Package 'samplingVarEst'

January 14, 2023

Version 1.5
Date 2023-01-13
Title Sampling Variance Estimation
Author Emilio Lopez Escobar [aut, cre, cph] emilio@quantos.mx, Ernesto Barrios Zamudio [ctb] ebarrios@itam.mx, Juan Francisco Munoz Rosas [ctb] jfmunoz@go.ugr.es
Maintainer Emilio Lopez Escobar emilio@quantos.mx
Description Functions to calculate some point estimators and estimate their variance under unequal probability sampling without replacement. Single and two-stage sampling designs are considered. Some approximations for the second-order inclusion probabilities (joint inclusion probabilities) are available (sample and population based). A variety of Jackknife variance estimators are implemented. Almost every function is written in C (compiled) code for faster results. The functions incorporate some performance improvements for faster results with large datasets.
Classification/MSC 62D05, 62F40, 62G09, 62H12
Classification/JEL C13, C15, C42, C83
Classification/ACM G. 3
Depends R (>= 3.1.0)
License GPL (>=2)
URL https://www.quantos.mx/, https://www.itam.mx/
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-01-14 09:30:06 UTC

R topics documented:

samplingVarEst-package 3
Est.Corr.Hajek 5
Est.Corr.NHT 7
Est.EmpDistFunc.Hajek 8
Est.EmpDistFunc.NHT 10
Est.Mean.Hajek 11
Est.Mean.NHT 12
Est.Ratio 14
Est.RegCo.Hajek 15
Est.RegCoI.Hajek 17
Est.Total.Hajek 19
Est.Total.NHT 20
oaxaca 22
Pk.PropNorm.U 24
Pkl.Hajek.s 25
Pkl.Hajek.U 27
VE.EB.HT.Mean.Hajek 28
VE.EB.HT.Ratio 31
VE.EB.HT.Total.Hajek 33
VE.EB.SYG.Mean.Hajek 36
VE.EB.SYG.Ratio 38
VE.EB.SYG.Total.Hajek 41
VE.Hajek.Mean.NHT 43
VE.Hajek.Total.NHT 45
VE.HT.Mean.NHT 47
VE.HT.Total.NHT 48
VE.Jk.B.Corr.Hajek 50
VE.Jk.B.Mean.Hajek 52
VE.Jk.B.Ratio 54
VE.Jk.B.RegCo.Hajek 56
VE.Jk.B.RegCoI.Hajek 59
VE.Jk.B.Total.Hajek 61
VE.Jk.CBS.HT.Corr.Hajek 63
VE.Jk.CBS.HT.Mean.Hajek 65
VE.Jk.CBS.HT.Ratio 67
VE.Jk.CBS.HT.RegCo.Hajek 69
VE.Jk.CBS.HT.RegCoI.Hajek 72
VE.Jk.CBS.HT.Total.Hajek 74
VE.Jk.CBS.SYG.Corr.Hajek 76
VE.Jk.CBS.SYG.Mean.Hajek 78
VE.Jk.CBS.SYG.Ratio 81
VE.Jk.CBS.SYG.RegCo.Hajek 83
VE.Jk.CBS.SYG.RegCoI.Hajek 85
VE.Jk.CBS.SYG.Total.Hajek 88
VE.Jk.EB.SW2.Corr.Hajek 90
VE.Jk.EB.SW2.Mean.Hajek 93
VE.Jk.EB.SW2.Ratio 95
VE.Jk.EB.SW2.RegCo.Hajek 98
VE.Jk.EB.SW2.RegCoI.Hajek 101
VE.Jk.EB.SW2.Total.Hajek 104
VE.Jk.Tukey.Corr.Hajek 106
VE.Jk.Tukey.Corr.NHT 108
VE.Jk.Tukey.Mean.Hajek 110
VE.Jk.Tukey.Ratio 112
VE.Jk.Tukey.RegCo.Hajek 114
VE.Jk.Tukey.RegCoI.Hajek 117
VE.Jk.Tukey.Total.Hajek 119
VE.Lin.HT.Ratio 121
VE.Lin.SYG.Ratio 123
VE.SYG.Mean.NHT 125
VE.SYG.Total.NHT 127
Index 130

```
samplingVarEst-package
```

 Sampling Variance Estimation package

Description

The package contains functions to calculate some point estimators and estimate their variance under unequal probability sampling without replacement. Uni-stage and two-stage sampling designs are considered. The package further contains some approximations for the joint-inclusion probabilities (population and sample based formulae).

Emphasis has been put on the speed of routines as the package mostly uses Compiled code. Below there is a list of available functions. These are grouped in purpose lists, aiming to clarify their usage.

The user should pick a suitable combination of a population parameter of interest, a choice of point estimator, and a choice of variance estimator.

For these population parameters:	The available point estimators are:
total:	Est.Total. NHT
	Est.Total. Hajek
mean:	Est.Mean. NHT
	Est.Mean. Hajek
empirical cumulative distribution function:	Est.EmpDistFunc.NHT
	Est.EmpDistFunc. Hajek
ratio:	Est.Ratio
correlation coefficient:	Est.Corr.NHT
regression coefficients:	Est.Corr. Hajek
	Est.RegCoI. Hajek
	Est.RegCo. Hajek

For these point estimators: The available variance estimators for uni-stage samples are: Est.Total.NHT:

VE.HT.Total.NHT
VE.SYG.Total.NHT
VE.Hajek.Total.NHT
Est.Total.Hajek: VE.Jk.Tukey.Total.Hajek

	VE.Jk.CBS.HT.Total.Hajek
	VE.Jk.CBS.SYG.Total.Hajek
	VE.Jk.B.Total.Hajek
	VE.EB.HT.Total.Hajek
	VE.EB.SYG.Total.Hajek
Est.Mean.NHT:	VE.HT.Mean.NHT
	VE.SYG.Mean.NHT
	VE.Hajek.Mean. NHT
Est.Mean. Hajek:	VE. Jk.Tukey.Mean. Hajek
	VE.Jk.CBS.HT.Mean.Hajek
	VE.Jk.CBS.SYG.Mean.Hajek
	VE.Jk.B.Mean. Hajek
	VE.EB.HT.Mean.Hajek
	VE.EB.SYG.Mean.Hajek
Est.Ratio:	VE.Lin.HT.Ratio
	VE.Lin.SYG.Ratio
	VE.Jk.Tukey.Ratio
	VE.Jk.CBS.HT.Ratio
	VE.Jk.CBS.SYG.Ratio
	VE.Jk.B.Ratio
	VE.EB.HT.Ratio
	VE.EB.SYG.Ratio
Est.Corr.NHT:	VE.Jk.Tukey.Corr.NHT
Est.Corr.Hajek:	VE.Jk.Tukey.Corr.Hajek
	VE.Jk.CBS.HT.Corr.Hajek
	VE.Jk.CBS.SYG.Corr.Hajek
	VE.Jk.B.Corr.Hajek
Est.RegCoI.Hajek:	VE.Jk.Tukey.RegCoI.Hajek
	VE.Jk.CBS.HT.RegCoI.Hajek
	VE.Jk.CBS.SYG.RegCoI.Hajek
	VE.Jk.B.RegCoI.Hajek
Est.RegCo.Hajek:	VE. Jk.Tukey.RegCo. Hajek
	VE.Jk.CBS.HT.RegCo.Hajek
	VE.Jk.CBS.SYG.RegCo. Hajek
	VE.Jk.B.RegCo.Hajek

For these point estimators:
Est.Total.Hajek:
Est.Mean.Hajek:
Est.Ratio:
Est.Corr.Hajek:
Est.RegCoI.Hajek:
Est.RegCo.Hajek:

The available variance estimators for self-weighted two-stage samples are:
VE.Jk.EB.SW2.Total.Hajek
VE.Jk.EB.SW2.Mean.Hajek
VE.Jk.EB.SW2.Ratio
VE.Jk.EB.SW2.Corr. Hajek
VE.Jk.EB.SW2.RegCoI.Hajek
VE.Jk.EB.SW2.RegCo. Hajek

For the inclusion probabilities:
1 st order inclusion probabilities:
2nd order (joint) inclusion probabilities:

The available functions are:
Pk.PropNorm.U
Pkl.Hajek.s

datasets

oaxaca

Details

To return to this description type:
help(samplingVarEst)
or type:
?samplingVarEst
To cite, use:
citation("samplingVarEst")

Description

Estimates a population correlation coefficient of two variables using the Hajek (1971) point estimator.

Usage

Est.Corr.Hajek(VecY.s, VecX.s, VecPk.s)

Arguments

VecY.s vector of the variable of interest Y ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.
VecX.s vector of the variable of interest X ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecY.s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.

Details

For the population correlation coefficient of two variables y and x :

$$
C=\frac{\sum_{k \in U}\left(y_{k}-\bar{y}\right)\left(x_{k}-\bar{x}\right)}{\sqrt{\sum_{k \in U}\left(y_{k}-\bar{y}\right)^{2}} \sqrt{\sum_{k \in U}\left(x_{k}-\bar{x}\right)^{2}}}
$$

the point estimator of C, assuming that N is unknown (see Sarndal et al., 1992, Sec. 5.9) (implemented by the current function), is:

$$
\hat{C}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k}\left(y_{k}-\hat{\bar{y}}_{\text {Hajek }}\right)\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)}{\sqrt{\sum_{k \in s} w_{k}\left(y_{k}-\hat{\bar{y}}_{\text {Hajek }}\right)^{2}} \sqrt{\sum_{k \in s} w_{k}\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)^{2}}}
$$

where $\hat{\bar{y}}_{\text {Hajek }}$ is the Hajek (1971) point estimator of the population mean $\bar{y}=N^{-1} \sum_{k \in U} y_{k}$,

$$
\hat{\bar{y}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}}
$$

and $w_{k}=1 / \pi_{k}$ with π_{k} denoting the inclusion probability of the k-th element in the sample s.

Value

The function returns a value for the correlation coefficient point estimator.

Author(s)

Emilio Lopez Escobar.

References

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.
Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. SpringerVerlag, Inc.

See Also

```
Est.Corr.NHT
VE.Jk.Tukey.Corr.Hajek
VE.Jk.CBS.HT.Corr.Hajek
VE.Jk.CBS.SYG.Corr.Hajek
VE.Jk.B.Corr.Hajek
VE.Jk.EB.SW2.Corr.Hajek
```


Examples

data(oaxaca)	\#Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca\$HOMES00)	\#Reconstructs the 1st order incl. probs.
s <- oaxaca\$sHOMES00	\#Defines the sample to be used
y1 <- oaxaca\$POP10	\#Defines the variable of interest y1
y2 <- oaxaca\$POPMAL10	\#Defines the variable of interest y2
x <- oaxaca\$HOMES10	\#Defines the variable of interest x
\#Computes the correlation coefficient esti	tor for y 1 and x
Est.Corr. Hajek (y1[s==1], $\mathrm{x}[\mathrm{s}==1]$, pik.U[s=	
\#Computes the correlation coefficient estim	tor for y 2 and x
Est.Corr.Hajek(y2[s==1], x[s==1], pik.U[s==1	

Description

Estimates a population correlation coefficient of two variables using the Narain (1951); HorvitzThompson (1952) point estimator.

Usage

Est.Corr.NHT(VecY.s, VecX.s, VecPk.s, N)

Arguments

VecY.s vector of the variable of interest Y ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.
VecX.s vector of the variable of interest X ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecY.s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.
$\mathrm{N} \quad$ the population size. It must be an integer or a double-precision scalar with zerovalued fractional part.

Details

For the population correlation coefficient of two variables y and x :

$$
C=\frac{\sum_{k \in U}\left(y_{k}-\bar{y}\right)\left(x_{k}-\bar{x}\right)}{\sqrt{\sum_{k \in U}\left(y_{k}-\bar{y}\right)^{2}} \sqrt{\sum_{k \in U}\left(x_{k}-\bar{x}\right)^{2}}}
$$

the point estimator of C (implemented by the current function) is given by:

$$
\hat{C}=\frac{\sum_{k \in s} w_{k}\left(y_{k}-\hat{\bar{y}}_{N H T}\right)\left(x_{k}-\hat{\bar{x}}_{N H T}\right)}{\sqrt{\sum_{k \in s} w_{k}\left(y_{k}-\hat{\bar{y}}_{N H T}\right)^{2}} \sqrt{\sum_{k \in s} w_{k}\left(x_{k}-\hat{\bar{x}}_{N H T}\right)^{2}}}
$$

where $\hat{\bar{y}}_{N H T}$ is the Narain (1951); Horvitz-Thompson (1952) estimator for the population mean $\bar{y}=N^{-1} \sum_{k \in U} y_{k}$,

$$
\hat{\bar{y}}_{N H T}=\frac{1}{N} \sum_{k \in s} w_{k} y_{k}
$$

and $w_{k}=1 / \pi_{k}$ with π_{k} denoting the inclusion probability of the k-th element in the sample s.

Value

The function returns a value for the correlation coefficient point estimator.

Author(s)

Emilio Lopez Escobar.

References

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663-685.
Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 3, 169-175.

See Also

Est.Corr.Hajek
VE.Jk.Tukey.Corr.NHT

Examples

```
data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#Computes the correlation coefficient estimator for y1 and x
Est.Corr.NHT(y1[s==1], x[s==1], pik.U[s==1], N)
#Computes the correlation coefficient estimator for y2 and x
Est.Corr.NHT(y2[s==1], x[s==1], pik.U[s==1],N)
```

[^0]
Description

Computes the Hajek (1971) estimator for the empirical cumulative distribution function (ECDF).

Usage

Est.EmpDistFunc.Hajek(VecY.s, VecPk.s, t)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk. s. There must not be missing values.
VecPk.s
t vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.
value to be evaluated for the empirical cumulative distribution function. It must be an integer or a double-precision scalar.

Details

For the population empirical cumulative distribution function (ECDF) of the variable y at the value t :

$$
F n(t)=\frac{\#\left(k \in U: y_{k} \leq t\right)}{N}=\frac{1}{N} \sum_{k \in U} I\left(y_{k} \leq t\right)
$$

the approximately unbiased Hajek (1971) estimator of $F n(t)$ (implemented by the current function) is given by:

$$
\hat{F} n_{\text {Hajek }}(t)=\frac{\sum_{k \in s} w_{k} I\left(y_{k} \leq t\right)}{\sum_{k \in s} w_{k}}
$$

where $I\left(y_{k} \leq t\right)$ denotes the indicator function that takes the value 1 if $y_{k} \leq t$ and the value 0 otherwise, and where $w_{k}=1 / \pi_{k}$ and π_{k} denotes the inclusion probability of the k-th element in the sample s.

Value

The function returns a value for the empirical cumulative distribution function evaluated at t.

Author(s)

Emilio Lopez Escobar [aut, cre], Juan Francisco Munoz Rosas [ctb].

References

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.

See Also

Est.EmpDistFunc.NHT

Examples

```
data(oaxaca)
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00
y1 <- oaxaca$POP10
Est.EmpDistFunc.Hajek(y1[s==1], pik.U[s==1], 950) #Hajek est. of ECDF for y1 at t=950
```


Est.EmpDistFunc.NHT The Narain-Horvitz-Thompson estimator for the empirical cumulative distribution function

Description

Computes the Narain (1951); Horvitz-Thompson (1952) estimator for the empirical cumulative distribution function (ECDF).

Usage

Est.EmpDistFunc.NHT(VecY.s, VecPk.s, N, t)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk. s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk. s must be greater than zero and less than or equal to one. There must not be missing values.
$\mathrm{N} \quad$ the population size. It must be an integer or a double-precision scalar with zerovalued fractional part.
$\mathrm{t} \quad$ value to be evaluated for the empirical cumulative distribution function. It must be an integer or a double-precision scalar.

Details

For the population empirical cumulative distribution function (ECDF) of the variable y at the value t :

$$
F n(t)=\frac{\#\left(k \in U: y_{k} \leq t\right)}{N}=\frac{1}{N} \sum_{k \in U} I\left(y_{k} \leq t\right)
$$

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of $F n(t)$ (implemented by the current function) is given by:

$$
\hat{F} n_{N H T}(t)=\frac{1}{N} \sum_{k \in s} \frac{I\left(y_{k} \leq t\right)}{\pi_{k}}
$$

where $I\left(y_{k} \leq t\right)$ denotes the indicator function that takes the value 1 if $y_{k} \leq t$ and the value 0 otherwise, and where π_{k} denotes the inclusion probability of the k-th element in the sample s.

Value

The function returns a value for the empirical cumulative distribution function evaluated at t.

Author(s)

Emilio Lopez Escobar [aut, cre], Juan Francisco Munoz Rosas [ctb].

References

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663-685.
Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 3, 169-175.

See Also

```
Est.EmpDistFunc.Hajek
```


Examples

```
data(oaxaca) #Loads Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the inclusion probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
Est.EmpDistFunc.NHT(y1[s==1], pik.U[s==1], N, 950) #NHT est. of ECDF for y1 at t=950
```

Est.Mean. Hajek The Hajek estimator for a mean

Description

Computes the Hajek (1971) estimator for a population mean.

Usage

Est.Mean.Hajek(VecY.s, VecPk.s)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk. s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.

Details

For the population mean of the variable y :

$$
\bar{y}=\frac{1}{N} \sum_{k \in U} y_{k}
$$

the approximately unbiased Hajek (1971) estimator of \bar{y} (implemented by the current function) is given by:

$$
\hat{\bar{y}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}}
$$

where $w_{k}=1 / \pi_{k}$ and π_{k} denotes the inclusion probability of the k-th element in the sample s.

Value

The function returns a value for the mean point estimator.

Author(s)

Emilio Lopez Escobar.

References

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.

See Also

```
Est.Mean.NHT
VE.Jk.Tukey.Mean.Hajek
VE.Jk.CBS.HT.Mean.Hajek
VE.Jk.CBS.SYG.Mean.Hajek
VE.Jk.B.Mean.Hajek
VE.Jk.EB.SW2.Mean.Hajek
```


Examples

```
data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$HOMES10
Est.Mean.Hajek(y1[s==1], pik.U[s==1])
#Defines the variable of interest y2
#Computes the Hajek est. for y1
Est.Mean.Hajek(y2[s==1], pik.U[s==1]) #Computes the Hajek est. for y2
```


Description

Computes the Narain (1951); Horvitz-Thompson (1952) estimator for a population mean.

Usage

Est.Mean.NHT(VecY.s, VecPk.s, N)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.

N the population size. It must be an integer or a double-precision scalar with zerovalued fractional part.

Details

For the population mean of the variable y :

$$
\bar{y}=\frac{1}{N} \sum_{k \in U} y_{k}
$$

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of \bar{y} (implemented by the current function) is given by:

$$
\hat{\bar{y}}_{N H T}=\frac{1}{N} \sum_{k \in s} \frac{y_{k}}{\pi_{k}}
$$

where π_{k} denotes the inclusion probability of the k-th element in the sample s.

Value

The function returns a value for the mean point estimator.

Author(s)

Emilio Lopez Escobar.

References

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663-685.
Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 3, 169-175.

See Also

```
Est.Mean.Hajek
VE.HT.Mean.NHT
VE.SYG.Mean.NHT
VE.Hajek.Mean.NHT
```


Examples

data(oaxaca)	\#Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca\$HOMES00)	\#Reconstructs the 1st order incl. probs.
s <- oaxaca\$sHOMES00	\#Defines the sample to be used
N <- dim(oaxaca)[1]	\#Defines the population size
y1 <- oaxaca\$POP10	\#Defines the variable of interest y1
y2 <- oaxaca\$HOMES10	\#Defines the variable of interest y2
Est.Mean.NHT (y1[s==1], pik.U[s==1], N)	\#The NHT estimator for y1
Est.Mean.NHT (y2[s==1], pik.U[s==1], N$)$	\#The NHT estimator for y2

Est.Ratio Estimator of a ratio

Description

Estimates a population ratio of two totals/means.

Usage

Est.Ratio(VecY.s, VecX.s, VecPk.s)

Arguments

VecY.s vector of the numerator variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.
VecX.s vector of the denominator variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk. s and VecY.s. There must not be missing values. All values of VecX. s should be greater than zero. A warning is displayed if this does not hold, and computations continue if mathematical expressions allow this kind of values for the denominator variable.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.

Details

For the population ratio of two totals/means of the variables y and x :

$$
R=\frac{\sum_{k \in U} y_{k} / N}{\sum_{k \in U} x_{k} / N}=\frac{\sum_{k \in U} y_{k}}{\sum_{k \in U} x_{k}}
$$

the ratio estimator of R (implemented by the current function) is given by:

$$
\hat{R}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k} x_{k}}
$$

where $w_{k}=1 / \pi_{k}$ and π_{k} denotes the inclusion probability of the k-th element in the sample s.

Value

The function returns a value for the ratio point estimator.

Author(s)

Emilio Lopez Escobar.

References

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.
Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663-685.
Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 3, 169-175.

See Also

VE.Jk.Tukey.Ratio
VE.Jk.CBS.HT.Ratio
VE.Jk.CBS.SYG.Ratio
VE.Jk.B.Ratio
VE.Jk.EB.SW2.Ratio

Examples

a(oaxaca)	\#Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca\$HOMES00)	\#Reconstructs the 1st order incl. probs.
s <- oaxaca\$sH0MES00	\#Defines the sample to be used
y1 <- oaxaca\$POP10	\#Defines the numerator variable y1
y2 <- oaxaca\$POPMAL10	\#Defines the numerator variable y2
x <- oaxaca\$HOMES10	\#Defines the denominator variable x
Est.Ratio (y1[s==1], $\mathrm{x}[\mathrm{s}==1]$, pik.U[s==1])	\#Ratio estimator for y1 and x
Est.Ratio (y2[s==1], $\mathrm{x}[\mathrm{s}==1]$, pik.U[s==1])	\#Ratio estimator for y 2 and x

Est.RegCo. Hajek Estimator of the regression coefficient using the Hajek point estimator

Description

Estimates the population regression coefficient using the Hajek (1971) point estimator.

Usage

Est.RegCo.Hajek(VecY.s, VecX.s, VecPk.s)

Arguments

VecY.s vector of the variable of interest Y ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.
VecX.s vector of the variable of interest X ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecY.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk. s must be greater than zero and less than or equal to one. There must not be missing values.

Details

From Linear Regression Analysis, for an imposed population model

$$
y=\alpha+\beta x
$$

the population regression coefficient β, assuming that the population size N is unknown (see Sarndal et al., 1992, Sec. 5.10), can be estimated by:

$$
\hat{\beta}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k}\left(y_{k}-\hat{\bar{y}}_{\text {Hajek }}\right)\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)}{\sum_{k \in s} w_{k}\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)^{2}}
$$

where $\hat{\bar{y}}_{\text {Hajek }}$ and $\hat{\bar{x}}_{\text {Hajek }}$ are the Hajek (1971) point estimators of the population means $\bar{y}=$ $N^{-1} \sum_{k \in U} y_{k}$ and $\bar{x}=N^{-1} \sum_{k \in U} x_{k}$, respectively,

$$
\begin{aligned}
\hat{\bar{y}}_{\text {Hajek }} & =\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}} \\
\hat{\bar{x}}_{\text {Hajek }} & =\frac{\sum_{k \in s} w_{k} x_{k}}{\sum_{k \in s} w_{k}}
\end{aligned}
$$

and $w_{k}=1 / \pi_{k}$ with π_{k} denoting the inclusion probability of the k-th element in the sample s.

