. 

the 10 sets of estimates and their standard errors 

then using rules for inference for 

scalar estimands. These rules are as Let Q denote the 

to estimated, in this case a regression coefficient. Let B(’) denote 
the estimate of Q from the imputed data set, and U, its squared standard 

error 1, 2, . . . , m). The overall estimate of Q is average 
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To error for g, one calculates the variance 

(m and the variance 0 m-l~U(J). 

The estimated total variance is 

T 0, 

and tests and confidence intervals are on a t approximation 

of freedom 

m-')B 

The ratio r measures the relative increase in variance due to 

missing data, and the rate of missing information in the 

A r). A more refined estimate of this rate is 

r 2/(v 

The results of this procedure are in 12.3, 

the overall estimates, standard errors, degrees of freedom for the t 

tion, and estimated percentage rates of missing information. All coefficients are 

of missing information indicate 

that the inferences for all coefficients dependent on 

the form of the imputation model and the MAR assumption. The latter 

sumption is not for these data the of 

TABLE 12.3 

Estimad Coefficients (Est.), Standard Emrs, Degms of Freedom, and 

Percentage Missing lnibrmation From Multiply Imputed 

Growth-Curve Analysis 

VARIABLE EST. SE df MlSSfNG 

Intercept 71 

Sex female, 1 0.370 0.046 324 17 

Grade 5th, . . . , 6 0.386 0.011 35 53 

Sex x grade 0.013 88 33 

POSCON 17 76 

NEGCON 15 80 

Note. POSCON positive consequences; NEGCON negative consequences. 
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missing values are missing design. Certain assumptions of the imputation 

model, particular, the assumed linear for NEGCON and 

of the residual covariances across not 

the data, so results from this should 

caution. 

Despite these caveats, the estimates in 12.3 provide some intriguing 

and interpretations of this cohort. The positive 

coefficient for sex indicates that reported higher average rates of alcohol 

use than girls in the initial of the effect of sex X 

grade, girls of increase than so 

that the average the Grade 8. The large positive effect 

of POSCON indicates that increasing perceptions the positive 

quences of alcohol use are levels of reported 

use. The negative coefficient for NEGCON suggests that increasing 

negative consequences do tend to reduce level of use, effect is much 

smaller than that of POSCON. These results are consistent of 

vious studies al., that demonstrate that perceived 

positive consequences influential determinants of 

ior, negative consequences have little or no effect. 

Discussion 

The multivariate mixed model used PAN is a natural 

sion of univariate popular in the of 

tudinal data. The imputation procedures appropriate for 

longitudinal methods are also 

appropriate for multivariate studies in units are nested 

occurring groups children 

and in this chapter provide a principled solution to 

data important and of 

The imputation model and can extended in a of 
important One extension pertains to models 

fects due to higher levels of clustering; this for example, in 

tivariate studies in grouped into larger units and multiple 

on individuals are time. Another useful extension 

tains to columns of that are constant across the 1, . . . , n,. 

In longitudinal studies, these columns represent covariates that do not 

time; in clustered applications, 

of the clusters rather than the units nested them. If these covariates have 

no missing values, under the current model 

moving them to the matrix X,. missing values are present, 



MultiDle ImDutation 375 

must for purposes of imputation. If one imposes a simple 
parametric on these covariates multivariate it 

is sampling procedure to impute these as 

Another useful extension involves interactions among the columns of y,. 

The multivariate normal model among 
the Yl, . . . , Y,, in studies one to preserve and 
detect certain nonlinear associations and interactions. In the AAPT example, it 

effect of POSCON on 
the imputation model, 

ever, imputed the missing values under an assumption of a constant POSCON 

X association. Extensions of the multivariate model to 

fixed associations, such as POSCON X X grade, or random 
associations, such as POSCON X X participant, are an important topic 
for future research. 

In the current PAN model, the of yL are assumed to 
independent given b, covariance matrix C. This assumption has 

Jennrich and Schluchter Lindstrom and Bates 
and others in the univariate case to a residual covariance matrix of the 
form V, has a simple autoregressive or 

pendent on one or more parameters. Extensions of these patterned 
covariance structures to a multivariate setting tend to produce models and 
gorithms that are complex even apart from missing data. For example, the 

of 01 to (2 VJl 

seems too restrictive for sets, the response 
y,, . . . , Y, are then required to have identical autocorrelations. 

ing for autocorrelated residuals in a manner prove to a daunting 
in the multivariate case. In practice, among the 

of E, arise of a misspecified model for the mean structure over 
time. The reduced or eliminated including 
ditional higher order for time in the covariate matrices 

X, or 2,. 
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Computational Strategies for Multivariate
Linear Mixed-Effects Models

With Missing Values

Joseph L. SCHAFER and Recai M. YUCEL

This article presents new computational techniques for multivariate longitudinal or

clustered data with missing values. Current methodology for linear mixed-effects models

can accommodate imbalance or missing data in a single response variable, but it cannot

handle missing values in multiple responses or additional covariates. Applying a multivariate

extension of a popular linear mixed-effects model, we create multiple imputations of missing

values for subsequent analyses by a straightforward and effective Markov chain Monte Carlo

procedure. We also derive and implement a new EM algorithm for parameter estimation

which converges more rapidly than traditional EM algorithms because it does not treat

the random effects as “missing data,” but integrates them out of the likelihood function

analytically. These techniques are illustrated on models for adolescent alcohol use in a

large school-based prevention trial.

Key Words: EM algorithm; Longitudinal data; Markov chain Monte Carlo; Multiple

imputation.

1. INTRODUCTION

1.1 THE MODEL

Multivariate longitudinal or clustered data are characterized by multiple responses

measured (a) at multiple occasions for each subject or (b) for subjects nested within naturally

occurring groups. Examples include multiple exam or test scores recorded for students

across time, and multiple items at a single occasion for students in more than one school.

Sensible methods for analyzing such data will appreciate both the relationships among the
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response variables and potential correlations among observations from the same individual

or cluster. This article discusses a multivariate version of a popular linear mixed-effects

model for longitudinal or clustered data and applies this model to datasets with missing

values.

Let yi denote an ni × r matrix of multivariate responses for sample unit i, i =

1, 2, . . . ,m, where each row of yi is a joint realization of variables Y1, Y2, . . . , Yr. We

consider situations where portions of y1, . . . , ym are ignorably missing in the sense de-

scribed by Rubin (1976) and Little and Rubin (1987). Our model for the complete data

is

yi = Xiβ + Zibi + εi, (1.1)

where Xi (ni × p) and Zi (ni × q) are known covariate matrices, β (p × r) is a matrix

of regression coefficients common to all units, and bi (q × r) is a matrix of coefficients

specific to unit i. In popular terminology, β and bi are called “fixed effects” and “random

effects,” respectively. We assume that the ni rows of εi are independently distributed as

N(0,Σ), and that the random effects are distributed as vec(bi) ∼ N(0,Ψ) independently

for i = 1, . . . ,m (the “vec” operator vectorizes a matrix by stacking its columns). Without

conditioning on b1, . . . , bm, the implied model for vec(yi) is normal with mean vec(Xiβ)

and covariance matrix

W−1
i = (Ir ⊗ Zi)Ψ(Ir ⊗ Zi)

T + (Σ⊗ Ini
). (1.2)

In longitudinal applications, times of measurement may be incorporated into Xi and Zi,

allowing relevant aspects of the growth curves (e.g., intercepts and slopes) to vary by subject.

