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2 A.mat

rrBLUP-package Ridge regression and other kernels for genomic selection

Description

This package has been developed primarily for genomic prediction with mixed models (but it can
also do genome-wide association mapping with GWAS). The heart of the package is the function
mixed.solve, which is a general-purpose solver for mixed models with a single variance com-
ponent other than the error. Genomic predictions can be made by estimating marker effects (RR-
BLUP) or by estimating line effects (G-BLUP). In Endelman (2011) I made the poor choice of
using the letter G to denotype the genotype or marker data. To be consistent with Endelman (2011)
I have retained this notation in kinship.BLUP. However, that function has now been superseded by
kin.blup and A.mat, the latter being a utility for estimating the additive relationship matrix (A)
from markers. In these newer functions I adopt the usual convention that G is the genetic covariance
(not the marker data), which is also consistent with the notation in Endelman and Jannink (2012).

Vignettes illustrating some of the features of this package can be found at https://potatobreeding.
cals.wisc.edu/software/.

References

Endelman, J.B. 2011. Ridge regression and other kernels for genomic selection with R package
rrBLUP. Plant Genome 4:250-255. <doi:10.3835/plantgenome2011.08.0024>

Endelman, J.B., and J.-L. Jannink. 2012. Shrinkage estimation of the realized relationship matrix.
G3:Genes, Genomes, Genetics 2:1405-1413. <doi:10.1534/g3.112.004259>

A.mat Additive relationship matrix

Description

Calculates the realized additive relationship matrix

Usage

A.mat(
X,
min.MAF = NULL,
max.missing = NULL,
impute.method = "mean",
tol = 0.02,
n.core = 1,
shrink = FALSE,
return.imputed = FALSE

)

https://potatobreeding.cals.wisc.edu/software/
https://potatobreeding.cals.wisc.edu/software/
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Arguments

X matrix (n×m) of unphased genotypes for n lines andm biallelic markers, coded
as {-1,0,1}. Fractional (imputed) and missing values (NA) are allowed.

min.MAF Minimum minor allele frequency. The A matrix is not sensitive to rare alleles,
so by default only monomorphic markers are removed.

max.missing Maximum proportion of missing data; default removes completely missing mark-
ers.

impute.method There are two options. The default is "mean", which imputes with the mean for
each marker. The "EM" option imputes with an EM algorithm (see details).

tol Specifies the convergence criterion for the EM algorithm (see details).

n.core Specifies the number of cores to use for parallel execution of the EM algorithm

shrink set shrink=FALSE to disable shrinkage estimation. See Details for how to enable
shrinkage estimation.

return.imputed When TRUE, the imputed marker matrix is returned.

Details

At high marker density, the relationship matrix is estimated as A = WW ′/c, where Wik = Xik +
1−2pk and pk is the frequency of the 1 allele at marker k. By using a normalization constant of c =
2
∑
k pk(1− pk), the mean of the diagonal elements is 1+f (Endelman and Jannink 2012). The EM

imputation algorithm is based on the multivariate normal distribution and was designed for use with
GBS (genotyping-by-sequencing) markers, which tend to be high density but with lots of missing
data. Details are given in Poland et al. (2012). The EM algorithm stops at iteration t when the RMS
error = n−1‖At − At−1‖2 < tol. Shrinkage estimation can improve the accuracy of genome-wide
marker-assisted selection, particularly at low marker density (Endelman and Jannink 2012). The
shrinkage intensity ranges from 0 (no shrinkage) to 1 (A = (1 + f)I). Two algorithms for estimat-
ing the shrinkage intensity are available. The first is the method described in Endelman and Jannink
(2012) and is specified by shrink=list(method="EJ"). The second involves designating a ran-
dom sample of the markers as simulated QTL and then regressing the A matrix based on the QTL
against the A matrix based on the remaining markers (Yang et al. 2010; Mueller et al. 2015). The re-
gression method is specified by shrink=list(method="REG",n.qtl=100,n.iter=5), where the
parameters n.qtl and n.iter can be varied to adjust the number of simulated QTL and number of
iterations, respectively. The shrinkage and EM-imputation options are designed for opposite sce-
narios (low vs. high density) and cannot be used simultaneously. When the EM algorithm is used,
the imputed alleles can lie outside the interval [-1,1]. Polymorphic markers that do not meet the
min.MAF and max.missing criteria are not imputed.