Value

The function returns a value for the regression coefficient point estimator.

Author(s)

Emilio Lopez Escobar.

References

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.
Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. SpringerVerlag, Inc.

See Also

Est.RegCoI.Hajek
VE.Jk.Tukey.RegCo. Hajek
VE.Jk.CBS.HT.RegCo.Hajek
VE.Jk.CBS.SYG.RegCo.Hajek
VE.Jk.B.RegCo.Hajek
VE.Jk.EB.SW2.RegCo.Hajek

Examples

```
data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#Computes the regression coefficient estimator for y1 and x
Est.RegCo.Hajek(y1[s==1], x[s==1], pik.U[s==1])
#Computes the regression coefficient estimator for y2 and x
Est.RegCo.Hajek(y2[s==1], x[s==1], pik.U[s==1])
```

Est.RegCoI.Hajek | Estimator of the intercept regression coefficient using the Hajek point |
| :--- |
| estimator |

Description

Estimates the population intercept regression coefficient using the Hajek (1971) point estimator.

Usage

Est.RegCoI.Hajek(VecY.s, VecX.s, VecPk.s)

Arguments

VecY.s vector of the variable of interest Y ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.

VecX.s vector of the variable of interest X ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecY.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.

Details

From Linear Regression Analysis, for an imposed population model

$$
y=\alpha+\beta x
$$

the population intercept regression coefficient α, assuming that the population size N is unknown (see Sarndal et al., 1992, Sec. 5.10), can be estimated by:

$$
\hat{\alpha}_{H a j e k}=\hat{\bar{y}}_{\text {Hajek }}-\frac{\sum_{k \in s} w_{k}\left(y_{k}-\hat{\bar{y}}_{\text {Hajek }}\right)\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)}{\sum_{k \in s} w_{k}\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)^{2}} \hat{\bar{x}}_{\text {Hajek }}
$$

where $\hat{\bar{y}}_{\text {Hajek }}$ and $\hat{\bar{x}}_{\text {Hajek }}$ are the Hajek (1971) point estimators of the population means $\bar{y}=$ $N^{-1} \sum_{k \in U} y_{k}$ and $\bar{x}=N^{-1} \sum_{k \in U} x_{k}$, respectively,

$$
\begin{aligned}
& \hat{\bar{y}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}} \\
& \hat{\bar{x}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} x_{k}}{\sum_{k \in s} w_{k}}
\end{aligned}
$$

and $w_{k}=1 / \pi_{k}$ with π_{k} denoting the inclusion probability of the k-th element in the sample s.

Value

The function returns a value for the intercept regression coefficient point estimator.

Author(s)

Emilio Lopez Escobar.

References

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.

Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. SpringerVerlag, Inc.

See Also

```
Est.RegCo.Hajek
VE.Jk.Tukey.RegCoI.Hajek
VE.Jk.CBS.HT.RegCoI.Hajek
VE.Jk.CBS.SYG.RegCoI.Hajek
VE.Jk.B.RegCoI.Hajek
VE.Jk.EB.SW2.RegCoI.Hajek
```


Examples

```
data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#Computes the intercept regression coefficient estimator for y1 and x
Est.RegCoI.Hajek(y1[s==1], x[s==1], pik.U[s==1])
#Computes the intercept regression coefficient estimator for y2 and x
Est.RegCoI.Hajek(y2[s==1], x[s==1], pik.U[s==1])
```


Est.Total.Hajek The Hajek estimator for a total

Description

Computes the Hajek (1971) estimator for a population total.

Usage

Est.Total.Hajek(VecY.s, VecPk.s, N)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk. s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.
$\mathrm{N} \quad$ the population size. It must be an integer or a double-precision scalar with zerovalued fractional part.

Details

For the population total of the variable y :

$$
t=\sum_{k \in U} y_{k}
$$

the approximately unbiased Hajek (1971) estimator of t (implemented by the current function) is given by:

$$
\hat{t}_{\text {Hajek }}=N \frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}}
$$

where $w_{k}=1 / \pi_{k}$ and π_{k} denotes the inclusion probability of the k-th element in the sample s.

Value

The function returns a value for the total point estimator.

Author(s)

Emilio Lopez Escobar.

References

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.

See Also

```
Est.Total.NHT
VE.Jk.Tukey.Total.Hajek
VE.Jk.CBS.HT.Total.Hajek
VE.Jk.CBS.SYG.Total.Hajek
VE.Jk.B.Total.Hajek
VE.Jk.EB.SW2.Total.Hajek
```


Examples

data(oaxaca)	\#Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca\$HOMES00)	\#Reconstructs the 1st order incl. probs.
s	$<-$ oaxaca\$sHOMES00
N	$<-\operatorname{dim}($ oaxaca)[1]
y 1	$<-$ oaxaca\$POP10
y2 $<-$ oaxaca\$HOMES10	\#Defines the sample to be used
Est.Total.Hajek $(y 1[s==1], \operatorname{pik} . U[s==1], N)$	\#Defines the variable y1
Est.Total.Hajek $(y 2[s==1], \operatorname{pik} . U[s==1], N)$	\#Defines the variable y2

Description

Computes the Narain (1951); Horvitz-Thompson (1952) estimator for a population total.

Usage

Est.Total.NHT(VecY.s, VecPk.s)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk. s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.

Details

For the population total of the variable y :

$$
t=\sum_{k \in U} y_{k}
$$

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of t (implemented by the current function) is given by:

$$
\hat{t}_{N H T}=\sum_{k \in s} \frac{y_{k}}{\pi_{k}}
$$

where π_{k} denotes the inclusion probability of the k-th element in the sample s.

Value

The function returns a value for the total point estimator.

Author(s)

Emilio Lopez Escobar.

References

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663-685.
Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 3, 169-175.

See Also

```
Est.Total.Hajek
VE.HT.Total.NHT
VE.SYG.Total.NHT
VE.Hajek.Total.NHT
```


Examples

```
data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$HOMES10 #Defines the variable of interest y2
```

```
Est.Total.NHT(y1[s==1], pik.U[s==1]) #Computes the NHT estimator for y1
Est.Total.NHT(y2[s==1], pik.U[s==1]) #Computes the NHT estimator for y2
```

oaxaca Municipalities of the state of Oaxaca in Mexico

Description

Dataset with information about the free and sovereign state of Oaxaca, which is located in the southern part of Mexico. The dataset contains information on population, surface, indigenous language, agriculture, and income from years ranging from 2000 to 2010. The information was originally collected and processed by Mexico's National Institute of Statistics and Geography (INEGI by its name in Spanish, 'Instituto Nacional de Estadistica y Geografia', http://www.inegi.org.mx/).

Usage

data(oaxaca)

Format

A data frame with 570 observations on the following 41 variables:
IDREGION region INEGI code.
LBREGION region name (without accents and Spanish language characters).
IDDISTRI district INEGI code.
LBDISTRI district name (without accents and Spanish language characters).
IDMUNICI municipality INEGI code.
LBMUNICI municipality name (without accents and Spanish language characters).
SURFAC05 surface in squared kilometres 2005.
POP00 population 2000.
POP10 population 2010.
HOMES00 number of homes 2000.
HOMES10 number of homes 2010.
POPMAL00 male population 2000.
POPMAL10 male population 2010.
POPFEM00 female population 2000.
POPFEM10 female population 2010.
INLANG00 5 or more years old population which speaks indigenous language 2000.
INLANG10 5 or more years old population which speaks indigenous language 2010.
INCOME00 gross income in thousands of Mexican pesos 2000.
INCOME01 gross income in thousands of Mexican pesos 2001.
INCOME02 gross income in thousands of Mexican pesos 2002.

INCOME03 gross income in thousands of Mexican pesos 2003.
PTREES00 planted trees 2000.
PTREES01 planted trees 2001.
PTREES02 planted trees 2002.
PTREES03 planted trees 2003.
MARRIA07 marriages 2007.
MARRIA08 marriages 2008.
MARRIA09 marriages 2009.
HARVBE07 harvested bean surface in hectares 2007.
HARVBE08 harvested bean surface in hectares 2008.
HARVBE09 harvested bean surface in hectares 2009.
VALUBE07 value of bean production in thousands of Mexican pesos 2007.
VALUBE08 value of bean production in thousands of Mexican pesos 2008.
VALUBE09 value of bean production in thousands of Mexican pesos 2009.
VOLUBE07 volume of bean production in tons 2007.
VOLUBE08 volume of bean production in tons 2008.
VOLUBE09 volume of bean production in tons 2009.
sHOMES00 a sample (column vector of ones and zeros; $1=$ selected, $0=$ otherwise) of 373 mu nicipalities drawn using the Hajek (1964) maximum-entropy sampling design with inclusion probabilities proportional to the variable HOMES00.
SSURFAC a sample (column vector of ones and zeros; $1=$ selected, $0=$ otherwise) of 373 mu nicipalities drawn using the Hajek (1964) maximum-entropy sampling design with inclusion probabilities proportional to the variable SURFAC05.

SIZEDIST the size of the district, i.e., the number of municipalities in each district.
sSW_10_3 a sample (column vector of ones and zeros; $1=$ selected, $0=$ otherwise) of $30 \mathrm{mu}-$ nicipalities drawn using a self-weighted two-stage sampling design. The first stage draws 10 districts using the Hajek (1964) maximum-entropy sampling design with clusters' inclusion probabilities proportional to the size of the clusters (variable SIZEDIST). The second stage draws 3 municipalities within the selected districts at the first stage, using equal-probability without-replacement sampling.

Source

Mexico's National Institute of Statistics and Geography (INEGI), 'Instituto Nacional de Estadistica y Geografia' http://www.inegi.org.mx/

Examples

data(oaxaca)	\#Loads the Oaxaca municipalities dataset
mean(oaxaca\$INCOME00, na.rm= TRUE)	\#Computes INCOME00 mean (note it has NA's)
median(oaxaca\$INCOME00, na.rm= TRUE)	\#Computes INCOME00 median (note it has NA's)

Description

Creates and normalises the 1 st order inclusion probabilities proportional to a specified variable. In the current context, normalisation means that the inclusion probabilities are less than or equal to 1 . Ideally, they should sum up to n, the sample size.

Usage

Pk.PropNorm.U(n, VecMOS.U)

Arguments

n the sample size. It must be an integer or a double-precision scalar with zerovalued fractional part.

VecMOS.U vector of the variable called measure of size (MOS) to which the first-order inclusion probabilities are to be proportional; its length is equal to the population size. Values in VecMOS.U should be greater than zero (a warning message appears if this does not hold). There must not be missing values.

Details

Although the normalisation procedure is well-known in the survey sampling literature, we follow the procedure described in Chao (1982, p. 654). Hence, we obtain a unique set of inclusion probabilities that are proportional to the MOS variable.

Value

The function returns a vector of length n with the inclusion probabilities.

Author(s)

Emilio Lopez Escobar.

References

Chao, M. T. (1982) A general purpose unequal probability sampling plan. Biometrika 69, 653-656.

See Also

Pkl.Hajek.s
Pkl.Hajek.U

Examples

```
data(oaxaca) #Loads the Oaxaca municipalities dataset
    #Creates the normalised 1st order incl. probs. proportional
    #to the variable oaxaca$HOMES00 and with sample size 373
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
sum(pik.U) #Shows the sum is equal to the sample size 373
any(pik.U>1) #Shows there isn't any probability greater than 1
any(pik.U<0) #Shows there isn't any probability less than 0
```


Pkl.Hajek.s

The Hajek approximation for the 2 nd order (joint) inclusion probabilities (sample based)

Description

Computes the Hajek (1964) approximation for the 2nd order (joint) inclusion probabilities utilising only sample-based quantities.

Usage

Pkl.Hajek.s(VecPk.s)

Arguments

VecPk.s vector of the first-order inclusion probabilities; its length is equal to the sample size. Values in VecPk. s must be greater than zero and less than or equal to one. There must not be missing values.

Details

Let π_{k} denote the inclusion probability of the k-th element in the sample s, and let $\pi_{k l}$ denote the joint-inclusion probabilities of the k-th and l-th elements in the sample s. If the joint-inclusion probabilities $\pi_{k l}$ are not available, the Hajek (1964) approximation can be used. Note that this approximation is designed for large-entropy sampling designs, large samples, and large populations, i.e. care should be taken with highly-stratified samples, e.g. Berger (2005).

The sample-based version of the Hajek (1964) approximation for the joint-inclusion probabilities $\pi_{k l}$ (implemented by the current function) is:

$$
\pi_{k l} \doteq \pi_{k} \pi_{l}\left\{1-\hat{d}^{-1}\left(1-\pi_{k}\right)\left(1-\pi_{l}\right)\right\}
$$

where $\hat{d}=\sum_{k \in s}\left(1-\pi_{k}\right)$.
The approximation was originally developed for $d \rightarrow \infty$, under the maximum-entropy sampling design (see Hajek 1981, Theorem 3.3, Ch. 3 and 6), the Rejective Sampling design. It requires that the utilised sampling design is of large entropy. An overview can be found in Berger and Tille (2009). An account of different sampling designs, $\pi_{k l}$ approximations, and approximate variances under large-entropy designs can be found in Tille (2006), Brewer and Donadio (2003), and Haziza, Mecatti, and Rao (2008). Recently, Berger (2011) gave sufficient conditions under which Hajek's results still hold for large-entropy sampling designs that are not the maximum-entropy one.

Value

The function returns a (n by n) square matrix with the estimated joint inclusion probabilities, where n is the sample size.

Author(s)

Emilio Lopez Escobar.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal probabilities. Australian \& New Zealand Journal of Statistics, 47, 365-373.

Berger, Y. G. (2011) Asymptotic consistency under large entropy sampling designs with unequal probabilities. Pakistan Journal of Statististics, 27, 407-426.

Berger, Y. G. and Tille, Y. (2009) Sampling with unequal probabilities. In Sample Surveys: Design, Methods and Applications (eds. D. Pfeffermann and C. R. Rao), 39-54. Elsevier, Amsterdam.

Brewer, K. R. W. and Donadio, M. E. (2003) The large entropy variance of the Horvitz-Thompson estimator. Survey Methodology 29, 189-196.

Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite population. The Annals of Mathematical Statistics, 35, 4, 1491-1523.

Hajek, J. (1981) Sampling From a Finite Population. Dekker, New York.
Haziza, D., Mecatti, F. and Rao, J. N. K. (2008) Evaluation of some approximate variance estimators under the Rao-Sampford unequal probability sampling design. Metron, LXVI, 91-108.

Tille, Y. (2006) Sampling Algorithms. Springer, New York.

See Also

Pkl.Hajek.U
Pk.PropNorm.U

Examples

```
data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$SHOMES00 #Defines the sample to be used
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#First 5 rows/cols of (sample-based) 2nd order incl. probs. matrix
pikl.s[1:5,1:5]
```


Pkl.Hajek.U

The Hajek approximation for the 2 nd order (joint) inclusion probabilities (population based)

Description

Computes the Hajek (1964) approximation for the 2 nd order (joint) inclusion probabilities utilising population-based quantities.

Usage

Pkl.Hajek.U(VecPk.U)

Arguments

VecPk.U vector of the first-order inclusion probabilities; its length is equal to the population size. Values in VecPk. U must be greater than zero and less than or equal to one. There must not be missing values.

Details

Let π_{k} denote the inclusion probability of the k-th element in the sample s, and let $\pi_{k l}$ denote the joint-inclusion probabilities of the k-th and l-th elements in the sample s. If the joint-inclusion probabilities $\pi_{k l}$ are not available, the Hajek (1964) approximation can be used. Note that this approximation is designed for large-entropy sampling designs, large samples, and large populations, i.e., care should be taken with highly-stratified samples, e.g. Berger (2005).

The population-based version of the Hajek (1964) approximation for the joint-inclusion probabilities $\pi_{k l}$ (implemented by the current function) is:

$$
\pi_{k l} \doteq \pi_{k} \pi_{l}\left\{1-d^{-1}\left(1-\pi_{k}\right)\left(1-\pi_{l}\right)\right\}
$$

where $d=\sum_{k \in U} \pi_{k}\left(1-\pi_{k}\right)$.
The approximation was originally developed for $d \rightarrow \infty$, under the maximum-entropy sampling design (see Hajek 1981, Theorem 3.3, Ch. 3 and 6), the Rejective Sampling design. It requires that the utilised sampling design is of large entropy. An overview can be found in Berger and Tille (2009). An account of different sampling designs, $\pi_{k l}$ approximations, and approximate variances under large-entropy designs can be found in Tille (2006), Brewer and Donadio (2003), and Haziza, Mecatti, and Rao (2008). Recently, Berger (2011) gave sufficient conditions under which Hajek's results still hold for large-entropy sampling designs that are not the maximum-entropy one.

Value

The function returns a (N by N) square matrix with the estimated joint inclusion probabilities, where N is the population size.

Author(s)

Emilio Lopez Escobar.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal probabilities. Australian \& New Zealand Journal of Statistics, 47, 365-373.

Berger, Y. G. (2011) Asymptotic consistency under large entropy sampling designs with unequal probabilities. Pakistan Journal of Statististics, 27, 407-426.
Berger, Y. G. and Tille, Y. (2009) Sampling with unequal probabilities. In Sample Surveys: Design, Methods and Applications (eds. D. Pfeffermann and C. R. Rao), 39-54. Elsevier, Amsterdam.

Brewer, K. R. W. and Donadio, M. E. (2003) The large entropy variance of the Horvitz-Thompson estimator. Survey Methodology 29, 189-196.
Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite population. The Annals of Mathematical Statistics, 35, 4, 1491-1523.
Hajek, J. (1981) Sampling From a Finite Population. Dekker, New York.
Haziza, D., Mecatti, F. and Rao, J. N. K. (2008) Evaluation of some approximate variance estimators under the Rao-Sampford unequal probability sampling design. Metron, LXVI, 91-108.
Tille, Y. (2006) Sampling Algorithms. Springer, New York.

See Also

Pkl.Hajek.s
Pk.PropNorm.U

Examples

```
data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
#(This approximation is only suitable for large-entropy sampling designs)
pikl.U <- Pkl.Hajek.U(pik.U) #Approximates 2nd order incl. probs. from U
#First 5 rows/cols of (population-based) 2nd order incl. probs. matrix
pikl.U[1:5,1:5]
```

VE.EB.HT.Mean.Hajek \quad| The Escobar-Berger unequal probability replicate variance estimator |
| :--- |
| for the Hajek (1971) estimator of a mean (Horvitz-Thompson form) |

Description

Computes the Escobar-Berger (2013) unequal probability replicate variance estimator for the Hajek estimator of a mean. It uses the Horvitz-Thompson (1952) variance form.

Usage

VE.EB.HT.Mean.Hajek(VecY.s, VecPk.s, MatPkl.s,
VecAlpha.s = rep.int(1, length(VecPk.s)))

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk. s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.
MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns equals n, the sample size. Values in MatPkl. s must be greater than zero and less than or equal to one. There must not be missing values.
VecAlpha.s vector of the α_{k} values; its length is equal to n, the sample size. Values in VecAlpha. s can be different for each unit, and must be greater or equal to zero. Escobar-Berger (2013) showed that this replicate variance estimator is valid for $\alpha_{k} \geq 0$. In particular, they suggest using $\alpha_{k}=1$ for all units in the sample (the default for VecAlpha.s if omitted in the function call). Using $\alpha_{k}>1$ approximates the Demnati-Rao (2004) linearisation variance estimators. There must not be missing values.

Details

For the population mean of the variable y :

$$
\bar{y}=\frac{1}{N} \sum_{k \in U} y_{k}
$$

the approximately unbiased Hajek (1971) estimator of \bar{y} is given by:

$$
\hat{\bar{y}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}}
$$

where $w_{k}=1 / \pi_{k}$ and π_{k} denotes the inclusion probability of the k-th element in the sample s. The variance of $\hat{\bar{y}}_{\text {Hajek }}$ can be estimated by the Escobar-Berger (2013) unequal probability replicate variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{\bar{y}}_{\text {Hajek }}\right)=\sum_{k \in s} \sum_{l \in s} \frac{\pi_{k l}-\pi_{k} \pi_{l}}{\pi_{k l}} \breve{\nu}_{k} \breve{\nu}_{l}
$$

where

$$
\breve{\nu}_{k}=w_{k}^{\alpha_{k}}\left(\hat{\bar{y}}_{H a j e k}-\hat{\bar{y}}_{H a j e k, k}^{*}\right)
$$

for some $\alpha_{k} \geq 0$ (suggested to be 1 , see below comments) and with

$$
\hat{\bar{y}}_{H a j e k, k}^{*}=\frac{\sum_{l \in s} w_{l} y_{l}-w_{k}^{1-\alpha_{k}} y_{k}}{\sum_{l \in s} w_{l}-w_{k}^{1-\alpha_{k}}}
$$

Regarding the value of α_{k}, Escobar-Berger (2013) show that $\hat{V}\left(\hat{\bar{y}}_{\text {Hajek }}\right)$ is valid for $\alpha_{k} \geq 0$ but conclude that $\alpha_{k}>0$ should be used as $\alpha_{k}=0$ corresponds to a naive biased and unstable jackknife. They recommend $\alpha_{k}=1$ or $\alpha_{k}>1$. If $\alpha_{k}=1, \hat{V}\left(\hat{\bar{y}}_{\text {Hajek }}\right)$ reduces to the EscobarBerger (2011) jackknife. Using $\alpha_{k}>1$ approximates the empirical influence function, i.e. the Gateaux (1919) derivative, or Demnati-Rao (2004) linearisation variance estimators. The larger the α_{k}, the closer the approximation. Further, Escobar-Berger (2013) give an intuitive explanation of the replication method from a jackknife and bootstrap perspective.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Demnati, A. and Rao, J. N. K. (2004) Linearization variance estimators for survey data. Survey Methodology, 30, 17-26.

Escobar, E. L. and Berger, Y. G. (2011) Jackknife variance estimation for functions of HorvitzThompson estimators under unequal probability sampling without replacement. In Proceeding of the 58th World Statistics Congress. Dublin, Ireland: International Statistical Institute.

Escobar, E. L. and Berger, Y. G. (2013) A new replicate variance estimator for unequal probability sampling without replacement. Canadian Journal of Statistics 41, 3, 508-524.
Gateaux, R. (1919) Fonctions d'une infinite de variables indeependantes. Bulletin de la Societe Mathematique de France, 47, 70-96.
Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663-685.