1.2 PREVIOUS WORK

The univariate (r = 1) version of our model,

yi ∼ N(Xiβ, ZiψZ
T
i + σ2Ini

), (1.3)

and more general univariate models have been extensively treated by Laird and Ware (1982);

Jennrich and Schluchter (1986); Laird, Lange, and Stram (1987); Lindstrom and Bates

(1988); and others. A variety of software is available for fitting these linear mixed-effects

models. Commercial packages include HLM (Bryk, Raudenbush, and Congdon 1996) and

MLn (Multilevel Models Project 1996). Similar procedures are now found in SAS (Littell,

Milliken, Stroup, and Wolfinger 1996), S-Plus (Mathsoft, Inc. 1997), and STATA (Stata

Corporation 1997). These programs can handle unbalanced longitudinal data, with mea-

surements taken at an arbitrary set of time points for each subject. Responses that are

missing, either unintentionally or by design, are ignored in the computations along with the

corresponding rows of Xi and Zi. An important limitation of these methods is that missing

values must be confined to the single response variable; missing values on predictors are

not allowed.
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Despite the popularity of single-response models, multivariate versions have received

scant treatment in the literature. A model similar to (1.1) was considered by Reinsel (1984)

who derived closed-form estimates with completely observed yi and balanced designs. More

recently, Shah, Laird, and Schoenfeld (1997) extended the EM-type algorithm of Laird and

Ware (1982) to a bivariate (r = 2) setting. In common econometric terminology, their model

is analogous to “seemingly unrelated regression” (Zellner 1962) whereas ours corresponds

to “standard multivariate regression.” The added generality of the seemingly unrelated

model comes at a high cost, making the resulting algorithms impractical for more than a

few response variables. In certain situations, it may be possible to recast the multivariate

model as a univariate one by stacking the columns of yi and applying existing software

(e.g., SAS Proc Mixed) with a user-specified covariance structure. In most applications,

however, this approach quickly becomes impractical. Examples for only r = 2 response

variables with complete data (Shah, Laird, and Schoenfeld 1997) and incomplete data

(Verbeke and Molenberghs 2000) require complicated SAS macros. As the number of

variables and number of individuals or time-points per cluster grow, the dimension of the

response increases rapidly, and usage of SAS Proc Mixed becomes practically impossible.

Perhaps one reason why little attention has been paid to the multivariate models is that

it is often natural to regard one of the variables as a response and the others as potential

predictors. When the predictors have missing values, however, joint modeling of the multiple

responses becomes helpful or even necessary; some type of modeling assumptions must

be applied to Y1, . . . , Yr to achieve an efficient solution, even if the parameters of interest

pertain only to the conditional model for one variable given the others.

In panel studies where individuals are assessed at a common set of occasions, models

equivalent to ours may be formulated as latent growth curves (McArdle 1988; Meredith

and Tisak 1990) and fit with structural-equations software. Two programs for structural

equations, Mx (Neale 1994) and Amos (Arbuckle 1995), perform ML estimation from

datasets with missing values. In principle, missing values can also be accommodated in other

structural-equations software using a multiple groups approach (Allison 1987; Muthén,

Kaplan, and Hollis 1987) but the implementation can be tedious. A disadvantage of the

latent growth-curve formulation is that the measurements must be taken at a small number

of common time points for all subjects. The method does not apply to clustered situations

where the rows of yi represent subjects nested within a group.

Schafer (1997) derived likelihood-based and Bayesian methods for independent multi-

variate observations with arbitrary patterns of missing values. In certain cases, this method-

ology can be applied to longitudinal data by treating the same outcome at different time

points as distinct variables. Because this approach does not take into account the longi-

tudinal structure, it may introduce more parameters than can be well estimated from the

observed data.

1.3 SCOPE OF THIS ARTICLE

In the following sections, we develop computational techniques for applying the

multivariate linear mixed model (1.1) to datasets with missing values. Two approaches
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are discussed. The first one, described in Section 2, is to generate multiple imputations for

the missing values using Markov chain Monte Carlo (MCMC). We extend the methodology

of Schafer (1997) to groups of correlated multivariate observations, making it applicable to

a variety of cluster samples and panel studies. In one sense, the material in Section 2 could

be regarded as straightforward application of existing MCMC methods described elsewhere

(e.g., Gilks, Richardson, and Spiegelhalter 1996). However, many of the the details of our

implementation—especially where missing data are involved—might not be obvious even

to readers familiar with MCMC. With careful attention to these computational details, the

method is very effective and may be applied to datasets that are quite large.

Section 3 describes a second set of techniques which produce maximum-likelihood

estimates or posterior modes. These methods may be used to estimate the parameters of

model (1.1) directly from the incomplete data. They may also be used in conjunction with

the MCMC methods of Section 2, helping the user to obtain good quality starting values and

to select prior distributions for unknown variance components. Mode-finding algorithms are

also helpful for testing model fit. The major innovation of Section 3 is a newly formulated

EM algorithm which performs substantially better than previous methods.

Section 4 illustrates our methods by applying them to data from the Adolescent Alcohol

Prevention Trial, a longitudinal study of substance-use attitudes and behaviors. Finally,

Section 5 discusses the limitations of our model and future extensions. Procedures discussed

here will be made available in a stand-alone program called PAN (Schafer and Yucel 2001)

which operates in the Windows environment. PAN can be downloaded free of charge from

http://www.stat.psu.edu/∼jls/misoftwa.html.

2. METHODS FOR MULTIPLE IMPUTATION

2.1 MULTIPLE IMPUTATION BY MCMC

Suppose that portions of Y = (y1, y2, . . . , ym) are ignorably missing. Let yi(obs)

and yi(mis) denote the observed and missing parts of yi, respectively, and let Yobs =

(y1(obs), y2(obs), . . . , ym(obs)) and Ymis = (y1(mis), y2(mis), . . . , ym(mis)) denote all observed

and missing responses. Unknown parameters are denoted by θ = (β,Σ,Ψ). For the fixed

effects and residual covariances, we assume that β ∈ Rpr and Σ > 0. Depending on the

application, we may allow Ψ to be either (a) unstructured or (b) block diagonal with r

nonzero blocks of size q × q corresponding to the individual columns of bi.

