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The poweRlaw package provides an easy to use interface for fitting and visualising
heavy tailed distributions, including power-laws. This vignette provides examples of
comparing competing distributions.

1 Comparing distributions

This short vignette aims to provide some guidance when comparing distributions using Vuong’s
test statistic. The hypothesis being tested is

Hy : Both distributions are equally far from the true distribution

and
H; : One of the test distributions is closer to the true distribution.

To perform this test we use the compare_distributions() function! and examine the p_two_sided
value.

2 Example: Simulated data 1

First let’s generate some data from a power-law distribution
library ("poweRlaw")

set.seed(1)

x = rpldis(1000, xmin = 2, alpha = 3)

and fit a discrete power-law distribution

ml = displ$new(x)
mil$setPars(estimate_pars(ml))

The estimated values of iy and « are 2 and 2.97, respectively. As an alternative distribution,
we will fit a discrete Poisson distribution?

!The compare_distributions() function also returns a one sided p-value. Essentially, the one sided p-value is
testing whether the first model is better than the second, i.e. a one sided test.

2When comparing distributions, each model must have the same Zmi, value. In this example, both models have
Lmin = 2.
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Figure 1: Plot of the simulated data CDF, with power law and Poisson lines of best fit.

m2 = dispois$new(x)
m2$setPars(estimate_pars(m2))

Plotting both models

plot(m2, ylab = "CDF")

lines(ml)
lines(m2, col = 2, 1ty = 2)

suggests that the power-law model gives a better fit (figure 1). Investigating this formally

comp = compare_distributions(ml, m2)
comp$p_two_sided

## [1] 0.05141726

means we can reject Hg since p = 0.05142 and conclude that one model is closer to the true
distribution.

One or two-sided p-value

The two-sided p-value does not depend on the order of the model comparison
compare_distributions(ml, m2)$p_two_sided

## [1] 0.05141726

compare_distributions(m2, ml)$p_two_sided

## [1] 0.05141726

However, the one-sided p-value is order dependent
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## We only care <if ml is better than m2
## ml 1s clearly better
compare_distributions(ml, m2)$p_one_sided

## [1] 0.02570863

## m2 1sn't better than mi
compare_distributions(m2, ml)$p_one_sided

## [1] 0.9742914

3 Example: Moby Dick data set
This time we will look at the Moby Dick data set
data("moby")

Again we fit a power law

ml = displ$new(moby)
mi$setXmin(estimate_xmin(ml))

and a log-normal model®

m2 = dislnorm$new (moby)
m2$setXmin (m1$getXmin())
m2$setPars (estimate_pars(m2))

Plotting the CDF's

plot(m2, ylab = "CDF")

lines(ml)

lines(m2, col = 2, 1ty = 2)

suggests that both models perform equally well (figure 2). The formal hypothesis test
comp = compare_distributions(ml, m2)

gives a p-value and test statistic of

comp$p_two_sided

## [1] 0.6761436

comp$test_statistic

## [1] 0.4177313

which means we can not reject Hy. The p-value and test statistic are similar to the values found
in table 6.3 of Clauset et al. (2009).

3In order to compare distributions, Tmin must be equal for both distributions.
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Figure 2: The Moby Dick data set with power law and log normal lines of best fit.
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