See Also

```
VE.Jk.Tukey.Mean.Hajek
VE.Jk.CBS.SYG.Mean.Hajek
VE.Jk.B.Mean.Hajek
VE.Jk.EB.SW2.Mean.Hajek
VE.EB.SYG.Mean.Hajek
```


Examples

data(oaxaca)	\#Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca\$HOMES00)	\#Reconstructs the 1st order incl. probs.
<- oaxaca\$sH0MES00	\#Defines the sample to be used
y1 <- oaxaca\$POP10	\#Defines the variable y1
y2 <- oaxaca\$POPMAL10	\#Defines the variable y2
Alpha.s <- rep(2, times=373)	\#Defines the vector with Alpha values
\#This approximation is only suitable for large-entropy sampling designs	
pikl.s <- Pkl.Hajek.s(pik.U[s==1])	\#Approx. 2nd order incl. probs. from s
\#Computes the var. est. of the Hajek mean point estimator using y1	
VE.EB.HT.Mean.Hajek(y1[s==1], pik.U[s==1], pikl.s)	
\#Computes the var. est. of the Hajek mean poi	t estimator using y2
VE.EB.HT.Mean. Hajek (y2[s==1], pik.U[s==1], pikl.s, Alpha.s)	

VE.EB.HT.Ratio	The Escobar-Berger unequal probability replicate variance estimator
for the estimator of a ratio (Horvitz-Thompson form)	

Description

Computes the Escobar-Berger (2013) unequal probability replicate variance estimator for the estimator of a ratio of two totals/means. It uses the Horvitz-Thompson (1952) variance form.

Usage

VE.EB.HT.Ratio(VecY.s, VecX.s, VecPk.s, MatPkl.s, VecAlpha.s = rep.int(1, length(VecPk.s)))

Arguments

VecY.s vector of the numerator variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.

VecX.s vector of the denominator variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk. s and VecY. s. There must not be missing values. All values of VecX. s should be greater than zero. A warning is displayed if this does not hold, and computations continue if mathematical expressions allow this kind of values for the denominator variable.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.
MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns equals n, the sample size. Values in MatPkl.s must be greater than zero and less than or equal to one. There must not be missing values.
VecAlpha.s vector of the α_{k} values; its length is equal to n, the sample size. Values in VecAlpha. s can be different for each unit, and must be greater or equal to zero. Escobar-Berger (2013) showed that this replicate variance estimator is valid for $\alpha_{k} \geq 0$. In particular, they suggest using $\alpha_{k}=1$ for all units in the sample (the default for VecAlpha.s if omitted in the function call). Using $\alpha_{k}>1$ approximates the Demnati-Rao (2004) linearisation variance estimators. There must not be missing values.

Details

For the population ratio of two totals/means of the variables y and x :

$$
R=\frac{\sum_{k \in U} y_{k} / N}{\sum_{k \in U} x_{k} / N}=\frac{\sum_{k \in U} y_{k}}{\sum_{k \in U} x_{k}}
$$

the ratio estimator of R is given by:

$$
\hat{R}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k} x_{k}}
$$

where $w_{k}=1 / \pi_{k}$ and π_{k} denotes the inclusion probability of the k-th element in the sample s. The variance of \hat{R} can be estimated by the Escobar-Berger (2013) unequal probability replicate variance estimator (implemented by the current function):

$$
\hat{V}(\hat{R})=\sum_{k \in s} \sum_{l \in s} \frac{\pi_{k l}-\pi_{k} \pi_{l}}{\pi_{k l}} \breve{\nu}_{k} \breve{\nu}_{l}
$$

where

$$
\breve{\nu}_{k}=w_{k}^{\alpha_{k}}\left(\hat{R}-\hat{R}_{k}^{*}\right)
$$

for some $\alpha_{k} \geq 0$ (suggested to be 1 , see below comments) and with

$$
\hat{R}_{k}^{*}=\frac{\left(\sum_{l \in s} w_{l} y_{l}-w_{k}^{1-\alpha_{k}} y_{k}\right) /\left(\sum_{l \in s} w_{l}-w_{k}^{1-\alpha_{k}}\right)}{\left(\sum_{l \in s} w_{l} x_{l}-w_{k}^{1-\alpha_{k}} x_{k}\right) /\left(\sum_{l \in s} w_{l}-w_{k}^{1-\alpha_{k}}\right)}=\frac{\sum_{l \in s} w_{l} y_{l}-w_{k}^{1-\alpha_{k}} y_{k}}{\sum_{l \in s} w_{l} x_{l}-w_{k}^{1-\alpha_{k}} x_{k}}
$$

Regarding the value of α_{k}, Escobar-Berger (2013) show that $\hat{V}(\hat{R})$ is valid for $\alpha_{k} \geq 0$ but conclude that $\alpha_{k}>0$ should be used as $\alpha_{k}=0$ corresponds to a naive biased and unstable jackknife. They recommend $\alpha_{k}=1$ or $\alpha_{k}>1$. If $\alpha_{k}=1, \hat{V}(\hat{R})$ reduces to the Escobar-Berger (2011) jackknife. Using $\alpha_{k}>1$ approximates the empirical influence function, i.e. the Gateaux (1919) derivative, or Demnati-Rao (2004) linearisation variance estimators. The larger the α_{k}, the closer the approximation. Further, Escobar-Berger (2013) give an intuitive explanation of the replication method from a jackknife and bootstrap perspective.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Demnati, A. and Rao, J. N. K. (2004) Linearization variance estimators for survey data. Survey Methodology, 30, 17-26.
Escobar, E. L. and Berger, Y. G. (2011) Jackknife variance estimation for functions of HorvitzThompson estimators under unequal probability sampling without replacement. In Proceeding of the 58th World Statistics Congress. Dublin, Ireland: International Statistical Institute.
Escobar, E. L. and Berger, Y. G. (2013) A new replicate variance estimator for unequal probability sampling without replacement. Canadian Journal of Statistics 41, 3, 508-524.
Gateaux, R. (1919) Fonctions d'une infinite de variables indeependantes. Bulletin de la Societe Mathematique de France, 47, 70-96.
Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663-685.

See Also

```
VE.Lin.HT.Ratio
VE.Lin.SYG.Ratio
VE.Jk.Tukey.Ratio
VE.Jk.CBS.HT.Ratio
VE.Jk.CBS.SYG.Ratio
VE.Jk.B.Ratio
VE.Jk.EB.SW2.Ratio
VE.EB.SYG.Ratio
```


Examples

```
data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the numerator variable y1
y2 <- oaxaca$POPMAL10 #Defines the numerator variable y2
x <- oaxaca$HOMES10 #Defines the denominator variable x
Alpha.s <- rep(2, times=373) #Defines the vector with Alpha values
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the ratio point estimator using y1
VE.EB.HT.Ratio(y1[s==1], x[s==1], pik.U[s==1], pikl.s) #Using default VecAlpha.s
#Computes the var. est. of the ratio point estimator using y2
VE.EB.HT.Ratio(y2[s==1], x[s==1], pik.U[s==1], pikl.s, Alpha.s)
```

```
VE.EB.HT.Total.Hajek The Escobar-Berger unequal probability replicate variance estimator
for the Hajek (1971) estimator of a total (Horvitz-Thompson form)
```


Description

Computes the Escobar-Berger (2013) unequal probability replicate variance estimator for the Hajek estimator of a total. It uses the Horvitz-Thompson (1952) variance form.

Usage

```
VE.EB.HT.Total.Hajek(VecY.s, VecPk.s, MatPkl.s, N,
                VecAlpha.s = rep.int(1, length(VecPk.s)))
```


Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns equals n, the sample size. Values in MatPkl.s must be greater than zero and less than or equal to one. There must not be missing values.
N the population size. It must be an integer or a double-precision scalar with zerovalued fractional part.
VecAlpha.s vector of the α_{k} values; its length is equal to n, the sample size. Values in VecAlpha. s can be different for each unit, and must be greater or equal to zero. Escobar-Berger (2013) showed that this replicate variance estimator is valid for $\alpha_{k} \geq 0$. In particular, they suggest using $\alpha_{k}=1$ for all units in the sample (the default for VecAlpha.s if omitted in the function call). Using $\alpha_{k}>1$ approximates the Demnati-Rao (2004) linearisation variance estimators. There must not be missing values.

Details

For the population total of the variable y :

$$
t=\sum_{k \in U} y_{k}
$$

the approximately unbiased Hajek (1971) estimator of t is given by:

$$
\hat{t}_{\text {Hajek }}=N \frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}}
$$

where $w_{k}=1 / \pi_{k}$ and π_{k} denotes the inclusion probability of the k-th element in the sample s. The variance of $\hat{t}_{\text {Hajek }}$ can be estimated by the Escobar-Berger (2013) unequal probability replicate variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{t}_{\text {Hajek }}\right)=\sum_{k \in s} \sum_{l \in s} \frac{\pi_{k l}-\pi_{k} \pi_{l}}{\pi_{k l}} \breve{\nu}_{k} \breve{\nu}_{l}
$$

where

$$
\breve{\nu}_{k}=w_{k}^{\alpha_{k}}\left(\hat{t}_{H a j e k}-\hat{t}_{H a j e k, k}^{*}\right)
$$

for some $\alpha_{k} \geq 0$ (suggested to be 1 , see below comments) and with

$$
\hat{t}_{\text {Hajek,k}}^{*}=N \frac{\sum_{l \in s} w_{l} y_{l}-w_{k}^{1-\alpha_{k}} y_{k}}{\sum_{l \in s} w_{l}-w_{k}^{1-\alpha_{k}}}
$$

Regarding the value of α_{k}, Escobar-Berger (2013) show that $\hat{V}\left(\hat{t}_{\text {Hajek }}\right)$ is valid for $\alpha_{k} \geq 0$ but conclude that $\alpha_{k}>0$ should be used as $\alpha_{k}=0$ corresponds to a naive biased and unstable jackknife. They recommend $\alpha_{k}=1$ or $\alpha_{k}>1$. If $\alpha_{k}=1, \hat{V}\left(\hat{t}_{\text {Hajek }}\right)$ reduces to the EscobarBerger (2011) jackknife. Using $\alpha_{k}>1$ approximates the empirical influence function, i.e. the Gateaux (1919) derivative, or Demnati-Rao (2004) linearisation variance estimators. The larger the α_{k}, the closer the approximation. Further, Escobar-Berger (2013) give an intuitive explanation of the replication method from a jackknife and bootstrap perspective.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Demnati, A. and Rao, J. N. K. (2004) Linearization variance estimators for survey data. Survey Methodology, 30, 17-26.
Escobar, E. L. and Berger, Y. G. (2011) Jackknife variance estimation for functions of HorvitzThompson estimators under unequal probability sampling without replacement. In Proceeding of the 58th World Statistics Congress. Dublin, Ireland: International Statistical Institute.

Escobar, E. L. and Berger, Y. G. (2013) A new replicate variance estimator for unequal probability sampling without replacement. Canadian Journal of Statistics 41, 3, 508-524.

Gateaux, R. (1919) Fonctions d'une infinite de variables indeependantes. Bulletin de la Societe Mathematique de France, 47, 70-96.

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663-685.

See Also

```
VE.Jk.Tukey.Total.Hajek
VE.Jk.CBS.SYG.Total.Hajek
VE.Jk.B.Total.Hajek
VE.Jk.EB.SW2.Total.Hajek
VE.EB.SYG.Total.Hajek
```


Examples

```
data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
Alpha.s <- rep(2, times=373) #Defines the vector with Alpha values
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the Hajek total point estimator using y1
VE.EB.HT.Total.Hajek(y1[s==1], pik.U[s==1], pikl.s, N)
#Computes the var. est. of the Hajek total point estimator using y2
VE.EB.HT.Total.Hajek(y2[s==1], pik.U[s==1], pikl.s, N, Alpha.s)
```


VE.EB.SYG.Mean.Hajek The Escobar-Berger unequal probability replicate variance estimator for the Hajek (1971) estimator of a mean (Sen-Yates-Grundy form)

Description

Computes the Escobar-Berger (2013) unequal probability replicate variance estimator for the Hajek estimator of a mean. It uses the Sen (1953); Yates-Grundy(1953) variance form.

Usage

VE.EB.SYG.Mean.Hajek(VecY.s, VecPk.s, MatPkl.s, VecAlpha.s = rep.int(1, length(VecPk.s)))

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk. s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.
MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns equals n, the sample size. Values in MatPkl.s must be greater than zero and less than or equal to one. There must not be missing values.
VecAlpha.s vector of the α_{k} values; its length is equal to n, the sample size. Values in VecAlpha. s can be different for each unit, and must be greater or equal to zero. Escobar-Berger (2013) showed that this replicate variance estimator is valid for $\alpha_{k} \geq 0$. In particular, they suggest using $\alpha_{k}=1$ for all units in the sample (the default for VecAlpha.s if omitted in the function call). Using $\alpha_{k}>1$ approximates the Demnati-Rao (2004) linearisation variance estimators. There must not be missing values.

Details

For the population mean of the variable y :

$$
\bar{y}=\frac{1}{N} \sum_{k \in U} y_{k}
$$

the approximately unbiased Hajek (1971) estimator of \bar{y} is given by:

$$
\hat{\bar{y}}_{H a j e k}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}}
$$

where $w_{k}=1 / \pi_{k}$ and π_{k} denotes the inclusion probability of the k-th element in the sample s. The variance of $\hat{\bar{y}}_{\text {Hajek }}$ can be estimated by the Escobar-Berger (2013) unequal probability replicate
variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{\bar{y}}_{\text {Hajek }}\right)=\frac{-1}{2} \sum_{k \in s} \sum_{l \in s} \frac{\pi_{k l}-\pi_{k} \pi_{l}}{\pi_{k l}}\left(\breve{\nu}_{k}-\breve{\nu}_{l}\right)^{2}
$$

where

$$
\breve{\nu}_{k}=w_{k}^{\alpha_{k}}\left(\hat{\bar{y}}_{\text {Hajek }}-\hat{\bar{y}}_{\text {Hajek }, k}^{*}\right)
$$

for some $\alpha_{k} \geq 0$ (suggested to be 1 , see below comments) and with

$$
\hat{\bar{y}}_{\text {Hajek }, k}^{*}=\frac{\sum_{l \in s} w_{l} y_{l}-w_{k}^{1-\alpha_{k}} y_{k}}{\sum_{l \in s} w_{l}-w_{k}^{1-\alpha_{k}}}
$$

Regarding the value of α_{k}, Escobar-Berger (2013) show that $\hat{V}\left(\hat{\bar{y}}_{\text {Hajek }}\right)$ is valid for $\alpha_{k} \geq 0$ but conclude that $\alpha_{k}>0$ should be used as $\alpha_{k}=0$ corresponds to a naive biased and unstable jackknife. They recommend $\alpha_{k}=1$ or $\alpha_{k}>1$. If $\alpha_{k}=1, \hat{V}\left(\hat{\bar{y}}_{\text {Hajek }}\right)$ reduces to the EscobarBerger (2011) jackknife. Using $\alpha_{k}>1$ approximates the empirical influence function, i.e. the Gateaux (1919) derivative, or Demnati-Rao (2004) linearisation variance estimators. The larger the α_{k}, the closer the approximation. Further, Escobar-Berger (2013) give an intuitive explanation of the replication method from a jackknife and bootstrap perspective.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Demnati, A. and Rao, J. N. K. (2004) Linearization variance estimators for survey data. Survey Methodology, 30, 17-26.
Escobar, E. L. and Berger, Y. G. (2011) Jackknife variance estimation for functions of HorvitzThompson estimators under unequal probability sampling without replacement. In Proceeding of the 58th World Statistics Congress. Dublin, Ireland: International Statistical Institute.
Escobar, E. L. and Berger, Y. G. (2013) A new replicate variance estimator for unequal probability sampling without replacement. Canadian Journal of Statistics 41, 3, 508-524.
Gateaux, R. (1919) Fonctions d'une infinite de variables indeependantes. Bulletin de la Societe Mathematique de France, 47, 70-96.
Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.
Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.
Sen, A. R. (1953) On the estimate of the variance in sampling with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 5, 119-127.
Yates, F. and Grundy, P. M. (1953) Selection without replacement from within strata with probability proportional to size. Journal of the Royal Statistical Society B, 15, 253-261.

See Also

> VE.Jk.Tukey.Mean.Hajek
> VE.Jk.CBS.HT.Mean.Hajek
> VE.Jk.B.Mean.Hajek
> VE.Jk.EB.SW2.Mean.Hajek
> VE.EB.HT.Mean.Hajek

Examples

data(oaxaca)	\#Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca\$HOMES00)	\#Reconstructs the 1st order incl. probs.
s <- oaxaca\$sHOMES00	\#Defines the sample to be used
y1 <- oaxaca\$P0P10	\#Defines the variable of interest y1
y2 <- oaxaca\$POPMAL10	\#Defines the variable of interest y2
Alpha.s <- rep(2, times=373)	\#Defines the vector with Alpha values
\#This approximation is only suitable for lar	-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1])	\#Approx. 2nd order incl. probs. from
\#Computes the var. est. of the Hajek mean poin	t estimator using y1
VE.EB.SYG.Mean.Hajek(y1[s==1], pik.U[s==1], pik	ikl.s)
\#Computes the var. est. of the Hajek mean poin	t estimator using y2
VE.EB.SYG.Mean.Hajek(y2[s==1], pik.U[s==1], pik	ikl.s, Alpha.s)

VE.EB.SYG.Ratio	The Escobar-Berger unequal probability replicate variance estimator
for the estimator of a ratio (Sen-Yates-Grundy form)	

Description

Computes the Escobar-Berger (2013) unequal probability replicate variance estimator for the estimator of a ratio of two totals/means. It uses the Sen (1953); Yates-Grundy(1953) variance form.

Usage

VE.EB.SYG.Ratio(VecY.s, VecX.s, VecPk.s, MatPkl.s, VecAlpha.s = rep.int(1, length(VecPk.s)))

Arguments

VecY.s vector of the numerator variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.

VecX.s vector of the denominator variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk. s and VecY. s. There must not be missing values. All values of VecX. s should be greater than zero. A warning is displayed if this does not hold, and computations continue if mathematical expressions allow this kind of values for the denominator variable.
$\begin{array}{ll}\text { VecPk.s } & \begin{array}{l}\text { vector of the first-order inclusion probabilities; its length is equal to } n \text {, the sam- } \\ \text { ple size. Values in VecPk.s must be greater than zero and less than or equal to } \\ \text { one. There must not be missing values. }\end{array} \\ \text { MatPkl.s } & \begin{array}{l}\text { matrix of the second-order inclusion probabilities; its number of rows and columns } \\ \text { equals } n \text {, the sample size. Values in MatPkl.s must be greater than zero and less } \\ \text { than or equal to one. There must not be missing values. }\end{array} \\ \text { VecAlpha.s } & \text { vector of the } \alpha_{k} \text { values; its length is equal to } n \text {, the sample size. Values in } \\ \text { VecAlpha.s can be different for each unit, and must be greater or equal to zero. } \\ \text { Escobar-Berger (2013) showed that this replicate variance estimator is valid for } \\ \alpha_{k} \geq 0 \text {. In particular, they suggest using } \alpha_{k}=1 \text { for all units in the sample } \\ \text { (the default for VecAlpha.s if omitted in the function call). Using } \alpha_{k}>1 \\ \text { approximates the Demnati-Rao (2004) linearisation variance estimators. There } \\ \text { must not be missing values. }\end{array}$

Details

For the population ratio of two totals/means of the variables y and x :

$$
R=\frac{\sum_{k \in U} y_{k} / N}{\sum_{k \in U} x_{k} / N}=\frac{\sum_{k \in U} y_{k}}{\sum_{k \in U} x_{k}}
$$

the ratio estimator of R is given by:

$$
\hat{R}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k} x_{k}}
$$

where $w_{k}=1 / \pi_{k}$ and π_{k} denotes the inclusion probability of the k-th element in the sample s. The variance of \hat{R} can be estimated by the Escobar-Berger (2013) unequal probability replicate variance estimator (implemented by the current function):

$$
\hat{V}(\hat{R})=\frac{-1}{2} \sum_{k \in s} \sum_{l \in s} \frac{\pi_{k l}-\pi_{k} \pi_{l}}{\pi_{k l}}\left(\breve{\nu}_{k}-\breve{\nu}_{l}\right)^{2}
$$

where

$$
\breve{\nu}_{k}=w_{k}^{\alpha_{k}}\left(\hat{R}-\hat{R}_{k}^{*}\right)
$$

for some $\alpha_{k} \geq 0$ (suggested to be 1 , see below comments) and with

$$
\hat{R}_{k}^{*}=\frac{\left(\sum_{l \in s} w_{l} y_{l}-w_{k}^{1-\alpha_{k}} y_{k}\right) /\left(\sum_{l \in s} w_{l}-w_{k}^{1-\alpha_{k}}\right)}{\left(\sum_{l \in s} w_{l} x_{l}-w_{k}^{1-\alpha_{k}} x_{k}\right) /\left(\sum_{l \in s} w_{l}-w_{k}^{1-\alpha_{k}}\right)}=\frac{\sum_{l \in s} w_{l} y_{l}-w_{k}^{1-\alpha_{k}} y_{k}}{\sum_{l \in s} w_{l} x_{l}-w_{k}^{1-\alpha_{k}} x_{k}}
$$

Regarding the value of α_{k}, Escobar-Berger (2013) show that $\hat{V}(\hat{R})$ is valid for $\alpha_{k} \geq 0$ but conclude that $\alpha_{k}>0$ should be used as $\alpha_{k}=0$ corresponds to a naive biased and unstable jackknife. They recommend $\alpha_{k}=1$ or $\alpha_{k}>1$. If $\alpha_{k}=1, \hat{V}(\hat{R})$ reduces to the Escobar-Berger (2011) jackknife. Using $\alpha_{k}>1$ approximates the empirical influence function, i.e. the Gateaux (1919) derivative, or Demnati-Rao (2004) linearisation variance estimators. The larger the α_{k}, the closer the approximation. Further, Escobar-Berger (2013) give an intuitive explanation of the replication method from a jackknife and bootstrap perspective.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Demnati, A. and Rao, J. N. K. (2004) Linearization variance estimators for survey data. Survey Methodology, 30, 17-26.
Escobar, E. L. and Berger, Y. G. (2011) Jackknife variance estimation for functions of HorvitzThompson estimators under unequal probability sampling without replacement. In Proceeding of the 58th World Statistics Congress. Dublin, Ireland: International Statistical Institute.
Escobar, E. L. and Berger, Y. G. (2013) A new replicate variance estimator for unequal probability sampling without replacement. Canadian Journal of Statistics 41, 3, 508-524.
Gateaux, R. (1919) Fonctions d'une infinite de variables indeependantes. Bulletin de la Societe Mathematique de France, 47, 70-96.
Sen, A. R. (1953) On the estimate of the variance in sampling with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 5, 119-127.
Yates, F. and Grundy, P. M. (1953) Selection without replacement from within strata with probability proportional to size. Journal of the Royal Statistical Society B, 15, 253-261.

See Also

```
VE.Lin.HT.Ratio
VE.Lin.SYG.Ratio
VE.Jk.Tukey.Ratio
VE.Jk.CBS.HT.Ratio
VE.Jk.CBS.SYG.Ratio
VE.Jk.B.Ratio
VE.Jk.EB.SW2.Ratio
VE.EB.HT.Ratio
```


Examples

data(oaxaca)	\#Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca\$HOMES00)	\#Reconstructs the 1st order incl. probs.
s <- oaxaca\$sHOMES00	\#Defines the sample to be used
y1 <- oaxaca\$POP10	\#Defines the numerator variable y1
y2 <- oaxaca\$POPMAL10	\#Defines the numerator variable y2
x <- oaxaca\$HOMES10	\#Defines the denominator variable x
Alpha.s <- rep(2, times=373)	\#Defines the vector with Alpha values
\#This approximation is only suitable for large	entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1])	\#Approx. 2nd order incl. probs. from s
\#Computes the var. est. of the ratio point est	imator using y1
VE.EB.SYG.Ratio y 1 [$\mathrm{s}==1]$, $\mathrm{x}[\mathrm{s}==1]$, pik.U[s==	pikl.s) \#Using default VecAlpha.s
\#Computes the var. est. of the ratio point e	mator using y2
VE.EB.SYG.Ratio $\mathrm{y} 2[\mathrm{~s}==1], \mathrm{x}[\mathrm{s}==1]$, pik.U[s==1]	, pikl.s, Alpha.s)

VE.EB.SYG.Total.Hajek The Escobar-Berger unequal probability replicate variance estimator for the Hajek (1971) estimator of a total (Sen-Yates-Grundy form)

Description

Computes the Escobar-Berger (2013) unequal probability replicate variance estimator for the Hajek estimator of a total. It uses the Sen (1953); Yates-Grundy(1953) variance form.

