
Package ‘pwr4exp’
October 11, 2024

Title Power Analysis for Research Experiments

Version 0.1.0

Description Provides tools for calculating statistical power and determining sample size
for a variety of experimental designs used in agricultural and biological research,
including completely randomized, block, and split-plot designs. Supports customized
designs and allows specification of main effects, interactions, and contrasts for
accurate power analysis.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Imports car (>= 3.1.2), emmeans (>= 1.10.3), lme4 (>= 1.1.35.4),
lmerTest (>= 3.1.3), methods

Suggests agricolae, AlgDesign, crossdes, FrF2, knitr, rmarkdown

VignetteBuilder knitr

URL https://github.com/an-ethz/pwr4exp,

https://an-ethz.github.io/pwr4exp/

BugReports https://github.com/an-ethz/pwr4exp/issues

Depends R (>= 2.10)

LazyData true

NeedsCompilation no

Author Kai Wang [aut, cre, cph] (<https://orcid.org/0000-0002-6672-1121>),
Mutian Niu [aut, cph] (<https://orcid.org/0000-0003-4484-4611>)

Maintainer Kai Wang <kai.wang@usys.ethz.ch>

Repository CRAN

Date/Publication 2024-10-11 08:20:05 UTC

1

https://github.com/an-ethz/pwr4exp
https://an-ethz.github.io/pwr4exp/
https://github.com/an-ethz/pwr4exp/issues
https://orcid.org/0000-0002-6672-1121
https://orcid.org/0000-0003-4484-4611

2 calc.theta

Contents

calc.theta . 2
customLmerMod-class . 3
designCRD . 3
df.cod . 7
df.crd . 8
df.lsd . 9
df.rcbd . 9
df.spd . 10
find_sample_size . 11
fit.pseu.model . 12
milk . 13
pwr.anova . 13
pwr.contrast . 14
theta.names . 15

Index 16

calc.theta Calculate variance covariance parameters

Description

Scale variance-covariance matrices as the relative Cholesky factors of each random effect term.

Usage

calc.theta(VarCov, sigma)

Arguments

VarCov variance-covariance matrices. If there are multiple random effect groups, supply
the variance-covariance matrix of each group as an element in a list.

sigma standard deviation of random errors.

Value

theta

See Also

"theta" in getME, lmer

customLmerMod-class 3

customLmerMod-class Extend lmerModLmerTest class

Description

This class extends lmerModLmerTest by adding a DenDF slot.

Slots

DenDF Numeric vector of denominator degrees of freedom.

designCRD Creation of Experimental Designs

Description

These functions are used to create design objects for the further evaluation of statistical power.

Usage

designCRD(treatments, label, replicates, formula, beta, sigma2)

designRCBD(treatments, label, blocks, formula, beta, VarCov, sigma2, ...)

designLSD(
treatments,
label,
squares = 1,
reuse = c("row", "col", "both"),
formula,
beta,
VarCov,
sigma2,
...

)

designCOD(treatments, label, squares = 1, formula, beta, VarCov, sigma2, ...)

designSPD(
trt.main,
trt.sub,
label,
replicates,
formula,
beta,

4 designCRD

VarCov,
sigma2,
...

)

designCustom(design.df, formula, beta, VarCov, sigma2, design.name, ...)

Arguments

treatments An integer-valued vector specifying the treatment structure, in which the length
of the vector indicates the number of treatment factors, and each value represents
the number of levels for each factor. A maximum of two factors is allowed, and
they are arranged in a factorial design. For instance, treatments = n specifies
one treatment factor with n levels, and treatments=c(2,3) creates a "2x3"
factorial design of two treatment factors with 2 and 3 levels, respectively.

label Optional. A list of character vectors specifying the names of treatment factors
and factor levels. Each vector in the list represents a treatment factor, where the
name of the vector specifies the name of the factor, and the values in the vector
are the labels for that factor’s levels. If not provided, factors and levels for one
and two treatment factors are labeled as list(trt = c("1", "2", ...)) and
list(facA = c("1", "2", ...), facB = c("1", "2", ...)), respectively.

replicates The number of experimental units per treatment in a completely randomized
design or the number of experimental units (main plots) per treatment of main
plot factors.

formula A model formula for testing treatment effects in post-experimental data analysis.
Use the syntax of lm for fixed effects and lmer for random effects. The response
variable is always denoted as y. By default, all interaction terms between treat-
ment factors are included in the formula.

beta A numeric vector of expected model coefficients, representing the effect sizes.
The first element represents the intercept term, corresponding to the mean of
the reference level for categorical variables. Subsequent elements correspond
to the effect sizes of the independent variables in the order they appear in the
model matrix. For categorical variables, each coefficient represents the dif-
ference between a non-reference level and the reference level (intercept), as
contr.treatment contrast coding is used for constructing the model matrix.
Ensure that beta aligns with the columns of the model matrix, including any
dummy variables created for categorical predictors.

sigma2 error variance.

blocks The number of blocks.