Multiple imputation, developed by Rubin (1987, 1996), is an increasingly popular

method for handling missing values. For multiple imputation, we generate M independent

draws Y
(1)

mis , . . . , Y
(M)

mis from a posterior predictive distribution for the missing data,

P (Ymis |Yobs) =

∫

P (Ymis |Yobs, θ)P (θ |Yobs) dθ, (2.1)

where P (θ |Yobs) is the observed-data posterior density, which is proportional to the product
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of a prior density π(θ) and the observed-data likelihood function

L(θ |Yobs) =

∫

L(θ |Y ) dYmis.

After imputation, the resulting M versions of the complete data are analyzed separately

by complete-data methods, and the results are combined using simple arithmetic to obtain

inferences that effectively incorporate uncertainty due to missing data. As shown by Rubin

(1987), quality inferences can often be obtained with a very small number (e.g., M = 5)

of imputations. Methods for combining the results of the complete-data analyses are given

by Rubin (1987, 1996) and reviewed by Schafer (1997, chap. 4).

When a model is used as a device for imputation, the meaning or interpretation of its

parameters is not crucial; the utility of the model lies in its ability to predict and simu-

late missing observations. A sensible imputation method for multivariate longitudinal or

clustered data should preserve basic relationships among variables and correlations among

observations from the same subject or cluster. The model (1.1) is capable of preserving these

effects. In many cases, post-imputation analyses will be based on models less elaborate;

for example, a model for one response variable given the others. In other cases, effective

analyses may be carried out under a model somewhat different from that used to impute

missing values. The performance of multiple imputation when the imputer’s and analyst’s

models differ was addressed by Meng (1994) and Rubin (1996). In practice, inference by

multiple imputation is fairly robust to departures from the imputation model because that

model effectively applies not to the entire dataset but only to its missing parts. We have used

(1.1) as the basis for imputing binary and ordinal responses, rounding off the continuous

imputed values to the nearest category. Simulations have shown that the biases incurred by

such rounding procedures may be minor (Schafer 1997). At best this is only an approximate

solution; a more principled but complicated approach may involve introducing random ef-

fects into the general location model for multivariate data with continuous and categorical

variables (Olkin and Tate 1961; Schafer 1997).

Except in trivial special cases, the posterior predictive distribution (2.1) for our model

cannot be simulated directly. We create random draws of Ymis from P (Ymis | Yobs) by

techniques of Markov chain Monte Carlo (MCMC). In MCMC, one generates a sequence of

dependent random variates whose distribution converges to the desired target. Overviews of

MCMC were given by Gelfand et al. (1990); Smith and Roberts (1993); Tanner (1993); and

in the chapters of Gilks, Richardson, and Spiegelhalter (1996). Schafer (1997) described

MCMC for multivariate continuous and categorical missing data problems, but did not

consider mixed models with random effects. Applications of MCMC to univariate linear

mixed models have been made by a number of authors, including Gelfand, Hills, Racine-

Poon, and Smith (1990); Zeger and Karim (1991); Liu and Rubin (1995); and Carlin (1996).

These MCMC methods rely on simplifications that result when the random effects are

assumed known. If B = (b1, b2, . . . , bm) were known, then inferences about θ would

separate into two simpler problems: (a) a normal-theory inference about Ψ based on B,

and (b) a normal-theory inference about (β,Σ) based on (yi − Zibi), i = 1, . . . ,m. This

simplification is also an underlying feature of conventional EM algorithms for random-
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effects model as well, to be discussed in Section 3. Unlike EM, however, MCMC allows

us to circumvent manipulations on large matrices by alternately conditioning on simulated

values of the random effects and the missing data.

2.2 A GIBBS SAMPLER

In a slight abuse of notation, let A∗ ∼ P (A) denote simulation of a random variate A∗

from a distribution or density function P (A). Consider an iterative simulation algorithm

in which current versions of the unknown parameters θ(t) = (β(t),Σ(t),Ψ(t)) and missing

data Y
(t)

mis are updated in three steps: first,

b
(t+1)
i ∼ P

(

bi | Yobs, Y
(t)

mis , θ
(t)
)

(2.2)

independently for i = 1, . . . ,m; next,

θ(t+1) ∼ P
(

θ | Yobs, Y
(t)

mis , B
(t+1)

)

; (2.3)

and finally,

y
(t+1)
i(mis) ∼ P

(

yi(mis) | Yobs, B
(t+1), θ(t+1)

)

(2.4)

for i = 1, . . . ,m. Given starting values θ(0) and Y
(0)

mis , these steps define one cycle of

an MCMC procedure called a Gibbs sampler. Executing the cycle repeatedly creates se-

quences {θ(1), θ(2), . . .} and {Y
(1)

mis , Y
(2)

mis , . . .} whose limiting distributions are P (θ | Yobs)

and P (Ymis |Yobs), respectively.

Implementing (2.3) requires a prior distribution for θ. It is known that in mixed-effects

models, improper prior distributions for the covariance components may lead to Gibbs

samplers that do not converge to proper posteriors, even though each step of the cycle

is well-defined. For this reason, proper prior distributions for the covariance matrices are

highly recommended. For simplicity, we apply independent inverted Wishart priors Σ−1 ∼

W (ν1,Λ1) and Ψ−1 ∼ W (ν2,Λ2), where W (ν,Λ) denotes a Wishart variate with ν > 0

degrees of freedom and meanνΛ > 0. This prior is appropriate for a model with unstructured

Ψ; versions for block-diagonal Ψ will be discussed later. These priors exist provided that

Λ1 > 0, Λ2 > 0, ν1 ≥ r and ν2 ≥ qr. In choosing values for the hyperparameters, it

is helpful to regard ν−1
1 Λ−1

1 and ν−1
2 Λ−1

2 as prior guesses for Σ and Ψ with confidence

equivalent to ν1 and ν2 degrees of freedom, respectively. Small values for ν1 and ν2 make

the prior densities relatively diffuse, reducing their impact on the final inferences. For β,

we use an improper uniform “density” over Rpr.

Under these priors, each of the steps (2.2)–(2.4) is derived by straightforward applica-

tion of Bayes’ theorem. In our model, the pairs (yi, bi) are distributed as

vec(yi) | bi, θ ∼ N( vec(Xiβ + Zibi), (Σ⊗ Ini
) ),

vec(bi) | θ ∼ N(0,Ψ)
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independently for i = 1, . . . ,m. It follows that

vec(bi) |yi, θ ∼ N(vec(b̃i), Ui),

where

vec(b̃i) = Ui (Σ
−1 ⊗ ZT

i ) vec(yi −Xiβ), (2.5)

Ui = (Ψ−1 + (Σ−1 ⊗ ZT
i Zi) )

−1. (2.6)

Simulation of θ in (2.3) proceeds as follows: First, drawΨ−1 from a Wishart distribution

with degrees of freedom ν′

2 = ν2 + m and scale Λ′

2 = (Λ−1
2 + BTB)−1. Next, calculate

the ordinary least-squares coefficients

β̂ =

(

m
∑

i=1

XT
i Xi

)

−1 ( m
∑

i=1

XT
i (yi − Zibi)

)

and residuals ε̂i = yi−Xiβ̂−Zibi, and draw Σ−1 from a Wishart distribution with degrees

of freedom ν′

1 = ν1 − p+
∑m

i=1 ni and scale Λ′

1 =
(

Λ−1
1 +

∑m
i=1 ε̂

T
i ε̂i

)−1
. Finally, draw

β from a multivariate normal distribution centered at β̂ with covariance matrix Σ ⊗ V ,

where V =
(
∑m

i=1 X
T
i Xi

)

−1
. For simulating β, it is helpful to note that if G and H are

upper-triangular square roots of Σ and V , respectively (GTG = Σ and HTH = V ), then

G⊗H is an upper-triangular square root of Σ⊗ V .