Usage

```
VE.EB.SYG.Total.Hajek(VecY.s, VecPk.s, MatPkl.s, N,
VecAlpha.s = rep.int(1, length(VecPk.s)))
```


Arguments

Vecr.s vector of the variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns equals n, the sample size. Values in MatPkl.s must be greater than zero and less than or equal to one. There must not be missing values.
N the population size. It must be an integer or a double-precision scalar with zerovalued fractional part.

VecAlpha.s vector of the α_{k} values; its length is equal to n, the sample size. Values in VecAlpha.s can be different for each unit, and must be greater or equal to zero. Escobar-Berger (2013) showed that this replicate variance estimator is valid for $\alpha_{k} \geq 0$. In particular, they suggest using $\alpha_{k}=1$ for all units in the sample (the default for VecAlpha.s if omitted in the function call). Using $\alpha_{k}>1$ approximates the Demnati-Rao (2004) linearisation variance estimators. There must not be missing values.

Details

For the population total of the variable y :

$$
t=\sum_{k \in U} y_{k}
$$

the approximately unbiased Hajek (1971) estimator of t is given by:

$$
\hat{t}_{\text {Hajek }}=N \frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}}
$$

where $w_{k}=1 / \pi_{k}$ and π_{k} denotes the inclusion probability of the k-th element in the sample s. The variance of $\hat{t}_{H a j e k}$ can be estimated by the Escobar-Berger (2013) unequal probability replicate variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{t}_{H a j e k}\right)=\frac{-1}{2} \sum_{k \in s} \sum_{l \in s} \frac{\pi_{k l}-\pi_{k} \pi_{l}}{\pi_{k l}}\left(\breve{\nu}_{k}-\breve{\nu}_{l}\right)^{2}
$$

where

$$
\breve{\nu}_{k}=w_{k}^{\alpha_{k}}\left(\hat{t}_{\text {Hajek }}-\hat{t}_{\text {Hajek,k}}^{*}\right)
$$

for some $\alpha_{k} \geq 0$ (suggested to be 1 , see below comments) and with

$$
\hat{t}_{\text {Hajek }, k}^{*}=N \frac{\sum_{l \in s} w_{l} y_{l}-w_{k}^{1-\alpha_{k}} y_{k}}{\sum_{l \in s} w_{l}-w_{k}^{1-\alpha_{k}}}
$$

Regarding the value of α_{k}, Escobar-Berger (2013) show that $\hat{V}\left(\hat{t}_{\text {Hajek }}\right)$ is valid for $\alpha_{k} \geq 0$ but conclude that $\alpha_{k}>0$ should be used as $\alpha_{k}=0$ corresponds to a naive biased and unstable jackknife. They recommend $\alpha_{k}=1$ or $\alpha_{k}>1$. If $\alpha_{k}=1, \hat{V}\left(\hat{t}_{\text {Hajek }}\right)$ reduces to the EscobarBerger (2011) jackknife. Using $\alpha_{k}>1$ approximates the empirical influence function, i.e. the Gateaux (1919) derivative, or Demnati-Rao (2004) linearisation variance estimators. The larger the α_{k}, the closer the approximation. Further, Escobar-Berger (2013) give an intuitive explanation of the replication method from a jackknife and bootstrap perspective.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Demnati, A. and Rao, J. N. K. (2004) Linearization variance estimators for survey data. Survey Methodology, 30, 17-26.

Escobar, E. L. and Berger, Y. G. (2011) Jackknife variance estimation for functions of HorvitzThompson estimators under unequal probability sampling without replacement. In Proceeding of the 58th World Statistics Congress. Dublin, Ireland: International Statistical Institute.
Escobar, E. L. and Berger, Y. G. (2013) A new replicate variance estimator for unequal probability sampling without replacement. Canadian Journal of Statistics 41, 3, 508-524.

Gateaux, R. (1919) Fonctions d’une infinite de variables indeependantes. Bulletin de la Societe Mathematique de France, 47, 70-96.
Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.

Sen, A. R. (1953) On the estimate of the variance in sampling with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 5, 119-127.
Yates, F. and Grundy, P. M. (1953) Selection without replacement from within strata with probability proportional to size. Journal of the Royal Statistical Society B, 15, 253-261.

See Also

```
VE.Jk.Tukey.Total.Hajek
VE.Jk.CBS.HT.Total.Hajek
VE.Jk.B.Total.Hajek
VE.Jk.EB.SW2.Total.Hajek
VE.EB.SYG.Total.Hajek
```


Examples

data(oaxaca)	\#Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca\$HOMES00)	\#Reconstructs the 1st order incl. probs.
s <- oaxaca\$sHOMES00	\#Defines the sample to be used
N <- dim(oaxaca)[1]	\#Defines the population size
y1 <- oaxaca\$P0P10	\#Defines the variable of interest y1
y2 <- oaxaca\$POPMAL10	\#Defines the variable of interest y2
Alpha.s <- rep(2, times=373)	\#Defines the vector with Alpha values
\#This approximation is only suitable for large	entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1])	\#Approx. 2nd order incl. probs. from s
\#Computes the var. est. of the Hajek total poir	t estimator using y1
VE.EB.SYG.Total.Hajek(y1[s==1], pik.U[s==1],	kl.s, N)
\#Computes the var. est. of the Hajek total poir	t estimator using y2
VE.EB.SYG.Total.Hajek(y2[s==1], pik.U[s==1],	ikl.s, N, Alpha.s)

VE.Hajek.Mean.NHT | The Hajek variance estimator for the Narain-Horvitz-Thompson point |
| :--- |
| estimator for a mean |

Description

Computes the Hajek (1964) variance estimator for the Narain (1951); Horvitz-Thompson (1952) point estimator for a population mean.

Usage

VE.Hajek.Mean.NHT(VecY.s, VecPk.s, N)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.

N
the population size. It must be an integer or a double-precision scalar with zerovalued fractional part.

Details

For the population mean of the variable y :

$$
\bar{y}=\frac{1}{N} \sum_{k \in U} y_{k}
$$

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of \bar{y} is given by:

$$
\hat{\bar{y}}_{N H T}=\frac{1}{N} \sum_{k \in s} \frac{y_{k}}{\pi_{k}}
$$

where π_{k} denotes the inclusion probability of the k-th element in the sample s. For large-entropy sampling designs, the variance of $\hat{\bar{y}}_{N H T}$ is approximated by the Hajek (1964) variance:

$$
V\left(\hat{\bar{y}}_{N H T}\right)=\frac{1}{N(N-1)}\left[\sum_{k \in U} \frac{y_{k}^{2}}{\pi_{k}}\left(1-\pi_{k}\right)-d G^{2}\right]
$$

with $d=\sum_{k \in U} \pi_{k}\left(1-\pi_{k}\right)$ and $G=d^{-1} \sum_{k \in U}\left(1-\pi_{k}\right) y_{k}$.
The variance $V\left(\hat{t}_{N H T}\right)$ can be estimated by the variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{\bar{y}}_{N H T}\right)=\frac{n}{N^{2}(n-1)}\left[\sum_{k \in s}\left(\frac{y_{k}}{\pi_{k}}\right)^{2}\left(1-\pi_{k}\right)-\hat{d} \hat{G}^{2}\right]
$$

where $\hat{d}=\sum_{k \in s}\left(1-\pi_{k}\right)$ and $\hat{G}=\hat{d}^{-1} \sum_{k \in s}(1-\pi) y_{k} / \pi_{k}$.
Note that the Hajek (1964) variance approximation is designed for large-entropy sampling designs, large samples, and large populations, i.e., care should be taken with highly-stratified samples, e.g. Berger (2005).

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal probabilities. Australian \& New Zealand Journal of Statistics, 47, 365-373.
Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite population. The Annals of Mathematical Statistics, 35, 4, 1491-1523.
Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663-685.
Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 3, 169-175.

See Also

VE.HT.Mean.NHT
VE.SYG.Mean.NHT

Examples

```
data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$HOMES10 #Defines the variable of interest y2
#Computes the (approximate) var. est. of the NHT point est. for y1
VE.Hajek.Mean.NHT(y1[s==1], pik.U[s==1], N)
#Computes the (approximate) var. est. of the NHT point est. for y2
VE.Hajek.Mean.NHT(y2[s==1], pik.U[s==1], N)
```

VE.Hajek.Total.NHT | The Hajek variance estimator for the Narain-Horvitz-Thompson point |
| :--- |
| estimator for a total |

Description

Computes the Hajek (1964) variance estimator for the Narain (1951); Horvitz-Thompson (1952) point estimator for a population total.

Usage

VE.Hajek.Total.NHT(VecY.s, VecPk.s)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.

Details

For the population total of the variable y :

$$
t=\sum_{k \in U} y_{k}
$$

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of t is given by:

$$
\hat{t}_{N H T}=\sum_{k \in s} \frac{y_{k}}{\pi_{k}}
$$

where π_{k} denotes the inclusion probability of the k-th element in the sample s. For large-entropy sampling designs, the variance of $\hat{t}_{N H T}$ is approximated by the Hajek (1964) variance:

$$
V\left(\hat{t}_{N H T}\right)=\frac{N}{N-1}\left[\sum_{k \in U} \frac{y_{k}^{2}}{\pi_{k}}\left(1-\pi_{k}\right)-d G^{2}\right]
$$

with $d=\sum_{k \in U} \pi_{k}\left(1-\pi_{k}\right)$ and $G=d^{-1} \sum_{k \in U}\left(1-\pi_{k}\right) y_{k}$.
The variance $V\left(\hat{t}_{N H T}\right)$ can be estimated by the variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{t}_{N H T}\right)=\frac{n}{n-1}\left[\sum_{k \in s}\left(\frac{y_{k}}{\pi_{k}}\right)^{2}\left(1-\pi_{k}\right)-\hat{d} \hat{G}^{2}\right]
$$

where $\hat{d}=\sum_{k \in s}\left(1-\pi_{k}\right)$ and $\hat{G}=\hat{d}^{-1} \sum_{k \in s}(1-\pi) y_{k} / \pi_{k}$.
Note that the Hajek (1964) variance approximation is designed for large-entropy sampling designs, large samples, and large populations, i.e., care should be taken with highly-stratified samples, e.g. Berger (2005).

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal probabilities. Australian \& New Zealand Journal of Statistics, 47, 365-373.
Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite population. The Annals of Mathematical Statistics, 35, 4, 1491-1523.
Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663-685.
Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 3, 169-175.

See Also

```
VE.HT.Total.NHT
```

VE.SYG.Total.NHT

Examples

```
data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$SURFAC05) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sSURFAC #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$HOMES10 #Defines the variable of interest y2
```

```
#Computes the (approximate) var. est. of the NHT point est. from y1
VE.Hajek.Total.NHT(y1[s==1], pik.U[s==1])
#Computes the (approximate) var. est. of the NHT point est. from y2
VE.Hajek.Total.NHT(y2[s==1], pik.U[s==1])
```

VE.HT.Mean.NHT The Horvitz-Thompson variance estimator for the Narain-HorvitzThompson point estimator for a mean

Description

Computes the Horvitz-Thompson (1952) variance estimator for the Narain (1951); Horvitz-Thompson (1952) point estimator for a population mean.

Usage

VE.HT.Mean.NHT(VecY.s, VecPk.s, MatPkl.s, N)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk. s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns equals n, the sample size. Values in MatPkl. s must be greater than zero and less than or equal to one. There must not be missing values.

N
the population size. It must be an integer or a double-precision scalar with zerovalued fractional part.

Details

For the population mean of the variable y :

$$
\bar{y}=\frac{1}{N} \sum_{k \in U} y_{k}
$$

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of \bar{y} is given by:

$$
\hat{\bar{y}}_{N H T}=\frac{1}{N} \sum_{k \in s} \frac{y_{k}}{\pi_{k}}
$$

where π_{k} denotes the inclusion probability of the k-th element in the sample s. Let $\pi_{k l}$ denotes the joint-inclusion probabilities of the k-th and l-th elements in the sample s. The variance of $\hat{\bar{y}}_{N H T}$ is given by:

$$
V\left(\hat{\bar{y}}_{N H T}\right)=\frac{1}{N^{2}} \sum_{k \in U} \sum_{l \in U}\left(\pi_{k l}-\pi_{k} \pi_{l}\right) \frac{y_{k}}{\pi_{k}} \frac{y_{l}}{\pi_{l}}
$$

which can therefore be estimated by the Horvitz-Thompson variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{\bar{y}}_{N H T}\right)=\frac{1}{N^{2}} \sum_{k \in s} \sum_{l \in s} \frac{\pi_{k l}-\pi_{k} \pi_{l}}{\pi_{k l}} \frac{y_{k}}{\pi_{k}} \frac{y_{l}}{\pi_{l}}
$$

Value
The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663-685.
Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 3, 169-175.

See Also

VE.SYG.Mean.NHT
VE.Hajek.Mean.NHT

Examples

(oaxaca)	a
pik.U <- Pk.PropNorm.U(373, oaxaca\$SURFAC05)	\#Reconstructs the 1st order incl. probs.
s <- oaxaca\$sSURFAC	\#Defines the sample to be used
N <- dim(oaxaca)[1]	\#Defines the population size
y1 <- oaxaca\$POP10	\#Defines the variable of interest y1
y2 <- oaxaca\$HOMES10	\#Defines the variable of interest y2
\#This approximation is only suitable for large-entropy sampling designs	
pikl.s <- Pkl.Hajek.s(pik.U[s==1])	\#Approx. 2nd order incl. probs. from s
\#Computes the variance estimation of the NHT point estimator for y1	
VE.HT.Mean. $\mathrm{NHT}(\mathrm{y} 1[\mathrm{~s}==1]$, pik.U[s==1], pikl.s, N)	
\#Computes the variance estimation of the NHT point estimator for y2	

VE.HT.Total.NHT	The Horvitz-Thompson variance estimator for the Narain-Horvitz- Thompson point estimator for a total

Description

Computes the Horvitz-Thompson (1952) variance estimator for the Narain (1951); Horvitz-Thompson (1952) point estimator for a population total.

Usage

VE.HT.Total.NHT(VecY.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.
MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns equals n, the sample size. Values in MatPkl.s must be greater than zero and less than or equal to one. There must not be missing values.

Details

For the population total of the variable y :

$$
t=\sum_{k \in U} y_{k}
$$

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of t is given by:

$$
\hat{t}_{N H T}=\sum_{k \in s} \frac{y_{k}}{\pi_{k}}
$$

where π_{k} denotes the inclusion probability of the k-th element in the sample s. Let $\pi_{k l}$ denotes the joint-inclusion probabilities of the k-th and l-th elements in the sample s. The variance of $\hat{t}_{N H T}$ is given by:

$$
V\left(\hat{t}_{N H T}\right)=\sum_{k \in U} \sum_{l \in U}\left(\pi_{k l}-\pi_{k} \pi_{l}\right) \frac{y_{k}}{\pi_{k}} \frac{y_{l}}{\pi_{l}}
$$

which can therefore be estimated by the Horvitz-Thompson variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{t}_{N H T}\right)=\sum_{k \in s} \sum_{l \in s} \frac{\pi_{k l}-\pi_{k} \pi_{l}}{\pi_{k l}} \frac{y_{k}}{\pi_{k}} \frac{y_{l}}{\pi_{l}}
$$

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663-685.
Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 3, 169-175.

See Also

```
VE.SYG.Total.NHT
VE.Hajek.Total.NHT
```


Examples

data(oaxaca)	\#Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca\$HOMES00)	\#Reconstructs the 1st order incl. probs.
s <- oaxaca\$sHOMES00	\#Defines the sample to be used
y1 <- oaxaca\$POP10	\#Defines the variable of interest y1
y2 <- oaxaca\$HOMES10	\#Defines the variable of interest y2
\#This approximation is only suitable for large-entropy sampling designs	
pikl.s <- Pkl.Hajek.s(pik.U[s==1])	\#Approx. 2nd order incl. probs. from s
\#Computes the var. est. of the NHT point esti	imator for y1
VE.HT.Total.NHT (y1[s==1], pik.U[s==1], pikl	
\#Computes the var. est. of the NHT point es	mator for y2
VE.HT.Total.NHT (y2[s==1], pik.U[s==1], pikl.s)	

VE.Jk.B.Corr.Hajek \quad| The Berger (2007) unequal probability jackknife variance estimator |
| :--- |
| for the estimator of a correlation coefficient using the Hajek point es- |
| timator | timator

Description

Computes the Berger (2007) unequal probability jackknife variance estimator for the estimator of a correlation coefficient of two variables using the Hajek (1971) point estimator.

Usage

VE.Jk.B.Corr.Hajek(VecY.s, VecX.s, VecPk.s)

Arguments

VecY.s vector of the variable of interest Y ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.

VecX.s vector of the variable of interest X ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecY.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk. s must be greater than zero and less than or equal to one. There must not be missing values.

Details

For the population correlation coefficient of two variables y and x :

$$
C=\frac{\sum_{k \in U}\left(y_{k}-\bar{y}\right)\left(x_{k}-\bar{x}\right)}{\sqrt{\sum_{k \in U}\left(y_{k}-\bar{y}\right)^{2}} \sqrt{\sum_{k \in U}\left(x_{k}-\bar{x}\right)^{2}}}
$$

the point estimator of C, assuming that N is unknown (see Sarndal et al., 1992, Sec. 5.9), is:

$$
\hat{C}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k}\left(y_{k}-\hat{\bar{y}}_{\text {Hajek }}\right)\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)}{\sqrt{\sum_{k \in s} w_{k}\left(y_{k}-\hat{\bar{y}}_{\text {Hajek }}\right)^{2}} \sqrt{\sum_{k \in s} w_{k}\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)^{2}}}
$$

where $\hat{\bar{y}}_{H a j e k}$ is the Hajek (1971) point estimator of the population mean $\bar{y}=N^{-1} \sum_{k \in U} y_{k}$,

$$
\hat{\bar{y}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}}
$$

and $w_{k}=1 / \pi_{k}$ with π_{k} denoting the inclusion probability of the k-th element in the sample s. The variance of $\hat{C}_{\text {Hajek }}$ can be estimated by the Berger (2007) unequal probability jackknife variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{C}_{\text {Hajek }}\right)=\sum_{k \in s} \frac{n}{n-1}\left(1-\pi_{k}\right)\left(\varepsilon_{k}-\hat{B}\right)^{2}
$$

where

$$
\hat{B}=\frac{\sum_{k \in s}\left(1-\pi_{k}\right) \varepsilon_{k}}{\sum_{k \in s}\left(1-\pi_{k}\right)}
$$

and

$$
\varepsilon_{k}=\left(1-\tilde{w}_{k}\right)\left(\hat{C}_{H a j e k}-\hat{C}_{H a j e k(k)}\right)
$$

with

$$
\tilde{w}_{k}=\frac{w_{k}}{\sum_{l \in s} w_{l}}
$$

and where $\hat{C}_{H a j e k(k)}$ has the same functional form as $\hat{C}_{H a j e k}$ but omitting the k-th element from the sample s. Note that this variance estimator implicitly utilises the Hajek (1964) approximations that are designed for large-entropy sampling designs, large samples, and large populations, i.e., care should be taken with highly-stratified samples, e.g. Berger (2005).

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal probabilities. Australian \& New Zealand Journal of Statistics, 47, 365-373.
Berger, Y. G. (2007) A jackknife variance estimator for unistage stratified samples with unequal probabilities. Biometrika 94, 953-964.
Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite population. The Annals of Mathematical Statistics, 35, 4, 1491-1523.
Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.

Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. SpringerVerlag, Inc.

See Also

$$
\begin{aligned}
& \text { VE.Jk.Tukey.Corr.Hajek } \\
& \text { VE.Jk.CBS.HT.Corr.Hajek } \\
& \text { VE.Jk.CBS.SYG.Corr.Hajek } \\
& \text { VE.Jk.EB.SW2.Corr.Hajek }
\end{aligned}
$$

Examples

VE.Jk.B.Mean.Hajek \quad| The Berger (2007) unequal probability jackknife variance estimator |
| :--- |
| for the Hajek estimator of a mean |

Description

Computes the Berger (2007) unequal probability jackknife variance estimator for the Hajek (1971) estimator of a mean.

Usage

VE.Jk.B.Mean.Hajek(VecY.s, VecPk.s)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk. s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.

Details

For the population mean of the variable y :

$$
\bar{y}=\frac{1}{N} \sum_{k \in U} y_{k}
$$

the approximately unbiased Hajek (1971) estimator of \bar{y} is given by:

$$
\hat{\bar{y}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}}
$$

where $w_{k}=1 / \pi_{k}$ and π_{k} denotes the inclusion probability of the k-th element in the sample s. The variance of $\hat{\bar{y}}_{\text {Hajek }}$ can be estimated by the Berger (2007) unequal probability jackknife variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{\bar{y}}_{H a j e k}\right)=\sum_{k \in s} \frac{n}{n-1}\left(1-\pi_{k}\right)\left(\varepsilon_{k}-\hat{B}\right)^{2}
$$

where

$$
\hat{B}=\frac{\sum_{k \in s}\left(1-\pi_{k}\right) \varepsilon_{k}}{\sum_{k \in s}\left(1-\pi_{k}\right)}
$$

and

$$
\varepsilon_{k}=\left(1-\tilde{w}_{k}\right)\left(\hat{\bar{y}}_{H a j e k}-\hat{\bar{y}}_{\text {Hajek }(k)}\right)
$$

with

$$
\tilde{w}_{k}=\frac{w_{k}}{\sum_{l \in s} w_{l}}
$$

and

$$
\hat{\bar{y}}_{H a j e k(k)}=\frac{\sum_{l \in s, l \neq k} w_{l} y_{l}}{\sum_{l \in s, l \neq k} w_{l}}
$$

Note that this variance estimator implicitly utilises the Hajek (1964) approximations that are designed for large-entropy sampling designs, large samples, and large populations, i.e., care should be taken with highly-stratified samples, e.g. Berger (2005).

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal probabilities. Australian \& New Zealand Journal of Statistics, 47, 365-373.

Berger, Y. G. (2007) A jackknife variance estimator for unistage stratified samples with unequal probabilities. Biometrika 94, 953-964.

Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite population. The Annals of Mathematical Statistics, 35, 4, 1491-1523.
Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.

