
Package ‘r5r’
August 21, 2025

Type Package

Title Rapid Realistic Routing with 'R5'

Version 2.3.0

Description Rapid realistic routing on multimodal transport networks
(walk, bike, public transport and car) using 'R5', the Rapid Realistic
Routing on Real-world and Reimagined networks engine
<https://github.com/conveyal/r5>. The package allows users to generate
detailed routing analysis or calculate travel time and monetary cost matrices
using seamless parallel computing on top of the R5 Java machine. While R5
is developed by Conveyal, the package r5r is independently developed
by a team at the Institute for Applied Economic Research (Ipea) with
contributions from collaborators. Apart from the documentation in this
package, users will find additional information on R5 documentation at
<https://docs.conveyal.com/>. Although we try to keep new releases of
r5r in synchrony with R5, the development of R5 follows Conveyal's
independent update process. Hence, users should confirm the R5 version
implied by the Conveyal user manual (see
<https://docs.conveyal.com/changelog>) corresponds with the R5 version
that r5r depends on. This version of r5r depends on R5 v7.1.

License MIT + file LICENSE

URL https://github.com/ipeaGIT/r5r, https://ipeagit.github.io/r5r/

BugReports https://github.com/ipeaGIT/r5r/issues

Depends R (>= 3.6)

Imports checkmate, cli, concaveman, data.table, jsonlite, lifecycle,
methods, rJava (>= 0.9-10), rlang, sf (>= 1.0-12), sfheaders,
utils, zip

Suggests accessibility, covr, dplyr, fs, ggplot2 (>= 3.3.1),
gtfstools, h3jsr (>= 1.3.0), interp, knitr, mapview, parallel,
patchwork, rJavaEnv, rmarkdown, testthat

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.3.2

1

https://github.com/conveyal/r5
https://docs.conveyal.com/
https://docs.conveyal.com/changelog
https://github.com/ipeaGIT/r5r
https://ipeagit.github.io/r5r/
https://github.com/ipeaGIT/r5r/issues


2 Contents

SystemRequirements Java JDK (>= 21.0)

NeedsCompilation no

Author Marcus Saraiva [aut] (ORCID: <https://orcid.org/0000-0001-6218-2338>),
Rafael H. M. Pereira [aut, cre] (ORCID:

<https://orcid.org/0000-0003-2125-7465>),
Daniel Herszenhut [aut] (ORCID:

<https://orcid.org/0000-0001-8066-1105>),
Alex Magnus [aut],
Matthew Wigginton Bhagat-Conway [aut] (ORCID:

<https://orcid.org/0000-0002-1210-2982>),
Carlos Kaue Vieira Braga [ctb] (ORCID:

<https://orcid.org/0000-0002-6104-7297>),
Luyu Liu [ctb] (ORCID: <https://orcid.org/0000-0002-6684-5570>),
Daniel Snow [ctb],
Ipea - Institute for Applied Economic Research [cph, fnd],
Department of Geography & Planning, University of Toronto [fnd]

Maintainer Rafael H. M. Pereira <rafa.pereira.br@gmail.com>

Repository CRAN

Date/Publication 2025-08-21 14:40:02 UTC

Contents

accessibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
arrival_travel_time_matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
build_network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
detailed_itineraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
download_r5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
expanded_travel_time_matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
find_snap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
isochrone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
pareto_frontier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
r5r_cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
r5r_sitrep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
read_fare_structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
setup_fare_structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
setup_r5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
stop_r5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
street_network_to_sf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
transit_network_to_sf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
travel_time_matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
write_fare_structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Index 58

https://orcid.org/0000-0001-6218-2338
https://orcid.org/0000-0003-2125-7465
https://orcid.org/0000-0001-8066-1105
https://orcid.org/0000-0002-1210-2982
https://orcid.org/0000-0002-6104-7297
https://orcid.org/0000-0002-6684-5570


accessibility 3

accessibility Calculate access to opportunities

Description

Fast computation of access to opportunities given a selected decay function.

Usage

accessibility(
r5r_network,
r5r_core = deprecated(),
origins,
destinations,
opportunities_colnames = "opportunities",
mode = "WALK",
mode_egress = "WALK",
departure_datetime = Sys.time(),
time_window = 10L,
percentiles = 50L,
decay_function = "step",
cutoffs = NULL,
decay_value = NULL,
max_walk_time = Inf,
max_bike_time = Inf,
max_car_time = Inf,
max_trip_duration = 120L,
walk_speed = 3.6,
bike_speed = 12,
max_rides = 3,
max_lts = 2,
fare_structure = NULL,
max_fare = Inf,
new_carspeeds = NULL,
carspeed_scale = 1,
new_lts = NULL,
draws_per_minute = 5L,
n_threads = Inf,
verbose = FALSE,
progress = FALSE,
output_dir = NULL

)

Arguments

r5r_network A routable transport network created with build_network().



4 accessibility

r5r_core The r5r_core argument is deprecated as of r5r v2.3.0. Please use the r5r_network
argument instead.

origins, destinations
Either a POINT sf object with WGS84 CRS, or a data.frame containing the
columns id, lon and lat.

opportunities_colnames

A character vector. The names of the columns in the destinations input that
tells the number of opportunities in each location. Several different column
names can be passed, in which case the accessibility to each kind of opportunity
will be calculated.

mode A character vector. The transport modes allowed for access, transfer and vehicle
legs of the trips. Defaults to WALK. Please see details for other options.

mode_egress A character vector. The transport mode used after egress from the last public
transport. It can be either WALK, BICYCLE or CAR. Defaults to WALK. Ignored
when public transport is not used.

departure_datetime

A POSIXct object. Please note that the departure time only influences public
transport legs. When working with public transport networks, please check the
calendar.txt within your GTFS feeds for valid dates. Please see details for
further information on how datetimes are parsed.

time_window An integer. The time window in minutes for which r5r will calculate multiple
travel time matrices departing each minute. Defaults to 10 minutes. By default,
the function returns the result based on median travel times, but the user can set
the percentiles parameter to extract more results. Please read the time window
vignette for more details on its usage vignette("time_window", package =
"r5r")

percentiles An integer vector (max length of 5). Specifies the percentile to use when return-
ing accessibility estimates within the given time window. Please note that this
parameter is applied to the travel time estimates that generate the accessibility
results, and not to the accessibility distribution itself (i.e. if the 25th percentile
is specified, the accessibility is calculated from the 25th percentile travel time,
which may or may not be equal to the 25th percentile of the accessibility dis-
tribution itself). Defaults to 50, returning the accessibility calculated from the
median travel time. If a vector with length bigger than 1 is passed, the output
contains an additional column that specifies the percentile of each accessibil-
ity estimate. Due to upstream restrictions, only 5 percentiles can be specified
at a time. For more details, please see R5 documentation at https://docs.
conveyal.com/analysis/methodology#accounting-for-variability.

decay_function A string. Which decay function to use when calculating accessibility. One of
step, exponential, fixed_exponential, linear or logistic. Defaults to
step, which is equivalent to a cumulative opportunities measure. Please see
the details to understand how each alternative works and how they relate to the
cutoffs and decay_value parameters.

cutoffs A numeric vector (maximum length of 12). This parameter has different effects
for each decay function: it indicates the cutoff times in minutes when calculating
cumulative opportunities accessibility with the step function, the median (or

https://docs.conveyal.com/analysis/methodology#accounting-for-variability
https://docs.conveyal.com/analysis/methodology#accounting-for-variability


accessibility 5

inflection point) of the decay curves in the logistic and linear functions,
and the half-life in the exponential function. It has no effect when using the
fixed_exponential function.

decay_value A number. Extra parameter to be passed to the selected decay_function. Has
no effects when decay_function is either step or exponential.

max_walk_time An integer. The maximum walking time (in minutes) to access and egress the
transit network, to make transfers within the network or to complete walk-only
trips. Defaults to no restrictions (numeric value of Inf), as long as max_trip_duration
is respected. When routing transit trips, the max time is considered separately
for each leg (e.g. if you set max_walk_time to 15, you could get trips with an
up to 15 minutes walk leg to reach transit and another up to 15 minutes walk
leg to reach the destination after leaving transit. In walk-only trips, whenever
max_walk_time differs from max_trip_duration, the lowest value is consid-
ered.

max_bike_time An integer. The maximum cycling time (in minutes) to access and egress the
transit network, to make transfers within the network or to complete bicycle-
only trips. Defaults to no restrictions (numeric value of Inf), as long as max_trip_duration
is respected. When routing transit trips, the max time is considered separately
for each leg (e.g. if you set max_bike_time to 15, you could get trips with an
up to 15 minutes cycle leg to reach transit and another up to 15 minutes cycle
leg to reach the destination after leaving transit. In bicycle-only trips, whenever
max_bike_time differs from max_trip_duration, the lowest value is consid-
ered.

max_car_time An integer. The maximum driving time (in minutes) to access and egress the
transit network. Defaults to no restrictions, as long as max_trip_duration is
respected. The max time is considered separately for each leg (e.g. if you set
max_car_time to 15 minutes, you could potentially drive up to 15 minutes to
reach transit, and up to another 15 minutes to reach the destination after leaving
transit). Defaults to Inf, no limit.

max_trip_duration

An integer. The maximum trip duration in minutes. Defaults to 120 minutes (2
hours).

walk_speed A numeric. Average walk speed in km/h. Defaults to 3.6 km/h.

bike_speed A numeric. Average cycling speed in km/h. Defaults to 12 km/h.

max_rides An integer. The maximum number of public transport rides allowed in the same
trip. Defaults to 3.

max_lts An integer between 1 and 4. The maximum level of traffic stress that cyclists
will tolerate. A value of 1 means cyclists will only travel through the quietest
streets, while a value of 4 indicates cyclists can travel through any road. Defaults
to 2. Please see details for more information.

fare_structure A fare structure object, following the convention set in setup_fare_structure().
This object describes how transit fares should be calculated. Please see the fare
structure vignette to understand how this object is structured: vignette("fare_structure",
package = "r5r").

max_fare A number. The maximum value that trips can cost when calculating the fastest
journey between each origin and destination pair.



6 accessibility

new_carspeeds A data.frame specifying the new car speed for each OSM edge id. This table
must contain columns osm_id, max_speed and speed_type. The "speed_type"
column is of class character and it indicates whether the values in "max_speed"
should be interpreted as percentages of original speeds ("scale") or as absolute
speeds ("km/h"). Alternatively, the new_carspeeds parameter can receive an
sf data.frame with POLYGON geometry that indicates the new car speed for
all the roads that fall within each polygon. In this case, the table must contain
the columns poly_id with a unique id for each polygon, scale with the new
speed scaling factors and priority, which is a number ranking which polygon
should be considered in case of overlapping polygons. See more into in the
link to congestion vignette.

carspeed_scale Numeric. The default car speed to use for road segments not specified in new_carspeeds.
By default, it is NULL and the speeds of the unlisted roads are kept unchanged.

new_lts A data.frame specifying the new LTS levels for each OSM edge id. The table
must contain columns osm_id and lts. Alternatively, the new_lts parameter
can receive an sf data.frame with LINESTRING geometry. R5 will then find
the nearest road for each LINESTRING and update its LTS value accordingly.

draws_per_minute

An integer. The number of Monte Carlo draws to perform per time window
minute when calculating travel time matrices and when estimating accessibility.
Defaults to 5. This would mean 300 draws in a 60-minute time window, for
example. This parameter only affects the results when the GTFS feeds contain
a frequencies.txt table. If the GTFS feed does not have a frequency table,
r5r still allows for multiple runs over the set time_window but in a deterministic
way.

n_threads An integer. The number of threads to use when running the router in parallel.
Defaults to use all available threads (Inf).

verbose A logical. Whether to show R5 informative messages when running the func-
tion. Defaults to FALSE (please note that in such case R5 error messages are still
shown). Setting verbose to TRUE shows detailed output, which can be useful
for debugging issues not caught by r5r.

progress A logical. Whether to show a progress counter when running the router. Defaults
to FALSE. Only works when verbose is set to FALSE, so the progress counter
does not interfere with R5’s output messages. Setting progress to TRUE may
impose a small penalty for computation efficiency, because the progress counter
must be synchronized among all active threads.

output_dir Either NULL or a path to an existing directory. When not NULL (the default), the
function will write one .csv file with the results for each origin in the specified
directory. In such case, the function returns the path specified in this parameter.
This parameter is particularly useful when running on memory-constrained set-
tings because writing the results directly to disk prevents r5r from loading them
to RAM memory.

Value

A data.table with accessibility estimates for all origin points. This data.table contain columns
listing the origin id, the type of opportunities to which accessibility was calculated, the travel time



accessibility 7

percentile considered in the accessibility estimate and the specified cutoff values (except in when
decay_function is fixed_exponential, in which case the cutoff parameter is not used). If
output_dir is not NULL, the function returns the path specified in that parameter, in which the .csv
files containing the results are saved.

Decay functions

R5 allows one to use different decay functions when calculating accessibility. Please see the orig-
inal R5 documentation from Conveyal for more information on each one one (https://docs.
conveyal.com/learn-more/decay-functions). A summary of each available option, as well
as the value passed to decay_function to use it (inside parentheses) are listed below:

• Step, also known as cumulative opportunities ("step"):
a binary decay function used to find the sum of available opportunities within a specific travel
time cutoff.

• Logistic CDF ("logistic"):
This is the logistic function, i.e. the cumulative distribution function of the logistic distribu-
tion, expressed such that its parameters are the median (inflection point) and standard devi-
ation. This function applies a sigmoid rolloff that has a convenient relationship to discrete
choice theory. Its parameters can be set to reflect a whole population’s tolerance for mak-
ing trips with different travel times. The function’s value represents the probability that a
randomly chosen member of the population would accept making a trip, given its duration.
Opportunities are then weighted by how likely it is that a person would consider them "reach-
able".

– Calibration: The median parameter is controlled by the cutoff parameter, leaving only
the standard deviation to configure through the decay_value parameter.

• Fixed Exponential ("fixed_exponential"):
This function is of the form exp(-Lt) where L is a single fixed decay constant in the range
(0, 1). It is constrained to be positive to ensure weights decrease (rather than grow) with
increasing travel time.

– Calibration: This function is controlled exclusively by the L constant, given by the decay_value
parameter. Values provided in cutoffs are ignored.