Value

If return.imputed = FALSE, the n × n additive relationship matrix is returned. If return.imputed =
TRUE, the function returns a list containing

$A the A matrix

$imputed the imputed marker matrix
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References

Endelman, J.B., and J.-L. Jannink. 2012. Shrinkage estimation of the realized relationship matrix.
G3:Genes, Genomes, Genetics. 2:1405-1413. <doi:10.1534/g3.112.004259>

Mueller et al. 2015. Shrinkage estimation of the genomic relationship matrix can improve genomic
estimated breeding values in the training set. Theor Appl Genet 128:693-703. <doi:10.1007/s00122-
015-2464-6>

Poland, J., J. Endelman et al. 2012. Genomic selection in wheat breeding using genotyping-by-
sequencing. Plant Genome 5:103-113. <doi:10.3835/plantgenome2012.06.0006>

Yang et al. 2010. Common SNPs explain a large proportion of the heritability for human height.
Nat. Genetics 42:565-569. <doi:10.1038/ng.608>

GWAS Genome-wide association analysis

Description

Performs genome-wide association analysis based on the mixed model (Yu et al. 2006):

y = Xβ + Zg + Sτ + ε

where β is a vector of fixed effects that can model both environmental factors and population
structure. The variable g models the genetic background of each line as a random effect with
V ar[g] = Kσ2. The variable τ models the additive SNP effect as a fixed effect. The residual
variance is V ar[ε] = Iσ2

e .

Usage

GWAS(pheno, geno, fixed=NULL, K=NULL, n.PC=0,
min.MAF=0.05, n.core=1, P3D=TRUE, plot=TRUE)

Arguments

pheno Data frame where the first column is the line name (gid). The remaining columns
can be either a phenotype or the levels of a fixed effect. Any column not desig-
nated as a fixed effect is assumed to be a phenotype.

geno Data frame with the marker names in the first column. The second and third
columns contain the chromosome and map position (either bp or cM), respec-
tively, which are used only when plot=TRUE to make Manhattan plots. If the
markers are unmapped, just use a placeholder for those two columns. Columns 4
and higher contain the marker scores for each line, coded as {-1,0,1} = {aa,Aa,AA}.
Fractional (imputed) and missing (NA) values are allowed. The column names
must match the line names in the "pheno" data frame.

fixed An array of strings containing the names of the columns that should be included
as (categorical) fixed effects in the mixed model.
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K Kinship matrix for the covariance between lines due to a polygenic effect. If not
passed, it is calculated from the markers using A.mat.

n.PC Number of principal components to include as fixed effects. Default is 0 (equals
K model).

min.MAF Specifies the minimum minor allele frequency (MAF). If a marker has a MAF
less than min.MAF, it is assigned a zero score.

n.core Setting n.core > 1 will enable parallel execution on a machine with multiple
cores (use only at UNIX command line).

P3D When P3D=TRUE, variance components are estimated by REML only once,
without any markers in the model. When P3D=FALSE, variance components
are estimated by REML for each marker separately.

plot When plot=TRUE, qq and Manhattan plots are generated.

Details

For unbalanced designs where phenotypes come from different environments, the environment
mean can be modeled using the fixed option (e.g., fixed="env" if the column in the pheno data.frame
is called "env"). When principal components are included (P+K model), the loadings are determined
from an eigenvalue decomposition of the K matrix.

The terminology "P3D" (population parameters previously determined) was introduced by Zhang
et al. (2010). When P3D=FALSE, this function is equivalent to EMMA with REML (Kang et al.
2008). When P3D=TRUE, it is equivalent to EMMAX (Kang et al. 2010). The P3D=TRUE option
is faster but can underestimate significance compared to P3D=FALSE.

The dashed line in the Manhattan plots corresponds to an FDR rate of 0.05 and is calculated using
the qvalue package (Storey and Tibshirani 2003). The p-value corresponding to a q-value of 0.05 is
determined by interpolation. When there are no q-values less than 0.05, the dashed line is omitted.

Value

Returns a data frame where the first three columns are the marker name, chromosome, and position,
and subsequent columns are the marker scores (−log10p) for the traits.

References

Kang et al. 2008. Efficient control of population structure in model organism association mapping.
Genetics 178:1709-1723.