To carry out the final step (2.4) of the Gibbs sampler, notice that the rows of εi = yi −

Xiβ−Zibi are independent and normally distributed with mean zero and covariance matrix

Σ. Therefore, in any row of εi, the missing elements have an intercept-free multivariate

normal regression on the observed elements; the slopes and residual covariances for this

regression can be quickly calculated by inverting the square submatrix of Σ corresponding

to the observed variables. Drawing the missing elements in εi from these regressions and

adding them to the corresponding elements of Xiβ + Zibi completes the simulation of

yi(mis).

2.3 IMPLEMENTATION ISSUES

The Gibbs sampler defined by (2.2)–(2.4) is not the only one that could be implemented

for this problem; as noted by Liu and Rubin (1995) in the univariate case, a wide variety of

alternative MCMC algorithms are possible. If any of the steps (2.2)–(2.4) could be carried out

without conditioning on simulated values of Ymis or B, then the algorithm could be made

to converge in fewer iterations. De-conditioning may greatly increase the computational

cost per iteration, however, and some limited experience suggests that the additional effort

required to do so is not worthwhile. With modern computers, iterations of (2.2)–(2.4) can

be performed quickly even with the large datasets provided that sufficient physical memory

is available to store Yobs, Y
(t)

mis , and the covariate matrices Xi and Zi.

The convergence behavior of this algorithm is governed by two factors: the amount of

information about θ carried in Ymis relative to Yobs; and the degree to which the random
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effects bi can be estimated from yi. If the missing portions of yi exert high leverage over

components of θ, or if the bi are poorly estimated (i.e., if the within-unit precision matrices

Σ−1 ⊗ZT
i Zi tend to be small relative to ψ−1), then convergence can be slow. Convergence

may also be slow when the number of subjects m is large, because for large m the posterior

distribution for Ψ given b1, . . . , bm becomes very tight, causing the drawn value for Ψ to be

close to its previous value. When producing multiple imputations, slow convergence is not

disastrous because in most cases only a few independent draws of Ymis are needed. If the

algorithm is believed to achieve approximate stationarity byT cycles, thenM imputations of

Ymis can be generated in MT cycles. Convergence can be informally assessed by examining

time-series plots, autocorrelations, and so on. for individual elements or functions of θ. In

particular, one should pay close attention to the elements ofΨ because these parameters tend

to exhibit high autocorrelations. Formal and informal convergence diagnostics for MCMC

were discussed by Gilks, Richardson, and Spiegelhalter (1996) and Schafer (1997, chap.

4).

Notice that any row of yi that is completely missing may be omitted from consideration,

along with the corresponding rows ofXi andZi, without changing the form of the complete-

data model (1.1). Ignoring these rows will eliminate unnecessary computation at each cycle

and reduce the rate of missing information, speeding the overall convergence. These rows of

data may be restored at the final imputation step (2.4) to produce a fully completed dataset.

2.4 PRIOR GUESSES AND ALTERNATIVE COVARIANCE STRUCTURES

When specifying values for the hyperparameters, our usual practice is to set ν1 = r and

ν2 = qr to make the priors as dispersed as possible and minimize their subjective influence.

We typically set Λ−1
1 = ν1Σ̂ and Λ−1

2 = ν2Ψ̂, where Σ̂ and Ψ̂ are reasonable prior guesses

for Σ and Ψ. If no prior guesses are available, the data themselves may be used to obtain

them; the EM algorithms of Section 3 are excellent tools for pursuing these guesses.

Excellent prior guesses for Σ and Ψ may also be obtained by temporarily supposing

that Σ is diagonal and Ψ is block-diagonal. Under these conditions, the multivariate model

separates into independent univariate models for each of the r columns of yi, and ML

or RML estimates of the variance components may be quickly calculated using existing

software for linear mixed-effects models. When data are sparse and some aspects of Σ or Ψ

are not well estimated, diagonal and block-diagonal prior guesses for Σ and Ψ, respectively,

tend to stabilize the computational procedures in much the same way that ridge regression

stabilizes estimated coefficients when collinearity is present. The use of ridge-like priors

with incomplete and sparse multivariate data was described by Schafer (1997).

When modeling a large number of response variables at once, it may be advantageous to

restrictΨ to a block-diagonal structure—not only for the purpose of obtaining prior guesses,

but also when running the Gibbs sampler itself. If Ψ is block-diagonal, then independent

inverted Wishart prior distributions may be applied to the q × q nonzero blocks, Ψ−1
j ∼

W (νj ,Λj) for j = 1, 2, . . . , r. Weak priors are obtained by setting νj = q andΛ−1
j = νjΨ̂j ,

where Ψj is an estimate or prior guess for Ψj . The distributions for these blocks in step
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(2.3) become Ψ−1
j ∼ W (ν′

j ,Λ
′

j), where ν′

j = νj +m, Λ′ −1
j = Λ−1

j +
∑m

i=1 bijb
T
ij , and bij

is the jth column of bi.

The choice between an unstructured or block-diagonalΨwill depend on both theoretical

and practical considerations. A block diagonal structure indicates no a priori associations

between the random effects for any two response variables Yj and Yj′ . In a multivariate

cluster sample with many variables, many units per cluster, but relatively few clusters, it may

simply not be possible to estimate covariances among the random effects for all response

variables. It is important to note that even if Ψ is block-diagonal, the columns of bi are not

independent in an a posteriori sense because (2.6) is not block-diagonal. A formal likelihood

ratio test to choose between the unstructured and block-diagonal forms for ψ is possible

with the EM procedures in Section 3.

3. ALGORITHMS FOR MODE-FINDING

3.1 IMPORTANCE OF MODE-FINDING PROCEDURES

The Gibbs sampler of Section 2 is an effective method for imputing missing values

in the yi matrices under the multivariate model (1.1). In principle it may also be used to

simulate Bayesian estimates for θ, but in many cases estimates are more easily found with

EM. Deterministic parameter estimation or mode-finding algorithms are a desirable accom-

paniment to MCMC simulation procedures (Gelman, Carlin, Stern, and Rubin 1995; Carlin

1996; Schafer 1997). MCMC requires starting values for the unknown model parameters;

ML estimates can provide excellent starting values. As described earlier, ML estimates

may provide guidance for specifying prior distributions required by MCMC. Finally, an

algorithm for ML estimation can help to reveal pathological situations where the likelihood

function is unusually shaped, with multiple modes or suprema on the boundary.