• Half-life Exponential Decay ("exponential"):
This is similar to the fixed-exponential option above, but in this case the decay parameter is
inferred from the cutoffs parameter values, which is treated as the half-life of the decay.

• Linear ("linear"):
This is a simple, vaguely sigmoid option, which may be useful when you have a sense of
a maximum travel time that would be tolerated by any traveler, and a minimum time below
which all travel is perceived to be equally easy.

– Calibration: The transition region is transposable and symmetric around the cutoffs
parameter values, taking decay_value minutes to taper down from one to zero.

Transport modes

R5 allows for multiple combinations of transport modes. The options include:

• Transit modes: TRAM, SUBWAY, RAIL, BUS, FERRY, CABLE_CAR, GONDOLA, FUNICULAR. The
option TRANSIT automatically considers all public transport modes available.

• Non transit modes: WALK, BICYCLE, CAR, BICYCLE_RENT, CAR_PARK.

https://docs.conveyal.com/learn-more/decay-functions
https://docs.conveyal.com/learn-more/decay-functions


8 accessibility

Level of Traffic Stress (LTS)

When cycling is enabled in R5 (by passing the value BIKE to either mode or mode_egress), setting
max_lts will allow cycling only on streets with a given level of danger/stress. Setting max_lts to
1, for example, will allow cycling only on separated bicycle infrastructure or low-traffic streets and
routing will revert to walking when traversing any links with LTS exceeding 1. Setting max_lts to
3 will allow cycling on links with LTS 1, 2 or 3. Routing also reverts to walking if the street segment
is tagged as non-bikable in OSM (e.g. a staircase), independently of the specified max LTS.

The default methodology for assigning LTS values to network edges is based on commonly tagged
attributes of OSM ways. See more info about LTS in the original documentation of R5 from Con-
veyal at https://docs.conveyal.com/learn-more/traffic-stress. In summary:

• LTS 1: Tolerable for children. This includes low-speed, low-volume streets, as well as those
with separated bicycle facilities (such as parking-protected lanes or cycle tracks).

• LTS 2: Tolerable for the mainstream adult population. This includes streets where cyclists
have dedicated lanes and only have to interact with traffic at formal crossing.

• LTS 3: Tolerable for "enthused and confident" cyclists. This includes streets which may
involve close proximity to moderate- or high-speed vehicular traffic.

• LTS 4: Tolerable only for "strong and fearless" cyclists. This includes streets where cyclists
are required to mix with moderate- to high-speed vehicular traffic.

For advanced users, you can provide custom LTS values by adding a tag <key = "lts"> to the
osm.pbf file.

Datetime parsing

r5r ignores the timezone attribute of datetime objects when parsing dates and times, using the
study area’s timezone instead. For example, let’s say you are running some calculations using
Rio de Janeiro, Brazil, as your study area. The datetime as.POSIXct("13-05-2019 14:00:00",
format = "%d-%m-%Y %H:%M:%S") will be parsed as May 13th, 2019, 14:00h in Rio’s local time,
as expected. But as.POSIXct("13-05-2019 14:00:00", format = "%d-%m-%Y %H:%M:%S", tz =
"Europe/Paris") will also be parsed as the exact same date and time in Rio’s local time, perhaps
surprisingly, ignoring the timezone attribute.

Routing algorithm

The travel_time_matrix(), expanded_travel_time_matrix(), arrival_travel_time_matrix()
and accessibility() functions use an R5-specific extension to the RAPTOR routing algorithm
(see Conway et al., 2017). This RAPTOR extension uses a systematic sample of one departure per
minute over the time window set by the user in the ’time_window’ parameter. A detailed descrip-
tion of base RAPTOR can be found in Delling et al (2015). However, whenever the user includes
transit fares inputs to these functions, they automatically switch to use an R5-specific extension to
the McRAPTOR routing algorithm.

• Conway, M. W., Byrd, A., & van der Linden, M. (2017). Evidence-based transit and land use
sketch planning using interactive accessibility methods on combined schedule and headway-
based networks. Transportation Research Record, 2653(1), 45-53. doi:10.3141/265306

• Delling, D., Pajor, T., & Werneck, R. F. (2015). Round-based public transit routing. Trans-
portation Science, 49(3), 591-604. doi:10.1287/trsc.2014.0534

https://docs.conveyal.com/learn-more/traffic-stress
https://doi.org/10.3141/2653-06
https://doi.org/10.1287/trsc.2014.0534


accessibility 9

Examples

library(r5r)

data_path <- system.file("extdata/poa", package = "r5r")
r5r_network <- build_network(data_path)
points <- read.csv(file.path(data_path, "poa_hexgrid.csv"))[1:5, ]

departure_datetime <- as.POSIXct(
"13-05-2019 14:00:00",
format = "%d-%m-%Y %H:%M:%S"

)

access <- accessibility(
r5r_network ,
origins = points,
destinations = points,
opportunities_colnames = "schools",
mode = "WALK",
departure_datetime = departure_datetime,
decay_function = "step",
cutoffs = 30,
max_trip_duration = 30

)
head(access)

# using a different decay function
access <- accessibility(

r5r_network ,
origins = points,
destinations = points,
opportunities_colnames = "schools",
mode = "WALK",
departure_datetime = departure_datetime,
decay_function = "logistic",
cutoffs = 30,
decay_value = 1,
max_trip_duration = 30

)
head(access)

# using several cutoff values
access <- accessibility(

r5r_network ,
origins = points,
destinations = points,
opportunities_colnames = "schools",
mode = "WALK",
departure_datetime = departure_datetime,
decay_function = "step",
cutoffs = c(15, 30),
max_trip_duration = 30

)



10 arrival_travel_time_matrix

head(access)

# calculating access to different types of opportunities
access <- accessibility(

r5r_network ,
origins = points,
destinations = points,
opportunities_colnames = c("schools", "healthcare"),
mode = "WALK",
departure_datetime = departure_datetime,
decay_function = "step",
cutoffs = 30,
max_trip_duration = 30

)
head(access)

stop_r5(r5r_network )

arrival_travel_time_matrix

Calculate travel time matrix between origin destination pairs consid-
ering a time of arrival

Description

Computation of travel time estimates between one or multiple origin destination pairs considering
a time of arrival. This function considers a time of arrival set by the user. The function returns
the travel time of the trip with the latest departure time that arrives before the arrival time set
by the user. If you want to calculate travel times considering a departure time, have a’ look at the
travel_time_matrix() function. This function is a wrapper around expanded_travel_time_matrix().
On one hand, this means this the output of this function has more columns (more info) compared the
output of travel_time_matrix(). On the other hand, this function can be very memory intensive
if the user allows for really long max trip duration.

Usage

arrival_travel_time_matrix(
r5r_network,
r5r_core = deprecated(),
origins,
destinations,
mode = "WALK",
mode_egress = "WALK",
arrival_datetime = Sys.time(),
breakdown = FALSE,
max_walk_time = Inf,
max_bike_time = Inf,



arrival_travel_time_matrix 11

max_car_time = Inf,
max_trip_duration = 120L,
walk_speed = 3.6,
bike_speed = 12,
max_rides = 3,
max_lts = 2,
new_carspeeds = NULL,
carspeed_scale = 1,
new_lts = NULL,
draws_per_minute = 5L,
n_threads = Inf,
verbose = FALSE,
progress = FALSE,
output_dir = NULL

)

Arguments

r5r_network A routable transport network created with build_network().

r5r_core The r5r_core argument is deprecated as of r5r v2.3.0. Please use the r5r_network
argument instead.

origins, destinations
Either a POINT sf object with WGS84 CRS, or a data.frame containing the
columns id, lon and lat.

mode A character vector. The transport modes allowed for access, transfer and vehicle
legs of the trips. Defaults to WALK. Please see details for other options.

mode_egress A character vector. The transport mode used after egress from the last public
transport. It can be either WALK, BICYCLE or CAR. Defaults to WALK. Ignored
when public transport is not used.

arrival_datetime

A POSIXct object.

breakdown A logical. Whether to include detailed information about each trip in the out-
put. If FALSE (the default), the output lists the total time between each origin-
destination pair and the routes used to complete the trip for each minute of the
specified time window. If TRUE, the output includes the total access, waiting,
in-vehicle and transfer time of each trip. Please note that setting this parameter
to TRUE makes the function significantly slower.

max_walk_time An integer. The maximum walking time (in minutes) to access and egress the
transit network, to make transfers within the network or to complete walk-only
trips. Defaults to no restrictions (numeric value of Inf), as long as max_trip_duration
is respected. When routing transit trips, the max time is considered separately
for each leg (e.g. if you set max_walk_time to 15, you could get trips with an
up to 15 minutes walk leg to reach transit and another up to 15 minutes walk
leg to reach the destination after leaving transit. In walk-only trips, whenever
max_walk_time differs from max_trip_duration, the lowest value is consid-
ered.



12 arrival_travel_time_matrix

max_bike_time An integer. The maximum cycling time (in minutes) to access and egress the
transit network, to make transfers within the network or to complete bicycle-
only trips. Defaults to no restrictions (numeric value of Inf), as long as max_trip_duration
is respected. When routing transit trips, the max time is considered separately
for each leg (e.g. if you set max_bike_time to 15, you could get trips with an
up to 15 minutes cycle leg to reach transit and another up to 15 minutes cycle
leg to reach the destination after leaving transit. In bicycle-only trips, whenever
max_bike_time differs from max_trip_duration, the lowest value is consid-
ered.

max_car_time An integer. The maximum driving time (in minutes) to access and egress the
transit network. Defaults to no restrictions, as long as max_trip_duration is
respected. The max time is considered separately for each leg (e.g. if you set
max_car_time to 15 minutes, you could potentially drive up to 15 minutes to
reach transit, and up to another 15 minutes to reach the destination after leaving
transit). Defaults to Inf, no limit.

max_trip_duration

An integer. The maximum trip duration in minutes. Defaults to 120 minutes (2
hours).

walk_speed A numeric. Average walk speed in km/h. Defaults to 3.6 km/h.

bike_speed A numeric. Average cycling speed in km/h. Defaults to 12 km/h.

max_rides An integer. The maximum number of public transport rides allowed in the same
trip. Defaults to 3.

max_lts An integer between 1 and 4. The maximum level of traffic stress that cyclists
will tolerate. A value of 1 means cyclists will only travel through the quietest
streets, while a value of 4 indicates cyclists can travel through any road. Defaults
to 2. Please see details for more information.

new_carspeeds A data.frame specifying the new car speed for each OSM edge id. This table
must contain columns osm_id, max_speed and speed_type. The "speed_type"
column is of class character and it indicates whether the values in "max_speed"
should be interpreted as percentages of original speeds ("scale") or as absolute
speeds ("km/h"). Alternatively, the new_carspeeds parameter can receive an
sf data.frame with POLYGON geometry that indicates the new car speed for
all the roads that fall within each polygon. In this case, the table must contain
the columns poly_id with a unique id for each polygon, scale with the new
speed scaling factors and priority, which is a number ranking which polygon
should be considered in case of overlapping polygons. See more into in the
link to congestion vignette.

carspeed_scale Numeric. The default car speed to use for road segments not specified in new_carspeeds.
By default, it is NULL and the speeds of the unlisted roads are kept unchanged.

new_lts A data.frame specifying the new LTS levels for each OSM edge id. The table
must contain columns osm_id and lts. Alternatively, the new_lts parameter
can receive an sf data.frame with LINESTRING geometry. R5 will then find
the nearest road for each LINESTRING and update its LTS value accordingly.

draws_per_minute

An integer. The number of Monte Carlo draws to perform per time window
minute when calculating travel time matrices and when estimating accessibility.



arrival_travel_time_matrix 13

Defaults to 5. This would mean 300 draws in a 60-minute time window, for
example. This parameter only affects the results when the GTFS feeds contain
a frequencies.txt table. If the GTFS feed does not have a frequency table,
r5r still allows for multiple runs over the set time_window but in a deterministic
way.

n_threads An integer. The number of threads to use when running the router in parallel.
Defaults to use all available threads (Inf).

verbose A logical. Whether to show R5 informative messages when running the func-
tion. Defaults to FALSE (please note that in such case R5 error messages are still
shown). Setting verbose to TRUE shows detailed output, which can be useful
for debugging issues not caught by r5r.

progress A logical. Whether to show a progress counter when running the router. Defaults
to FALSE. Only works when verbose is set to FALSE, so the progress counter
does not interfere with R5’s output messages. Setting progress to TRUE may
impose a small penalty for computation efficiency, because the progress counter
must be synchronized among all active threads.

output_dir Either NULL or a path to an existing directory. When not NULL (the default), the
function will write one .csv file with the results for each origin in the specified
directory. In such case, the function returns the path specified in this parameter.
This parameter is particularly useful when running on memory-constrained set-
tings because writing the results directly to disk prevents r5r from loading them
to RAM memory.

Value

A data.table with travel time estimates (in minutes) and the routes used in each trip between
origin and destination pairs, for each minute of the specified time window. Each set of origin, desti-
nation and departure minute can appear up to N times, where N is the number of Monte Carlo draws
specified in the function arguments (please note that this only applies when the GTFS feeds that de-
scribe the transit network include a frequencies table, otherwise only a single draw is performed). A
pair is completely absent from the final output if no trips could be completed in any of the minutes
of the time window. If for a single pair trips could be completed in some of the minutes of the
time window, but not for all of them, the minutes in which trips couldn’t be completed will have NA
travel time and routes used. If output_dir is not NULL, the function returns the path specified in
that parameter, in which the .csv files containing the results are saved.

Transport modes

R5 allows for multiple combinations of transport modes. The options include:

• Transit modes: TRAM, SUBWAY, RAIL, BUS, FERRY, CABLE_CAR, GONDOLA, FUNICULAR. The
option TRANSIT automatically considers all public transport modes available.

• Non transit modes: WALK, BICYCLE, CAR, BICYCLE_RENT, CAR_PARK.

Level of Traffic Stress (LTS)

When cycling is enabled in R5 (by passing the value BIKE to either mode or mode_egress), setting
max_lts will allow cycling only on streets with a given level of danger/stress. Setting max_lts to



14 arrival_travel_time_matrix

1, for example, will allow cycling only on separated bicycle infrastructure or low-traffic streets and
routing will revert to walking when traversing any links with LTS exceeding 1. Setting max_lts to
3 will allow cycling on links with LTS 1, 2 or 3. Routing also reverts to walking if the street segment
is tagged as non-bikable in OSM (e.g. a staircase), independently of the specified max LTS.