Kang et al. 2010. Variance component model to account for sample structure in genome-wide
association studies. Nat. Genet. 42:348-354.

Storey and Tibshirani. 2003. Statistical significance for genome-wide studies. PNAS 100:9440-
9445.

Yu et al. 2006. A unified mixed-model method for association mapping that accounts for multiple
levels of relatedness. Genetics 38:203-208.

Zhang et al. 2010. Mixed linear model approach adapted for genome-wide association studies. Nat.
Genet. 42:355-360.
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Examples

#random population of 200 lines with 1000 markers
M <- matrix(rep(0,200*1000),1000,200)
for (i in 1:200) {

M[,i] <- ifelse(runif(1000)<0.5,-1,1)
}
colnames(M) <- 1:200
geno <- data.frame(marker=1:1000,chrom=rep(1,1000),pos=1:1000,M,check.names=FALSE)

QTL <- 100*(1:5) #pick 5 QTL
u <- rep(0,1000) #marker effects
u[QTL] <- 1
g <- as.vector(crossprod(M,u))
h2 <- 0.5
y <- g + rnorm(200,mean=0,sd=sqrt((1-h2)/h2*var(g)))

pheno <- data.frame(line=1:200,y=y)
scores <- GWAS(pheno,geno,plot=FALSE)

kin.blup Genotypic value prediction based on kinship

Description

Genotypic value prediction by G-BLUP, where the genotypic covariance G can be additive or based
on a Gaussian kernel.

Usage

kin.blup(data,geno,pheno,GAUSS=FALSE,K=NULL,fixed=NULL,covariate=NULL,
PEV=FALSE,n.core=1,theta.seq=NULL)

Arguments

data Data frame with columns for the phenotype, the genotype identifier, and any
environmental variables.

geno Character string for the name of the column in the data frame that contains the
genotype identifier.

pheno Character string for the name of the column in the data frame that contains the
phenotype.

GAUSS To model genetic covariance with a Gaussian kernel, set GAUSS=TRUE and
pass the Euclidean distance for K (see below).

K There are three options for specifying kinship: (1) If K=NULL, genotypes are
assumed to be independent (G = I Vg). (2) For breeding value prediction,
set GAUSS=FALSE and use an additive relationship matrix for K to create the
model (G = K Vg). (3) For the Gaussian kernel, set GAUSS=TRUE and pass
the Euclidean distance matrix for K to create the model Gij = e−(Kij/θ)

2

Vg .
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fixed An array of strings containing the names of columns that should be included as
(categorical) fixed effects in the mixed model.

covariate An array of strings containing the names of columns that should be included as
covariates in the mixed model.

PEV When PEV=TRUE, the function returns the prediction error variance for the
genotypic values (PEVi = V ar[g∗i − gi]).

n.core Specifies the number of cores to use for parallel execution of the Gaussian kernel
method (use only at UNIX command line).

theta.seq The scale parameter for the Gaussian kernel is set by maximizing the restricted
log-likelihood over a grid of values. By default, the grid is constructed by di-
viding the interval (0,max(K)] into 10 points. Passing a numeric array to this
variable (theta.seq = "theta sequence") will specify a different set of grid points
(e.g., for large problems you might want fewer than 10).

Details

This function is a wrapper for mixed.solve and thus solves mixed models of the form:

y = Xβ + [Z 0]g + ε

where β is a vector of fixed effects, g is a vector of random genotypic values with covariance
G = V ar[g], and the residuals follow V ar[εi] = Riσ

2
e , with Ri = 1 by default. The design matrix

for the genetic values has been partitioned to illustrate that not all lines need phenotypes (i.e.,
for genomic selection). Unlike mixed.solve, this function does not return estimates of the fixed
effects, only the BLUP solution for the genotypic values. It was designed to replace kinship.BLUP
and to relieve the user of having to explicitly construct design matrices. Variance components are
estimated by REML and BLUP values are returned for every entry in K, regardless of whether it
has been phenotyped. The rownames of K must match the genotype labels in the data frame for
phenotyped lines; missing phenotypes (NA) are simply omitted.

Unlike its predecessor, this function does not handle marker data directly. For breeding value pre-
diction, the user must supply a relationship matrix, which can be calculated from markers with
A.mat. For Gaussian kernel predictions, pass the Euclidean distance matrix for K, which can be
calculated with dist.