VarCov Variance-covariance components of random effects. For multiple random ef-
fect groups, supply the variance (for a single random effect term) or variance-
covariance matrix (for two or more random effect terms) of each group in a list,
following the order in the model formula.

... Additional arguments passed to the anova function in lmerTest. The type of
ANOVA table (default is Type III) and the method for computing denominator
degrees of freedom (default is Satterthwaite’s method) can be modified. For

designCRD 5

balanced designs, the choice of sum of squares (SS) and degrees of freedom (df)
does not affect the results.

squares The number of replicated squares. By default, 1, i.e., no replicated squares.
reuse A character string specifying how to replicate squares when there are multiple

squares. Options are: "row" for reusing row blocks, "col" for reusing column
blocks, or "both" for reusing both row and column blocks to replicate a single
square.

trt.main An integer-valued vector specifying the treatment structure at main plot level for
a split plot design, similar to treatments.

trt.sub An integer-valued vector specifying the treatment structure at sub plot level for
a split plot design, similar to treatments.

design.df Required input for creating a customized design. A data frame with all indepen-
dent variables of the design as columns, representing the actual data structure
(long format data frame) without response variables.

design.name Optional input for creating a customized design. A character.

Details

Each function creates a specific design as described below:

designCRD Completely Randomized Design. By default, the model formula is y ~ trt for one
factor and y ~ facA*facB for two factors, unless explicitly specified. If the label argument
is provided, the formula is automatically updated with the specified treatment factor names.

designRCBD Randomized Complete Block Design. The default model formula is y ~ trt + (1|block)
for one factor and y ~ facA*facB + (1|block) for two factors. If label is provided, the fixed
effect parts of the formula are automatically updated with the specified names. The label of
block factor ("block") in the formula is not changeable.

designLSD Latin Square Design. The default formula is y ~ trt + (1|row) + (1|col) for one
factor and y ~ facA*facB + (1|row) + (1|col) for two factors. If label is provided, the
fixed effect parts of the formula are automatically updated with the specified names. The
labels of row ("row") and column ("col") block factors are not changeable.

designCOD Crossover Design, which is a special case of LSD with time periods and individu-
als as blocks. Period blocks are reused when replicating squares. The default formula is
y ~ trt + (1|subject) + (1|period) for one factor and y ~ facA*facB + (1|subject) +
(1|period) for two factors. If label is provided, the fixed effect parts of the formula are
automatically updated with the specified names. Note that "subject" and "period" are the la-
bels for the two blocking factors and cannot be changed.

designSPD Split Plot Design. The default formula includes the main effects of all treatment factors
at both the main and sub-plot levels, their interactions, and the random effects of main plots:
y ~ . + (1|mainplot). If label is provided, the fixed effect parts of the formula are automat-
ically updated with the specified names. The experimental unit at the main plot level (i.e., the
block factor at the subplot level) is always denoted as "mainplot".

designCustom Customized Design.

Value

a list with the design name, data structure (data frame), model formula, and a pseudo model object
with the expected fixed and random effects.

6 designCRD

See Also

pwr.anova(), pwr.contrast()

Examples

Example 1: Evaluate the power of a CRD with one treatment factor

Create a design object

crd <- designCRD(
treatments = 4, # 4 levels of one treatment factor
replicates = 12, # 12 units per level, 48 units totally
mean of level1, and the means of other levels minus level1, respectively
beta = c(30, -2, 3, 5),
sigma2 = 10 # error variance

)

power of omnibus test
pwr.anova(crd)

power of contrast
pwr.contrast(crd, specs = "trt", method = "pairwise") # pairwise comparisons
pwr.contrast(crd, specs = "trt", method = "poly") # polynomial contrasts

Example 2: Evaluate the power of an RCBD with 2 x 2 factorial treatments

Treatment factors are A (A1 vs. A2) and B (B1 vs. B2).
To illustrate how to provide `beta`, treatment means are presented:
B1 B2
A1 20 24
A2 17 22
#
From these means, we calculate:
1. the mean of reference level (A1B1): 20
2. the effect of A2 alone: Effect_A2 = A2B1 - A1B1 = 17 - 20 = -3
3. the effect of B2 alone: Effect_A2 = A1B2 - A1B1 = 24 - 20 = 4
4. the interaction effect of A2 and B2:
Interaction_A2B2 = A2B2 - A2B1 - A1B2 + A1B1 = 22 - 17 - 24 + 20 = 1, representing
the additional effect of combining A2B2 compared to what would be expected
from the sum of individual effects of A2 and B2.