The first method is a Fisher scoring procedure which applies when y1, . . . , ym are

fully observed. The second method, discussed in Section 3.3, is a new EM algorithm which

incorporates Fisher scoring into the M-step; this procedure may be used when the response

matrices yi are partially missing. This new EM algorithm tends to converge more quickly

than conventional EM algorithms for mixed-effects models because the random effects are

not included in EM’s formulation of “missing data.” Implementation of the new algorithm

is somewhat more complicated, but the per-iteration execution time compares favorably to

that of conventional EM in many examples. In a few cases, this new algorithm is less stable

than conventional EM. A hybrid procedure that combines stability with rapid convergence

is described in Section 3.4.

3.2 FISHER SCORING

After the general presentation of EM by Dempster, Laird, and Rubin (1977), EM and

its extensions have been extensively applied to the univariate model (1.3). EM is designed
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for ML estimation with incomplete data and in situations that can be formulated as missing-

data problems. Conventional applications of EM to mixed-effects models treat the random

coefficients as missing data, capitalizing on a factorization of the augmented-data likelihood,

L(θ |Y,B) = L(Ψ |B)L(β, σ2 |Y,B). (3.1)

The overall maximum of (3.1) with respect to θ can be found by maximizing each of the

two factors separately, neither of which requires iteration. Each cycle of EM maximizes the

expected logarithm of (3.1), where the expectation is taken with respect to the conditional

distribution of B given Y with the parameters fixed at their current estimates. With some

effort, these EM conventional algorithms for the univariate model can be extended to the

multivariate case. Shah, Laird, and Schoenfeld (1997) extended the EM-type algorithm

of Laird and Ware (1982) to a bivariate (r = 2) response, both for complete yi and for

incomplete yi.

Conventional EM algorithms which operate on (3.1) may suffer from very slow con-

vergence. We have found that when there are no missing values in yi—or, more generally,

when entire rows in yi are missing—the likelihood can be maximized more quickly by

Fisher scoring.

The likelihood function arising from the marginal normal distribution for yi is

L(θ) ∝
m
∏

i=1

|Wi|
1/2 exp

{

−
1

2
δTi Wiδi

}

,

where δi = vec(yi − Xiβ) and Wi is defined by (1.2). Using the relationship |Wi| =

|Σ⊗Ini
|−1|Ψ|−1|Ui| and ignoring constants of proportionality, the logarithm of L becomes

'(θ) = −
N

2
log |Σ| −

m

2
log |Ψ|+

1

2

m
∑

i=1

log |Ui| −
1

2

m
∑

i=1

δTi Wiδi. (3.2)

Fisher scoring updates the current estimate θ(t) by solving the linear system Cθ(t+1) = d,

where C = −E'′′(θ(t)) and d = Cθ(t) + '′(θ(t)). Upon convergence, the final value of

C−1 provides an estimated covariance matrix for θ̂.

For convenience, we take derivatives with respect to β and the nonredundant elements

of Ψ−1 and Σ−1. These matrices can be expressed as

Ψ−1 =

g
∑

j=1

ωjGj ,

Σ−1 =

h
∑

j=1

σjFj ,

where G1, G2, . . . , Gg and F1, F2, . . . , Fh are known symmetric matrices of dimensions

rq × rq and r × r, respectively. The number of free parameters in Ψ is g = rq(rq + 1)/2

when Ψ is unstructured and g = rq(q+1)/2 when it is block-diagonal. The first derivatives

of '(θ) are ∂'/∂vec(β) = −Γ−1vec(β − β̃),

∂'

∂ωj
=

1

2

m
∑

i=1

tr
(

Ψ− Ui − vec(b̃i)vec(b̃i)
T
)

Gj ,
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and

∂'

∂σl
=

1

2

m
∑

i=1

tr
(

niΣFl − (Fl ⊗ ZT
i Zi)Ui − vec(ε̃i)Flvec(ε̃i)

T
)

,

where vec(ε̃i) = vec(yi − Xiβ − Zib̃i), and β̃ is obtained by generalized least squares

(GLS),

vec(β̃) = Γ

m
∑

i=1

(Ir ⊗Xi)
TWi vec(yi),

Γ−1 =

m
∑

i=1

(Ir ⊗Xi)
TWi(Ir ⊗Xi).

Taking expectations over the distribution of yi for fixed θ, one can show that E(β̃) =

β, E(vec(b̂i)) = 0, and E(vec(b̂i)(vec(b̂i))
T )=Ψ − Ui. Using these facts and algebraic

manipulation, it follows that

E

(

∂2'

∂vec(β)∂(vec(β))T

)

= −Γ

and

E

(

∂2'

∂ωj∂(vec(β))T

)

= E

(

∂2'

∂σj∂(vec(β))T

)

= 0.

Moreover,

E

(

∂2'

∂ωj∂ωk

)

= −
1

2

m
∑

i=1

tr(Ψ− Ui)Gj(Ψ− Ui)Gk,

E

(

∂2'

∂ωj∂σk

)

= −
1

2

m
∑

i=1

trUi(Fk ⊗ ZT
i Zi)UiGj ,

E

(

∂2'

∂σj∂σk

)

= −
1

2

m
∑

i=1

tr
(

niΣFjΣFk

− (Fk ⊗ ZT
i Zi)Ui(Fk ⊗ ZT

i Zi)

− 2(FjΣFk ⊗ ZT
i Zi)Ui

)

.

Because the cross-derivatives of β with the covariance parameters have zero expec-

tation, the scoring step for θ separates into independent linear updates for β and (Ψ,Σ).

The updated estimate for β is the GLS estimate β̃ under the current estimated covariance

parameters. Collecting the free covariance parameters into vectors, ω = (ω1, ω2, . . . , ωg)
T ,

σ = (σ1, σ2, . . . , σh)
T , and η = (ωT , σT )T , the updated covariance estimates are found

by solving Cη(t+1) = d with

C = −









E

(

∂2'
∂ω∂ωT

)

E

(

∂2'

∂ω∂σT

)

E

(

∂2'

∂σ∂ωT

)

E

(

∂2'

∂σ∂σT

)
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and d = Cη(t) + '′(η). Updated estimates for Ψ and Σ are obtained by inversion of
∑

j ωjGj and
∑

j σjFj . In typical situations, the algorithm converges by 10–15 cycles.

Note that scoring-updated estimates for Ψ and Σ are not guaranteed to be positive definite;

if the estimates stray outside the parameter space, a step-halving procedure is used to bring

them back in.