In the terminology of mixed models, both the "fixed" and "covariate" variables are fixed effects
(β in the above equation): the former are treated as factors with distinct levels while the latter are
continuous with one coefficient per variable. The population mean is automatically included as a
fixed effect.

The prediction error variance (PEV) is the square of the SE of the BLUPs (see mixed.solve) and
can be used to estimate the expected accuracy of BLUP predictions according to r2i = 1− PEVi

VgKii
.

Value

The function always returns

$Vg REML estimate of the genetic variance

$Ve REML estimate of the error variance

$g BLUP solution for the genetic values
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$resid residuals

$pred predicted genetic values, averaged over the fixed effects

If PEV = TRUE, the list also includes

$PEV Prediction error variance for the genetic values

If GAUSS = TRUE, the list also includes

$profile the log-likelihood profile for the scale parameter in the Gaussian kernel

References

Endelman, J.B. 2011. Ridge regression and other kernels for genomic selection with R package
rrBLUP. Plant Genome 4:250-255. <doi:10.3835/plantgenome2011.08.0024>

Examples

#random population of 200 lines with 1000 markers
M <- matrix(rep(0,200*1000),200,1000)
for (i in 1:200) {

M[i,] <- ifelse(runif(1000)<0.5,-1,1)
}
rownames(M) <- 1:200
A <- A.mat(M)

#random phenotypes
u <- rnorm(1000)
g <- as.vector(crossprod(t(M),u))
h2 <- 0.5 #heritability
y <- g + rnorm(200,mean=0,sd=sqrt((1-h2)/h2*var(g)))

data <- data.frame(y=y,gid=1:200)

#predict breeding values
ans <- kin.blup(data=data,geno="gid",pheno="y",K=A)
accuracy <- cor(g,ans$g)

kinship.BLUP Genomic prediction by kinship-BLUP (deprecated)

Description

***This function has been superseded by kin.blup; please refer to its help page.

Usage

kinship.BLUP(y, G.train, G.pred=NULL, X=NULL, Z.train=NULL,
K.method="RR", n.profile=10, mixed.method="REML", n.core=1)
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Arguments

y Vector (n.obs× 1) of observations. Missing values (NA) are omitted.

G.train Matrix (n.train×m) of unphased genotypes for the training population: n.train
lines with m bi-allelic markers. Genotypes should be coded as {-1,0,1}; frac-
tional (imputed) and missing (NA) alleles are allowed.

G.pred Matrix (n.pred×m) of unphased genotypes for the prediction population: n.pred
lines with m bi-allelic markers. Genotypes should be coded as {-1,0,1}; frac-
tional (imputed) and missing (NA) alleles are allowed.

X Design matrix (n.obs× p) of fixed effects. If not passed, a vector of 1’s is used
to model the intercept.

Z.train 0-1 matrix (n.obs× n.train) relating observations to lines in the training set. If
not passed the identity matrix is used.

K.method "RR" (default) is ridge regression, for which K is the realized additive relation-
ship matrix computed with A.mat. The option "GAUSS" is a Gaussian kernel
(K = e−D

2/θ2 ) and "EXP" is an exponential kernel (K = e−D/θ), where Eu-
clidean distances D are computed with dist.

n.profile For K.method = "GAUSS" or "EXP", the number of points to use in the log-
likelihood profile for the scale parameter θ.

mixed.method Either "REML" (default) or "ML".

n.core Setting n.core > 1 will enable parallel execution of the Gaussian kernel compu-
tation (use only at UNIX command line).

Value

$g.train BLUP solution for the training set

$g.pred BLUP solution for the prediction set (when G.pred != NULL)

$beta ML estimate of fixed effects

For GAUSS or EXP, function also returns

$profile log-likelihood profile for the scale parameter

References

Endelman, J.B. 2011. Ridge regression and other kernels for genomic selection with R package
rrBLUP. Plant Genome 4:250-255.