The default methodology for assigning LTS values to network edges is based on commonly tagged
attributes of OSM ways. See more info about LTS in the original documentation of R5 from Con-
veyal at https://docs.conveyal.com/learn-more/traffic-stress. In summary:

• LTS 1: Tolerable for children. This includes low-speed, low-volume streets, as well as those
with separated bicycle facilities (such as parking-protected lanes or cycle tracks).

• LTS 2: Tolerable for the mainstream adult population. This includes streets where cyclists
have dedicated lanes and only have to interact with traffic at formal crossing.

• LTS 3: Tolerable for "enthused and confident" cyclists. This includes streets which may
involve close proximity to moderate- or high-speed vehicular traffic.

• LTS 4: Tolerable only for "strong and fearless" cyclists. This includes streets where cyclists
are required to mix with moderate- to high-speed vehicular traffic.

For advanced users, you can provide custom LTS values by adding a tag <key = "lts"> to the
osm.pbf file.

Datetime parsing

r5r ignores the timezone attribute of datetime objects when parsing dates and times, using the
study area’s timezone instead. For example, let’s say you are running some calculations using
Rio de Janeiro, Brazil, as your study area. The datetime as.POSIXct("13-05-2019 14:00:00",
format = "%d-%m-%Y %H:%M:%S") will be parsed as May 13th, 2019, 14:00h in Rio’s local time,
as expected. But as.POSIXct("13-05-2019 14:00:00", format = "%d-%m-%Y %H:%M:%S", tz =
"Europe/Paris") will also be parsed as the exact same date and time in Rio’s local time, perhaps
surprisingly, ignoring the timezone attribute.

Routing algorithm

The travel_time_matrix(), expanded_travel_time_matrix(), arrival_travel_time_matrix()
and accessibility() functions use an R5-specific extension to the RAPTOR routing algorithm
(see Conway et al., 2017). This RAPTOR extension uses a systematic sample of one departure per
minute over the time window set by the user in the ’time_window’ parameter. A detailed descrip-
tion of base RAPTOR can be found in Delling et al (2015). However, whenever the user includes
transit fares inputs to these functions, they automatically switch to use an R5-specific extension to
the McRAPTOR routing algorithm.

• Conway, M. W., Byrd, A., & van der Linden, M. (2017). Evidence-based transit and land use
sketch planning using interactive accessibility methods on combined schedule and headway-
based networks. Transportation Research Record, 2653(1), 45-53. doi:10.3141/265306

• Delling, D., Pajor, T., & Werneck, R. F. (2015). Round-based public transit routing. Trans-
portation Science, 49(3), 591-604. doi:10.1287/trsc.2014.0534

See Also

Other routing: detailed_itineraries(), expanded_travel_time_matrix(), pareto_frontier(),
travel_time_matrix()

https://docs.conveyal.com/learn-more/traffic-stress
https://doi.org/10.3141/2653-06
https://doi.org/10.1287/trsc.2014.0534


build_network 15

Examples

library(r5r)

# build transport network
data_path <- system.file("extdata/poa", package = "r5r")
r5r_network <- build_network(data_path )

# load origin/destination points
points <- read.csv(file.path(data_path, "poa_points_of_interest.csv"))

arrival_datetime <- as.POSIXct(
"13-05-2019 14:00:00",
format = "%d-%m-%Y %H:%M:%S"

)

# by default only returns the total time between each pair in each minute of
# the specified time window
arrival_ttm <- arrival_travel_time_matrix(

r5r_network,
origins = points,
destinations = points,
mode = c("WALK", "TRANSIT"),
arrival_datetime = arrival_datetime,
max_trip_duration = 60

)

head(arrival_ttm)

# when breakdown = TRUE the output contains much more information
arrival_ttm2 <- arrival_travel_time_matrix(

r5r_network,
origins = points,
destinations = points,
mode = c("WALK", "TRANSIT"),
arrival_datetime = arrival_datetime,
max_trip_duration = 60,
breakdown = TRUE

)

head(arrival_ttm2)

stop_r5(r5r_network)

build_network Build a transport network used for routing in R5

Description

Builds a multimodal transport network used for routing in R5, combining multiple data inputs
present in the directory where the network should be saved to. The directory must contain only



16 build_network

one street network file (in .osm.pbf format). It may optionally contain one or more public trans-
port GTFS feeds (in .zip format), when used for public transport routing, and a .tif file describing
the elevation profile of the study area. If there is more than one GTFS feed in the directory, all feeds
are automatically merged. If there is already a 'network.dat' file in the directory, the function
will simply read it and load it to memory (unless specified not to do so).

Usage

build_network(
data_path,
verbose = FALSE,
temp_dir = FALSE,
elevation = "TOBLER",
overwrite = FALSE

)

Arguments

data_path A string pointing to the directory where data inputs are stored and where the
built network.dat will be saved.

verbose A logical. Whether to show R5 informative messages when running the func-
tion. Defaults to FALSE (please note that in such case R5 error messages are still
shown). Setting verbose to TRUE shows detailed output, which can be useful
for debugging issues not caught by r5r.

temp_dir A logical. Whether the network.dat file should be saved to a temporary direc-
tory. Defaults to FALSE.

elevation A string. The name of the impedance function to be used to calculate impedance
for walking and cycling based on street slopes. Available options include TOBLER
(Default) and MINETTI, or NONE to ignore elevation. R5 loads elevation data from
.tif files saved inside the data_path directory. See more info in the Details
section below.

overwrite A logical. Whether to overwrite an existing network.dat or to use a cached
file. Defaults to FALSE (i.e. use a cached network).

Value

A r5r_network object representing the built network to connect with R5 routing engine.

Elevation

More information about the TOBLER and MINETTI options to calculate the effects of elevation on
travel times can be found in the references below:

• Campbell, M. J., et al (2019). Using crowdsourced fitness tracker data to model the re-
lationship between slope and travel rates. Applied geography, 106, 93-107. doi:10.1016/
j.apgeog.2019.03.008.

• Minetti, A. E., et al (2002). Energy cost of walking and running at extreme uphill and downhill
slopes. Journal of applied physiology. doi:10.1152/japplphysiol.01177.2001.

https://doi.org/10.1016/j.apgeog.2019.03.008
https://doi.org/10.1016/j.apgeog.2019.03.008
https://doi.org/10.1152/japplphysiol.01177.2001


detailed_itineraries 17

• Tobler, W. (1993). Three presentations on geographical analysis and modeling: Non-isotropic
geographic modeling speculations on the geometry of geography global spatial analysis. Tech-
nical Report. National center for geographic information and analysis. 93 (1). https:
//escholarship.org/uc/item/05r820mz.

See Also

Other Build network: download_r5(), setup_r5()

Examples

library(r5r)

# directory with street network and gtfs files
data_path <- system.file("extdata/poa", package = "r5r")

r5r_network <- build_network(data_path)

detailed_itineraries Detailed itineraries between origin-destination pairs

Description

Returns detailed trip information between origin-destination pairs. The output includes the waiting
and moving time in each trip leg, as well as some info such as the distance traveled, the routes
used and the geometry of each leg. Please note that this function was originally conceptualized as
a trip planning functionality, similar to other commercial and non-commercial APIs and apps (e.g.
Moovit, Google’s Directions API, OpenTripPlanning’s PlannerResource API). Thus, it consumes
much more time and memory than the other (more analytical) routing functions included in the
package.

Usage

detailed_itineraries(
r5r_network,
r5r_core = deprecated(),
origins,
destinations,
mode = "WALK",
mode_egress = "WALK",
departure_datetime = Sys.time(),
time_window = 10L,
suboptimal_minutes = 0L,
max_walk_time = Inf,
max_bike_time = Inf,
max_car_time = Inf,
max_trip_duration = 120L,

https://escholarship.org/uc/item/05r820mz
https://escholarship.org/uc/item/05r820mz


18 detailed_itineraries

walk_speed = 3.6,
bike_speed = 12,
max_rides = 3,
max_lts = 2,
shortest_path = TRUE,
all_to_all = FALSE,
fare_structure = NULL,
max_fare = Inf,
new_carspeeds = NULL,
carspeed_scale = 1,
new_lts = NULL,
n_threads = Inf,
verbose = FALSE,
progress = FALSE,
drop_geometry = FALSE,
osm_link_ids = FALSE,
output_dir = NULL

)

Arguments

r5r_network A routable transport network created with build_network().

r5r_core The r5r_core argument is deprecated as of r5r v2.3.0. Please use the r5r_network
argument instead.

origins, destinations
Either a POINT sf object with WGS84 CRS, or a data.frame containing the
columns id, lon and lat.

mode A character vector. The transport modes allowed for access, transfer and vehicle
legs of the trips. Defaults to WALK. Please see details for other options.

mode_egress A character vector. The transport mode used after egress from the last public
transport. It can be either WALK, BICYCLE or CAR. Defaults to WALK. Ignored
when public transport is not used.

departure_datetime

A POSIXct object. Please note that the departure time only influences public
transport legs. When working with public transport networks, please check the
calendar.txt within your GTFS feeds for valid dates. Please see details for
further information on how datetimes are parsed.

time_window An integer. The time window in minutes for which r5r will calculate mul-
tiple itineraries departing each minute. Defaults to 10 minutes. If the same
sequence of routes appear in different minutes of the time window, only the
fastest of them will be kept in the output. This happens because the result is
not aggregated by percentile, as opposed to other routing functions in the pack-
age. Because of that, the output may contain trips departing after the specified
departure_datetime, but still within the time window. Please read the time
window vignette for more details on how this argument affects the results of
each routing function: vignette("time_window", package = "r5r").



detailed_itineraries 19

suboptimal_minutes

A number. The difference in minutes that each non-optimal RAPTOR branch
can have from the optimal branch without being disregarded by the routing al-
gorithm. If, for example, users set suboptimal_minutes = 10, the routing al-
gorithm will consider sub-optimal routes that arrive up to 10 minutes after the
arrival of the optimal one. This argument emulates the real-life behaviour that
makes people want to take a path that is technically not optimal in terms of travel
time, for example, for some practical reasons (e.g. mode preference, safety, etc).
In practice, the higher this value, the more itineraries will be returned in the final
result.

max_walk_time An integer. The maximum walking time (in minutes) to access and egress the
transit network, to make transfers within the network or to complete walk-only
trips. Defaults to no restrictions (numeric value of Inf), as long as max_trip_duration
is respected. When routing transit trips, the max time is considered separately
for each leg (e.g. if you set max_walk_time to 15, you could get trips with an
up to 15 minutes walk leg to reach transit and another up to 15 minutes walk
leg to reach the destination after leaving transit. In walk-only trips, whenever
max_walk_time differs from max_trip_duration, the lowest value is consid-
ered.

max_bike_time An integer. The maximum cycling time (in minutes) to access and egress the
transit network, to make transfers within the network or to complete bicycle-
only trips. Defaults to no restrictions (numeric value of Inf), as long as max_trip_duration
is respected. When routing transit trips, the max time is considered separately
for each leg (e.g. if you set max_bike_time to 15, you could get trips with an
up to 15 minutes cycle leg to reach transit and another up to 15 minutes cycle
leg to reach the destination after leaving transit. In bicycle-only trips, whenever
max_bike_time differs from max_trip_duration, the lowest value is consid-
ered.

max_car_time An integer. The maximum driving time (in minutes) to access and egress the
transit network. Defaults to no restrictions, as long as max_trip_duration is
respected. The max time is considered separately for each leg (e.g. if you set
max_car_time to 15 minutes, you could potentially drive up to 15 minutes to
reach transit, and up to another 15 minutes to reach the destination after leaving
transit). Defaults to Inf, no limit.

max_trip_duration

An integer. The maximum trip duration in minutes. Defaults to 120 minutes (2
hours).

walk_speed A numeric. Average walk speed in km/h. Defaults to 3.6 km/h.
bike_speed A numeric. Average cycling speed in km/h. Defaults to 12 km/h.
max_rides An integer. The maximum number of public transport rides allowed in the same

trip. Defaults to 3.
max_lts An integer between 1 and 4. The maximum level of traffic stress that cyclists

will tolerate. A value of 1 means cyclists will only travel through the quietest
streets, while a value of 4 indicates cyclists can travel through any road. Defaults
to 2. Please see details for more information.

shortest_path A logical. Whether the function should only return the fastest itinerary between
each origin and destination pair (the default) or multiple alternatives.



20 detailed_itineraries

all_to_all A logical. Whether to query routes between the 1st origin to the 1st destination,
then the 2nd origin to the 2nd destination, and so on (FALSE, the default) or to
query routes between all origins to all destinations (TRUE).

fare_structure A fare structure object, following the convention set in setup_fare_structure().
This object describes how transit fares should be calculated. Please see the fare
structure vignette to understand how this object is structured: vignette("fare_structure",
package = "r5r").

max_fare A number. The maximum value that trips can cost when calculating the fastest
journey between each origin and destination pair.

new_carspeeds A data.frame specifying the new car speed for each OSM edge id. This table
must contain columns osm_id, max_speed and speed_type. The "speed_type"
column is of class character and it indicates whether the values in "max_speed"
should be interpreted as percentages of original speeds ("scale") or as absolute
speeds ("km/h"). Alternatively, the new_carspeeds parameter can receive an
sf data.frame with POLYGON geometry that indicates the new car speed for
all the roads that fall within each polygon. In this case, the table must contain
the columns poly_id with a unique id for each polygon, scale with the new
speed scaling factors and priority, which is a number ranking which polygon
should be considered in case of overlapping polygons. See more into in the
link to congestion vignette.

carspeed_scale Numeric. The default car speed to use for road segments not specified in new_carspeeds.
By default, it is NULL and the speeds of the unlisted roads are kept unchanged.

new_lts A data.frame specifying the new LTS levels for each OSM edge id. The table
must contain columns osm_id and lts. Alternatively, the new_lts parameter
can receive an sf data.frame with LINESTRING geometry. R5 will then find
the nearest road for each LINESTRING and update its LTS value accordingly.

n_threads An integer. The number of threads to use when running the router in parallel.
Defaults to use all available threads (Inf).

verbose A logical. Whether to show R5 informative messages when running the func-
tion. Defaults to FALSE (please note that in such case R5 error messages are still
shown). Setting verbose to TRUE shows detailed output, which can be useful
for debugging issues not caught by r5r.

progress A logical. Whether to show a progress counter when running the router. Defaults
to FALSE. Only works when verbose is set to FALSE, so the progress counter
does not interfere with R5’s output messages. Setting progress to TRUE may
impose a small penalty for computation efficiency, because the progress counter
must be synchronized among all active threads.

drop_geometry A logical. Whether the output should include the geometry of each trip leg or
not. The default value of FALSE keeps the geometry column in the result.

osm_link_ids A logical. Whether the output should include additional columns with the OSM
ids of the road segments used along the trip geometry. Defaults to FALSE. Keep
in mind that the osm_id for a road will be returned even if the route uses a
small stretch of the road (e.g. 5m of a 600m street segment). If you want more
precision you should use the column edge_id which returns segments of the
exact length used in the trip, and you can later tie that back to the osm_id.



detailed_itineraries 21

output_dir Either NULL or a path to an existing directory. When not NULL (the default), the
function will write one .csv file with the results for each origin in the specified
directory. In such case, the function returns the path specified in this parameter.
This parameter is particularly useful when running on memory-constrained set-
tings because writing the results directly to disk prevents r5r from loading them
to RAM memory.