See Also

$$
\begin{aligned}
& \text { VE.Jk.Tukey.Mean.Hajek } \\
& \text { VE.Jk.CBS.HT.Mean.Hajek } \\
& \text { VE.Jk.CBS.SYG.Mean.Hajek } \\
& \text { VE.Jk.EB.SW2.Mean.Hajek }
\end{aligned}
$$

Examples

data(oaxaca)	\#Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca\$HOMES00)	\#Reconstructs the 1st order incl. probs.
s <- oaxaca\$sHOMES00	\#Defines the sample to be used
y1 <- oaxaca\$POP10	\#Defines the variable of interest y1
y2 <- oaxaca\$POPMAL10	\#Defines the variable of interest y2
\#Computes the var. est. of the Hajek mean po	nt estimator using y1
VE.Jk.B.Mean.Hajek(y1[s==1], pik.U[s==1])	
\#Computes the var. est. of the Hajek mean poi	nt estimator using y2
VE.Jk.B.Mean.Hajek(y2[s==1], pik.U[s==1])	

VE.Jk.B.Ratio	The Berger (2007) unequal probability jackknife variance estimator for the estimator of a ratio

Description

Computes the Berger (2007) unequal probability jackknife variance estimator for the estimator of a ratio of two totals/means.

Usage

VE.Jk.B.Ratio(VecY.s, VecX.s, VecPk.s)

Arguments

VecY.s vector of the numerator variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.
VecX.s vector of the denominator variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk. s and VecY. s. There must not be missing values. All values of VecX. s should be greater than zero. A warning is displayed if this does not hold, and computations continue if mathematical expressions allow this kind of values for the denominator variable.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.

Details

For the population ratio of two totals/means of the variables y and x :

$$
R=\frac{\sum_{k \in U} y_{k} / N}{\sum_{k \in U} x_{k} / N}=\frac{\sum_{k \in U} y_{k}}{\sum_{k \in U} x_{k}}
$$

the ratio estimator of R is given by:

$$
\hat{R}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k} x_{k}}
$$

where $w_{k}=1 / \pi_{k}$ and π_{k} denotes the inclusion probability of the k-th element in the sample s. The variance of \hat{R} can be estimated by the Berger (2007) unequal probability jackknife variance estimator (implemented by the current function):

$$
\hat{V}(\hat{R})=\sum_{k \in s} \frac{n}{n-1}\left(1-\pi_{k}\right)\left(\varepsilon_{k}-\hat{B}\right)^{2}
$$

where

$$
\hat{B}=\frac{\sum_{k \in s}\left(1-\pi_{k}\right) \varepsilon_{k}}{\sum_{k \in s}\left(1-\pi_{k}\right)}
$$

and

$$
\varepsilon_{k}=\left(1-\tilde{w}_{k}\right)\left(\hat{R}-\hat{R}_{(k)}\right)
$$

with

$$
\tilde{w}_{k}=\frac{w_{k}}{\sum_{l \in s} w_{l}}
$$

and

$$
\hat{R}_{(k)}=\frac{\sum_{l \in s, l \neq k} w_{l} y_{l} / \sum_{l \in s, l \neq k} w_{l}}{\sum_{l \in s, l \neq k} w_{l} x_{l} / \sum_{l \in s, l \neq k} w_{l}}=\frac{\sum_{l \in s, l \neq k} w_{l} y_{l}}{\sum_{l \in s, l \neq k} w_{l} x_{l}}
$$

Note that this variance estimator implicitly utilises the Hajek (1964) approximations that are designed for large-entropy sampling designs, large samples, and large populations, i.e., care should be taken with highly-stratified samples, e.g. Berger (2005).

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal probabilities. Australian \& New Zealand Journal of Statistics, 47, 365-373.

Berger, Y. G. (2007) A jackknife variance estimator for unistage stratified samples with unequal probabilities. Biometrika 94, 953-964.
Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite population. The Annals of Mathematical Statistics, 35, 4, 1491-1523.

See Also

```
VE.Lin.HT.Ratio
VE.Lin.SYG.Ratio
VE.Jk.Tukey.Ratio
VE.Jk.CBS.HT.Ratio
VE.Jk.CBS.SYG.Ratio
VE.Jk.EB.SW2.Ratio
VE.EB.HT.Ratio
VE.EB.SYG.Ratio
```


Examples

data(oaxaca)		\#Loads the Oaxaca municipalities dataset
pik.U	<- Pk.PropNorm.U(373, oaxaca\$HOMES00)	\#Reconstructs the 1st order incl. probs.
S	<- oaxaca\$sHOMES00	\#Defines the sample to be used
y1	<- oaxaca\$POP10	\#Defines the numerator variable y1
y2	<- oaxaca\$POPMAL10	\#Defines the numerator variable y2
X	<- oaxaca\$HOMES10	\#Defines the denominator variable x
\#Computes the var. est. of the ratio point estimator using y		
VE.Jk.B.Ratio (y1[s==1], $x[s==1]$, pik.U[s==1])		
\#Computes the var. est. of the ratio point estimator using y2		
VE.Jk.B.Ratio(y2[s==1], $x[s==1]$, pik.U[s==1])		

VE.Jk.B.RegCo.Hajek The Berger (2007) unequal probability jackknife variance estimator for the estimator of the regression coefficient using the Hajek point estimator

Description

Computes the Berger (2007) unequal probability jackknife variance estimator for the estimator of the regression coefficient using the Hajek (1971) point estimator.

Usage

VE.Jk.B.RegCo.Hajek(VecY.s, VecX.s, VecPk.s)

Arguments

VecY.s vector of the variable of interest Y ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.
VecX.s vector of the variable of interest X ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecY.s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.

Details

From Linear Regression Analysis, for an imposed population model

$$
y=\alpha+\beta x
$$

the population regression coefficient β, assuming that the population size N is unknown (see Sarndal et al., 1992, Sec. 5.10), can be estimated by:

$$
\hat{\beta}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k}\left(y_{k}-\hat{\bar{y}}_{\text {Hajek }}\right)\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)}{\sum_{k \in s} w_{k}\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)^{2}}
$$

where $\hat{\bar{y}}_{\text {Hajek }}$ and $\hat{\bar{x}}_{\text {Hajek }}$ are the Hajek (1971) point estimators of the population means $\bar{y}=$ $N^{-1} \sum_{k \in U} y_{k}$ and $\bar{x}=N^{-1} \sum_{k \in U} x_{k}$, respectively,

$$
\begin{aligned}
& \hat{\bar{y}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}} \\
& \hat{\bar{x}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} x_{k}}{\sum_{k \in s} w_{k}}
\end{aligned}
$$

and $w_{k}=1 / \pi_{k}$ with π_{k} denoting the inclusion probability of the k-th element in the sample s. The variance of $\hat{\beta}_{\text {Hajek }}$ can be estimated by the Berger (2007) unequal probability jackknife variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{\beta}_{H a j e k}\right)=\sum_{k \in s} \frac{n}{n-1}\left(1-\pi_{k}\right)\left(\varepsilon_{k}-\hat{B}\right)^{2}
$$

where

$$
\hat{B}=\frac{\sum_{k \in s}\left(1-\pi_{k}\right) \varepsilon_{k}}{\sum_{k \in s}\left(1-\pi_{k}\right)}
$$

and

$$
\varepsilon_{k}=\left(1-\tilde{w}_{k}\right)\left(\hat{\beta}_{H a j e k}-\hat{\beta}_{\operatorname{Hajek}(k)}\right)
$$

with

$$
\tilde{w}_{k}=\frac{w_{k}}{\sum_{l \in s} w_{l}}
$$

and where $\hat{\beta}_{H a j e k(k)}$ has the same functional form as $\hat{\beta}_{\text {Hajek }}$ but omitting the k-th element from the sample s. Note that this variance estimator implicitly utilises the Hajek (1964) approximations that are designed for large-entropy sampling designs, large samples, and large populations, i.e., care should be taken with highly-stratified samples, e.g. Berger (2005).

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal probabilities. Australian \& New Zealand Journal of Statistics, 47, 365-373.
Berger, Y. G. (2007) A jackknife variance estimator for unistage stratified samples with unequal probabilities. Biometrika 94, 953-964.
Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite population. The Annals of Mathematical Statistics, 35, 4, 1491-1523.
Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.

Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. SpringerVerlag, Inc.

See Also

> VE.Jk.B.RegCoI.Hajek
> VE.Jk.Tukey.RegCo.Hajek
> VE.Jk.CBS.HT.RegCo.Hajek
> VE.Jk.CBS.SYG.RegCo.Hajek
> VE.Jk.EB.SW2.RegCo.Hajek

Examples

data(o	ca)	\#Loads the Oaxaca municipalities dataset
pik.U	<- Pk.PropNorm.U(373, oaxaca\$HOMES00)	\#Reconstructs the 1st order incl. probs.
s	<- oaxaca\$sHOMES00	\#Defines the sample to be used
y1	<- oaxaca\$POP10	\#Defines the variable of interest y1
y2	<- oaxaca\$POPMAL10	\#Defines the variable of interest y 2
x	<- oaxaca\$HOMES10	\#Defines the variable of interest x

\#Computes the var. est. of the regression coeff. point estimator using y1 VE.Jk.B.RegCo.Hajek(y1[s==1], $x[s==1]$, pik.U[s==1])
\#Computes the var. est. of the regression coeff. point estimator using y2
VE.Jk.B.RegCo.Hajek(y2[s==1], $x[s==1]$, pik. $U[s==1])$

VE.Jk.B.RegCoI.Hajek The Berger (2007) unequal probability jackknife variance estimator for the estimator of the intercept regression coefficient using the Hajek point estimator

Description

Computes the Berger (2007) unequal probability jackknife variance estimator for the estimator of the intercept regression coefficient using the Hajek (1971) point estimator.

Usage

VE.Jk.B.RegCoI.Hajek(VecY.s, VecX.s, VecPk.s)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.

VecX.s vector of the variable of interest X ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecY.s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.

Details

From Linear Regression Analysis, for an imposed population model

$$
y=\alpha+\beta x
$$

the population intercept regression coefficient α, assuming that the population size N is unknown (see Sarndal et al., 1992, Sec. 5.10), can be estimated by:

$$
\hat{\alpha}_{H a j e k}=\hat{\bar{y}}_{\text {Hajek }}-\frac{\sum_{k \in s} w_{k}\left(y_{k}-\hat{\bar{y}}_{\text {Hajek }}\right)\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)}{\sum_{k \in s} w_{k}\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)^{2}} \hat{\bar{x}}_{\text {Hajek }}
$$

where $\hat{\bar{y}}_{\text {Hajek }}$ and $\hat{\bar{x}}_{\text {Hajek }}$ are the Hajek (1971) point estimators of the population means $\bar{y}=$ $N^{-1} \sum_{k \in U} y_{k}$ and $\bar{x}=N^{-1} \sum_{k \in U} x_{k}$, respectively,

$$
\hat{\bar{y}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}}
$$

$$
\hat{\bar{x}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} x_{k}}{\sum_{k \in s} w_{k}}
$$

and $w_{k}=1 / \pi_{k}$ with π_{k} denoting the inclusion probability of the k-th element in the sample s. The variance of $\hat{\alpha}_{H a j e k}$ can be estimated by the Berger (2007) unequal probability jackknife variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{\alpha}_{H a j e k}\right)=\sum_{k \in s} \frac{n}{n-1}\left(1-\pi_{k}\right)\left(\varepsilon_{k}-\hat{B}\right)^{2}
$$

where

$$
\hat{B}=\frac{\sum_{k \in s}\left(1-\pi_{k}\right) \varepsilon_{k}}{\sum_{k \in s}\left(1-\pi_{k}\right)}
$$

and

$$
\varepsilon_{k}=\left(1-\tilde{w}_{k}\right)\left(\hat{\alpha}_{\text {Hajek }}-\hat{\alpha}_{\text {Hajek }(k)}\right)
$$

with

$$
\tilde{w}_{k}=\frac{w_{k}}{\sum_{l \in s} w_{l}}
$$

and where $\hat{\alpha}_{H a j e k(k)}$ has the same functional form as $\hat{\alpha}_{H a j e k}$ but omitting the k-th element from the sample s. Note that this variance estimator implicitly utilises the Hajek (1964) approximations that are designed for large-entropy sampling designs, large samples, and large populations, i.e., care should be taken with highly-stratified samples, e.g. Berger (2005).

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal probabilities. Australian \& New Zealand Journal of Statistics, 47, 365-373.
Berger, Y. G. (2007) A jackknife variance estimator for unistage stratified samples with unequal probabilities. Biometrika 94, 953-964.
Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite population. The Annals of Mathematical Statistics, 35, 4, 1491-1523.

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.

Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. SpringerVerlag, Inc.

See Also

```
VE.Jk.B.RegCo.Hajek
VE.Jk.Tukey.RegCoI.Hajek
VE.Jk.CBS.HT.RegCoI.Hajek
VE.Jk.CBS.SYG.RegCoI.Hajek
VE.Jk.EB.SW2.RegCoI.Hajek
```


Examples

data(oaxaca)		s the Oaxaca municipalities
.U	<- Pk.PropNorm.U(373, oaxaca\$HOMES00)	constructs the 1st order incl.
S	<- oaxaca\$sHOMES00	\#Defines the sample to be used
y1	<- oaxaca\$POP10	\#Defines the variable of interest y1
y2	<- oaxaca\$POPMAL10	\#Defines the variable of interest y
	<- oaxaca\$HOMES10	\#Defines the variable of interest x
\#Computes the var. est. of the intercept reg. coeff.		
VE.Jk.B.RegCoI.Hajek (y1[s==1], $x[s==1]$, pik.U[s==1])		
\#Computes the var. est. of the intercept reg. coeff. point estimator using y2		
VE.Jk.B.RegCoI.Hajek(y2[s==1], x[s==1], pik.U[s==1])		

VE.Jk.B.Total.Hajek \quad| The Berger (2007) unequal probability jackknife variance estimator |
| :--- |
| for the Hajek estimator of a total |

Description

Computes the Berger (2007) unequal probability jackknife variance estimator for the Hajek (1971) estimator of a total.

Usage

VE.Jk.B.Total.Hajek(VecY.s, VecPk.s, N)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk. s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk. s must be greater than zero and less than or equal to one. There must not be missing values.

N the population size. It must be an integer or a double-precision scalar with zerovalued fractional part.

Details

For the population total of the variable y :

$$
t=\sum_{k \in U} y_{k}
$$

the approximately unbiased Hajek (1971) estimator of t is given by:

$$
\hat{t}_{\text {Hajek }}=N \frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}}
$$

where $w_{k}=1 / \pi_{k}$ and π_{k} denotes the inclusion probability of the k-th element in the sample s. The variance of $\hat{t}_{H a j e k}$ can be estimated by the Berger (2007) unequal probability jackknife variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{t}_{H a j e k}\right)=\sum_{k \in s} \frac{n}{n-1}\left(1-\pi_{k}\right)\left(\varepsilon_{k}-\hat{B}\right)^{2}
$$

where

$$
\hat{B}=\frac{\sum_{k \in s}\left(1-\pi_{k}\right) \varepsilon_{k}}{\sum_{k \in s}\left(1-\pi_{k}\right)}
$$

and

$$
\varepsilon_{k}=\left(1-\tilde{w}_{k}\right)\left(\hat{t}_{H a j e k}-\hat{t}_{\operatorname{Hajek}(k)}\right)
$$

with

$$
\tilde{w}_{k}=\frac{w_{k}}{\sum_{l \in s} w_{l}}
$$

and

$$
\hat{t}_{\text {Hajek }(k)}=N \frac{\sum_{l \in s, l \neq k} w_{l} y_{l}}{\sum_{l \in s, l \neq k} w_{l}}
$$

Note that this variance estimator implicitly utilises the Hajek (1964) approximations that are designed for large-entropy sampling designs, large samples, and large populations, i.e., care should be taken with highly-stratified samples, e.g. Berger (2005).

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal probabilities. Australian \& New Zealand Journal of Statistics, 47, 365-373.
Berger, Y. G. (2007) A jackknife variance estimator for unistage stratified samples with unequal probabilities. Biometrika 94, 953-964.

Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite population. The Annals of Mathematical Statistics, 35, 4, 1491-1523.
Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.

See Also

VE.Jk.Tukey.Total.Hajek
VE.Jk.CBS.HT.Total.Hajek
VE.Jk.CBS.SYG.Total.Hajek
VE.Jk.EB.SW2.Total.Hajek

Examples

```
data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
#Computes the var. est. of the Hajek total point estimator using y1
VE.Jk.B.Total.Hajek(y1[s==1], pik.U[s==1], N)
#Computes the var. est. of the Hajek total point estimator using y2
VE.Jk.B.Total.Hajek(y2[s==1], pik.U[s==1], N)
```

VE.Jk.CBS.HT.Corr.Hajek

The Campbell-Berger-Skinner unequal probability jackknife variance estimator for the estimator of a correlation coefficient using the Hajek point estimator (Horvitz-Thompson form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator for the estimator of a correlation coefficient of two variables using the Hajek (1971) point estimator. It uses the Horvitz-Thompson (1952) variance form.

Usage

VE.Jk.CBS.HT.Corr.Hajek(VecY.s, VecX.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the variable of interest Y ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.

VecX.s vector of the variable of interest X ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecY.s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.
MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns equals n, the sample size. Values in MatPkl. s must be greater than zero and less than or equal to one. There must not be missing values.

Details

For the population correlation coefficient of two variables y and x :

$$
C=\frac{\sum_{k \in U}\left(y_{k}-\bar{y}\right)\left(x_{k}-\bar{x}\right)}{\sqrt{\sum_{k \in U}\left(y_{k}-\bar{y}\right)^{2}} \sqrt{\sum_{k \in U}\left(x_{k}-\bar{x}\right)^{2}}}
$$

the point estimator of C, assuming that N is unknown (see Sarndal et al., 1992, Sec. 5.9), is:

$$
\hat{C}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k}\left(y_{k}-\hat{\bar{y}}_{\text {Hajek }}\right)\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)}{\sqrt{\sum_{k \in s} w_{k}\left(y_{k}-\hat{\bar{y}}_{\text {Hajek }}\right)^{2}} \sqrt{\sum_{k \in s} w_{k}\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)^{2}}}
$$

where $\hat{\bar{y}}_{\text {Hajek }}$ is the Hajek (1971) point estimator of the population mean $\bar{y}=N^{-1} \sum_{k \in U} y_{k}$,

$$
\hat{\bar{y}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}}
$$

and $w_{k}=1 / \pi_{k}$ with π_{k} denoting the inclusion probability of the k-th element in the sample s. The variance of $\hat{C}_{\text {Hajek }}$ can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{C}_{H a j e k}\right)=\sum_{k \in s} \sum_{l \in s} \frac{\pi_{k l}-\pi_{k} \pi_{l}}{\pi_{k l}} \varepsilon_{k} \varepsilon_{l}
$$

where

$$
\varepsilon_{k}=\left(1-\tilde{w}_{k}\right)\left(\hat{C}_{H a j e k}-\hat{C}_{H a j e k(k)}\right)
$$

with

$$
\tilde{w}_{k}=\frac{w_{k}}{\sum_{l \in s} w_{l}}
$$

and where $\hat{C}_{H a j e k(k)}$ has the same functional form as $\hat{C}_{\text {Hajek }}$ but omitting the k-th element from the sample s.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Campbell, C. (1980) A different view of finite population estimation. Proceedings of the Survey Research Methods Section of the American Statistical Association, 319-324.
Berger, Y. G. and Skinner, C. J. (2005) A jackknife variance estimator for unequal probability sampling. Journal of the Royal Statistical Society B, 67, 79-89.
Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663-685.
Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. SpringerVerlag, Inc.

See Also

VE.Jk.Tukey.Corr.Hajek
VE.Jk.CBS.SYG.Corr.Hajek
VE.Jk.B.Corr.Hajek
VE.Jk.EB.SW2.Corr. Hajek

Examples

data(oaxaca)	ds the Oaxaca mu
k.U <- Pk.PropNorm.U(373, oaxaca\$HOMES00)	constructs the 1st order incl. probs
s <- oaxaca\$sHOMES00	Defines the sample to be used
y1 <- oaxaca\$POP10	\#Defines the variable of interest y1
y2 <- oaxaca\$POPMAL10	\#Defines the variable of interest y2
<- oaxaca\$HOMES10	\#Defines the variable of interest x
\#This approximation is only suitable for large-entropy sampling designs	
pikl.s <- Pkl.Hajek.s(pik.U[s==1])	Approx. 2nd order incl. probs. from
\#Computes the var. est. of the corr. coeff. point estimator using y	
VE.Jk.CBS.HT.Corr.Hajek(y1[s==1], $\mathrm{x}[\mathrm{s}==1]$, pik.U[s==1], pikl.s)	
\#Computes the var. est. of the corr. coeff. point estimator using y2	

VE.Jk.CBS.HT.Mean.Hajek
The Campbell-Berger-Skinner unequal probability jackknife variance estimator for the Hajek (1971) estimator of a mean (HorvitzThompson form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator for the Hajek estimator of a mean. It uses the Horvitz-Thompson (1952) variance form.

Usage

```
VE.Jk.CBS.HT.Mean.Hajek(VecY.s, VecPk.s, MatPkl.s)
```


Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns equals n, the sample size. Values in MatPkl. s must be greater than zero and less than or equal to one. There must not be missing values.

Details

For the population mean of the variable y :

$$
\bar{y}=\frac{1}{N} \sum_{k \in U} y_{k}
$$

the approximately unbiased Hajek (1971) estimator of \bar{y} is given by:

$$
\hat{\bar{y}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}}
$$

where $w_{k}=1 / \pi_{k}$ and π_{k} denotes the inclusion probability of the k-th element in the sample s. The variance of $\hat{\bar{y}}_{\text {Hajek }}$ can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{\bar{y}}_{\text {Hajek }}\right)=\sum_{k \in s} \sum_{l \in s} \frac{\pi_{k l}-\pi_{k} \pi_{l}}{\pi_{k l}} \varepsilon_{k} \varepsilon_{l}
$$

where

$$
\varepsilon_{k}=\left(1-\tilde{w}_{k}\right)\left(\hat{\bar{y}}_{\text {Hajek }}-\hat{\bar{y}}_{\text {Hajek }(k)}\right)
$$

with

$$
\tilde{w}_{k}=\frac{w_{k}}{\sum_{l \in s} w_{l}}
$$

and

$$
\hat{\bar{y}}_{H a j e k(k)}=\frac{\sum_{l \in s, l \neq k} w_{l} y_{l}}{\sum_{l \in s, l \neq k} w_{l}}
$$

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Campbell, C. (1980) A different view of finite population estimation. Proceedings of the Survey Research Methods Section of the American Statistical Association, 319-324.

Berger, Y. G. and Skinner, C. J. (2005) A jackknife variance estimator for unequal probability sampling. Journal of the Royal Statistical Society B, 67, 79-89.
Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663-685.

See Also

$$
\begin{aligned}
& \text { VE.Jk.Tukey.Mean.Hajek } \\
& \text { VE.Jk.CBS.SYG.Mean.Hajek } \\
& \text { VE.Jk.B.Mean.Hajek } \\
& \text { VE.Jk.EB.SW2.Mean.Hajek }
\end{aligned}
$$

Examples

```
data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the Hajek mean point estimator using y1
VE.Jk.CBS.HT.Mean.Hajek(y1[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the Hajek mean point estimator using y2
VE.Jk.CBS.HT.Mean.Hajek(y2[s==1], pik.U[s==1], pikl.s)
```

VE.Jk.CBS.HT.Ratio The Campbell-Berger-Skinner unequal probability jackknife variance estimator for the estimator of a ratio (Horvitz-Thompson form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator for the estimator of a ratio of two totals/means. It uses the Horvitz-Thompson (1952) variance form.