3.3 EM ALGORITHM

We now discuss a procedure that can be used when arbitrary portions of the response

matrices Y = (y1, y2, . . . , ym) are ignorably missing. We embed our scoring procedure

within an EM algorithm which augments the observed data with missing portions of yi
but not random effects. The performance of this algorithm is best when the proportion of

partially observed rows in yi is small, and degrades if the observed data become very sparse;

however, it does not tend to slow down merely when the random effects are poorly estimated.

The E-step calculates the expectation of the complete-data log-likelihood function (3.2)

with respect to the conditional distribution of Ymis given Yobs under a current estimate of θ.

The M-step updates the estimate of θ, maximizing this expected log-likelihood by scoring.

Details are provided below.

For the E-step, note that (3.2) is a linear function of the sufficient statistics vec(yi)

and vec(yi)vec(yi)
T . It follows from (1.1) that vec(yi) and vec(bi) are jointly normal with

covariance matrix
[

(Ir ⊗ Zi)Ψ(Ir ⊗ Zi)
T (Ir ⊗ Zi)Ψ

Ψ(Ir ⊗ Zi)
T Ψ

]

. (3.3)

One way to find the necessary expectations is to begin with (3.3), whose dimension is

(rq + rni) × (rq + rni), and apply an orthogonalization method (e.g. sweep) for i =

1, 2, . . . ,m. This strategy may work in small examples but becomes prohibitively expensive

as ni or r grows. Instead, we capitalize on the fact that the rows of yi are conditionally

independent given bi with constant covariance.

Consider the expectation of the first complete-data sufficient statistic,

E(yi | yi(obs)) = E
(

E(yi | yi(obs), bi) | yi(obs)

)

.

This calculation requires access to the distributions of yi(mis) given (yi(obs), bi) and bi given

yi(obs). The former is simple because, given bi, the rows of y∗i = yi − Xiβ − Zibi are

independent and identically distributed as N(0,Σ). Therefore, the missing elements in

any row of y∗i have, given the observed elements and bi, an intercept-free regression on

the observed elements; the parameters of this regression can be obtained by inverting the

square submatrix of Σ corresponding to the observed elements. Letting y∗ij(mis) and y∗ij(obs)

denote the missing and observed portions of the jth row of y∗i , we have

E(y∗ij(mis) | yi(obs), bi) = Σ21Σ
−1
11 y∗ij(obs),

where Σ11 is the square submatrix of Σ corresponding to the observed elements and Σ21 is

the rectangular submatrix of covariances between the missing and observed elements.
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Finally, because y∗i is a linear function of bi, the expectation of yi without conditioning

on bi is obtained by direct substitution ofE(bi | yi(obs)) for bi. Notice that the value ofΣ21Σ11

varies by missingness pattern but not by observational units i = 1, 2, . . . ,m; computations

can be reduced by grouping rows with identical missingness patterns across units. The

parameters of the distribution of bi given yi(obs) are obtained by applying a reverse-sweep

procedure to b̂i and Ui, as defined in Section 2.2, to de-condition upon yi(mis).

For the second sufficient statistic vec(yi)vec(yi)
T , one can apply a similar argument,

first calculating the conditional expectation given bi and yi(obs), then averaging over the

distribution of bi given yi(obs). Let yijk denote the kth element of the jth row of yi. The

formula for the expectation of yijkyij′k′ depends on whether yijk and yij′k′ are observed

or missing, and whether they are in the same (j = j′) or different (j �= j′) rows. It is

easy to see that the expectation of yijkyij′k′ given yi(obs) is given by: yijkyij′k′ if both are

observed; yijkE(yij′k′ |yi(obs)) if yijk is observed and yij′k′ is missing; and

E(yijk |yi(obs))E(yij′k′ |yi(obs)) + cov(yijk, yij′k′ |yi(obs))

if both are missing. The covariance between yijk and yij′k′ given yi(obs) is equal to

cov(Aijk, Aij′k′ | yi(obs)) + [Σ22·1]kk′

if they are in the same row, and

cov(Aijk, Aij′k′ | yi(obs))

if they are in different rows, where

Aijk = E(yijk | bi, yi(obs))

comes from the regression predictions for the missing elements in the jth row of yi given

the observed elements. The covariance cov(Aijk, Aij′k′ | yi(obs)) is obtained by noting that

it is a linear function of the elements of the covariance matrix for bi given yi(obs).

The M-step requires us to maximize the expected log-likelihood computed in the E-

step. This expected log-likelihood has nearly the same form as (3.2) and can be maximized

by a slight modification of the Fisher scoring procedure. Minor changes must be made to

the function ' and its first derivatives, but the expected second derivatives remain the same.

The first derivatives of 'e = E(' | Ymis) with respect to the elements of θ are

∂'e
∂vec(β)

= −

(

m
∑

i=1

(Ir ⊗Xi)
TWi(Ir ⊗Xi)

)

vec(β − β̃),

∂'e
∂ωj

=
1

2

m
∑

i=1

tr
(

Ψ− Ui − (Σ−1 ⊗ ZT
i Zi)

UiTiUi(Σ
−1 ⊗ ZT

i Zi)
)

Gj ,

∂'e
∂σl

=
1

2

m
∑

i=1

tr
(

niΣFl − (Fl ⊗ ZT
i Zi)Ui

−Wi(ΣFjΣ⊗ Ini
)WiTi

)

,
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where

vec(β̃) = Γ

m
∑

i=1

(Ir ⊗Xi)
TWiE(vec(yi) | θ, yi(obs)),

Ti = E
{

vec(yi −Xiβ)vec(yi −Xiβ)
T |yi(obs), θ

}

.

After calculating these derivatives, we update the parameters in the same fashion as in

Section 3.2.

In practice, it is not necessary to iterate until the scoring procedure converges within

each M-step; one step of scoring is usually sufficient, provided that 'e has increased. The

resulting procedure becomes a generalized EM (GEM) algorithm rather than EM, in the

terminology of Dempster, Laird, and Rubin (1977), and is usually well-behaved. Slightly

faster convergence can often be achieved by a simple reparameterization, taking logarithms

of the diagonal elements of Ψ−1 and Σ−1 for scoring, which seems to help when the

maximum lies near the boundary of the parameter space. Derivatives with respect to these

parameters are found by the expressions above and a chain rule.

3.4 FURTHER POINTS

Mode-finding algorithms, especially scoring, may require good starting values. We

obtain starting values as follows: For each response variable Yj , we fit univariate linear

mixed model (1.3) using the cases for which Yj is observed. Fast and stable algorithms

described in a technical report (Schafer 1998) provide ML estimates for the portions of Σ,

Ψ and β pertaining to Yj . Off-diagonal elements of Σ and blocks of Ψ are initially set to

zero.

Although our algorithm converges more quickly than conventional EM methods for

mixed-effects models, it may be less stable when the log-likelihood is oddly shaped. To

improve stability, we combine our method with a conventional EM procedure based on the

augmented-data likelihood (3.1), substituting one step of conventional EM if a single step

of scoring fails to increase the log-likelihood.