Value

When drop_geometry is FALSE, the function outputs a LINESTRING sf with detailed informa-
tion on the itineraries between the specified origins and destinations. When TRUE, the output is a
data.table. All distances are in meters and travel times are in minutes. If output_dir is not
NULL, the function returns the path specified in that parameter, in which the .csv files containing
the results are saved.

Transport modes

R5 allows for multiple combinations of transport modes. The options include:

• Transit modes: TRAM, SUBWAY, RAIL, BUS, FERRY, CABLE_CAR, GONDOLA, FUNICULAR. The
option TRANSIT automatically considers all public transport modes available.

• Non transit modes: WALK, BICYCLE, CAR, BICYCLE_RENT, CAR_PARK.

Level of Traffic Stress (LTS)

When cycling is enabled in R5 (by passing the value BIKE to either mode or mode_egress), setting
max_lts will allow cycling only on streets with a given level of danger/stress. Setting max_lts to
1, for example, will allow cycling only on separated bicycle infrastructure or low-traffic streets and
routing will revert to walking when traversing any links with LTS exceeding 1. Setting max_lts to
3 will allow cycling on links with LTS 1, 2 or 3. Routing also reverts to walking if the street segment
is tagged as non-bikable in OSM (e.g. a staircase), independently of the specified max LTS.

The default methodology for assigning LTS values to network edges is based on commonly tagged
attributes of OSM ways. See more info about LTS in the original documentation of R5 from Con-
veyal at https://docs.conveyal.com/learn-more/traffic-stress. In summary:

• LTS 1: Tolerable for children. This includes low-speed, low-volume streets, as well as those
with separated bicycle facilities (such as parking-protected lanes or cycle tracks).

• LTS 2: Tolerable for the mainstream adult population. This includes streets where cyclists
have dedicated lanes and only have to interact with traffic at formal crossing.

• LTS 3: Tolerable for "enthused and confident" cyclists. This includes streets which may
involve close proximity to moderate- or high-speed vehicular traffic.

• LTS 4: Tolerable only for "strong and fearless" cyclists. This includes streets where cyclists
are required to mix with moderate- to high-speed vehicular traffic.

For advanced users, you can provide custom LTS values by adding a tag <key = "lts"> to the
osm.pbf file.

https://docs.conveyal.com/learn-more/traffic-stress


22 detailed_itineraries

Datetime parsing

r5r ignores the timezone attribute of datetime objects when parsing dates and times, using the
study area’s timezone instead. For example, let’s say you are running some calculations using
Rio de Janeiro, Brazil, as your study area. The datetime as.POSIXct("13-05-2019 14:00:00",
format = "%d-%m-%Y %H:%M:%S") will be parsed as May 13th, 2019, 14:00h in Rio’s local time,
as expected. But as.POSIXct("13-05-2019 14:00:00", format = "%d-%m-%Y %H:%M:%S", tz =
"Europe/Paris") will also be parsed as the exact same date and time in Rio’s local time, perhaps
surprisingly, ignoring the timezone attribute.

Routing algorithm

The detailed_itineraries() and pareto_frontier() functions use an R5-specific extension
to the McRAPTOR routing algorithm. The implementation used in detailed_itineraries() al-
lows the router to find paths that are optimal and less than optimal in terms of travel time, with
some heuristics around multiple access modes, riding the same patterns, etc. The specific ex-
tension to McRAPTOR to do suboptimal path routing is not documented yet, but a detailed de-
scription of base McRAPTOR can be found in Delling et al (2015). The implementation used in
pareto_frontier(), on the other hand, returns only the fastest trip within a given monetary cut-
off, ignoring slower trips that cost the same. A detailed discussion on the algorithm can be found in
Conway and Stewart (2019).

• Delling, D., Pajor, T., & Werneck, R. F. (2015). Round-based public transit routing. Trans-
portation Science, 49(3), 591-604. doi:10.1287/trsc.2014.0534

• Conway, M. W., & Stewart, A. F. (2019). Getting Charlie off the MTA: a multiobjective
optimization method to account for cost constraints in public transit accessibility metrics.
International Journal of Geographical Information Science, 33(9), 1759-1787. doi:10.1080/
13658816.2019.1605075

See Also

Other routing: arrival_travel_time_matrix(), expanded_travel_time_matrix(), pareto_frontier(),
travel_time_matrix()

Examples

library(r5r)

# build transport network
data_path <- system.file("extdata/poa", package = "r5r")
r5r_network <- build_network(data_path)

# load origin/destination points
points <- read.csv(file.path(data_path, "poa_points_of_interest.csv"))

# inputs
departure_datetime <- as.POSIXct(

"13-05-2019 14:00:00",
format = "%d-%m-%Y %H:%M:%S"

)

https://doi.org/10.1287/trsc.2014.0534
https://doi.org/10.1080/13658816.2019.1605075
https://doi.org/10.1080/13658816.2019.1605075


download_r5 23

det <- detailed_itineraries(
r5r_network,
origins = points[10,],
destinations = points[12,],
mode = c("WALK", "TRANSIT"),
departure_datetime = departure_datetime,
max_trip_duration = 60

)
head(det)

stop_r5(r5r_network)

download_r5 Download R5.jar

Description

Downloads R5.jar and saves it locally, inside the package directory.

Usage

download_r5(
version = NULL,
quiet = FALSE,
force_update = FALSE,
temp_dir = FALSE

)

Arguments

version A string. The version of R5 to be downloaded. When NULL, it defaults to the
latest version.

quiet A logical. Whether to show informative messages when downloading the file.
Defaults to FALSE.

force_update A logical. Whether to overwrite a previously downloaded R5.jar in the local
directory. Defaults to FALSE.

temp_dir A logical. Whether the file should be saved in a temporary directory. Defaults
to FALSE.

Value

The path to the downloaded file.

See Also

Other Build network: build_network(), setup_r5()



24 expanded_travel_time_matrix

Examples

library(r5r)

download_r5(temp_dir = TRUE)

expanded_travel_time_matrix

Calculate minute-by-minute travel times between origin destination
pairs

Description

Detailed computation of travel time estimates between one or multiple origin destination pairs.
Results show the travel time of the fastest route alternative departing each minute within a specified
time window. Please note this function can be very memory intensive for large data sets and time
windows.

Usage

expanded_travel_time_matrix(
r5r_network,
r5r_core = deprecated(),
origins,
destinations,
mode = "WALK",
mode_egress = "WALK",
departure_datetime = Sys.time(),
time_window = 10L,
breakdown = FALSE,
max_walk_time = Inf,
max_bike_time = Inf,
max_car_time = Inf,
max_trip_duration = 120L,
walk_speed = 3.6,
bike_speed = 12,
max_rides = 3,
max_lts = 2,
new_carspeeds = NULL,
carspeed_scale = 1,
new_lts = NULL,
draws_per_minute = 5L,
n_threads = Inf,
verbose = FALSE,
progress = FALSE,
output_dir = NULL

)



expanded_travel_time_matrix 25

Arguments

r5r_network A routable transport network created with build_network().

r5r_core The r5r_core argument is deprecated as of r5r v2.3.0. Please use the r5r_network
argument instead.

origins, destinations
Either a POINT sf object with WGS84 CRS, or a data.frame containing the
columns id, lon and lat.

mode A character vector. The transport modes allowed for access, transfer and vehicle
legs of the trips. Defaults to WALK. Please see details for other options.

mode_egress A character vector. The transport mode used after egress from the last public
transport. It can be either WALK, BICYCLE or CAR. Defaults to WALK. Ignored
when public transport is not used.

departure_datetime

A POSIXct object. Please note that the departure time only influences public
transport legs. When working with public transport networks, please check the
calendar.txt within your GTFS feeds for valid dates. Please see details for
further information on how datetimes are parsed.

time_window An integer. The time window in minutes for which r5r will calculate multiple
travel time matrices departing each minute. Defaults to 10 minutes. The func-
tion returns the result based on median travel times. Please read the time window
vignette for more details on its usage vignette("time_window", package =
"r5r")

breakdown A logical. Whether to include detailed information about each trip in the out-
put. If FALSE (the default), the output lists the total time between each origin-
destination pair and the routes used to complete the trip for each minute of the
specified time window. If TRUE, the output includes the total access, waiting,
in-vehicle and transfer time of each trip. Please note that setting this parameter
to TRUE makes the function significantly slower.

max_walk_time An integer. The maximum walking time (in minutes) to access and egress the
transit network, to make transfers within the network or to complete walk-only
trips. Defaults to no restrictions (numeric value of Inf), as long as max_trip_duration
is respected. When routing transit trips, the max time is considered separately
for each leg (e.g. if you set max_walk_time to 15, you could get trips with an
up to 15 minutes walk leg to reach transit and another up to 15 minutes walk
leg to reach the destination after leaving transit. In walk-only trips, whenever
max_walk_time differs from max_trip_duration, the lowest value is consid-
ered.

max_bike_time An integer. The maximum cycling time (in minutes) to access and egress the
transit network, to make transfers within the network or to complete bicycle-
only trips. Defaults to no restrictions (numeric value of Inf), as long as max_trip_duration
is respected. When routing transit trips, the max time is considered separately
for each leg (e.g. if you set max_bike_time to 15, you could get trips with an
up to 15 minutes cycle leg to reach transit and another up to 15 minutes cycle
leg to reach the destination after leaving transit. In bicycle-only trips, whenever
max_bike_time differs from max_trip_duration, the lowest value is consid-
ered.



26 expanded_travel_time_matrix

max_car_time An integer. The maximum driving time (in minutes) to access and egress the
transit network. Defaults to no restrictions, as long as max_trip_duration is
respected. The max time is considered separately for each leg (e.g. if you set
max_car_time to 15 minutes, you could potentially drive up to 15 minutes to
reach transit, and up to another 15 minutes to reach the destination after leaving
transit). Defaults to Inf, no limit.

max_trip_duration

An integer. The maximum trip duration in minutes. Defaults to 120 minutes (2
hours).

walk_speed A numeric. Average walk speed in km/h. Defaults to 3.6 km/h.

bike_speed A numeric. Average cycling speed in km/h. Defaults to 12 km/h.

max_rides An integer. The maximum number of public transport rides allowed in the same
trip. Defaults to 3.

max_lts An integer between 1 and 4. The maximum level of traffic stress that cyclists
will tolerate. A value of 1 means cyclists will only travel through the quietest
streets, while a value of 4 indicates cyclists can travel through any road. Defaults
to 2. Please see details for more information.

new_carspeeds A data.frame specifying the new car speed for each OSM edge id. This table
must contain columns osm_id, max_speed and speed_type. The "speed_type"
column is of class character and it indicates whether the values in "max_speed"
should be interpreted as percentages of original speeds ("scale") or as absolute
speeds ("km/h"). Alternatively, the new_carspeeds parameter can receive an
sf data.frame with POLYGON geometry that indicates the new car speed for
all the roads that fall within each polygon. In this case, the table must contain
the columns poly_id with a unique id for each polygon, scale with the new
speed scaling factors and priority, which is a number ranking which polygon
should be considered in case of overlapping polygons. See more into in the
link to congestion vignette.

carspeed_scale Numeric. The default car speed to use for road segments not specified in new_carspeeds.
By default, it is NULL and the speeds of the unlisted roads are kept unchanged.

new_lts A data.frame specifying the new LTS levels for each OSM edge id. The table
must contain columns osm_id and lts. Alternatively, the new_lts parameter
can receive an sf data.frame with LINESTRING geometry. R5 will then find
the nearest road for each LINESTRING and update its LTS value accordingly.

draws_per_minute

An integer. The number of Monte Carlo draws to perform per time window
minute when calculating travel time matrices and when estimating accessibility.
Defaults to 5. This would mean 300 draws in a 60-minute time window, for
example. This parameter only affects the results when the GTFS feeds contain
a frequencies.txt table. If the GTFS feed does not have a frequency table,
r5r still allows for multiple runs over the set time_window but in a deterministic
way.

n_threads An integer. The number of threads to use when running the router in parallel.
Defaults to use all available threads (Inf).

verbose A logical. Whether to show R5 informative messages when running the func-
tion. Defaults to FALSE (please note that in such case R5 error messages are still



expanded_travel_time_matrix 27

shown). Setting verbose to TRUE shows detailed output, which can be useful
for debugging issues not caught by r5r.

progress A logical. Whether to show a progress counter when running the router. Defaults
to FALSE. Only works when verbose is set to FALSE, so the progress counter
does not interfere with R5’s output messages. Setting progress to TRUE may
impose a small penalty for computation efficiency, because the progress counter
must be synchronized among all active threads.

output_dir Either NULL or a path to an existing directory. When not NULL (the default), the
function will write one .csv file with the results for each origin in the specified
directory. In such case, the function returns the path specified in this parameter.
This parameter is particularly useful when running on memory-constrained set-
tings because writing the results directly to disk prevents r5r from loading them
to RAM memory.

Value

A data.table with travel time estimates (in minutes) and the routes used in each trip between
origin and destination pairs, for each minute of the specified time window. Each set of origin, desti-
nation and departure minute can appear up to N times, where N is the number of Monte Carlo draws
specified in the function arguments (please note that this only applies when the GTFS feeds that de-
scribe the transit network include a frequencies table, otherwise only a single draw is performed). A
pair is completely absent from the final output if no trips could be completed in any of the minutes
of the time window. If for a single pair trips could be completed in some of the minutes of the
time window, but not for all of them, the minutes in which trips couldn’t be completed will have NA
travel time and routes used. If output_dir is not NULL, the function returns the path specified in
that parameter, in which the .csv files containing the results are saved.