Usage

VE.Jk.CBS.HT.Ratio(VecY.s, VecX.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the numerator variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.
VecX.s vector of the denominator variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk. s and VecY. s. There must not be missing values. All values of VecX. s should be greater than zero. A warning is displayed if this does not hold, and computations continue if mathematical expressions allow this kind of values for the denominator variable.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk. s must be greater than zero and less than or equal to one. There must not be missing values.
MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns equals n, the sample size. Values in MatPkl.s must be greater than zero and less than or equal to one. There must not be missing values.

Details

For the population ratio of two totals/means of the variables y and x :

$$
R=\frac{\sum_{k \in U} y_{k} / N}{\sum_{k \in U} x_{k} / N}=\frac{\sum_{k \in U} y_{k}}{\sum_{k \in U} x_{k}}
$$

the ratio estimator of R is given by:

$$
\hat{R}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k} x_{k}}
$$

where $w_{k}=1 / \pi_{k}$ and π_{k} denotes the inclusion probability of the k-th element in the sample s. The variance of \hat{R} can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator (implemented by the current function):

$$
\hat{V}(\hat{R})=\sum_{k \in s} \sum_{l \in s} \frac{\pi_{k l}-\pi_{k} \pi_{l}}{\pi_{k l}} \varepsilon_{k} \varepsilon_{l}
$$

where

$$
\varepsilon_{k}=\left(1-\tilde{w}_{k}\right)\left(\hat{R}-\hat{R}_{(k)}\right)
$$

with

$$
\tilde{w}_{k}=\frac{w_{k}}{\sum_{l \in s} w_{l}}
$$

and

$$
\hat{R}_{(k)}=\frac{\sum_{l \in s, l \neq k} w_{l} y_{l} / \sum_{l \in s, l \neq k} w_{l}}{\sum_{l \in s, l \neq k} w_{l} x_{l} / \sum_{l \in s, l \neq k} w_{l}}=\frac{\sum_{l \in s, l \neq k} w_{l} y_{l}}{\sum_{l \in s, l \neq k} w_{l} x_{l}}
$$

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Campbell, C. (1980) A different view of finite population estimation. Proceedings of the Survey Research Methods Section of the American Statistical Association, 319-324.

Berger, Y. G. and Skinner, C. J. (2005) A jackknife variance estimator for unequal probability sampling. Journal of the Royal Statistical Society B, 67, 79-89.

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663-685.

See Also

```
VE.Lin.HT.Ratio
VE.Lin.SYG.Ratio
VE.Jk.Tukey.Ratio
VE.Jk.CBS.SYG.Ratio
VE.Jk.B.Ratio
VE.Jk.EB.SW2.Ratio
VE.EB.HT.Ratio
VE.EB.SYG.Ratio
```


Examples

[^1]
Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator for the estimator of the regression coefficient using the Hajek (1971) point estimator. It uses the Horvitz-Thompson (1952) variance form.

Usage

VE.Jk.CBS.HT.RegCo.Hajek(VecY.s, VecX.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the variable of interest Y ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.
VecX.s vector of the variable of interest X ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecY.s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.
MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns equals n, the sample size. Values in MatPkl.s must be greater than zero and less than or equal to one. There must not be missing values.

Details

From Linear Regression Analysis, for an imposed population model

$$
y=\alpha+\beta x
$$

the population regression coefficient β, assuming that the population size N is unknown (see Sarndal et al., 1992, Sec. 5.10), can be estimated by:

$$
\hat{\beta}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k}\left(y_{k}-\hat{\bar{y}}_{\text {Hajek }}\right)\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)}{\sum_{k \in s} w_{k}\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)^{2}}
$$

where $\hat{\bar{y}}_{\text {Hajek }}$ and $\hat{\bar{x}}_{\text {Hajek }}$ are the Hajek (1971) point estimators of the population means $\bar{y}=$ $N^{-1} \sum_{k \in U} y_{k}$ and $\bar{x}=N^{-1} \sum_{k \in U} x_{k}$, respectively,

$$
\begin{aligned}
& \hat{\bar{y}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}} \\
& \hat{\bar{x}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} x_{k}}{\sum_{k \in s} w_{k}}
\end{aligned}
$$

and $w_{k}=1 / \pi_{k}$ with π_{k} denoting the inclusion probability of the k-th element in the sample s. The variance of $\hat{\beta}_{\text {Hajek }}$ can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{\beta}_{H a j e k}\right)=\sum_{k \in s} \sum_{l \in s} \frac{\pi_{k l}-\pi_{k} \pi_{l}}{\pi_{k l}} \varepsilon_{k} \varepsilon_{l}
$$

where

$$
\varepsilon_{k}=\left(1-\tilde{w}_{k}\right)\left(\hat{\beta}_{H a j e k}-\hat{\beta}_{\operatorname{Hajek}(k)}\right)
$$

with

$$
\tilde{w}_{k}=\frac{w_{k}}{\sum_{l \in s} w_{l}}
$$

and where $\hat{\beta}_{H a j e k(k)}$ has the same functional form as $\hat{\beta}_{H a j e k}$ but omitting the k-th element from the sample s.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Campbell, C. (1980) A different view of finite population estimation. Proceedings of the Survey Research Methods Section of the American Statistical Association, 319-324.

Berger, Y. G. and Skinner, C. J. (2005) A jackknife variance estimator for unequal probability sampling. Journal of the Royal Statistical Society B, 67, 79-89.
Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.
Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663-685.
Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. SpringerVerlag, Inc.

See Also

```
VE.Jk.CBS.HT.RegCoI.Hajek
VE.Jk.Tukey.RegCo.Hajek
VE.Jk.CBS.SYG.RegCo.Hajek
VE.Jk.B.RegCo.Hajek
VE.Jk.EB.SW2.RegCo.Hajek
```


Examples

data(oaxaca)	\#Loads the Oaxaca municipalities dataset
pik.U $<-$ Pk.PropNorm.U(373, oaxaca\$HOMES00)	\#Reconstructs the 1 st order incl. probs.
s	$<-$ oaxaca\$sHOMES00
y1	$<-$ oaxaca\$POP10
y2	\#Defines the sample to be used
x	$<-$ oaxaca\$POPMAL10
\#This approximation is only suitable for large-entropy sampling designs	
pikl.s <- Pkl.Hajek.s(pik.U[s==1])	\#Defines the variable of interest y1

\#Computes the var. est. of the regression coeff. point estimator using y1
VE.Jk.CBS.HT.RegCo.Hajek(y1[s==1], $x[s==1]$, pik.U[s==1], pikl.s)
\#Computes the var. est. of the regression coeff. point estimator using y2
VE.Jk.CBS.HT.RegCo. $\operatorname{Hajek}(y 2[s==1], x[s==1]$, pik.U[s==1], pikl.s)

VE.Jk.CBS.HT.RegCoI.Hajek
The Campbell-Berger-Skinner unequal probability jackknife variance estimator for the estimator of the intercept regression coefficient using the Hajek point estimator (Horvitz-Thompson form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator for the estimator of the intercept regression coefficient using the Hajek (1971) point estimator. It uses the Horvitz-Thompson (1952) variance form.

Usage

VE.Jk.CBS.HT.RegCoI.Hajek(VecY.s, VecX.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the variable of interest Y ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.
VecX.s vector of the variable of interest X ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecY.s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.
MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns equals n, the sample size. Values in MatPkl.s must be greater than zero and less than or equal to one. There must not be missing values.

Details

From Linear Regression Analysis, for an imposed population model

$$
y=\alpha+\beta x
$$

the population intercept regression coefficient α, assuming that the population size N is unknown (see Sarndal et al., 1992, Sec. 5.10), can be estimated by:

$$
\hat{\alpha}_{\text {Hajek }}=\hat{\bar{y}}_{\text {Hajek }}-\frac{\sum_{k \in s} w_{k}\left(y_{k}-\hat{\bar{y}}_{\text {Hajek }}\right)\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)}{\sum_{k \in s} w_{k}\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)^{2}} \hat{\bar{x}}_{\text {Hajek }}
$$

where $\hat{\bar{y}}_{\text {Hajek }}$ and $\hat{\bar{x}}_{\text {Hajek }}$ are the Hajek (1971) point estimators of the population means $\bar{y}=$ $N^{-1} \sum_{k \in U} y_{k}$ and $\bar{x}=N^{-1} \sum_{k \in U} x_{k}$, respectively,

$$
\begin{aligned}
& \hat{\bar{y}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}} \\
& \hat{\bar{x}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} x_{k}}{\sum_{k \in s} w_{k}}
\end{aligned}
$$

and $w_{k}=1 / \pi_{k}$ with π_{k} denoting the inclusion probability of the k-th element in the sample s. The variance of $\hat{\alpha}_{\text {Hajek }}$ can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{\alpha}_{H a j e k}\right)=\sum_{k \in s} \sum_{l \in s} \frac{\pi_{k l}-\pi_{k} \pi_{l}}{\pi_{k l}} \varepsilon_{k} \varepsilon_{l}
$$

where

$$
\varepsilon_{k}=\left(1-\tilde{w}_{k}\right)\left(\hat{\alpha}_{\text {Hajek }}-\hat{\alpha}_{\text {Hajek }(k)}\right)
$$

with

$$
\tilde{w}_{k}=\frac{w_{k}}{\sum_{l \in s} w_{l}}
$$

and where $\hat{\alpha}_{H a j e k(k)}$ has the same functional form as $\hat{\alpha}_{H a j e k}$ but omitting the k-th element from the sample s.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Campbell, C. (1980) A different view of finite population estimation. Proceedings of the Survey Research Methods Section of the American Statistical Association, 319-324.

Berger, Y. G. and Skinner, C. J. (2005) A jackknife variance estimator for unequal probability sampling. Journal of the Royal Statistical Society B, 67, 79-89.
Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663-685.

Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. SpringerVerlag, Inc.

See Also

```
VE.Jk.CBS.HT.RegCo.Hajek
VE.Jk.Tukey.RegCoI.Hajek
VE.Jk.CBS.SYG.RegCoI.Hajek
VE.Jk.B.RegCoI.Hajek
VE.Jk.EB.SW2.RegCoI.Hajek
```


Examples

data(oaxaca)		\#Loads the Oaxaca municipalities
.U	<- Pk.PropNorm.U(373, oaxaca\$HOMES00)	nstructs
S	<- oaxaca\$sHOMES00	fines the sample to be used
y	oaxaca\$POP10	Defines the variable of interest
y2	<- oaxaca\$POPMAL10	\#Defines the variable of interest y
	<- oaxaca\$HOMES10	\#Defines the variable of interest
\#This approximation is only suitable for large-entropy sampling designs		
pikl.s <- Pkl.Hajek.s(pik.U[s==1])		Approx. 2nd order incl. probs. from
\#Computes the var. est. of the intercept reg. coeff. point estimator using y1		
VE.Jk.CBS.HT.RegCoI.Hajek(y1[s==1], $x[s==1]$, pik.U[s==1], pikl.s)		
\#Computes the var. est. of the intercept reg. coeff. point estimator using y2		

VE.Jk.CBS.HT.Total.Hajek
The Campbell-Berger-Skinner unequal probability jackknife variance estimator for the Hajek (1971) estimator of a total (Horvitz-Thompson form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator for the Hajek estimator of a total. It uses the Horvitz-Thompson (1952) variance form.

Usage

VE.Jk.CBS.HT.Total.Hajek(VecY.s, VecPk.s, MatPkl.s, N)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk. s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.
MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns equals n, the sample size. Values in MatPkl. s must be greater than zero and less than or equal to one. There must not be missing values.
N the population size. It must be an integer or a double-precision scalar with zerovalued fractional part.

Details

For the population total of the variable y :

$$
t=\sum_{k \in U} y_{k}
$$

the approximately unbiased Hajek (1971) estimator of t is given by:

$$
\hat{t}_{\text {Hajek }}=N \frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}}
$$

where $w_{k}=1 / \pi_{k}$ and π_{k} denotes the inclusion probability of the k-th element in the sample s. The variance of $\hat{t}_{\text {Hajek }}$ can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{t}_{\text {Hajek }}\right)=\sum_{k \in s} \sum_{l \in s} \frac{\pi_{k l}-\pi_{k} \pi_{l}}{\pi_{k l}} \varepsilon_{k} \varepsilon_{l}
$$

where

$$
\varepsilon_{k}=\left(1-\tilde{w}_{k}\right)\left(\hat{t}_{\text {Hajek }}-\hat{t}_{\text {Hajek }(k)}\right)
$$

with

$$
\tilde{w}_{k}=\frac{w_{k}}{\sum_{l \in s} w_{l}}
$$

and

$$
\hat{t}_{\text {Hajek }(k)}=N \frac{\sum_{l \in s, l \neq k} w_{l} y_{l}}{\sum_{l \in s, l \neq k} w_{l}}
$$

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Campbell, C. (1980) A different view of finite population estimation. Proceedings of the Survey Research Methods Section of the American Statistical Association, 319-324.
Berger, Y. G. and Skinner, C. J. (2005) A jackknife variance estimator for unequal probability sampling. Journal of the Royal Statistical Society B, 67, 79-89.
Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663-685.

See Also

```
VE.Jk.Tukey.Total.Hajek
VE.Jk.CBS.SYG.Total.Hajek
VE.Jk.B.Total.Hajek
VE.Jk.EB.SW2.Total.Hajek
```


Examples

data(oaxaca)	ads the Oaxaca municipalities dataset
k.U <- Pk.PropNorm.U(373, oaxaca\$HOMES00)	econstructs the 1st order incl. probs.
s <- oaxaca\$sHOMES00	\#Defines the sample to be used
N <- dim(oaxaca)[1]	\#Defines the population size
y1 <- oaxaca\$POP10	\#Defines the variable of interest y1
y2 <- oaxaca\$POPMAL10	\#Defines the variable of interest y
\#This approximation is only suitable for large-entropy sampling designs	
pikl.s <- Pkl.Hajek.s(pik.U[s==1])	\#Approx. 2nd order incl. probs. from s
\#Computes the var. est. of the Hajek total point estimator using y1	
VE.Jk.CBS.HT.Total.Hajek(y1[s==1], pik.U[s==1], pikl.s, N)	
\#Computes the var. est. of the Hajek total point estimator using y2	
VE.Jk.CBS.HT.Total.Hajek(y2[s==1], pik.U[s==1], pikl.s, N)	

VE.Jk.CBS.SYG.Corr.Hajek
The Campbell-Berger-Skinner unequal probability jackknife variance estimator for the estimator of a correlation coefficient using the Hajek point estimator (Sen-Yates-Grundy form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator for the estimator of a correlation coefficient of two variables using the Hajek (1971) point estimator. It uses the Sen (1953); Yates-Grundy(1953) variance form.

Usage

VE.Jk.CBS.SYG.Corr.Hajek(VecY.s, VecX.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.
VecX.s vector of the variable of interest X ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecY.s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns equals n, the sample size. Values in MatPkl.s must be greater than zero and less than or equal to one. There must not be missing values.

Details

For the population correlation coefficient of two variables y and x :

$$
C=\frac{\sum_{k \in U}\left(y_{k}-\bar{y}\right)\left(x_{k}-\bar{x}\right)}{\sqrt{\sum_{k \in U}\left(y_{k}-\bar{y}\right)^{2}} \sqrt{\sum_{k \in U}\left(x_{k}-\bar{x}\right)^{2}}}
$$

the point estimator of C, assuming that N is unknown (see Sarndal et al., 1992, Sec. 5.9), is:

$$
\hat{C}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k}\left(y_{k}-\hat{\bar{y}}_{\text {Hajek }}\right)\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)}{\sqrt{\sum_{k \in s} w_{k}\left(y_{k}-\hat{\bar{y}}_{\text {Hajek }}\right)^{2}} \sqrt{\sum_{k \in s} w_{k}\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)^{2}}}
$$

where $\hat{\bar{y}}_{\text {Hajek }}$ is the Hajek (1971) point estimator of the population mean $\bar{y}=N^{-1} \sum_{k \in U} y_{k}$,

$$
\hat{\bar{y}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}}
$$

and $w_{k}=1 / \pi_{k}$ with π_{k} denoting the inclusion probability of the k-th element in the sample s. The variance of $\hat{C}_{\text {Hajek }}$ can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{C}_{H a j e k}\right)=\frac{-1}{2} \sum_{k \in s} \sum_{l \in s} \frac{\pi_{k l}-\pi_{k} \pi_{l}}{\pi_{k l}}\left(\varepsilon_{k}-\varepsilon_{l}\right)^{2}
$$

where

$$
\varepsilon_{k}=\left(1-\tilde{w}_{k}\right)\left(\hat{C}_{H a j e k}-\hat{C}_{H a j e k(k)}\right)
$$

with

$$
\tilde{w}_{k}=\frac{w_{k}}{\sum_{l \in s} w_{l}}
$$

and where $\hat{C}_{H a j e k(k)}$ has the same functional form as $\hat{C}_{H a j e k}$ but omitting the k-th element from the sample s. The Sen-Yates-Grundy form for the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator is proposed in Escobar-Berger (2013) under less-restrictive regularity conditions.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Campbell, C. (1980) A different view of finite population estimation. Proceedings of the Survey Research Methods Section of the American Statistical Association, 319-324.
Berger, Y. G. and Skinner, C. J. (2005) A jackknife variance estimator for unequal probability sampling. Journal of the Royal Statistical Society B, 67, 79-89.
Escobar, E. L. and Berger, Y. G. (2013) A jackknife variance estimator for self-weighted two-stage samples. Statistica Sinica, 23, 595-613.
Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.

Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. SpringerVerlag, Inc.
Sen, A. R. (1953) On the estimate of the variance in sampling with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 5, 119-127.
Yates, F. and Grundy, P. M. (1953) Selection without replacement from within strata with probability proportional to size. Journal of the Royal Statistical Society B, 15, 253-261.

See Also

> VE.Jk.Tukey.Corr. Hajek
> VE.Jk.CBS.HT.Corr.Hajek
> VE.Jk.B.Corr.Hajek
> VE.Jk.EB.SW2.Corr.Hajek

Examples

VE.Jk.CBS.SYG.Mean.Hajek
The Campbell-Berger-Skinner unequal probability jackknife variance estimator for the Hajek (1971) estimator of a mean (Sen-Yates-Grundy form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator for the Hajek estimator of a mean. It uses the Sen (1953); Yates-Grundy(1953) variance form.

Usage

VE.Jk.CBS.SYG.Mean.Hajek(VecY.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.
MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns equals n, the sample size. Values in MatPkl. s must be greater than zero and less than or equal to one. There must not be missing values.

Details

For the population mean of the variable y :

$$
\bar{y}=\frac{1}{N} \sum_{k \in U} y_{k}
$$

the approximately unbiased Hajek (1971) estimator of \bar{y} is given by:

$$
\hat{\bar{y}}_{H a j e k}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}}
$$

where $w_{k}=1 / \pi_{k}$ and π_{k} denotes the inclusion probability of the k-th element in the sample s. The variance of $\hat{\bar{y}}_{\text {Hajek }}$ can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{\bar{y}}_{\text {Hajek }}\right)=\frac{-1}{2} \sum_{k \in s} \sum_{l \in s} \frac{\pi_{k l}-\pi_{k} \pi_{l}}{\pi_{k l}}\left(\varepsilon_{k}-\varepsilon_{l}\right)^{2}
$$

where

$$
\varepsilon_{k}=\left(1-\tilde{w}_{k}\right)\left(\hat{\bar{y}}_{H a j e k}-\hat{\bar{y}}_{H a j e k(k)}\right)
$$

with

$$
\tilde{w}_{k}=\frac{w_{k}}{\sum_{l \in s} w_{l}}
$$

and

$$
\hat{\bar{y}}_{H a j e k(k)}=\frac{\sum_{l \in s, l \neq k} w_{l} y_{l}}{\sum_{l \in s, l \neq k} w_{l}}
$$

The Sen-Yates-Grundy form for the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator is proposed in Escobar-Berger (2013) under less-restrictive regularity conditions.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Campbell, C. (1980) A different view of finite population estimation. Proceedings of the Survey Research Methods Section of the American Statistical Association, 319-324.
Berger, Y. G. and Skinner, C. J. (2005) A jackknife variance estimator for unequal probability sampling. Journal of the Royal Statistical Society B, 67, 79-89.
Escobar, E. L. and Berger, Y. G. (2013) A jackknife variance estimator for self-weighted two-stage samples. Statistica Sinica, 23, 595-613.

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.

Sen, A. R. (1953) On the estimate of the variance in sampling with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 5, 119-127.
Yates, F. and Grundy, P. M. (1953) Selection without replacement from within strata with probability proportional to size. Journal of the Royal Statistical Society B, 15, 253-261.

See Also

> VE.Jk.Tukey.Mean. Hajek
> VE.Jk.CBS.HT.Mean.Hajek
> VE.Jk.B.Mean.Hajek
> VE.Jk.EB.SW2.Mean.Hajek

Examples

```
data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the Hajek mean point estimator using y1
VE.Jk.CBS.SYG.Mean.Hajek(y1[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the Hajek mean point estimator using y2
VE.Jk.CBS.SYG.Mean.Hajek(y2[s==1], pik.U[s==1], pikl.s)
```

VE.Jk.CBS.SYG.Ratio The Campbell-Berger-Skinner unequal probability jackknife variance estimator for the estimator of a ratio (Sen-Yates-Grundy form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator for the estimator of a ratio of two totals/means. It uses the Sen (1953); Yates-Grundy(1953) variance form.

Usage

VE.Jk.CBS.SYG.Ratio(VecY.s, VecX.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the numerator variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.
VecX.s vector of the denominator variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk. s and VecY. s. There must not be missing values. All values of VecX. s should be greater than zero. A warning is displayed if this does not hold, and computations continue if mathematical expressions allow this kind of values for the denominator variable.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.
MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns equals n, the sample size. Values in MatPkl. s must be greater than zero and less than or equal to one. There must not be missing values.

Details

For the population ratio of two totals/means of the variables y and x :

$$
R=\frac{\sum_{k \in U} y_{k} / N}{\sum_{k \in U} x_{k} / N}=\frac{\sum_{k \in U} y_{k}}{\sum_{k \in U} x_{k}}
$$

the ratio estimator of R is given by:

$$
\hat{R}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k} x_{k}}
$$

where $w_{k}=1 / \pi_{k}$ and π_{k} denotes the inclusion probability of the k-th element in the sample s. The variance of \hat{R} can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator (implemented by the current function):

$$
\hat{V}(\hat{R})=\frac{-1}{2} \sum_{k \in s} \sum_{l \in s} \frac{\pi_{k l}-\pi_{k} \pi_{l}}{\pi_{k l}}\left(\varepsilon_{k}-\varepsilon_{l}\right)^{2}
$$

where

$$
\varepsilon_{k}=\left(1-\tilde{w}_{k}\right)\left(\hat{R}-\hat{R}_{(k)}\right)
$$

with

$$
\tilde{w}_{k}=\frac{w_{k}}{\sum_{l \in s} w_{l}}
$$

and

$$
\hat{R}_{(k)}=\frac{\sum_{l \in s, l \neq k} w_{l} y_{l} / \sum_{l \in s, l \neq k} w_{l}}{\sum_{l \in s, l \neq k} w_{l} x_{l} / \sum_{l \in s, l \neq k} w_{l}}=\frac{\sum_{l \in s, l \neq k} w_{l} y_{l}}{\sum_{l \in s, l \neq k} w_{l} x_{l}}
$$

The Sen-Yates-Grundy form for the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator is proposed in Escobar-Berger (2013) under less-restrictive regularity conditions.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Campbell, C. (1980) A different view of finite population estimation. Proceedings of the Survey Research Methods Section of the American Statistical Association, 319-324.