The `beta` vector is constructed as:
beta = c(mean_A1B1, Effect_A2, Effect_B2, Interaction_A2B2)
beta = c(20, -3, 4, 1)

Create a design object

rcbd <- designRCBD(
2x2 factorial design
treatments = c(2, 2),
Specify treatment names
label = list(A = c("A1", "A2"), B = c("B1", "B2")),

df.cod 7

12 blocks, totaling 48 experimental units
blocks = 12,
Mean of the reference level and effect sizes as calculated above
beta = c(20, -3, 4, 1),
Variance of block effects (between-block variance)
VarCov = 30,
Error variance (within-block variance)
sigma2 = 20

)

power of omnibus test

pwr.anova(rcbd)

power of B2 vs. B1 at each level of A
pwr.contrast(rcbd, specs = ~B|A, method = "pairwise")

More examples are available in the package vignette("pwr4exp")
and on the package website: https://an-ethz.github.io/pwr4exp/

df.cod Create a data frame for Crossover design

Description

Create a data frame for Crossover design

Usage

df.cod(treatments, label, squares)

Arguments

treatments An integer-valued vector specifying the treatment structure, in which the length
of the vector indicates the number of treatment factors, and each value represents
the number of levels for each factor. A maximum of two factors is allowed, and
they are arranged in a factorial design. For instance, treatments = n specifies
one treatment factor with n levels, and treatments=c(2,3) creates a "2x3"
factorial design of two treatment factors with 2 and 3 levels, respectively.

label Optional. A list of character vectors specifying the names of treatment factors
and factor levels. Each vector in the list represents a treatment factor, where the
name of the vector specifies the name of the factor, and the values in the vector
are the labels for that factor’s levels. If not provided, factors and levels for one
and two treatment factors are labeled as list(trt = c("1", "2", ...)) and
list(facA = c("1", "2", ...), facB = c("1", "2", ...)), respectively.

squares The number of replicated squares. By default, 1, i.e., no replicated squares.

8 df.crd

Value

a data.frame with columns for treatment factors, individuals (row block factor), period (column
block factor), and squares

df.crd Create a data frame of completely randomized design

Description

Create a data frame of completely randomized design

Usage

df.crd(treatments, label, replicates)

Arguments

treatments An integer-valued vector specifying the treatment structure, in which the length
of the vector indicates the number of treatment factors, and each value represents
the number of levels for each factor. A maximum of two factors is allowed, and
they are arranged in a factorial design. For instance, treatments = n specifies
one treatment factor with n levels, and treatments=c(2,3) creates a "2x3"
factorial design of two treatment factors with 2 and 3 levels, respectively.

label Optional. A list of character vectors specifying the names of treatment factors
and factor levels. Each vector in the list represents a treatment factor, where the
name of the vector specifies the name of the factor, and the values in the vector
are the labels for that factor’s levels. If not provided, factors and levels for one
and two treatment factors are labeled as list(trt = c("1", "2", ...)) and
list(facA = c("1", "2", ...), facB = c("1", "2", ...)), respectively.

replicates The number of experimental units per treatment.

Value

a data.frame with columns for treatment factors and replicates

df.lsd 9

df.lsd Create a data frame for Latin square design

Description

Create a data frame for Latin square design

Usage

df.lsd(treatments, label, squares = 1, reuse = c("row", "col", "both"))

Arguments

treatments An integer-valued vector specifying the treatment structure, in which the length
of the vector indicates the number of treatment factors, and each value represents
the number of levels for each factor. A maximum of two factors is allowed, and
they are arranged in a factorial design. For instance, treatments = n specifies
one treatment factor with n levels, and treatments=c(2,3) creates a "2x3"
factorial design of two treatment factors with 2 and 3 levels, respectively.

label Optional. A list of character vectors specifying the names of treatment factors
and factor levels. Each vector in the list represents a treatment factor, where the
name of the vector specifies the name of the factor, and the values in the vector
are the labels for that factor’s levels. If not provided, factors and levels for one
and two treatment factors are labeled as list(trt = c("1", "2", ...)) and
list(facA = c("1", "2", ...), facB = c("1", "2", ...)), respectively.

squares the number of replicated squares

reuse A character string specifying how to replicate squares when there are multiple
squares. Options are: "row" for reusing row blocks, "col" for reusing column
blocks, or "both" for reusing both row and column blocks to replicate a single
square.