Transport modes

R5 allows for multiple combinations of transport modes. The options include:

• Transit modes: TRAM, SUBWAY, RAIL, BUS, FERRY, CABLE_CAR, GONDOLA, FUNICULAR. The
option TRANSIT automatically considers all public transport modes available.

• Non transit modes: WALK, BICYCLE, CAR, BICYCLE_RENT, CAR_PARK.

Level of Traffic Stress (LTS)

When cycling is enabled in R5 (by passing the value BIKE to either mode or mode_egress), setting
max_lts will allow cycling only on streets with a given level of danger/stress. Setting max_lts to
1, for example, will allow cycling only on separated bicycle infrastructure or low-traffic streets and
routing will revert to walking when traversing any links with LTS exceeding 1. Setting max_lts to
3 will allow cycling on links with LTS 1, 2 or 3. Routing also reverts to walking if the street segment
is tagged as non-bikable in OSM (e.g. a staircase), independently of the specified max LTS.

The default methodology for assigning LTS values to network edges is based on commonly tagged
attributes of OSM ways. See more info about LTS in the original documentation of R5 from Con-
veyal at https://docs.conveyal.com/learn-more/traffic-stress. In summary:

• LTS 1: Tolerable for children. This includes low-speed, low-volume streets, as well as those
with separated bicycle facilities (such as parking-protected lanes or cycle tracks).

https://docs.conveyal.com/learn-more/traffic-stress


28 expanded_travel_time_matrix

• LTS 2: Tolerable for the mainstream adult population. This includes streets where cyclists
have dedicated lanes and only have to interact with traffic at formal crossing.

• LTS 3: Tolerable for "enthused and confident" cyclists. This includes streets which may
involve close proximity to moderate- or high-speed vehicular traffic.

• LTS 4: Tolerable only for "strong and fearless" cyclists. This includes streets where cyclists
are required to mix with moderate- to high-speed vehicular traffic.

For advanced users, you can provide custom LTS values by adding a tag <key = "lts"> to the
osm.pbf file.

Datetime parsing

r5r ignores the timezone attribute of datetime objects when parsing dates and times, using the
study area’s timezone instead. For example, let’s say you are running some calculations using
Rio de Janeiro, Brazil, as your study area. The datetime as.POSIXct("13-05-2019 14:00:00",
format = "%d-%m-%Y %H:%M:%S") will be parsed as May 13th, 2019, 14:00h in Rio’s local time,
as expected. But as.POSIXct("13-05-2019 14:00:00", format = "%d-%m-%Y %H:%M:%S", tz =
"Europe/Paris") will also be parsed as the exact same date and time in Rio’s local time, perhaps
surprisingly, ignoring the timezone attribute.

Routing algorithm

The travel_time_matrix(), expanded_travel_time_matrix(), arrival_travel_time_matrix()
and accessibility() functions use an R5-specific extension to the RAPTOR routing algorithm
(see Conway et al., 2017). This RAPTOR extension uses a systematic sample of one departure per
minute over the time window set by the user in the ’time_window’ parameter. A detailed descrip-
tion of base RAPTOR can be found in Delling et al (2015). However, whenever the user includes
transit fares inputs to these functions, they automatically switch to use an R5-specific extension to
the McRAPTOR routing algorithm.

• Conway, M. W., Byrd, A., & van der Linden, M. (2017). Evidence-based transit and land use
sketch planning using interactive accessibility methods on combined schedule and headway-
based networks. Transportation Research Record, 2653(1), 45-53. doi:10.3141/265306

• Delling, D., Pajor, T., & Werneck, R. F. (2015). Round-based public transit routing. Trans-
portation Science, 49(3), 591-604. doi:10.1287/trsc.2014.0534

See Also

Other routing: arrival_travel_time_matrix(), detailed_itineraries(), pareto_frontier(),
travel_time_matrix()

Examples

library(r5r)

# build transport network
data_path <- system.file("extdata/poa", package = "r5r")
r5r_network <- build_network(data_path)

# load origin/destination points

https://doi.org/10.3141/2653-06
https://doi.org/10.1287/trsc.2014.0534


find_snap 29

points <- read.csv(file.path(data_path, "poa_points_of_interest.csv"))

departure_datetime <- as.POSIXct(
"13-05-2019 14:00:00",
format = "%d-%m-%Y %H:%M:%S"

)

# by default only returns the total time between each pair in each minute of
# the specified time window
ettm <- expanded_travel_time_matrix(

r5r_network,
origins = points,
destinations = points,
mode = c("WALK", "TRANSIT"),
time_window = 20,
departure_datetime = departure_datetime,
max_trip_duration = 60

)
head(ettm)

# when breakdown = TRUE the output contains much more information
ettm <- expanded_travel_time_matrix(

r5r_network,
origins = points,
destinations = points,
mode = c("WALK", "TRANSIT"),
time_window = 20,
departure_datetime = departure_datetime,
max_trip_duration = 60,
breakdown = TRUE

)
head(ettm)

stop_r5(r5r_network)

find_snap Find snapped locations of input points on street network

Description

Finds the snapped location of points on R5 network. Snapping is an important step of the routing
process, which is when the origins and destinations specified by the user are actually positioned on
the network created by R5. The snapping process in R5 is composed of two rounds. First, it tries
to snap the points within a radius of 300 meters from themselves. If the first round is unsuccessful,
then R5 expands the search to the radius specified (by default 1.6km). If yet again it is unsuccessful,
then the unsnapped points won’t be used during the routing process. The snapped location of each
point depends on the transport mode set by the user, because some network edges are not available
to specific modes (e.g. a pedestrian-only street cannot be used to snap car trips).



30 find_snap

Usage

find_snap(
r5r_network,
r5r_core = deprecated(),
points,
radius = 1600,
mode = "WALK"

)

Arguments

r5r_network A routable transport network created with build_network().

r5r_core The r5r_core argument is deprecated as of r5r v2.3.0. Please use the r5r_network
argument instead.

points Either a POINT sf object with WGS84 CRS, or a data.frame containing the
columns id, lon and lat.

radius Numeric. The maximum radius in meters within which to snap. Defaults to
1600m.

mode A string. Which mode to consider when trying to snap the points to the network.
Defaults to WALK, also allows BICYCLE and CAR.

Value

A data.table with the original points, their respective snapped coordinates on the street network
and the Euclidean distance (in meters) between the original points and their snapped location. Points
that could not be snapped show NA coordinates and found = FALSE.

See Also

Other network functions: street_network_to_sf(), transit_network_to_sf()

Examples

library(r5r)

path <- system.file("extdata/poa", package = "r5r")
r5r_network <- build_network(data_path = path)
points <- read.csv(file.path(path, "poa_hexgrid.csv"))

snap_df <- find_snap(
r5r_network,
points = points,
radius = 2000,
mode = "WALK"
)

stop_r5(r5r_network)



isochrone 31

isochrone Estimate isochrones from a given location

Description

Fast computation of isochrones from a given location. The function can return either polygon-based
or line-based isochrones. Polygon-based isochrones are generated as concave polygons based on
the travel times from the trip origin to all nodes in the transport network. Meanwhile, line-based
isochronesare based on travel times from each origin to the centroids of all segments in the transport
network.

Usage

isochrone(
r5r_network,
r5r_core = deprecated(),
origins,
mode = "transit",
mode_egress = "walk",
cutoffs = c(0, 15, 30),
sample_size = 0.8,
departure_datetime = Sys.time(),
polygon_output = TRUE,
time_window = 10L,
max_walk_time = Inf,
max_bike_time = Inf,
max_car_time = Inf,
max_trip_duration = 120L,
walk_speed = 3.6,
bike_speed = 12,
max_rides = 3,
max_lts = 2,
draws_per_minute = 5L,
n_threads = Inf,
verbose = FALSE,
progress = TRUE

)

Arguments

r5r_network A routable transport network created with build_network().

r5r_core The r5r_core argument is deprecated as of r5r v2.3.0. Please use the r5r_network
argument instead.

origins Either a POINT sf object with WGS84 CRS, or a data.frame containing the
columns id, lon and lat.



32 isochrone

mode A character vector. The transport modes allowed for access, transfer and vehicle
legs of the trips. Defaults to WALK. Please see details for other options.

mode_egress A character vector. The transport mode used after egress from the last public
transport. It can be either WALK, BICYCLE or CAR. Defaults to WALK. Ignored
when public transport is not used.

cutoffs numeric vector. Number of minutes to define the time span of each Isochrone.
Defaults to c(0, 15, 30).

sample_size numeric. Sample size of nodes in the transport network used to estimate isochrones.
Defaults to 0.8 (80% of all nodes in the transport network). Value can range be-
tween 0.2 and 1. Smaller values increase computation speed but return results
with lower precision. This parameter has no effect when polygon_output =
FALSE.

departure_datetime

A POSIXct object. Please note that the departure time only influences public
transport legs. When working with public transport networks, please check the
calendar.txt within your GTFS feeds for valid dates. Please see details for
further information on how datetimes are parsed.

polygon_output A Logical. If TRUE, the function outputs polygon-based isochrones (the default)
based on travel times from each origin to a sample of a random sample nodes
in the transport network (see parameter sample_size). If FALSE, the function
outputs line-based isochrones based on travel times from each origin to the cen-
troids of all segments in the transport network.

time_window An integer. The time window in minutes for which r5r will calculate multiple
travel time matrices departing each minute. Defaults to 10 minutes. The func-
tion returns the result based on median travel times. Please read the time window
vignette for more details on its usage vignette("time_window", package =
"r5r")

max_walk_time An integer. The maximum walking time (in minutes) to access and egress the
transit network, or to make transfers within the network. Defaults to no restric-
tions, as long as max_trip_duration is respected. The max time is considered
separately for each leg (e.g. if you set max_walk_time to 15, you could poten-
tially walk up to 15 minutes to reach transit, and up to another 15 minutes to
reach the destination after leaving transit). Defaults to Inf, no limit.

max_bike_time An integer. The maximum cycling time (in minutes) to access and egress the
transit network. Defaults to no restrictions, as long as max_trip_duration is
respected. The max time is considered separately for each leg (e.g. if you set
max_bike_time to 15 minutes, you could potentially cycle up to 15 minutes to
reach transit, and up to another 15 minutes to reach the destination after leaving
transit). Defaults to Inf, no limit.

max_car_time An integer. The maximum driving time (in minutes) to access and egress the
transit network. Defaults to no restrictions, as long as max_trip_duration is
respected. The max time is considered separately for each leg (e.g. if you set
max_car_time to 15 minutes, you could potentially drive up to 15 minutes to
reach transit, and up to another 15 minutes to reach the destination after leaving
transit). Defaults to Inf, no limit.



isochrone 33

max_trip_duration

An integer. The maximum trip duration in minutes. Defaults to 120 minutes (2
hours).

walk_speed A numeric. Average walk speed in km/h. Defaults to 3.6 km/h.

bike_speed A numeric. Average cycling speed in km/h. Defaults to 12 km/h.

max_rides An integer. The maximum number of public transport rides allowed in the same
trip. Defaults to 3.

max_lts An integer between 1 and 4. The maximum level of traffic stress that cyclists
will tolerate. A value of 1 means cyclists will only travel through the quietest
streets, while a value of 4 indicates cyclists can travel through any road. Defaults
to 2. Please see details for more information.

draws_per_minute

An integer. The number of Monte Carlo draws to perform per time window
minute when calculating travel time matrices and when estimating accessibility.
Defaults to 5. This would mean 300 draws in a 60-minute time window, for
example. This parameter only affects the results when the GTFS feeds contain
a frequencies.txt table. If the GTFS feed does not have a frequency table,
r5r still allows for multiple runs over the set time_window but in a deterministic
way.

n_threads An integer. The number of threads to use when running the router in parallel.
Defaults to use all available threads (Inf).

verbose A logical. Whether to show R5 informative messages when running the func-
tion. Defaults to FALSE (please note that in such case R5 error messages are still
shown). Setting verbose to TRUE shows detailed output, which can be useful
for debugging issues not caught by r5r.

progress A logical. Whether to show a progress counter when running the router. Defaults
to FALSE. Only works when verbose is set to FALSE, so the progress counter
does not interfere with R5’s output messages. Setting progress to TRUE may
impose a small penalty for computation efficiency, because the progress counter
must be synchronized among all active threads.

Value

A "sf" "data.frame" for each isochrone of each origin.

Transport modes

R5 allows for multiple combinations of transport modes. The options include:

• Transit modes: TRAM, SUBWAY, RAIL, BUS, FERRY, CABLE_CAR, GONDOLA, FUNICULAR. The
option TRANSIT automatically considers all public transport modes available.

• Non transit modes: WALK, BICYCLE, CAR, BICYCLE_RENT, CAR_PARK.

Level of Traffic Stress (LTS)

When cycling is enabled in R5 (by passing the value BIKE to either mode or mode_egress), setting
max_lts will allow cycling only on streets with a given level of danger/stress. Setting max_lts to



34 isochrone

1, for example, will allow cycling only on separated bicycle infrastructure or low-traffic streets and
routing will revert to walking when traversing any links with LTS exceeding 1. Setting max_lts to
3 will allow cycling on links with LTS 1, 2 or 3. Routing also reverts to walking if the street segment
is tagged as non-bikable in OSM (e.g. a staircase), independently of the specified max LTS.

The default methodology for assigning LTS values to network edges is based on commonly tagged
attributes of OSM ways. See more info about LTS in the original documentation of R5 from Con-
veyal at https://docs.conveyal.com/learn-more/traffic-stress. In summary:

• LTS 1: Tolerable for children. This includes low-speed, low-volume streets, as well as those
with separated bicycle facilities (such as parking-protected lanes or cycle tracks).

• LTS 2: Tolerable for the mainstream adult population. This includes streets where cyclists
have dedicated lanes and only have to interact with traffic at formal crossing.

• LTS 3: Tolerable for "enthused and confident" cyclists. This includes streets which may
involve close proximity to moderate- or high-speed vehicular traffic.

• LTS 4: Tolerable only for "strong and fearless" cyclists. This includes streets where cyclists
are required to mix with moderate- to high-speed vehicular traffic.

For advanced users, you can provide custom LTS values by adding a tag <key = "lts"> to the
osm.pbf file.