If random effects are eliminated (Ψ = 0), the model reduces to a standard multivariate

regression yi = Xiβ + εi where the rows of ε are independently distributed as N(0,Σ).

In this situation, ML estimates of (β,Σ) may be found by a straightforward extension

of EM algorithms for incomplete multivariate normal data (Schafer 1997, chap. 5). Note

that a hypothesis test for Ψ = 0 should not be performed by standard likelihood-ratio

methods because the null model places rq parameters on on the boundary of the parameter

space, making the limiting distribution under null hypothesis rather complicated (Stram and

Lee 1995). The standard chi-square limiting distribution does apply when testing the null

hypothesis that Ψ is block-diagonal versus the unstructured alternative.

As an alternative to Fisher scoring, one might consider optimizing the expected log-

likelihood by a sequence of constrained maximizations. For example, one could maximize

with respect to β holding (Ψ,Σ) constant; then with respect to Ψ holding (β,Σ) constant;

and then with respect to Σ holding (β,Ψ) constant. This would produce an ECM algorithm,
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a useful generalization of EM described by Meng and Rubin (1993). In this example,

however, two of the three constrained maximizations would require an iterative method

such as Newton–Raphson, leading to no substantial simplification.

As with any EM algorithm, the procedure of Section 3.3 does not automatically pro-

duce correct standard errors for parameter estimates. If necessary, standard errors could be

found by the supplemented EM (SEM) method of Meng and Rubin (1991). In most cases,

however, multiple imputation as described in Section 2 will produce standard errors in a

more straightforward and less cumbersome fashion.

Finally, consider the related problem of restricted maximum likelihood (RML) esti-

mation, which maximizes the indefinite integral of the likelihood with respect to β. This

function is

L1(θ) ∝ |Γ|1/2

m
∏

i=1

|Wi|
1/2 exp

{

−
1

2
vec(yi −Xiβ̃)

T Wivec(yi −Xiβ̃)

}

,

where Γ and β̃ are as defined in Section 3.2. Our algorithms for ML estimates may be

modified to compute RML estimates. One may approximate the expected second derivatives

of '1(θ) = logL1(θ) by the expected second derivatives of '(θ), but first derivatives are

more complicated because β̃ is a function of the unknown covariance parameters. These

changes affect both the scoring procedure for complete yi and the M-step for incomplete

yi.

4. EXAMPLE

4.1 ADOLESCENT ALCOHOL PREVENTION TRIAL

Data for this example were taken from the Adolescent Alcohol Prevention Trial (AAPT),

a longitudinal school-based intervention study of substance use in the Los Angeles, CA,

area (Hansen and Graham 1991). A sample of 3,574 school children received question-

naires yearly in grades 5–10 to measure substance-use attitudes and behaviors. We exam-

ined three important variables derived from the AAPT questionnaire: Y1 =DRINKING, a

composite measure of self-reported alcohol use;Y2 = POSCON, a measure of the perceived

positive consequences of use; and Y3 =NEGCON, a measure of the perceived negative

consequences of use. Many values of these variables were missing due to absenteeism and

attrition, which we will assume to be ignorable (Little and Rubin 1987; Rubin 1976). The ig-

norability assumption has been considered in detail by Graham, Hofer, and Piccinin (1994)

and is thought to be somewhat plausible; the primary reasons for attrition were ordinary

moving and migration of students among schools and districts. Moreover, a large portion of

truly ignorable missing data were missing by design; in some years, Y2 and Y3 were omitted

at random from one-third of the questionnaires, and in other years these measures were not

collected at all. Missingness rates for the three variables are shown in Table 1, and means

and standard deviations by year are shown in Table 2.
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Table 1. Missingness Rates (%) by Grade

Grade

5 6 7 8 9 10

DRINKING 2 24 24 33 35 44
POSCON 47 55 62 100 66 63
NEGCON 48 56 62 100 100 100

For one analysis, researchers wanted to fit linear growth curves to predict Y1 from Y2,

Y3, and other important covariates including gender. This analysis was not a straightforward

application of a linear mixed-effects model because of the high rates of missing values on the

covariates Y2 and Y3. We multiply imputed values for Y1, Y2, and Y3 under our multivariate

model, allowing the growth modeling to proceed with standard software. Our imputation

model specified linear trends over time with random slopes and intercepts for each of the

r = 3 variables, a fixed effect for gender, and a gender by time interaction. Each Xi matrix

had p = 4 columns corresponding to an intercept, grade, gender, and gender × grade; and

each Zi had q = 2 columns corresponding to intercept and grade. Notice from Table 2 that

both the average level of DRINKING and its variation increase dramatically over time. To

make the assumption of a constant residual covariance matrix Σ more plausible, reported

alcohol use was re-expressed as the logarithm of (DRINKING+5).

Because NEGCON is entirely missing for the last three years of the study, the likely

values of this variable for grades 8–10 are being inferred from two sources: extrapolation

from grades 5–7 based on the assumption of linear growth, and the residual covariances

among the three response variables which are assumed to be constant across time. Neither

of these assumptions can be effectively tested from the data at hand, so inferences pertaining

to NEGCON are heavily model-based.

4.2 MODE FINDING AND IMPUTATION

Prior to imputation, we examined alternative covariance structures using the estima-

tion procedures of Section 3.3. Despite the high rates of missingness, our EM algorithm

converged to a maximum relative parameter change of 0.0001 in only 104 iterations for

the unstructured-Ψ model and 95 for the block-diagonal version. Without random effects

Table 2. Means (standard deviations) of Observed Variables by Grade

Grade

5 6 7 8 9 10

DRINKING −1.43 −1.12 −0.57 0.09 1.29 1.97
(1.33) (1.96) (2.73) (3.47) (4.40) (4.78)

POSCON 1.30 1.34 1.48 — 1.84 1.96
(0.61) (0.62) (0.74) — (0.89) (0.91)

NEGCON 2.94 3.05 3.07 — — —
(0.76) (0.75) (0.77) — — —
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Figure 1. Convergence behaviors under different covariance structures.

(Ψ = 0) EM again converged in approximately 100 steps. Values of the log-likelihood

for all iterations are plotted in Figure 1. The likelihood-ratio statistic for testing the block-

diagonal model against the unstructured alternative is 776.86; comparing this value to χ2
12

yields a p value of essentially zero.

In contrast to these EM algorithms, we anticipated that the Gibbs sampler of Section 2

would converge rather slowly, because that procedure augments the observed data by sim-

ulated random effects at each cycle. With only six occasions, the individual random slopes

and intercepts for Y1, Y2, and Y3 are not well estimated; moreover, the large sample size

causes the augmented-data posterior distribution forΨ to become very tight, inducing a high

degree of correlation from one cycle to the next. To assess convergence, we ran our Gibbs

sampler for an initial 2,000 cycles using an unstructured Ψ and mild prior distributions; we

set ν1 = 3, Λ−1
1 = 3Σ̂, ν2 = 6, and Λ−1

2 = 6Ψ̂, where Σ̂ and Ψ̂ were obtained from EM.