Value

a data.frame with columns for treatment factors, row and column block factors, and squares

df.rcbd Create a data frame of randomized complete block design

Description

Create a data frame of randomized complete block design

Usage

df.rcbd(treatments, label, blocks)

10 df.spd

Arguments

treatments An integer-valued vector specifying the treatment structure, in which the length
of the vector indicates the number of treatment factors, and each value represents
the number of levels for each factor. A maximum of two factors is allowed, and
they are arranged in a factorial design. For instance, treatments = n specifies
one treatment factor with n levels, and treatments=c(2,3) creates a "2x3"
factorial design of two treatment factors with 2 and 3 levels, respectively.

label Optional. A list of character vectors specifying the names of treatment factors
and factor levels. Each vector in the list represents a treatment factor, where the
name of the vector specifies the name of the factor, and the values in the vector
are the labels for that factor’s levels. If not provided, factors and levels for one
and two treatment factors are labeled as list(trt = c("1", "2", ...)) and
list(facA = c("1", "2", ...), facB = c("1", "2", ...)), respectively.

blocks the number of blocks

Value

a data.frame with columns for blocks and treatment factors

df.spd Create data frame for split-plot design

Description

Create data frame for split-plot design

Usage

df.spd(trt.main, trt.sub, label, replicates)

Arguments

trt.main an integer-valued vector specifying the treatment structure at main plot level,
similar to df.crd.

trt.sub an integer-valued vector specifying the treatment structure at sub plot level, sim-
ilar to trt.main.

label Optional. A list of character vectors specifying the names of treatment factors
and factor levels. Each vector in the list represents a treatment factor, where the
name of the vector specifies the name of the factor, and the values in the vector
are the labels for that factor’s levels. If not provided, factors and levels for one
and two treatment factors are labeled as list(trt = c("1", "2", ...)) and
list(facA = c("1", "2", ...), facB = c("1", "2", ...)), respectively.

replicates the number of experimental units (main plots) per treatment of main plot factors.

Value

a data.frame with columns for main plots, main treatments, and sub-treatments

find_sample_size 11

find_sample_size Determine the sample size required to achieve the target power

Description

This function finds the minimum sample size needed to achieve the target power for a given design.
It uses an iterative approach to determine the minimum number of replications by traversing through
a series of integers.

Usage

find_sample_size(
design.quote,
alpha = 0.05,
target.power = 0.8,
n_init = 2,
n_max = 99,
...

)

Arguments

design.quote a quoted design object with unknown and unevaluated replications to be evalu-
ated with varying values

alpha type I error rate, default is 0.05

target.power the target power can be a single value for all factors or a vector of containing
individual values for different factors, default is 0.8

n_init the initial replications for the iterative process, default is 2

n_max the maximum number of replications for the iterative process, default is 99

... additional arguments passed to pwr.anova

Value

A data frame with type I error rate (alpha), realized power (power), and minimum sample size
(best_n).

Examples

create a LSD object with unknown replications (\code{squares = n})
simply \code{\link{quote}} the design generating function with
lsd_quote <- quote(

designLSD(
treatments = 4,
squares = n,
reuse = "row",
beta = c(10, 2, 3, 4),

12 fit.pseu.model

VarCov = list(5, 2),
sigma2 = 10

)
)

find the minimum number of squares required to achieve the target power of 0.8
find_sample_size(lsd_quote)

fit.pseu.model Create an artificial model object

Description

Create a pseudo-model object with the response variable being simulated according to the fixed and
random effects. Model coefficients are replaced by the expectations specified in the argument beta.
Variance-covariance components of random effects are replaced by the values specified in argument
VarCov. The standard deviation of random error is replaced by the argument sigma. Creating such
a pseudo-model facilitates power calculations by leveraging the anova function in lmerTest and
the Anova function in car.

Usage

fit.pseu.model(formula, data, beta, VarCov, sigma, ...)

Arguments

formula an object of class formula

data a data frame with the independent variables of the design as columns, e.g., treat-
ment factors and block factors.

beta a vector of the expectations of model coefficients.

VarCov variance-covariance matrices. If there are multiple random effect groups, supply
the variance-covariance matrix of each group as an element in a list.

sigma standard deviation of error

... other arguments passed to the anova function in lmerTest. The type of sum
of squares, with Type III as the default, and the method for computing the de-
nominator degrees of freedom, with Satterthwaite’s method as the default, can
be changed. For more details, see anova.lmerModLmerTest.