Datetime parsing

r5r ignores the timezone attribute of datetime objects when parsing dates and times, using the
study area’s timezone instead. For example, let’s say you are running some calculations using
Rio de Janeiro, Brazil, as your study area. The datetime as.POSIXct("13-05-2019 14:00:00",
format = "%d-%m-%Y %H:%M:%S") will be parsed as May 13th, 2019, 14:00h in Rio’s local time,
as expected. But as.POSIXct("13-05-2019 14:00:00", format = "%d-%m-%Y %H:%M:%S", tz =
"Europe/Paris") will also be parsed as the exact same date and time in Rio’s local time, perhaps
surprisingly, ignoring the timezone attribute.

Routing algorithm

The travel_time_matrix(), expanded_travel_time_matrix(), arrival_travel_time_matrix()
and accessibility() functions use an R5-specific extension to the RAPTOR routing algorithm
(see Conway et al., 2017). This RAPTOR extension uses a systematic sample of one departure per
minute over the time window set by the user in the ’time_window’ parameter. A detailed descrip-
tion of base RAPTOR can be found in Delling et al (2015). However, whenever the user includes
transit fares inputs to these functions, they automatically switch to use an R5-specific extension to
the McRAPTOR routing algorithm.

• Conway, M. W., Byrd, A., & van der Linden, M. (2017). Evidence-based transit and land use
sketch planning using interactive accessibility methods on combined schedule and headway-
based networks. Transportation Research Record, 2653(1), 45-53. doi:10.3141/265306

• Delling, D., Pajor, T., & Werneck, R. F. (2015). Round-based public transit routing. Trans-
portation Science, 49(3), 591-604. doi:10.1287/trsc.2014.0534

https://docs.conveyal.com/learn-more/traffic-stress
https://doi.org/10.3141/2653-06
https://doi.org/10.1287/trsc.2014.0534


isochrone 35

Examples

options(java.parameters = "-Xmx2G")
library(r5r)
library(ggplot2)

# build transport network
data_path <- system.file("extdata/poa", package = "r5r")
r5r_network <- build_network(data_path = data_path)

# load origin/point of interest
points <- read.csv(file.path(data_path, "poa_points_of_interest.csv"))
origin <- points[2,]

departure_datetime <- as.POSIXct(
"13-05-2019 14:00:00",
format = "%d-%m-%Y %H:%M:%S"

)

# estimate polygon-based isochrone from origin
iso_poly <- isochrone(

r5r_network,
origins = origin,
mode = "walk",
polygon_output = TRUE,
departure_datetime = departure_datetime,
cutoffs = seq(0, 120, 30)
)

head(iso_poly)

# estimate line-based isochrone from origin
iso_lines <- isochrone(

r5r_network,
origins = origin,
mode = "walk",
polygon_output = FALSE,
departure_datetime = departure_datetime,
cutoffs = seq(0, 100, 25)
)

head(iso_lines)

# plot colors
colors <- c('#ffe0a5','#ffcb69','#ffa600','#ff7c43','#f95d6a',

'#d45087','#a05195','#665191','#2f4b7c','#003f5c')

# polygons
ggplot() +

geom_sf(data=iso_poly, aes(fill=factor(isochrone))) +
scale_fill_manual(values = colors) +



36 pareto_frontier

theme_minimal()

# lines
ggplot() +

geom_sf(data=iso_lines, aes(color=factor(isochrone))) +
scale_color_manual(values = colors) +
theme_minimal()

stop_r5(r5r_network)

pareto_frontier Calculate travel time and monetary cost Pareto frontier

Description

Fast computation of travel time and monetary cost Pareto frontier between origin and destination
pairs.

Usage

pareto_frontier(
r5r_network,
r5r_core = deprecated(),
origins,
destinations,
mode = c("WALK", "TRANSIT"),
mode_egress = "WALK",
departure_datetime = Sys.time(),
time_window = 10L,
percentiles = 50L,
max_walk_time = Inf,
max_bike_time = Inf,
max_car_time = Inf,
max_trip_duration = 120L,
fare_structure = NULL,
fare_cutoffs = -1L,
walk_speed = 3.6,
bike_speed = 12,
max_rides = 3,
max_lts = 2,
n_threads = Inf,
verbose = FALSE,
progress = FALSE,
output_dir = NULL

)



pareto_frontier 37

Arguments

r5r_network A routable transport network created with build_network().

r5r_core The r5r_core argument is deprecated as of r5r v2.3.0. Please use the r5r_network
argument instead.

origins, destinations
Either a POINT sf object with WGS84 CRS, or a data.frame containing the
columns id, lon and lat.

mode A character vector. The transport modes allowed for access, transfer and vehicle
legs of the trips. Defaults to WALK. Please see details for other options.

mode_egress A character vector. The transport mode used after egress from the last public
transport. It can be either WALK, BICYCLE or CAR. Defaults to WALK. Ignored
when public transport is not used.

departure_datetime

A POSIXct object. Please note that the departure time only influences public
transport legs. When working with public transport networks, please check the
calendar.txt within your GTFS feeds for valid dates. Please see details for
further information on how datetimes are parsed.

time_window An integer. The time window in minutes for which r5r will calculate multiple
travel time matrices departing each minute. Defaults to 10 minutes. By default,
the function returns the result based on median travel times, but the user can set
the percentiles parameter to extract more results. Please read the time window
vignette for more details on its usage vignette("time_window", package =
"r5r")

percentiles An integer vector (max length of 5). Specifies the percentile to use when re-
turning travel time estimates within the given time window. Please note that
this parameter is applied to the travel time estimates only (e.g. if the 25th per-
centile is specified, and the output between A and B is 15 minutes and 10 dollars,
25% of all trips cheaper than 10 dollars taken between these points are shorter
than 15 minutes). Defaults to 50, returning the median travel time. If a vector
with length bigger than 1 is passed, the output contains an additional column
that specifies the percentile of each travel time and monetary cost combination.
Due to upstream restrictions, only 5 percentiles can be specified at a time. For
more details, please see R5 documentation at https://docs.conveyal.com/
analysis/methodology#accounting-for-variability.

max_walk_time An integer. The maximum walking time (in minutes) to access and egress the
transit network, to make transfers within the network or to complete walk-only
trips. Defaults to no restrictions (numeric value of Inf), as long as max_trip_duration
is respected. When routing transit trips, the max time is considered separately
for each leg (e.g. if you set max_walk_time to 15, you could get trips with an
up to 15 minutes walk leg to reach transit and another up to 15 minutes walk
leg to reach the destination after leaving transit. In walk-only trips, whenever
max_walk_time differs from max_trip_duration, the lowest value is consid-
ered.

max_bike_time An integer. The maximum cycling time (in minutes) to access and egress the
transit network, to make transfers within the network or to complete bicycle-
only trips. Defaults to no restrictions (numeric value of Inf), as long as max_trip_duration

https://docs.conveyal.com/analysis/methodology#accounting-for-variability
https://docs.conveyal.com/analysis/methodology#accounting-for-variability


38 pareto_frontier

is respected. When routing transit trips, the max time is considered separately
for each leg (e.g. if you set max_bike_time to 15, you could get trips with an
up to 15 minutes cycle leg to reach transit and another up to 15 minutes cycle
leg to reach the destination after leaving transit. In bicycle-only trips, whenever
max_bike_time differs from max_trip_duration, the lowest value is consid-
ered.

max_car_time An integer. The maximum driving time (in minutes) to access and egress the
transit network. Defaults to no restrictions, as long as max_trip_duration is
respected. The max time is considered separately for each leg (e.g. if you set
max_car_time to 15 minutes, you could potentially drive up to 15 minutes to
reach transit, and up to another 15 minutes to reach the destination after leaving
transit). Defaults to Inf, no limit.

max_trip_duration

An integer. The maximum trip duration in minutes. Defaults to 120 minutes (2
hours).

fare_structure A fare structure object, following the convention set in setup_fare_structure().
This object describes how transit fares should be calculated. Please see the fare
structure vignette to understand how this object is structured: vignette("fare_structure",
package = "r5r").

fare_cutoffs A numeric vector. The monetary cutoffs that should be considered when cal-
culating the Pareto frontier. Most of the time you’ll want this parameter to be
the combination of all possible fares listed in you fare_structure. Choosing
a coarse distribution of cutoffs may result in many different trips falling within
the same cutoff. For example, if you have two different routes in your GTFS,
one costing $3 and the other costing $4, and you set this parameter to 5, the
output will tell you the fastest trips that costed up to $5, but you won’t be able
to identify which route was used to complete such trips. In this case, it would
be more beneficial to set the parameter as c(3, 4) (you could also specify com-
binations of such values, such as 6, 7, 8 and so on, because a transit user could
hypothetically benefit from making transfers between the available routes).

walk_speed A numeric. Average walk speed in km/h. Defaults to 3.6 km/h.

bike_speed A numeric. Average cycling speed in km/h. Defaults to 12 km/h.

max_rides An integer. The maximum number of public transport rides allowed in the same
trip. Defaults to 3.

max_lts An integer between 1 and 4. The maximum level of traffic stress that cyclists
will tolerate. A value of 1 means cyclists will only travel through the quietest
streets, while a value of 4 indicates cyclists can travel through any road. Defaults
to 2. Please see details for more information.

n_threads An integer. The number of threads to use when running the router in parallel.
Defaults to use all available threads (Inf).

verbose A logical. Whether to show R5 informative messages when running the func-
tion. Defaults to FALSE (please note that in such case R5 error messages are still
shown). Setting verbose to TRUE shows detailed output, which can be useful
for debugging issues not caught by r5r.

progress A logical. Whether to show a progress counter when running the router. Defaults
to FALSE. Only works when verbose is set to FALSE, so the progress counter



pareto_frontier 39

does not interfere with R5’s output messages. Setting progress to TRUE may
impose a small penalty for computation efficiency, because the progress counter
must be synchronized among all active threads.

output_dir Either NULL or a path to an existing directory. When not NULL (the default), the
function will write one .csv file with the results for each origin in the specified
directory. In such case, the function returns the path specified in this parameter.
This parameter is particularly useful when running on memory-constrained set-
tings because writing the results directly to disk prevents r5r from loading them
to RAM memory.

Value

A data.table with the travel time and monetary cost Pareto frontier between the specified origins
and destinations. An additional column identifying the travel time percentile is present if more
than one value was passed to percentiles. Origin and destination pairs whose trips couldn’t be
completed within the maximum travel time using less money than the specified monetary cutoffs are
not returned in the data.table. If output_dir is not NULL, the function returns the path specified
in that parameter, in which the .csv files containing the results are saved.

Transport modes

R5 allows for multiple combinations of transport modes. The options include:

• Transit modes: TRAM, SUBWAY, RAIL, BUS, FERRY, CABLE_CAR, GONDOLA, FUNICULAR. The
option TRANSIT automatically considers all public transport modes available.

• Non transit modes: WALK, BICYCLE, CAR, BICYCLE_RENT, CAR_PARK.

Level of Traffic Stress (LTS)

When cycling is enabled in R5 (by passing the value BIKE to either mode or mode_egress), setting
max_lts will allow cycling only on streets with a given level of danger/stress. Setting max_lts to
1, for example, will allow cycling only on separated bicycle infrastructure or low-traffic streets and
routing will revert to walking when traversing any links with LTS exceeding 1. Setting max_lts to
3 will allow cycling on links with LTS 1, 2 or 3. Routing also reverts to walking if the street segment
is tagged as non-bikable in OSM (e.g. a staircase), independently of the specified max LTS.

The default methodology for assigning LTS values to network edges is based on commonly tagged
attributes of OSM ways. See more info about LTS in the original documentation of R5 from Con-
veyal at https://docs.conveyal.com/learn-more/traffic-stress. In summary:

• LTS 1: Tolerable for children. This includes low-speed, low-volume streets, as well as those
with separated bicycle facilities (such as parking-protected lanes or cycle tracks).

• LTS 2: Tolerable for the mainstream adult population. This includes streets where cyclists
have dedicated lanes and only have to interact with traffic at formal crossing.

• LTS 3: Tolerable for "enthused and confident" cyclists. This includes streets which may
involve close proximity to moderate- or high-speed vehicular traffic.

• LTS 4: Tolerable only for "strong and fearless" cyclists. This includes streets where cyclists
are required to mix with moderate- to high-speed vehicular traffic.

For advanced users, you can provide custom LTS values by adding a tag <key = "lts"> to the
osm.pbf file.

https://docs.conveyal.com/learn-more/traffic-stress


40 pareto_frontier

Datetime parsing

r5r ignores the timezone attribute of datetime objects when parsing dates and times, using the
study area’s timezone instead. For example, let’s say you are running some calculations using
Rio de Janeiro, Brazil, as your study area. The datetime as.POSIXct("13-05-2019 14:00:00",
format = "%d-%m-%Y %H:%M:%S") will be parsed as May 13th, 2019, 14:00h in Rio’s local time,
as expected. But as.POSIXct("13-05-2019 14:00:00", format = "%d-%m-%Y %H:%M:%S", tz =
"Europe/Paris") will also be parsed as the exact same date and time in Rio’s local time, perhaps
surprisingly, ignoring the timezone attribute.

Routing algorithm

The detailed_itineraries() and pareto_frontier() functions use an R5-specific extension
to the McRAPTOR routing algorithm. The implementation used in detailed_itineraries() al-
lows the router to find paths that are optimal and less than optimal in terms of travel time, with
some heuristics around multiple access modes, riding the same patterns, etc. The specific ex-
tension to McRAPTOR to do suboptimal path routing is not documented yet, but a detailed de-
scription of base McRAPTOR can be found in Delling et al (2015). The implementation used in
pareto_frontier(), on the other hand, returns only the fastest trip within a given monetary cut-
off, ignoring slower trips that cost the same. A detailed discussion on the algorithm can be found in
Conway and Stewart (2019).