Examples

#random population of 200 lines with 1000 markers
G <- matrix(rep(0,200*1000),200,1000)
for (i in 1:200) {

G[i,] <- ifelse(runif(1000)<0.5,-1,1)
}

#random phenotypes
g <- as.vector(crossprod(t(G),rnorm(1000)))
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h2 <- 0.5
y <- g + rnorm(200,mean=0,sd=sqrt((1-h2)/h2*var(g)))

#split in half for training and prediction
train <- 1:100
pred <- 101:200
ans <- kinship.BLUP(y=y[train],G.train=G[train,],G.pred=G[pred,],K.method="GAUSS")

#correlation accuracy
r.gy <- cor(ans$g.pred,y[pred])

mixed.solve Mixed-model solver

Description

Calculates maximum-likelihood (ML/REML) solutions for mixed models of the form

y = Xβ + Zu+ ε

where β is a vector of fixed effects and u is a vector of random effects with V ar[u] = Kσ2
u.

The residual variance is V ar[ε] = Iσ2
e . This class of mixed models, in which there is a single

variance component other than the residual error, has a close relationship with ridge regression
(ridge parameter λ = σ2

e/σ
2
u).

Usage

mixed.solve(y, Z=NULL, K=NULL, X=NULL, method="REML",
bounds=c(1e-09, 1e+09), SE=FALSE, return.Hinv=FALSE)

Arguments

y Vector (n× 1) of observations. Missing values (NA) are omitted, along with the
corresponding rows of X and Z.

Z Design matrix (n×m) for the random effects. If not passed, assumed to be the
identity matrix.

K Covariance matrix (m×m) for random effects; must be positive semi-definite.
If not passed, assumed to be the identity matrix.

X Design matrix (n× p) for the fixed effects. If not passed, a vector of 1’s is used
to model the intercept. X must be full column rank (implies β is estimable).

method Specifies whether the full ("ML") or restricted ("REML") maximum-likelihood
method is used.

bounds Array with two elements specifying the lower and upper bound for the ridge
parameter.

SE If TRUE, standard errors are calculated.

return.Hinv If TRUE, the function returns the inverse of H = ZKZ ′ + λI . This is useful
for GWAS.
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Details

This function can be used to predict marker effects or breeding values (see examples). The nu-
merical method is based on the spectral decomposition of ZKZ ′ and SZKZ ′S, where S =
I − X(X ′X)−1X ′ is the projection operator for the nullspace of X (Kang et al., 2008). This
algorithm generates the inverse phenotypic covariance matrix V −1, which can then be used to cal-
culate the BLUE and BLUP solutions for the fixed and random effects, respectively, using standard
formulas (Searle et al. 1992):

BLUE(β) = β∗ = (X ′V −1X)−1X ′V −1y

BLUP (u) = u∗ = σ2
uKZ

′V −1(y −Xβ∗)

The standard errors are calculated as the square root of the diagonal elements of the following
matrices (Searle et al. 1992):

V ar[β∗] = (X ′V −1X)−1

V ar[u∗ − u] = Kσ2
u − σ4

uKZ
′V −1ZK + σ4

uKZ
′V −1XV ar[β∗]X ′V −1ZK

For marker effects where K = I, the function will run faster if K is not passed than if the user passes
the identity matrix.

Value

If SE=FALSE, the function returns a list containing

$Vu estimator for σ2
u

$Ve estimator for σ2
e

$beta BLUE(β)

$u BLUP(u)

$LL maximized log-likelihood (full or restricted, depending on method)

If SE=TRUE, the list also contains

$beta.SE standard error for β

$u.SE standard error for u∗ − u

If return.Hinv=TRUE, the list also contains

$Hinv the inverse of H

References

Kang et al. 2008. Efficient control of population structure in model organism association mapping.
Genetics 178:1709-1723.

Endelman, J.B. 2011. Ridge regression and other kernels for genomic selection with R package
rrBLUP. Plant Genome 4:250-255.

Searle, S.R., G. Casella and C.E. McCulloch. 1992. Variance Components. John Wiley, Hoboken.
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Examples

#random population of 200 lines with 1000 markers
M <- matrix(rep(0,200*1000),200,1000)
for (i in 1:200) {

M[i,] <- ifelse(runif(1000)<0.5,-1,1)
}

#random phenotypes
u <- rnorm(1000)
g <- as.vector(crossprod(t(M),u))
h2 <- 0.5 #heritability
y <- g + rnorm(200,mean=0,sd=sqrt((1-h2)/h2*var(g)))

#predict marker effects
ans <- mixed.solve(y,Z=M) #By default K = I
accuracy <- cor(u,ans$u)

#predict breeding values
ans <- mixed.solve(y,K=A.mat(M))
accuracy <- cor(g,ans$u)
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