Berger, Y. G. and Skinner, C. J. (2005) A jackknife variance estimator for unequal probability sampling. Journal of the Royal Statistical Society B, 67, 79-89.
Escobar, E. L. and Berger, Y. G. (2013) A jackknife variance estimator for self-weighted two-stage samples. Statistica Sinica, 23, 595-613.
Sen, A. R. (1953) On the estimate of the variance in sampling with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 5, 119-127.

Yates, F. and Grundy, P. M. (1953) Selection without replacement from within strata with probability proportional to size. Journal of the Royal Statistical Society B, 15, 253-261.

See Also

```
VE.Lin.HT.Ratio
VE.Lin.SYG.Ratio
VE.Jk.Tukey.Ratio
VE.Jk.CBS.HT.Ratio
VE.Jk.B.Ratio
VE.Jk.EB.SW2.Ratio
VE.EB.HT.Ratio
VE.EB.SYG.Ratio
```


Examples

```
data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used for
y1 <- oaxaca$POP10 #Defines the numerator variable y1
y2 <- oaxaca$POPMAL10 #Defines the numerator variable y2
x <- oaxaca$HOMES10 #Defines the denominator variable x
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the ratio point estimator using y1
VE.Jk.CBS.SYG.Ratio(y1[s==1], x[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the ratio point estimator using y2
VE.Jk.CBS.SYG.Ratio(y2[s==1], x[s==1], pik.U[s==1], pikl.s)
```

VE.Jk.CBS.SYG.RegCo.Hajek
The Campbell-Berger-Skinner unequal probability jackknife variance
estimator for the estimator of the regression coefficient using the Hajek
point estimator (Sen-Yates-Grundy form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator for the estimator of the regression coefficient using the Hajek (1971) point estimator. It uses the Sen (1953); Yates-Grundy(1953) variance form.

Usage

VE.Jk.CBS.SYG.RegCo.Hajek(VecY.s, VecX.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the variable of interest Y ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.

VecX.s vector of the variable of interest X ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecY.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns equals n, the sample size. Values in MatPkl.s must be greater than zero and less than or equal to one. There must not be missing values.

Details

From Linear Regression Analysis, for an imposed population model

$$
y=\alpha+\beta x
$$

the population regression coefficient β, assuming that the population size N is unknown (see Sarndal et al., 1992, Sec. 5.10), can be estimated by:

$$
\hat{\beta}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k}\left(y_{k}-\hat{\bar{y}}_{\text {Hajek }}\right)\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)}{\sum_{k \in s} w_{k}\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)^{2}}
$$

where $\hat{\bar{y}}_{\text {Hajek }}$ and $\hat{\bar{x}}_{\text {Hajek }}$ are the Hajek (1971) point estimators of the population means $\bar{y}=$ $N^{-1} \sum_{k \in U} y_{k}$ and $\bar{x}=N^{-1} \sum_{k \in U} x_{k}$, respectively,

$$
\begin{gathered}
\hat{\bar{y}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}} \\
\hat{\bar{x}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} x_{k}}{\sum_{k \in s} w_{k}}
\end{gathered}
$$

and $w_{k}=1 / \pi_{k}$ with π_{k} denoting the inclusion probability of the k-th element in the sample s. The variance of $\hat{\beta}_{H a j e k}$ can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{\beta}_{H a j e k}\right)=\frac{-1}{2} \sum_{k \in s} \sum_{l \in s} \frac{\pi_{k l}-\pi_{k} \pi_{l}}{\pi_{k l}}\left(\varepsilon_{k}-\varepsilon_{l}\right)^{2}
$$

where

$$
\varepsilon_{k}=\left(1-\tilde{w}_{k}\right)\left(\hat{\beta}_{H a j e k}-\hat{\beta}_{H a j e k(k)}\right)
$$

with

$$
\tilde{w}_{k}=\frac{w_{k}}{\sum_{l \in s} w_{l}}
$$

and where $\hat{\beta}_{H a j e k(k)}$ has the same functional form as $\hat{\beta}_{H a j e k}$ but omitting the k-th element from the sample s. The Sen-Yates-Grundy form for the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator is proposed in Escobar-Berger (2013) under less-restrictive regularity conditions.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Campbell, C. (1980) A different view of finite population estimation. Proceedings of the Survey Research Methods Section of the American Statistical Association, 319-324.
Berger, Y. G. and Skinner, C. J. (2005) A jackknife variance estimator for unequal probability sampling. Journal of the Royal Statistical Society B, 67, 79-89.

Escobar, E. L. and Berger, Y. G. (2013) A jackknife variance estimator for self-weighted two-stage samples. Statistica Sinica, 23, 595-613.
Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.

Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. SpringerVerlag, Inc.
Sen, A. R. (1953) On the estimate of the variance in sampling with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 5, 119-127.
Yates, F. and Grundy, P. M. (1953) Selection without replacement from within strata with probability proportional to size. Journal of the Royal Statistical Society B, 15, 253-261.

See Also

VE.Jk.CBS.SYG.RegCoI. Hajek
VE.Jk.Tukey.RegCo.Hajek
VE.Jk.CBS.HT.RegCo.Hajek
VE.Jk.B.RegCo.Hajek
VE.Jk.EB.SW2.RegCo. Hajek

Examples

VE.Jk.CBS.SYG.RegCoI.Hajek
The Campbell-Berger-Skinner unequal probability jackknife variance estimator for the estimator of the intercept regression coefficient using the Hajek point estimator (Sen-Yates-Grundy form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator for the estimator of the intercept regression coefficient using the Hajek (1971) point estimator. It uses the Sen (1953); Yates-Grundy(1953) variance form.

Usage

VE.Jk.CBS.SYG.RegCoI.Hajek(VecY.s, VecX.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.
VecX.s vector of the variable of interest X ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecY.s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.
MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns equals n, the sample size. Values in MatPkl.s must be greater than zero and less than or equal to one. There must not be missing values.

Details

From Linear Regression Analysis, for an imposed population model

$$
y=\alpha+\beta x
$$

the population intercept regression coefficient α, assuming that the population size N is unknown (see Sarndal et al., 1992, Sec. 5.10), can be estimated by:

$$
\hat{\alpha}_{\text {Hajek }}=\hat{\bar{y}}_{\text {Hajek }}-\frac{\sum_{k \in s} w_{k}\left(y_{k}-\hat{\bar{y}}_{\text {Hajek }}\right)\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)}{\sum_{k \in s} w_{k}\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)^{2}} \hat{\bar{x}}_{\text {Hajek }}
$$

where $\hat{\bar{y}}_{\text {Hajek }}$ and $\hat{\bar{x}}_{\text {Hajek }}$ are the Hajek (1971) point estimators of the population means $\bar{y}=$ $N^{-1} \sum_{k \in U} y_{k}$ and $\bar{x}=N^{-1} \sum_{k \in U} x_{k}$, respectively,

$$
\begin{aligned}
\hat{\bar{y}}_{\text {Hajek }} & =\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}} \\
\hat{\bar{x}}_{\text {Hajek }} & =\frac{\sum_{k \in s} w_{k} x_{k}}{\sum_{k \in s} w_{k}}
\end{aligned}
$$

and $w_{k}=1 / \pi_{k}$ with π_{k} denoting the inclusion probability of the k-th element in the sample s. The variance of $\hat{\alpha}_{\text {Hajek }}$ can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{\alpha}_{H a j e k}\right)=\frac{-1}{2} \sum_{k \in s} \sum_{l \in s} \frac{\pi_{k l}-\pi_{k} \pi_{l}}{\pi_{k l}}\left(\varepsilon_{k}-\varepsilon_{l}\right)^{2}
$$

where

$$
\varepsilon_{k}=\left(1-\tilde{w}_{k}\right)\left(\hat{\alpha}_{H a j e k}-\hat{\alpha}_{H a j e k(k)}\right)
$$

with

$$
\tilde{w}_{k}=\frac{w_{k}}{\sum_{l \in s} w_{l}}
$$

and where $\hat{\alpha}_{H a j e k(k)}$ has the same functional form as $\hat{\alpha}_{H a j e k}$ but omitting the k-th element from the sample s. The Sen-Yates-Grundy form for the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator is proposed in Escobar-Berger (2013) under less-restrictive regularity conditions.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Campbell, C. (1980) A different view of finite population estimation. Proceedings of the Survey Research Methods Section of the American Statistical Association, 319-324.

Berger, Y. G. and Skinner, C. J. (2005) A jackknife variance estimator for unequal probability sampling. Journal of the Royal Statistical Society B, 67, 79-89.

Escobar, E. L. and Berger, Y. G. (2013) A jackknife variance estimator for self-weighted two-stage samples. Statistica Sinica, 23, 595-613.

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.

Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. SpringerVerlag, Inc.

Sen, A. R. (1953) On the estimate of the variance in sampling with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 5, 119-127.

Yates, F. and Grundy, P. M. (1953) Selection without replacement from within strata with probability proportional to size. Journal of the Royal Statistical Society B, 15, 253-261.

See Also

```
VE.Jk.CBS.SYG.RegCo.Hajek
VE.Jk.Tukey.RegCoI.Hajek
VE.Jk.CBS.HT.RegCoI.Hajek
VE.Jk.B.RegCoI.Hajek
VE.Jk.EB.SW2.RegCoI.Hajek
```


Examples

```
data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the intercept reg. coeff. point estimator using y1
VE.Jk.CBS.SYG.RegCoI.Hajek(y1[s==1], x[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the intercept reg. coeff. point estimator using y2
VE.Jk.CBS.SYG.RegCoI.Hajek(y2[s==1], x[s==1], pik.U[s==1], pikl.s)
```

VE.Jk.CBS.SYG.Total.Hajek

The Campbell-Berger-Skinner unequal probability jackknife variance estimator for the Hajek (1971) estimator of a total (Sen-Yates-Grundy form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator for the Hajek estimator of a total. It uses the Sen (1953); Yates-Grundy(1953) variance form.

Usage

VE.Jk.CBS.SYG.Total.Hajek(VecY.s, VecPk.s, MatPkl.s, N)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk. s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns equals n, the sample size. Values in MatPkl. s must be greater than zero and less than or equal to one. There must not be missing values.

N
the population size. It must be an integer or a double-precision scalar with zerovalued fractional part.

Details

For the population total of the variable y :

$$
t=\sum_{k \in U} y_{k}
$$

the approximately unbiased Hajek (1971) estimator of t is given by:

$$
\hat{t}_{\text {Hajek }}=N \frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}}
$$

where $w_{k}=1 / \pi_{k}$ and π_{k} denotes the inclusion probability of the k-th element in the sample s. The variance of $\hat{t}_{\text {Hajek }}$ can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{t}_{\text {Hajek }}\right)=\frac{-1}{2} \sum_{k \in s} \sum_{l \in s} \frac{\pi_{k l}-\pi_{k} \pi_{l}}{\pi_{k l}}\left(\varepsilon_{k}-\varepsilon_{l}\right)^{2}
$$

where

$$
\varepsilon_{k}=\left(1-\tilde{w}_{k}\right)\left(\hat{t}_{\text {Hajek }}-\hat{t}_{\text {Hajek }(k)}\right)
$$

with

$$
\tilde{w}_{k}=\frac{w_{k}}{\sum_{l \in s} w_{l}}
$$

and

$$
\hat{t}_{\text {Hajek }(k)}=N \frac{\sum_{l \in s, l \neq k} w_{l} y_{l}}{\sum_{l \in s, l \neq k} w_{l}}
$$

The Sen-Yates-Grundy form for the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator is proposed in Escobar-Berger (2013) under less-restrictive regularity conditions.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Campbell, C. (1980) A different view of finite population estimation. Proceedings of the Survey Research Methods Section of the American Statistical Association, 319-324.
Berger, Y. G. and Skinner, C. J. (2005) A jackknife variance estimator for unequal probability sampling. Journal of the Royal Statistical Society B, 67, 79-89.
Escobar, E. L. and Berger, Y. G. (2013) A jackknife variance estimator for self-weighted two-stage samples. Statistica Sinica, 23, 595-613.

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.

Sen, A. R. (1953) On the estimate of the variance in sampling with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 5, 119-127.

Yates, F. and Grundy, P. M. (1953) Selection without replacement from within strata with probability proportional to size. Journal of the Royal Statistical Society B, 15, 253-261.

See Also

$$
\begin{aligned}
& \text { VE.Jk.Tukey.Total.Hajek } \\
& \text { VE.Jk.CBS.HT.Total.Hajek } \\
& \text { VE.Jk.B.Total.Hajek } \\
& \text { VE.Jk.EB.SW2.Total.Hajek }
\end{aligned}
$$

Examples

a)	\#Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca\$HOMES00)	\#Reconstructs the 1st order incl. probs.
s <- oaxaca\$sHOMES00	\#Defines the sample to be used
N <- dim(oaxaca)[1]	\#Defines the population size
y1 <- oaxaca\$POP10	\#Defines the variable of interest y1
y2 <- oaxaca\$POPMAL10	\#Defines the variable of interest y2
\#This approximation is only suitable for large-entropy sampling designs	
pikl.s <- Pkl.Hajek.s(pik.U[s==1])	\#Approx. 2nd order incl. probs. from
\#Computes the var. est. of the Hajek total point estimator using y1	
VE.Jk.CBS.SYG.Total.Hajek(y1[s==1], pik.U[s==1], pikl.s, N)	
\#Computes the var. est. of the Hajek total point estimator using y2	
VE.Jk.CBS.SYG.Total.Hajek(y2[s==1], pik.U[s==	1], pikl.s, N)

VE.Jk.EB.SW2.Corr.Hajek

The self-weighted two-stage sampling Escobar-Berger (2013) jackknife variance estimator for the estimator of a correlation coefficient using the Hajek point estimator

Description

Computes the self-weighted two-stage sampling Escobar-Berger (2013) jackknife variance estimator for the estimator of a correlation coefficient of two variables using the Hajek (1971) point estimator.

Usage

VE.Jk.EB.SW2.Corr.Hajek(VecY.s, VecX.s, VecPk.s, nII, VecPi.s, VecCluLab.s, VecCluSize.s)

Arguments

VecY.s vector of the variable of interest Y ; its length is equal to n, the total sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.
VecX.s vector of the variable of interest X ; its length is equal to n, the total sample size. Its length has to be the same as that of VecPk.s and VecY.s. There must not be missing values.
VecPk.s vector of the elements' first-order inclusion probabilities; its length is equal to n, the total sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.
nII the second stage sample size, i.e., the fixed number of ultimate sampling units selected within each cluster. Its size must be less than or equal to the minimum cluster size in the sample.
VecPi.s vector of the clusters' first-order inclusion probabilities; its length is equal to n, the total sample size. Hence values are expected to be repeated in the utilised sample dataset. Values in VecPi.s must be greater than zero and less than or equal to one. There must not be missing values.
VecCluLab.s vector of the clusters' labels for the elements; its length is equal to n, the total sample size. The labels must be integer numbers.
VecCluSize.s vector of the clusters' sizes; its length is equal to n, the total sample size. Hence values are expected to be repeated in the utilised sample dataset. None of the sizes must be smaller than nII .

Details

For the population correlation coefficient of two variables y and x :

$$
C=\frac{\sum_{k \in U}\left(y_{k}-\bar{y}\right)\left(x_{k}-\bar{x}\right)}{\sqrt{\sum_{k \in U}\left(y_{k}-\bar{y}\right)^{2}} \sqrt{\sum_{k \in U}\left(x_{k}-\bar{x}\right)^{2}}}
$$

the point estimator of C, assuming that N is unknown (see Sarndal et al., 1992, Sec. 5.9), is:

$$
\hat{C}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k}\left(y_{k}-\hat{\bar{y}}_{\text {Hajek }}\right)\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)}{\sqrt{\sum_{k \in s} w_{k}\left(y_{k}-\hat{\bar{y}}_{\text {Hajek }}\right)^{2}} \sqrt{\sum_{k \in s} w_{k}\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)^{2}}}
$$

where $\hat{\bar{y}}_{\text {Hajek }}$ is the Hajek (1971) point estimator of the population mean $\bar{y}=N^{-1} \sum_{k \in U} y_{k}$,

$$
\hat{\bar{y}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}}
$$

and $w_{k}=1 / \pi_{k}$ with π_{k} denoting the inclusion probability of the k-th element in the sample s. If s is a self-weighted two-stage sample, the variance of $\hat{C}_{\text {Hajek }}$ can be estimated by the Escobar-Berger (2013) jackknife variance estimator (implemented by the current function):

$$
\begin{gathered}
\hat{V}\left(\hat{C}_{\text {Hajek }}\right)=v_{c l u}+v_{o b s} \\
v_{c l u}=\sum_{i \in s}\left(1-\pi_{I i}^{*}\right) \varsigma_{(I i)}^{2}-\frac{1}{\hat{d}}\left(\sum_{i \in s}\left(1-\pi_{I i}\right) \varsigma_{(I i)}\right)^{2}
\end{gathered}
$$

$$
v_{o b s}=\sum_{k \in s} \phi_{k} \varepsilon_{(k)}^{2}
$$

where $\hat{d}=\sum_{i \in s}\left(1-\pi_{I i}\right), \phi_{k}=I\left\{k \in s_{i}\right\} \pi_{I i}^{*}\left(M_{i}-n_{I I}\right) /\left(M_{i}-1\right), \pi_{I i}^{*}=\pi_{I i} n_{I I}\left(M_{i}-\right.$ 1) $/\left(n_{I I}-1\right) M_{i}$, with s_{i} denoting the sample elements from the i-th cluster, $I\left\{k \in s_{i}\right\}$ is an indicator that takes the value 1 if the k-th observation is within the i-th cluster and 0 otherwise, $\pi_{I i}$ is the inclusion probability of the i-th cluster in the sample s, M_{i} is the size of the i-th cluster, $n_{I I}$ is the sample size within each cluster, n_{I} is the number of sampled clusters, and where

$$
\begin{aligned}
\varsigma_{(I i)} & =\frac{n_{I}-1}{n_{I}}\left(\hat{C}_{\text {Hajek }}-\hat{C}_{\text {Hajek }(I i)}\right) \\
\varepsilon_{(k)} & =\frac{n-1}{n}\left(\hat{C}_{\text {Hajek }}-\hat{C}_{\text {Hajek }(k)}\right)
\end{aligned}
$$

where $\hat{C}_{H a j e k(I i)}$ and $\hat{C}_{H a j e k(k)}$ have the same functional form as $\hat{C}_{\text {Hajek }}$ but omitting the i-th cluster and the k-th element, respectively, from the sample s. Note that this variance estimator implicitly utilises the Hajek (1964) approximations that are designed for large-entropy sampling designs, large samples, and large populations, i.e., care should be taken with highly-stratified samples, e.g. Berger (2005).

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal probabilities. Australian \& New Zealand Journal of Statistics, 47, 365-373.

Escobar, E. L. and Berger, Y. G. (2013) A jackknife variance estimator for self-weighted two-stage samples. Statistica Sinica, 23, 595-613.
Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite population. The Annals of Mathematical Statistics, 35, 4, 1491-1523.
Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.
Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. SpringerVerlag, Inc.

See Also

```
VE.Jk.Tukey.Corr.Hajek
VE.Jk.CBS.HT.Corr.Hajek
VE.Jk.CBS.SYG.Corr.Hajek
VE.Jk.B.Corr.Hajek
```


Examples

data(oaxaca)	\#Loads the Oaxaca municipalities dataset
s <- oaxaca\$sSW_10_3	\#Defines the sample to be used
SampData <- oaxaca[s==1,]	\#Defines the sample dataset
nII <- 3	\#Defines the 2nd stage fixed sample size
CluLab.s <- SampData\$IDDISTRI	\#Defines the clusters' labels
CluSize.s <- SampData\$SIZEDIST	\#Defines the clusters' sizes
piIi.s <- (10 * CluSize.s / 570)	\#Reconstructs clusters' 1st order incl. probs.
pik.s <- piIi.s * (nII/CluSize.s)	\#Reconstructs elements' 1st order incl. probs.
y1.s <- SampData\$POP10	\#Defines the variable y1
y2.s <- SampData\$POPMAL10	\#Defines the variable y2
x.s <- SampData\$HOMES10	\#Defines the variable x
\#Computes the var. est. of the corr.	eff. point estimator using y1
VE.Jk.EB.SW2.Corr.Hajek(y1.s, x.s, pik	s, nII, pili.s, CluLab.s, CluSize.s)
\#Computes the var. est. of the corr. VE.Jk.EB.SW2.Corr.Hajek(y2.s, x.s, pik.	eff. point estimator using y2 s, nII, piIi.s, CluLab.s, CluSize.s)

```
VE.Jk.EB.SW2.Mean.Hajek
```

The self-weighted two-stage sampling Escobar-Berger (2013) jackknife variance estimator for the Hajek (1971) estimator of a mean

Description

Computes the self-weighted two-stage sampling Escobar-Berger (2013) jackknife variance estimator for the Hajek estimator of a mean.

Usage

VE.Jk.EB.SW2.Mean.Hajek(VecY.s, VecPk.s, nII, VecPi.s, VecCluLab.s, VecCluSize.s)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the total sample size. Its length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the elements' first-order inclusion probabilities; its length is equal to n, the total sample size. Values in VecPk. s must be greater than zero and less than or equal to one. There must not be missing values.
nII the second stage sample size, i.e., the fixed number of ultimate sampling units selected within each cluster. Its size must be less than or equal to the minimum cluster size in the sample.

VecPi.s vector of the clusters' first-order inclusion probabilities; its length is equal to n, the total sample size. Hence values are expected to be repeated in the utilised sample dataset. Values in VecPi.s must be greater than zero and less than or equal to one. There must not be missing values.

VecCluLab.s vector of the clusters' labels for the elements; its length is equal to n, the total sample size. The labels must be integer numbers.
VecCluSize.s vector of the clusters' sizes; its length is equal to n, the total sample size. Hence values are expected to be repeated in the utilised sample dataset. None of the sizes must be smaller than nII .