• Delling, D., Pajor, T., & Werneck, R. F. (2015). Round-based public transit routing. Trans-
portation Science, 49(3), 591-604. doi:10.1287/trsc.2014.0534

• Conway, M. W., & Stewart, A. F. (2019). Getting Charlie off the MTA: a multiobjective
optimization method to account for cost constraints in public transit accessibility metrics.
International Journal of Geographical Information Science, 33(9), 1759-1787. doi:10.1080/
13658816.2019.1605075

See Also

Other routing: arrival_travel_time_matrix(), detailed_itineraries(), expanded_travel_time_matrix(),
travel_time_matrix()

Examples

library(r5r)

# build transport network
data_path <- system.file("extdata/poa", package = "r5r")
r5r_network <- build_network(data_path = data_path)

# load origin/destination points
points <- read.csv(file.path(data_path, "poa_hexgrid.csv"))[1:5,]

# load fare structure object
fare_structure_path <- system.file(

"extdata/poa/fares/fares_poa.zip",
package = "r5r"

)
fare_structure <- read_fare_structure(fare_structure_path)

https://doi.org/10.1287/trsc.2014.0534
https://doi.org/10.1080/13658816.2019.1605075
https://doi.org/10.1080/13658816.2019.1605075


r5r_cache 41

departure_datetime <- as.POSIXct(
"13-05-2019 14:00:00",
format = "%d-%m-%Y %H:%M:%S"

)

pf <- pareto_frontier(
r5r_network,
origins = points,
destinations = points,
mode = c("WALK", "TRANSIT"),
departure_datetime = departure_datetime,
fare_structure = fare_structure,
fare_cutoffs = c(4.5, 4.8, 9, 9.3, 9.6)

)
head(pf)

stop_r5(r5r_network)

r5r_cache Manage cached files from the r5r package

Description

Manage cached files from the r5r package

Usage

r5r_cache(list_files = TRUE, delete_file = NULL)

Arguments

list_files Logical. Whether to print a message with the address of r5r JAR files cached
locally. Defaults to TRUE.

delete_file String. The file name (basename) of a JAR file cached locally that should be
deleted. Defaults to NULL, so that no file is deleted. If delete_file = "all",
then all cached files are deleted.

Value

A message indicating which file exist and/or which ones have been deleted from local cache direc-
tory.



42 r5r_sitrep

Examples

# download r5 JAR
r5r::download_r5()

# list all files cached
r5r_cache(list_files = TRUE)

# delete r5 JAR
r5r_cache(delete_file = 'r5-v7.0')

r5r_sitrep Generate an r5r situation report to help debug errors

Description

The function reports a list with the following information:

• The package version of {r5r} in use.

• The installed version of R5.jar.

• The Java version in use.

• The amount of memory set to Java through the java.parameters option.

• The user’s Session Info.

Usage

r5r_sitrep()

Value

A list with information of the versions of the r5r package, Java and R5 Jar in use, the memory set
to Java and user’s Session Info.

Examples

r5r_sitrep()



read_fare_structure 43

read_fare_structure Read a fare structure object from a file

Description

Read a fare structure object from a file

Usage

read_fare_structure(file_path, encoding = "UTF-8")

Arguments

file_path A path pointing to a fare structure with a .zip extension.

encoding A string. Passed to data.table::fread(), defaults to "UTF-8". Other possible
options are "unknown" and "Latin-1". Please note that this is not used to re-
encode the input, but to enable handling encoded strings in their native encoding.

Value

A fare structure object.

See Also

Other fare structure: setup_fare_structure(), write_fare_structure()

Examples

path <- system.file("extdata/poa/fares/fares_poa.zip", package = "r5r")
fare_structure <- read_fare_structure(path)

setup_fare_structure Setup a fare structure to calculate the monetary costs of trips

Description

Creates a basic fare structure that describes how transit fares should be calculated in travel_time_matrix(),
expanded_travel_time_matrix(), accessibility() and pareto_frontier(). This fare struc-
ture can be manually edited and adjusted to the existing rules in your study area, as long as they
stick to some basic premises. Please see the fare-structure vignette for more information.

../doc/fare_structure.html


44 setup_fare_structure

Usage

setup_fare_structure(
r5r_network,
r5r_core = deprecated(),
base_fare,
by = "MODE",
debug_path = NULL,
debug_info = NULL

)

Arguments

r5r_network A routable transport network created with build_network().

r5r_core The r5r_core argument is deprecated as of r5r v2.3.0. Please use the r5r_network
argument instead.

base_fare A numeric. A base value used to populate the fare structure.

by A string. Describes how fare_types (a classification we created to assign fares
to different routes) are distributed among routes. Possible values are MODE,
AGENCY and GENERIC. MODE is used when the mode is what determines the price
of a route (e.g. if all the buses of a given city cost $5). AGENCY is used when
the agency that operates each route is what determines its price (i.e. when two
different routes/modes operated by a single agency cost the same; note that you
can also use AGENCY_NAME, if the agency_ids listed in your GTFS cannot be eas-
ily interpreted). GENERIC is used when all the routes cost the same. Please note
that this classification can later be edited to better suit your needs (when, for
example, two types of buses cost the same, but one offers discounts after riding
the subway and the other one doesn’t), but this parameter may save you some
work.

debug_path Either a path to a .csv file or NULL. When NULL (the default), fare debugging
capabilities are disabled - i.e. there’s no way to check if the fare calculation
is correct. When a path is provided, r5r saves different itineraries and their
respective fares to the specified file. How each itinerary is described is controlled
by debug_info.

debug_info Either a string (when debug_path is a path) or NULL (the default). Doesn’t have
any effect if debug_path is NULL. When a string, accepts the values MODE, ROUTE
and MODE_ROUTE. These values dictates how itinerary information is written to
the output. Let’s suppose we have an itinerary composed by two transit legs:
first a subway leg whose route_id is 001, and then a bus legs whose route_id is
007. If debug_info is MODE, then this itinerary will be described as SUBWAY|BUS.
If ROUTE, as 001|007. If MODE_ROUTE, as SUBWAY 001|BUS 007. Please note that
the final debug information will contain not only the itineraries that were in fact
used in the itineraries returned in travel_time_matrix(), accessibility()
and pareto_frontier(), but all the itineraries that R5 checked when calculat-
ing the routes. This imposes a performance penalty when tracking debug in-
formation (but has the positive effect of returning a larger sample of itineraries,
which might help finding some implementation issues on the fare structure).



setup_r5 45

Value

A fare structure object.

See Also

Other fare structure: read_fare_structure(), write_fare_structure()

Examples

library(r5r)

data_path <- system.file("extdata/poa", package = "r5r")
r5r_network <- build_network(data_path)

fare_structure <- setup_fare_structure(r5r_network, base_fare = 5)

# to debug fare calculation
fare_structure <- setup_fare_structure(

r5r_network,
base_fare = 5,
debug_path = "fare_debug.csv",
debug_info = "MODE"

)

fare_structure$debug_settings

# debugging can be manually turned off by setting output_file to ""
fare_structure$debug_settings <- ""

setup_r5 Create a transport network used for routing in R5 (deprecated)

Description

[Deprecated]
setup_r5() was renamed to build_network() to create a more consistent API. setup_r5() is
being deprecated after r5r v2.3.0 and will be removed in a future release. Please switch to
build_network().

Usage

setup_r5(
data_path,
verbose = FALSE,
temp_dir = FALSE,
elevation = "TOBLER",
overwrite = FALSE

)



46 setup_r5

Arguments

data_path A string pointing to the directory where data inputs are stored and where the
built network.dat will be saved.

verbose A logical. Whether to show R5 informative messages when running the func-
tion. Defaults to FALSE (please note that in such case R5 error messages are still
shown). Setting verbose to TRUE shows detailed output, which can be useful
for debugging issues not caught by r5r.

temp_dir A logical. Whether the network.dat file should be saved to a temporary direc-
tory. Defaults to FALSE.

elevation A string. The name of the impedance function to be used to calculate impedance
for walking and cycling based on street slopes. Available options include TOBLER
(Default) and MINETTI, or NONE to ignore elevation. R5 loads elevation data from
.tif files saved inside the data_path directory. See more info in the Details
section below.

overwrite A logical. Whether to overwrite an existing network.dat or to use a cached
file. Defaults to FALSE (i.e. use a cached network).

Value

A r5r_network object representing the built network to connect with R5 routing engine.

Elevation

More information about the TOBLER and MINETTI options to calculate the effects of elevation on
travel times can be found in the references below:

• Campbell, M. J., et al (2019). Using crowdsourced fitness tracker data to model the re-
lationship between slope and travel rates. Applied geography, 106, 93-107. doi:10.1016/
j.apgeog.2019.03.008.

• Minetti, A. E., et al (2002). Energy cost of walking and running at extreme uphill and downhill
slopes. Journal of applied physiology. doi:10.1152/japplphysiol.01177.2001.

• Tobler, W. (1993). Three presentations on geographical analysis and modeling: Non-isotropic
geographic modeling speculations on the geometry of geography global spatial analysis. Tech-
nical Report. National center for geographic information and analysis. 93 (1). https:
//escholarship.org/uc/item/05r820mz.

See Also

Other Build network: build_network(), download_r5()

Examples

library(r5r)

# directory with street network and gtfs files
data_path <- system.file("extdata/poa", package = "r5r")

# `setup_r5()` has been deprecated, please switch to `build_network()`

https://doi.org/10.1016/j.apgeog.2019.03.008
https://doi.org/10.1016/j.apgeog.2019.03.008
https://doi.org/10.1152/japplphysiol.01177.2001
https://escholarship.org/uc/item/05r820mz
https://escholarship.org/uc/item/05r820mz


stop_r5 47

r5r_network <- build_network(data_path)

stop_r5 Stop running r5r network

Description

Stops running r5r network

Usage

stop_r5(...)

Arguments

... r5r_network objects currently running. By default, if no r5r network is supplied
all running networks are stopped.

Value

No return value, called for side effects.

See Also

Other support functions: exists_tiff(), fileurl_from_metadata(), start_r5r_java(), tempdir_unique(),
validate_bad_osm_ids()

Examples

library(r5r)

path <- system.file("extdata/poa", package = "r5r")

r5r_network <- build_network(path)

stop_r5(r5r_network)



48 street_network_to_sf

street_network_to_sf Extract OpenStreetMap network in sf format

Description

Extracts the OpenStreetMap network in sf format from a routable transport network built with
build_network()).

Usage

street_network_to_sf(r5r_network, r5r_core = deprecated())

Arguments

r5r_network A routable transport network created with build_network().

r5r_core The r5r_core argument is deprecated as of r5r v2.3.0. Please use the r5r_network
argument instead.

Value

A list with two components of a street network in sf format: vertices (POINT) and edges (LINESTRING).

See Also

Other network functions: find_snap(), transit_network_to_sf()

Examples

library(r5r)

# build transport network
path <- system.file("extdata/poa", package = "r5r")
r5r_network <- build_network(path)

# extract street network from r5r_network
street_net <- street_network_to_sf(r5r_network)

stop_r5(r5r_network)



transit_network_to_sf 49

transit_network_to_sf Extract transit network in sf format

Description

Extracts the transit network in sf format from a routable transport network built with build_network()).

Usage

transit_network_to_sf(r5r_network, r5r_core = deprecated())

Arguments

r5r_network A routable transport network created with build_network().

r5r_core The r5r_core argument is deprecated as of r5r v2.3.0. Please use the r5r_network
argument instead.

Value

A list with two components of a transit network in sf format: route shapes (LINESTRING) and
transit stops (POINT). The same route_id/short_name might appear with different geometries.
This occurs when the same route is associated to more than one shape_ids in the GTFS feed used
to create the transit network. Some transit stops might be returned with geometry POINT EMPTY
(i.e. missing spatial coordinates). This may occur when a transit stop is not snapped to the road
network, possibly because the GTFS feed used to create the transit network covers an area larger
than the .osm.pbf input data.

See Also

Other network functions: find_snap(), street_network_to_sf()

Examples

library(r5r)

# build transport network
path <- system.file("extdata/poa", package = "r5r")
r5r_network <- build_network(path)

# extract transit network from r5r_network
transit_net <- transit_network_to_sf(r5r_network)

stop_r5(r5r_network)



50 travel_time_matrix

travel_time_matrix Calculate travel time matrix between origin destination pairs consid-
ering a departure time

Description

Fast computation of travel time estimates between one or multiple origin destination pairs. This
function considers a departure time set by the user. If you want to calculate travel times considering
a time of arrival, have a look at the arrival_travel_time_matrix() function.

Usage

travel_time_matrix(
r5r_network,
r5r_core = deprecated(),
origins,
destinations,
mode = "WALK",
mode_egress = "WALK",
departure_datetime = Sys.time(),
time_window = 10L,
percentiles = 50L,
max_walk_time = Inf,
max_bike_time = Inf,
max_car_time = Inf,
max_trip_duration = 120L,
walk_speed = 3.6,
bike_speed = 12,
max_rides = 3,
max_lts = 2,
fare_structure = NULL,
max_fare = Inf,
new_carspeeds = NULL,
carspeed_scale = 1,
new_lts = NULL,
draws_per_minute = 5L,
n_threads = Inf,
verbose = FALSE,
progress = FALSE,
output_dir = NULL

)

Arguments

r5r_network A routable transport network created with build_network().

r5r_core The r5r_core argument is deprecated as of r5r v2.3.0. Please use the r5r_network
argument instead.



travel_time_matrix 51

origins, destinations
Either a POINT sf object with WGS84 CRS, or a data.frame containing the
columns id, lon and lat.

mode A character vector. The transport modes allowed for access, transfer and vehicle
legs of the trips. Defaults to WALK. Please see details for other options.

mode_egress A character vector. The transport mode used after egress from the last public
transport. It can be either WALK, BICYCLE or CAR. Defaults to WALK. Ignored
when public transport is not used.

departure_datetime

A POSIXct object. Please note that the departure time only influences public
transport legs. When working with public transport networks, please check the
calendar.txt within your GTFS feeds for valid dates. Please see details for
further information on how datetimes are parsed.

time_window An integer. The time window in minutes for which r5r will calculate multiple
travel time matrices departing each minute. Defaults to 10 minutes. By default,
the function returns the result based on median travel times, but the user can set
the percentiles parameter to extract more results. Please read the time window
vignette for more details on its usage vignette("time_window", package =
"r5r")

percentiles An integer vector (max length of 5). Specifies the percentile to use when re-
turning travel time estimates within the given time window. For example, if
the 25th travel time percentile between A and B is 15 minutes, 25% of all trips
taken between these points within the specified time window are shorter than
15 minutes. Defaults to 50, returning the median travel time. If a vector with
length bigger than 1 is passed, the output contains an additional column for
each percentile specifying the percentile travel time estimate. each estimate.
Due to upstream restrictions, only 5 percentiles can be specified at a time. For
more details, please see R5 documentation at https://docs.conveyal.com/
analysis/methodology#accounting-for-variability.