Time-series plots and sample autocorrelations for the elements of Ψ suggested that several

hundred cycles were needed for the dependence to die out. Based on this information, we

continued the Gibbs sampler for a total of 11,000 cycles, taking the simulated values of

Ymis stored at cycles 2,000, 3,000, . . . , 11,000 as multiple imputations. Re-estimating the

autocorrelations from cycles 1,001–11,000, we verified that the dependence in the elements

of θ had indeed died down by lag 200, so the ten stored imputations could reasonably be re-

garded as independent draws from P (Ymis |Yobs). Each 1,000 cycles required approximately

17 minutes on a 400 MhZ Pentium II workstation.
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Table 3. Estimated Coefficients, Standard Errors, Degrees of Freedom, and Percent Missing Informa-
tion From Multiply-Imputed Growth-Curve Analysis

est. SE df % missing

intercept −2.572 0.084 19 71
grade (1=5th, . . ., 6=10th) 0.386 0.011 35 53
sex (0=female, 1=male) 0.370 0.046 324 17
sex × grade −0.105 0.013 88 33
POSCON 0.549 0.023 17 76
NEGCON −0.090 0.023 15 80

4.3 POST-IMPUTATION ANALYSIS

After imputation, we analyzed the data by a conventional mixed-effects model for the

logarithm of (DRINKING+5). The model was a version of (1.3) with fixed effects for

gender, grade, gender×grade, POSCON and NEGCON, plus random intercepts and slopes

for grade. ML estimates were computed from each imputed data set and combined using

Rubin’s (1987) rules for multiple-imputation inference for scalar estimands. Results of this

procedure are summarized in Table 3. The point estimates are simply the averages of the

ML estimates across the ten imputations. The standard errors incorporate uncertainty due

to missing data as well as ordinary sampling variability. The degrees of freedom shown

are the estimated degrees of freedom appropriate for hypothesis tests and interval estimates

based on a Student’s t-approximation. All coefficients are highly statistically significant.

Table 3 also displays the estimated percent rate of missing information for each estimand

as derived by Rubin (1987). The high rates of missing information indicate that inferences

for all coefficients (except sex) may be highly dependent upon the form of the imputation

model and the assumption of ignorable nonresponse. The latter assumption is not particularly

troubling for these data, because the majority of missing values are missing by design.

Certain assumptions of the imputation model, however—in particular, the assumed linear

growth for NEGCON and constancy of the residual covariances across time—are not really

testable from the observed data, so results from this analysis should be interpreted with

caution.

Despite these strong caveats, the estimates in Table 3 provide some intriguing and

plausible interpretations about the behavior of this cohort. The positive coefficient for sex

indicates that boys reported higher average rates of alcohol use than girls in the initial

years of the study. The negative effect for sex×grade, however, shows that girls exhibit

higher rates of increase than boys, so that the girls’ average overtakes the boys’ by grade

8. The large positive effect of POSCON indicates that increasing perceptions about the

positive consequences of alcohol use are highly associated with increasing levels of re-

ported use. The negative coefficient for NEGCON suggests that increasing beliefs about

negative consequences do tend to reduce levels of use, but the effect is much smaller than

that of POSCON. These results are consistent with those of previous studies (MacKinnon

et al. 1991) which demonstrated that perceived positive consequences may be influential
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determinants of substance-use behavior, but beliefs about negative consequences have little

discernible effect.

5. DISCUSSION

The algorithms developed here represent an important step in helping researchers to

analyze multivariate longitudinal or clustered data with missing values. If the dataset con-

tains only a few large clusters, the MCMC procedure described in Section 2 will converge

rapidly. With many small clusters the algorithm works very reliably but convergence may

be slow. The EM methods of Section 3 were designed specifically for many small clusters

and perform best in that setting.

It is straightforward to show that the multivariate mixed-effects model (1.1) implies a

conditional univariate model of the form (1.3) for each response variable given the others,

where the others are incorporated into the columns ofXi. Thus, the imputation procedures in

Section 2 are appropriate for longitudinal analyses with partially missing covariates, when

those covariates are later going to be incorporated into an analytic model as linear fixed

effects. In many studies, however, one would like to preserve and detect certain nonlinear

associations and interactions. For example, in the first analysis of Section 4, it would have

been interesting to see whether the association between POSCON and DRINKING may

have been increasing or decreasing over time; the imputation model, however, imputed

the missing values under an assumption of a constant POSCON×DRINKING association.

Extensions of the multivariate model to allow more elaborate fixed associations such as

POSCON×DRINKING× grade, or random associations such as POSCON×DRINKING

× subject, are an important topic of ongoing research.

Another limitation of our methods is that they currently allow only two levels of nesting.

Many studies involve multivariate longitudinal data that are clustered further into larger units

(e.g., repeated multivariate measurements on students within schools). Extending the Gibbs

sampler of Section 2 to accommodate additional levels of random effects is a simple matter,

but extending the scoring and EM procedures of Section 3 is not.

Another important limitation pertains to missing covariates at the subject or cluster

level, for example, non-time-varying covariates. If these covariates have no missing values,

they can be handled under the current model by simply moving them to the matrixXi. When

missing values are present, however, they should be explicitly modeled and imputed. More

specifically, let Vi = (vi1, vi2, . . . , vik)
T denote a set of variables describing unit i that

appear in some form in the columns of Xi. If one is willing to impose a simple parametric

distribution on Vi such as multivariate normal, then Gibbs sampler given by (2.2)–(2.4) can

easily be extended in the following fashion. Given Vi, the conditional distribution of yi is

be given by (1.1), and marginally the distribution of Vi is a multivariate normal distribution.

Conditionally upon the random effects bi, the joint distribution for Vi and yi is still a

multivariate normal with (yi − Zibi) appended to the variables in Vi.

Our model assumes that the rows of yi are conditionally independent given bi with

common covariance matrix Σ. In the univariate case, this assumption is commonly relaxed

by allowing a residual covariance matrix of the form σ2Vi, where Vi has a simple (e.g.,
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autoregressive or banded) pattern with a small number of unknown parameters. Sensible

multivariate extensions of these patterned covariance structures produces models and al-

gorithms that are complicated even apart from missing data. For example, the obvious

extension of vec(εi) ∼ N(0, (Σ⊗ Ini
) ) to vec(εi) ∼ N(0, (Σ⊗Vi) ) seems too restrictive

for many longitudinal datasets, because the response variables Y1, . . . , Yr would be required

to have an identical autocorrelations. Accounting for autocorrelated residuals in a plausible

manner may prove be a daunting task in the multivariate case. In many cases, apparent

nonzero correlations among the rows of εi may arise because of a misspecified model for

the mean structure over time. The problem may sometimes be reduced or eliminated by

including additional (e.g., higher-order polynomial) terms for time in the covariate matrices

Xi or Zi.
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