Value

a pseudo model object.

milk 13

milk An exemplary dataset of a 4x4 crossover design with 2 squares

Description

Milk yield records from 8 cows over 4 different periods in a 4x4 crossover design. The design
includes 2 Latin squares, each consisting of 4 cows and 4 periods.

Usage

milk

Format

A data frame with 32 rows and 4 variables:

Cow Factor: Cow index (8 levels)
Period Factor: Period index (4 levels)
Treatment Factor: Treatment index (4 levels)
MilkYield Numeric: milk yield recordings (in kg)

Source

Simulated data for package demonstration purposes.

pwr.anova Power of omnibus test

Description

Calculate power for testing overall effects of treatment factors and their interactions, i.e., statistical
power of ANOVA.

Usage

pwr.anova(design, alpha = 0.05, ...)

Arguments

design a design object created using design generating functions.
alpha significance level (type I error rate), default 0.05
... Additional arguments passed to anova.lmerModLmerTest for linear mixed mod-

els and to Anova for linear models. The type of sum of squares (SS, default is
Type III) and the method for computing denominator degrees of freedom (DDF,
default is Satterthwaite’s method) can be modified. For balanced designs, types
of SS and DDF do not affect results. Note that these additional arguments should
be consistent in the design-generating function and pwr.anova for linear mixed
models.

14 pwr.contrast

Value

a data frame with numerator degrees of freedom (NumDF), denominator degrees of freedom (DenDF),
non-centrality parameter, type I error rate (alpha), and power.

See Also

designCRD(), designRCBD(), designLSD(), designCOD(), designSPD(), designCustom(), and
pwr.contrast()

Examples

generate an RCBD
rcbd = designRCBD(treatments = c(2, 2), blocks = 10, beta = c(10, 9, 8, 7), VarCov = 10, sigma2 = 9)
power of omnibus test
pwr.anova(rcbd, alpha = 0.05)

pwr.contrast Power of contrasts

Description

Calculate power for testing various contrasts. The same syntax of emmeans package is employed
to specify contrast types.

Usage

pwr.contrast(design, specs, method, alpha = 0.05, ...)

Arguments

design a design object created using design generating functions.

specs an argument inherited from emmeans specifying the names of the factors over
which the contrasts are performed.

method an argument inherited from contrast specifying the method of contrasts, e.g.,
pairwise, linear, and polynomials.

alpha significance level (type I error rate), default 0.05

... other arguments passed to contrast.

Value

a data frame showing the power of the specific contrast

Examples

rcbd = designRCBD(treatments = c(2, 2), blocks = 10, beta = c(10, 9, 8, 7), VarCov = 10, sigma2 = 9)
pwr.contrast(rcbd, specs = ~ facA|facB, method = "pairwise")

theta.names 15

theta.names Naming theta Naming the vector in the order of model specification
and in the actual order used in the model

Description

Naming theta Naming the vector in the order of model specification and in the actual order used in
the model

Usage

theta.names(data, formula)

Arguments

data data frame

formula model formula

Index

∗ datasets
milk, 13

Anova, 13
anova.lmerModLmerTest, 12, 13

calc.theta, 2
contr.treatment, 4
contrast, 14
customLmerMod-class, 3

design.COD (designCRD), 3
design.CRD (designCRD), 3
design.Custom (designCRD), 3
design.LSD (designCRD), 3
design.RCBD (designCRD), 3
design.SPD (designCRD), 3
designCOD (designCRD), 3
designCOD(), 14
designCRD, 3
designCRD(), 14
designCustom (designCRD), 3
designCustom(), 14
designLSD (designCRD), 3
designLSD(), 14
designRCBD (designCRD), 3
designRCBD(), 14
designSPD (designCRD), 3
designSPD(), 14
df.cod, 7
df.crd, 8, 10
df.lsd, 9
df.rcbd, 9
df.spd, 10

emmeans, 14

find_sample_size, 11
fit.pseu.model, 12
formula, 12

getME, 2

lm, 4
lmer, 2, 4

milk, 13

pwr.anova, 11, 13
pwr.anova(), 6
pwr.contrast, 14
pwr.contrast(), 6, 14

theta.names, 15

16

	calc.theta
	customLmerMod-class
	designCRD
	df.cod
	df.crd
	df.lsd
	df.rcbd
	df.spd
	find_sample_size
	fit.pseu.model
	milk
	pwr.anova
	pwr.contrast
	theta.names
	Index