max_walk_time An integer. The maximum walking time (in minutes) to access and egress the
transit network, to make transfers within the network or to complete walk-only
trips. Defaults to no restrictions (numeric value of Inf), as long as max_trip_duration
is respected. When routing transit trips, the max time is considered separately
for each leg (e.g. if you set max_walk_time to 15, you could get trips with an
up to 15 minutes walk leg to reach transit and another up to 15 minutes walk
leg to reach the destination after leaving transit. In walk-only trips, whenever
max_walk_time differs from max_trip_duration, the lowest value is consid-
ered.

max_bike_time An integer. The maximum cycling time (in minutes) to access and egress the
transit network, to make transfers within the network or to complete bicycle-
only trips. Defaults to no restrictions (numeric value of Inf), as long as max_trip_duration
is respected. When routing transit trips, the max time is considered separately
for each leg (e.g. if you set max_bike_time to 15, you could get trips with an
up to 15 minutes cycle leg to reach transit and another up to 15 minutes cycle
leg to reach the destination after leaving transit. In bicycle-only trips, whenever
max_bike_time differs from max_trip_duration, the lowest value is consid-
ered.

https://docs.conveyal.com/analysis/methodology#accounting-for-variability
https://docs.conveyal.com/analysis/methodology#accounting-for-variability


52 travel_time_matrix

max_car_time An integer. The maximum driving time (in minutes) to access and egress the
transit network. Defaults to no restrictions, as long as max_trip_duration is
respected. The max time is considered separately for each leg (e.g. if you set
max_car_time to 15 minutes, you could potentially drive up to 15 minutes to
reach transit, and up to another 15 minutes to reach the destination after leaving
transit). Defaults to Inf, no limit.

max_trip_duration

An integer. The maximum trip duration in minutes. Defaults to 120 minutes (2
hours).

walk_speed A numeric. Average walk speed in km/h. Defaults to 3.6 km/h.

bike_speed A numeric. Average cycling speed in km/h. Defaults to 12 km/h.

max_rides An integer. The maximum number of public transport rides allowed in the same
trip. Defaults to 3.

max_lts An integer between 1 and 4. The maximum level of traffic stress that cyclists
will tolerate. A value of 1 means cyclists will only travel through the quietest
streets, while a value of 4 indicates cyclists can travel through any road. Defaults
to 2. Please see details for more information.

fare_structure A fare structure object, following the convention set in setup_fare_structure().
This object describes how transit fares should be calculated. Please see the fare
structure vignette to understand how this object is structured: vignette("fare_structure",
package = "r5r").

max_fare A number. The maximum value that trips can cost when calculating the fastest
journey between each origin and destination pair.

new_carspeeds A data.frame specifying the new car speed for each OSM edge id. This table
must contain columns osm_id, max_speed and speed_type. The "speed_type"
column is of class character and it indicates whether the values in "max_speed"
should be interpreted as percentages of original speeds ("scale") or as absolute
speeds ("km/h"). Alternatively, the new_carspeeds parameter can receive an
sf data.frame with POLYGON geometry that indicates the new car speed for
all the roads that fall within each polygon. In this case, the table must contain
the columns poly_id with a unique id for each polygon, scale with the new
speed scaling factors and priority, which is a number ranking which polygon
should be considered in case of overlapping polygons. See more into in the
link to congestion vignette.

carspeed_scale Numeric. The default car speed to use for road segments not specified in new_carspeeds.
By default, it is NULL and the speeds of the unlisted roads are kept unchanged.

new_lts A data.frame specifying the new LTS levels for each OSM edge id. The table
must contain columns osm_id and lts. Alternatively, the new_lts parameter
can receive an sf data.frame with LINESTRING geometry. R5 will then find
the nearest road for each LINESTRING and update its LTS value accordingly.

draws_per_minute

An integer. The number of Monte Carlo draws to perform per time window
minute when calculating travel time matrices and when estimating accessibility.
Defaults to 5. This would mean 300 draws in a 60-minute time window, for
example. This parameter only affects the results when the GTFS feeds contain



travel_time_matrix 53

a frequencies.txt table. If the GTFS feed does not have a frequency table,
r5r still allows for multiple runs over the set time_window but in a deterministic
way.

n_threads An integer. The number of threads to use when running the router in parallel.
Defaults to use all available threads (Inf).

verbose A logical. Whether to show R5 informative messages when running the func-
tion. Defaults to FALSE (please note that in such case R5 error messages are still
shown). Setting verbose to TRUE shows detailed output, which can be useful
for debugging issues not caught by r5r.

progress A logical. Whether to show a progress counter when running the router. Defaults
to FALSE. Only works when verbose is set to FALSE, so the progress counter
does not interfere with R5’s output messages. Setting progress to TRUE may
impose a small penalty for computation efficiency, because the progress counter
must be synchronized among all active threads.

output_dir Either NULL or a path to an existing directory. When not NULL (the default), the
function will write one .csv file with the results for each origin in the specified
directory. In such case, the function returns the path specified in this parameter.
This parameter is particularly useful when running on memory-constrained set-
tings because writing the results directly to disk prevents r5r from loading them
to RAM memory.

Value

A data.table with travel time estimates (in minutes) between origin and destination pairs. Pairs
whose trips couldn’t be completed within the maximum travel time and/or whose origin is too far
from the street network are not returned in the data.table. If output_dir is not NULL, the function
returns the path specified in that parameter, in which the .csv files containing the results are saved.

Transport modes

R5 allows for multiple combinations of transport modes. The options include:

• Transit modes: TRAM, SUBWAY, RAIL, BUS, FERRY, CABLE_CAR, GONDOLA, FUNICULAR. The
option TRANSIT automatically considers all public transport modes available.

• Non transit modes: WALK, BICYCLE, CAR, BICYCLE_RENT, CAR_PARK.

Level of Traffic Stress (LTS)

When cycling is enabled in R5 (by passing the value BIKE to either mode or mode_egress), setting
max_lts will allow cycling only on streets with a given level of danger/stress. Setting max_lts to
1, for example, will allow cycling only on separated bicycle infrastructure or low-traffic streets and
routing will revert to walking when traversing any links with LTS exceeding 1. Setting max_lts to
3 will allow cycling on links with LTS 1, 2 or 3. Routing also reverts to walking if the street segment
is tagged as non-bikable in OSM (e.g. a staircase), independently of the specified max LTS.

The default methodology for assigning LTS values to network edges is based on commonly tagged
attributes of OSM ways. See more info about LTS in the original documentation of R5 from Con-
veyal at https://docs.conveyal.com/learn-more/traffic-stress. In summary:

https://docs.conveyal.com/learn-more/traffic-stress


54 travel_time_matrix

• LTS 1: Tolerable for children. This includes low-speed, low-volume streets, as well as those
with separated bicycle facilities (such as parking-protected lanes or cycle tracks).

• LTS 2: Tolerable for the mainstream adult population. This includes streets where cyclists
have dedicated lanes and only have to interact with traffic at formal crossing.

• LTS 3: Tolerable for "enthused and confident" cyclists. This includes streets which may
involve close proximity to moderate- or high-speed vehicular traffic.

• LTS 4: Tolerable only for "strong and fearless" cyclists. This includes streets where cyclists
are required to mix with moderate- to high-speed vehicular traffic.

For advanced users, you can provide custom LTS values by adding a tag <key = "lts"> to the
osm.pbf file.

Datetime parsing

r5r ignores the timezone attribute of datetime objects when parsing dates and times, using the
study area’s timezone instead. For example, let’s say you are running some calculations using
Rio de Janeiro, Brazil, as your study area. The datetime as.POSIXct("13-05-2019 14:00:00",
format = "%d-%m-%Y %H:%M:%S") will be parsed as May 13th, 2019, 14:00h in Rio’s local time,
as expected. But as.POSIXct("13-05-2019 14:00:00", format = "%d-%m-%Y %H:%M:%S", tz =
"Europe/Paris") will also be parsed as the exact same date and time in Rio’s local time, perhaps
surprisingly, ignoring the timezone attribute.

Routing algorithm

The travel_time_matrix(), expanded_travel_time_matrix(), arrival_travel_time_matrix()
and accessibility() functions use an R5-specific extension to the RAPTOR routing algorithm
(see Conway et al., 2017). This RAPTOR extension uses a systematic sample of one departure per
minute over the time window set by the user in the ’time_window’ parameter. A detailed descrip-
tion of base RAPTOR can be found in Delling et al (2015). However, whenever the user includes
transit fares inputs to these functions, they automatically switch to use an R5-specific extension to
the McRAPTOR routing algorithm.

• Conway, M. W., Byrd, A., & van der Linden, M. (2017). Evidence-based transit and land use
sketch planning using interactive accessibility methods on combined schedule and headway-
based networks. Transportation Research Record, 2653(1), 45-53. doi:10.3141/265306

• Delling, D., Pajor, T., & Werneck, R. F. (2015). Round-based public transit routing. Trans-
portation Science, 49(3), 591-604. doi:10.1287/trsc.2014.0534

See Also

Other routing: arrival_travel_time_matrix(), detailed_itineraries(), expanded_travel_time_matrix(),
pareto_frontier()

Examples

library(r5r)

# build transport network
data_path <- system.file("extdata/poa", package = "r5r")

https://doi.org/10.3141/2653-06
https://doi.org/10.1287/trsc.2014.0534


travel_time_matrix 55

r5r_network <- build_network(data_path)

# load origin/destination points
points <- read.csv(file.path(data_path, "poa_points_of_interest.csv"))

departure_datetime <- as.POSIXct(
"13-05-2019 14:00:00",
format = "%d-%m-%Y %H:%M:%S"

)

ttm <- travel_time_matrix(
r5r_network,
origins = points,
destinations = points,
mode = c("WALK", "TRANSIT"),
departure_datetime = departure_datetime,
max_trip_duration = 60

)
head(ttm)

# using a larger time window
ttm <- travel_time_matrix(

r5r_network,
origins = points,
destinations = points,
mode = c("WALK", "TRANSIT"),
departure_datetime = departure_datetime,
time_window = 30,
max_trip_duration = 60

)
head(ttm)

# selecting different percentiles
ttm <- travel_time_matrix(

r5r_network,
origins = points,
destinations = points,
mode = c("WALK", "TRANSIT"),
departure_datetime = departure_datetime,
time_window = 30,
percentiles = c(25, 50, 75),
max_trip_duration = 60

)
head(ttm)

# use a fare structure and set a max fare to take monetary constraints into
# account
fare_structure <- read_fare_structure(

file.path(data_path, "fares/fares_poa.zip")
)
ttm <- travel_time_matrix(

r5r_network,
origins = points,



56 write_fare_structure

destinations = points,
mode = c("WALK", "TRANSIT"),
departure_datetime = departure_datetime,
fare_structure = fare_structure,
max_fare = 5,
max_trip_duration = 60,

)
head(ttm)

stop_r5(r5r_network)

write_fare_structure Write a fare structure object to disk

Description

Writes a fare structure object do disk. Fare structure is saved as a collection of .csv files inside a
.zip file.

Usage

write_fare_structure(fare_structure, file_path)

Arguments

fare_structure A fare structure object, following the convention set in setup_fare_structure().
This object describes how transit fares should be calculated. Please see the fare
structure vignette to understand how this object is structured: vignette("fare_structure",
package = "r5r").

file_path A path to a .zip file. Where the fare structure should be written to.

Value

The path passed to file_path, invisibly.

See Also

Other fare structure: read_fare_structure(), setup_fare_structure()

Examples

library(r5r)

data_path <- system.file("extdata/poa", package = "r5r")
r5r_network <- build_network(data_path)

fare_structure <- setup_fare_structure(r5r_network, base_fare = 5)



write_fare_structure 57

tmpfile <- tempfile("sample_fare_structure", fileext = ".zip")
write_fare_structure(fare_structure, tmpfile)



Index

∗ Build network
build_network, 15
download_r5, 23
setup_r5, 45

∗ Cache data
r5r_cache, 41

∗ Isochrone
isochrone, 31

∗ accessibility
accessibility, 3

∗ fare structure
read_fare_structure, 43
setup_fare_structure, 43
write_fare_structure, 56

∗ network functions
find_snap, 29
street_network_to_sf, 48
transit_network_to_sf, 49

∗ routing
arrival_travel_time_matrix, 10
detailed_itineraries, 17
expanded_travel_time_matrix, 24
pareto_frontier, 36
travel_time_matrix, 50

∗ support functions
stop_r5, 47

accessibility, 3
accessibility(), 8, 14, 28, 34, 43, 44, 54
arrival_travel_time_matrix, 10, 22, 28,

40, 54
arrival_travel_time_matrix(), 8, 14, 28,

34, 50, 54

build_network, 15, 23, 46
build_network(), 3, 11, 18, 25, 30, 31, 37,

44, 45, 48–50

data.table::fread(), 43
detailed_itineraries, 14, 17, 28, 40, 54

detailed_itineraries(), 22, 40
download_r5, 17, 23, 46

exists_tiff, 47
expanded_travel_time_matrix, 14, 22, 24,

40, 54
expanded_travel_time_matrix(), 8, 10, 14,

28, 34, 43, 54

fileurl_from_metadata, 47
find_snap, 29, 48, 49

isochrone, 31

pareto_frontier, 14, 22, 28, 36, 54
pareto_frontier(), 22, 40, 43, 44

r5r_cache, 41
r5r_sitrep, 42
read_fare_structure, 43, 45, 56

setup_fare_structure, 43, 43, 56
setup_fare_structure(), 5, 20, 38, 52, 56
setup_r5, 17, 23, 45
start_r5r_java, 47
stop_r5, 47
street_network_to_sf, 30, 48, 49

tempdir_unique, 47
transit_network_to_sf, 30, 48, 49
travel_time_matrix, 14, 22, 28, 40, 50
travel_time_matrix(), 8, 10, 14, 28, 34, 43,

44, 54

validate_bad_osm_ids, 47

write_fare_structure, 43, 45, 56

58


	accessibility
	arrival_travel_time_matrix
	build_network
	detailed_itineraries
	download_r5
	expanded_travel_time_matrix
	find_snap
	isochrone
	pareto_frontier
	r5r_cache
	r5r_sitrep
	read_fare_structure
	setup_fare_structure
	setup_r5
	stop_r5
	street_network_to_sf
	transit_network_to_sf
	travel_time_matrix
	write_fare_structure
	Index