Details

For the population mean of the variable y :

$$
\bar{y}=\frac{1}{N} \sum_{k \in U} y_{k}
$$

the approximately unbiased Hajek (1971) estimator of \bar{y} is given by:

$$
\hat{\bar{y}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}}
$$

where $w_{k}=1 / \pi_{k}$ and π_{k} denotes the inclusion probability of the k-th element in the sample s. If s is a self-weighted two-stage sample, the variance of $\hat{\bar{y}}_{\text {Hajek }}$ can be estimated by the Escobar-Berger (2013) jackknife variance estimator (implemented by the current function):

$$
\begin{gathered}
\hat{V}\left(\hat{\bar{y}}_{\text {Hajek }}\right)=v_{c l u}+v_{o b s} \\
v_{c l u}=\sum_{i \in s}\left(1-\pi_{I i}^{*}\right) \varsigma_{(I i)}^{2}-\frac{1}{\hat{d}}\left(\sum_{i \in s}\left(1-\pi_{I i}\right) \varsigma_{(I i)}\right)^{2} \\
v_{o b s}=\sum_{k \in s} \phi_{k} \varepsilon_{(k)}^{2}
\end{gathered}
$$

where $\hat{d}=\sum_{i \in s}\left(1-\pi_{I i}\right), \phi_{k}=I\left\{k \in s_{i}\right\} \pi_{I i}^{*}\left(M_{i}-n_{I I}\right) /\left(M_{i}-1\right), \pi_{I i}^{*}=\pi_{I i} n_{I I}\left(M_{i}-\right.$ 1) $/\left(n_{I I}-1\right) M_{i}$, with s_{i} denoting the sample elements from the i-th cluster, $I\left\{k \in s_{i}\right\}$ is an indicator that takes the value 1 if the k-th observation is within the i-th cluster and 0 otherwise, $\pi_{I i}$ is the inclusion probability of the i-th cluster in the sample s, M_{i} is the size of the i-th cluster, $n_{I I}$ is the sample size within each cluster, n_{I} is the number of sampled clusters, and where

$$
\begin{aligned}
\varsigma_{(I i)} & =\frac{n_{I}-1}{n_{I}}\left(\hat{\bar{y}}_{\text {Hajek }}-\hat{\bar{y}}_{\text {Hajek }(I i)}\right) \\
\varepsilon_{(k)} & =\frac{n-1}{n}\left(\hat{\bar{y}}_{\text {Hajek }}-\hat{\bar{y}}_{\text {Hajek }(k)}\right)
\end{aligned}
$$

where $\hat{\bar{y}}_{H a j e k(I i)}$ and $\hat{\bar{y}}_{H a j e k(k)}$ have the same functional form as $\hat{\bar{y}}_{H a j e k}$ but omitting the i-th cluster and the k-th element, respectively, from the sample s. Note that this variance estimator implicitly utilises the Hajek (1964) approximations that are designed for large-entropy sampling designs, large samples, and large populations, i.e., care should be taken with highly-stratified samples, e.g. Berger (2005).

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal probabilities. Australian \& New Zealand Journal of Statistics, 47, 365-373.

Escobar, E. L. and Berger, Y. G. (2013) A jackknife variance estimator for self-weighted two-stage samples. Statistica Sinica, 23, 595-613.
Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite population. The Annals of Mathematical Statistics, 35, 4, 1491-1523.
Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.

See Also

$$
\begin{aligned}
& \text { VE.Jk.Tukey.Mean.Hajek } \\
& \text { VE.Jk.CBS.HT.Mean.Hajek } \\
& \text { VE.Jk.CBS.SYG.Mean.Hajek } \\
& \text { VE.Jk.B.Mean.Hajek }
\end{aligned}
$$

Examples

data(oaxac		\#Loads the Oaxaca municipalities dataset
s	<- oaxaca\$sSW_10_3	\#Defines the sample to be used
SampData	<- oaxaca[s==1,]	\#Defines the sample dataset
nII	<- 3	\#Defines the 2nd stage fixed sample size
CluLab.s	<- SampData\$IDDISTRI	\#Defines the clusters' labels
CluSize.s	<- SampData\$SIZEDIST	\#Defines the clusters' sizes
piIi.s	<- (10 * CluSize.s / 570)	\#Reconstructs clusters' 1st order incl. probs.
pik.s	<- piIi.s * (nII/CluSize.s)	\#Reconstructs elements' 1st order incl. probs.
y1.s	<- SampData\$POP10	\#Defines the variable of interest y1
y2.s	<- SampData\$POPMAL10	\#Defines the variable of interest y2
\#Computes	the var. est. of the Hajek	mean point estimator using y1
VE.Jk.EB.S	SW2.Mean.Hajek(y1.s, pik.s,	nII, piIi.s, CluLab.s, CluSize.s)
\#Computes	the var. est. of the Hajek	mean point estimator using y2
VE.Jk.EB.S	W2.Mean.Hajek(y2.s, pik.s,	II, piIi.s, CluLab.s, CluSize.s)

VE.Jk.EB.SW2.Ratio The self-weighted two-stage sampling Escobar-Berger (2013) jackknife variance estimator for the estimator of a ratio

Description

Computes the self-weighted two-stage sampling Escobar-Berger (2013) jackknife variance estimator for the estimator of a ratio of two totals/means.

Usage

```
VE.Jk.EB.SW2.Ratio(VecY.s, VecX.s, VecPk.s, nII, VecPi.s,
VecCluLab.s, VecCluSize.s)
```


Arguments

VecY.s vector of the numerator variable of interest; its length is equal to n, the total sample size. Its length has to be the same as that of VecPk.s and VecX. s. There must not be missing values.

VecX.s vector of the denominator variable of interest; its length is equal to n, the total sample size. Its length has to be the same as that of VecPk.s and VecY.s. There must not be missing values. All values of VecX. s should be greater than zero. A warning is displayed if this does not hold, and computations continue if mathematical expressions allow this kind of values for the denominator variable.
VecPk.s vector of the elements' first-order inclusion probabilities; its length is equal to n, the total sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.
nII the second stage sample size, i.e., the fixed number of ultimate sampling units selected within each cluster. Its size must be less than or equal to the minimum cluster size in the sample.

VecPi.s vector of the clusters' first-order inclusion probabilities; its length is equal to n, the total sample size. Hence values are expected to be repeated in the utilised sample dataset. Values in VecPi.s must be greater than zero and less than or equal to one. There must not be missing values.
VecCluLab.s vector of the clusters' labels for the elements; its length is equal to n, the total sample size. The labels must be integer numbers.
VecCluSize.s vector of the clusters' sizes; its length is equal to n, the total sample size. Hence values are expected to be repeated in the utilised sample dataset. None of the sizes must be smaller than nII .

Details

For the population ratio of two totals/means of the variables y and x :

$$
R=\frac{\sum_{k \in U} y_{k} / N}{\sum_{k \in U} x_{k} / N}=\frac{\sum_{k \in U} y_{k}}{\sum_{k \in U} x_{k}}
$$

the ratio estimator of R is given by:

$$
\hat{R}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k} x_{k}}
$$

where $w_{k}=1 / \pi_{k}$ and π_{k} denotes the inclusion probability of the k-th element in the sample s. If s is a self-weighted two-stage sample, the variance of \hat{R} can be estimated by the Escobar-Berger (2013) jackknife variance estimator (implemented by the current function):

$$
\hat{V}(\hat{R})=v_{c l u}+v_{o b s}
$$

$$
\begin{gathered}
v_{c l u}=\sum_{i \in s}\left(1-\pi_{I i}^{*}\right) \varsigma_{(I i)}^{2}-\frac{1}{\hat{d}}\left(\sum_{i \in s}\left(1-\pi_{I i}\right) \varsigma_{(I i)}\right)^{2} \\
v_{o b s}=\sum_{k \in s} \phi_{k} \varepsilon_{(k)}^{2}
\end{gathered}
$$

where $\hat{d}=\sum_{i \in s}\left(1-\pi_{I i}\right), \phi_{k}=I\left\{k \in s_{i}\right\} \pi_{I i}^{*}\left(M_{i}-n_{I I}\right) /\left(M_{i}-1\right), \pi_{I i}^{*}=\pi_{I i} n_{I I}\left(M_{i}-\right.$ 1) $/\left(n_{I I}-1\right) M_{i}$, with s_{i} denoting the sample elements from the i-th cluster, $I\left\{k \in s_{i}\right\}$ is an indicator that takes the value 1 if the k-th observation is within the i-th cluster and 0 otherwise, $\pi_{I i}$ is the inclusion probability of the i-th cluster in the sample s, M_{i} is the size of the i-th cluster, $n_{I I}$ is the sample size within each cluster, n_{I} is the number of sampled clusters, and where

$$
\begin{aligned}
\varsigma_{(I i)} & =\frac{n_{I}-1}{n_{I}}\left(\hat{R}-\hat{R}_{(I i)}\right) \\
\varepsilon_{(k)} & =\frac{n-1}{n}\left(\hat{R}-\hat{R}_{(k)}\right)
\end{aligned}
$$

where $\hat{R}_{(I i)}$ and $\hat{R}_{(k)}$ have the same functional form as \hat{R} but omitting the i-th cluster and the k-th element, respectively, from the sample s. Note that this variance estimator implicitly utilises the Hajek (1964) approximations that are designed for large-entropy sampling designs, large samples, and large populations, i.e., care should be taken with highly-stratified samples, e.g. Berger (2005).

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal probabilities. Australian \& New Zealand Journal of Statistics, 47, 365-373.

Escobar, E. L. and Berger, Y. G. (2013) A jackknife variance estimator for self-weighted two-stage samples. Statistica Sinica, 23, 595-613.
Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite population. The Annals of Mathematical Statistics, 35, 4, 1491-1523.

See Also

> VE.Jk.Tukey.Ratio
> VE.Jk.CBS.HT.Ratio
> VE.Jk.CBS.SYG.Ratio
> VE.Jk.B.Ratio
> VE.EB.HT.Ratio
> VE.EB.SYG.Ratio

Examples

data(oaxaca)	ds the Oaxaca municipalities dataset
s <- oaxaca\$sSW_10_3	\#Defines the sample to be used
SampData <- oaxaca[s==1,]	\#Defines the sample dataset
nII <- 3	\#Defines the 2nd stage fixed sample size
CluLab.s <- SampData\$IDDISTRI	\#Defines the clusters' labels
CluSize.s <- SampData\$SIZEDIST	\#Defines the clusters' sizes
piIi.s <- (10 * CluSize.s / 570)	\#Reconstructs clusters' 1st order incl. probs.
pik.s <- piIi.s * (nII/CluSize.s)	\#Reconstructs elements' 1st order incl. probs.
y1.s <- SampData\$POP10	\#Defines the numerator variable y1
y2.s <- SampData\$POPMAL10	\#Defines the numerator variable y2
x.s <- SampData\$HOMES10	\#Defines the denominator variable x
\#Computes the var. est. of the ratio p	point estimator using y1
VE.Jk.EB.SW2.Ratio $\mathrm{y} 1 . \mathrm{s}$, x.s, pik.s,	II, piIi.s, CluLab.s, CluSize.s)
\#Computes the var. est. of the ratio	point estimator using y2
	nII, piIi.s, CluLab.s, CluSize.s)

VE.Jk.EB.SW2.RegCo.Hajek
The self-weighted two-stage sampling Escobar-Berger (2013) jackknife variance estimator for the estimator of the regression coefficient using the Hajek point estimator

Description

Computes the self-weighted two-stage sampling Escobar-Berger (2013) jackknife variance estimator for the estimator of the regression coefficient using the Hajek (1971) point estimator.

Usage

VE.Jk.EB.SW2.RegCo.Hajek(VecY.s, VecX.s, VecPk.s, nII, VecPi.s, VecCluLab.s, VecCluSize.s)

Arguments

VecY.s vector of the variable of interest Y ; its length is equal to n, the total sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.

VecX.s vector of the variable of interest X; its length is equal to n, the total sample size. Its length has to be the same as that of VecPk.s and VecY.s. There must not be missing values.
VecPk.s vector of the elements' first-order inclusion probabilities; its length is equal to n, the total sample size. Values in VecPk. s must be greater than zero and less than or equal to one. There must not be missing values.
nII the second stage sample size, i.e. the fixed number of ultimate sampling units that were selected within each cluster. Its size must be less than or equal to the minimum cluster size in the sample.

VecPi.s
vector of the clusters' first-order inclusion probabilities; its length is equal to n, the total sample size. Hence values are expected to be repeated in the utilised sample dataset. Values in VecPi.s must be greater than zero and less than or equal to one. There must not be missing values.
VecCluLab.s vector of the clusters' labels for the elements; its length is equal to n, the total sample size. The labels must be integer numbers.
VecCluSize.s vector of the clusters' sizes; its length is equal to n, the total sample size. Hence values are expected to be repeated in the utilised sample dataset. None of the sizes must be smaller than nII .

Details

From Linear Regression Analysis, for an imposed population model

$$
y=\alpha+\beta x
$$

the population regression coefficient β, assuming that the population size N is unknown (see Sarndal et al., 1992, Sec. 5.10), can be estimated by:

$$
\hat{\beta}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k}\left(y_{k}-\hat{\bar{y}}_{\text {Hajek }}\right)\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)}{\sum_{k \in s} w_{k}\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)^{2}}
$$

where $\hat{\bar{y}}_{\text {Hajek }}$ and $\hat{\bar{x}}_{\text {Hajek }}$ are the Hajek (1971) point estimators of the population means $\bar{y}=$ $N^{-1} \sum_{k \in U} y_{k}$ and $\bar{x}=N^{-1} \sum_{k \in U} x_{k}$, respectively,

$$
\begin{aligned}
& \hat{\bar{y}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}} \\
& \hat{\bar{x}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} x_{k}}{\sum_{k \in s} w_{k}}
\end{aligned}
$$

and $w_{k}=1 / \pi_{k}$ with π_{k} denoting the inclusion probability of the k-th element in the sample s. If s is a self-weighted two-stage sample, the variance of $\hat{\beta}_{\text {Hajek }}$ can be estimated by the Escobar-Berger (2013) jackknife variance estimator (implemented by the current function):

$$
\begin{gathered}
\hat{V}\left(\hat{\beta}_{\text {Hajek }}\right)=v_{c l u}+v_{o b s} \\
v_{c l u}=\sum_{i \in s}\left(1-\pi_{I i}^{*}\right) \varsigma_{(I i)}^{2}-\frac{1}{\hat{d}}\left(\sum_{i \in s}\left(1-\pi_{I i}\right) \varsigma_{(I i)}\right)^{2} \\
v_{o b s}=\sum_{k \in s} \phi_{k} \varepsilon_{(k)}^{2}
\end{gathered}
$$

where $\hat{d}=\sum_{i \in s}\left(1-\pi_{I i}\right), \phi_{k}=I\left\{k \in s_{i}\right\} \pi_{I i}^{*}\left(M_{i}-n_{I I}\right) /\left(M_{i}-1\right), \pi_{I i}^{*}=\pi_{I i} n_{I I}\left(M_{i}-\right.$ 1) $/\left(n_{I I}-1\right) M_{i}$, with s_{i} denoting the sample elements from the i-th cluster, $I\left\{k \in s_{i}\right\}$ is an indicator that takes the value 1 if the k-th observation is within the i-th cluster and 0 otherwise, $\pi_{I i}$ is the inclusion probability of the i-th cluster in the sample s, M_{i} is the size of the i-th cluster, $n_{I I}$ is the sample size within each cluster, n_{I} is the number of sampled clusters, and where

$$
\varsigma_{(I i)}=\frac{n_{I}-1}{n_{I}}\left(\hat{\beta}_{H a j e k}-\hat{\beta}_{H a j e k(I i)}\right)
$$

$$
\varepsilon_{(k)}=\frac{n-1}{n}\left(\hat{\beta}_{H a j e k}-\hat{\beta}_{\text {Hajek }(k)}\right)
$$

where $\hat{\beta}_{H a j e k(I i)}$ and $\hat{\beta}_{\text {Hajek }(k)}$ have the same functional form as $\hat{\beta}_{\text {Hajek }}$ but omitting the i-th cluster and the k-th element, respectively, from the sample s. Note that this variance estimator implicitly utilises the Hajek (1964) approximations that are designed for large-entropy sampling designs, large samples, and large populations, i.e., care should be taken with highly-stratified samples, e.g. Berger (2005).

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal probabilities. Australian \& New Zealand Journal of Statistics, 47, 365-373.
Escobar, E. L. and Berger, Y. G. (2013) A jackknife variance estimator for self-weighted two-stage samples. Statistica Sinica, 23, 595-613.
Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite population. The Annals of Mathematical Statistics, 35, 4, 1491-1523.
Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.
Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. SpringerVerlag, Inc.

See Also

VE.Jk.EB.SW2.RegCoI.Hajek
VE.Jk.Tukey.RegCo. Hajek
VE.Jk.CBS.HT.RegCo.Hajek
VE.Jk.CBS.SYG.RegCo. Hajek
VE.Jk.B.RegCo.Hajek

Examples

data(oaxa		\#Loads the Oaxaca municipalities dataset
s	<- oaxaca\$sSW_10_3	\#Defines the sample to be used
SampData	<- oaxaca[s==1,]	\#Defines the sample dataset
nII	<- 3	\#Defines the 2nd stage fixed sample size
CluLab.s	<- SampData\$IDDISTRI	\#Defines the clusters' labels
CluSize.s	<- SampData\$SIZEDIST	\#Defines the clusters' sizes
piIi.s	<- (10 * CluSize.s / 570)	\#Reconstructs clusters' 1st order incl. probs.
pik.s	<- piIi.s * (nII/CluSize.s)	\#Reconstructs elements' 1st order incl. probs.
y1.s	<- SampData\$POP10	\#Defines the variable y1

```
y2.s <- SampData$POPMAL10 #Defines the variable y2
x.s <- SampData$HOMES10 #Defines the variable x
#Computes the var. est. of the regression coeff. point estimator using y1
VE.Jk.EB.SW2.RegCo.Hajek(y1.s, x.s, pik.s, nII, piIi.s, CluLab.s, CluSize.s)
#Computes the var. est. of the regression coeff. point estimator using y2
VE.Jk.EB.SW2.RegCo.Hajek(y2.s, x.s, pik.s, nII, piIi.s, CluLab.s, CluSize.s)
```

VE.Jk.EB.SW2.RegCoI.Hajek
The self-weighted two-stage sampling Escobar-Berger (2013) jackknife variance estimator for the estimator of the intercept regression coefficient using the Hajek point estimator

Description

Computes the self-weighted two-stage sampling Escobar-Berger (2013) jackknife variance estimator for the estimator of the intercept regression coefficient using the Hajek (1971) point estimator.

Usage

VE.Jk.EB.SW2.RegCoI.Hajek(VecY.s, VecX.s, VecPk.s, nII, VecPi.s, VecCluLab.s, VecCluSize.s)

Arguments

VecY.s vector of the variable of interest Y ; its length is equal to n, the total sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.
VecX.s vector of the variable of interest X; its length is equal to n, the total sample size. Its length has to be the same as that of VecPk.s and VecY.s. There must not be missing values.
VecPk.s vector of the elements' first-order inclusion probabilities; its length is equal to n, the total sample size. Values in VecPk. s must be greater than zero and less than or equal to one. There must not be missing values.
nII the second stage sample size, i.e. the fixed number of ultimate sampling units that were selected within each cluster. Its size must be less than or equal to the minimum cluster size in the sample.
VecPi.s vector of the clusters' first-order inclusion probabilities; its length is equal to n, the total sample size. Hence values are expected to be repeated in the utilised sample dataset. Values in VecPi.s must be greater than zero and less than or equal to one. There must not be missing values.
VecCluLab.s vector of the clusters' labels for the elements; its length is equal to n, the total sample size. The labels must be integer numbers.

VecCluSize.s vector of the clusters' sizes; its length is equal to n, the total sample size. Hence values are expected to be repeated in the utilised sample dataset. None of the sizes must be smaller than nII .

Details

From Linear Regression Analysis, for an imposed population model

$$
y=\alpha+\beta x
$$

the population intercept regression coefficient α, assuming that the population size N is unknown (see Sarndal et al., 1992, Sec. 5.10), can be estimated by:

$$
\hat{\alpha}_{H a j e k}=\hat{\bar{y}}_{H a j e k}-\frac{\sum_{k \in s} w_{k}\left(y_{k}-\hat{\bar{y}}_{\text {Hajek }}\right)\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)}{\sum_{k \in s} w_{k}\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)^{2}} \hat{\bar{x}}_{\text {Hajek }}
$$

where $\hat{\bar{y}}_{\text {Hajek }}$ and $\hat{\bar{x}}_{\text {Hajek }}$ are the Hajek (1971) point estimators of the population means $\bar{y}=$ $N^{-1} \sum_{k \in U} y_{k}$ and $\bar{x}=N^{-1} \sum_{k \in U} x_{k}$, respectively,

$$
\begin{aligned}
\hat{\bar{y}}_{\text {Hajek }} & =\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}} \\
\hat{\bar{x}}_{\text {Hajek }} & =\frac{\sum_{k \in s} w_{k} x_{k}}{\sum_{k \in s} w_{k}}
\end{aligned}
$$

and $w_{k}=1 / \pi_{k}$ with π_{k} denoting the inclusion probability of the k-th element in the sample s. If s is a self-weighted two-stage sample, the variance of $\hat{\alpha}_{\text {Hajek }}$ can be estimated by the Escobar-Berger (2013) jackknife variance estimator (implemented by the current function):

$$
\begin{gathered}
\hat{V}\left(\hat{\alpha}_{H a j e k}\right)=v_{c l u}+v_{o b s} \\
v_{c l u}=\sum_{i \in s}\left(1-\pi_{I i}^{*}\right) \varsigma_{(I i)}^{2}-\frac{1}{\hat{d}}\left(\sum_{i \in s}\left(1-\pi_{I i}\right) \varsigma_{(I i)}\right)^{2} \\
v_{o b s}=\sum_{k \in s} \phi_{k} \varepsilon_{(k)}^{2}
\end{gathered}
$$

where $\hat{d}=\sum_{i \in s}\left(1-\pi_{I i}\right), \phi_{k}=I\left\{k \in s_{i}\right\} \pi_{I i}^{*}\left(M_{i}-n_{I I}\right) /\left(M_{i}-1\right), \pi_{I i}^{*}=\pi_{I i} n_{I I}\left(M_{i}-\right.$ 1) $/\left(n_{I I}-1\right) M_{i}$, with s_{i} denoting the sample elements from the i-th cluster, $I\left\{k \in s_{i}\right\}$ is an indicator that takes the value 1 if the k-th observation is within the i-th cluster and 0 otherwise, $\pi_{I i}$ is the inclusion probability of the i-th cluster in the sample s, M_{i} is the size of the i-th cluster, $n_{I I}$ is the sample size within each cluster, n_{I} is the number of sampled clusters, and where

$$
\begin{aligned}
\varsigma_{(I i)} & =\frac{n_{I}-1}{n_{I}}\left(\hat{\alpha}_{H a j e k}-\hat{\alpha}_{\operatorname{Hajek}(I i)}\right) \\
\varepsilon_{(k)} & =\frac{n-1}{n}\left(\hat{\alpha}_{H a j e k}-\hat{\alpha}_{H a j e k}(k)\right)
\end{aligned}
$$

where $\hat{\alpha}_{\text {Hajek(Ii) }}$ and $\hat{\alpha}_{\text {Hajek(k) }}$ have the same functional form as $\hat{\alpha}_{\text {Hajek }}$ but omitting the i-th cluster and the k-th element, respectively, from the sample s. Note that this variance estimator implicitly utilises the Hajek (1964) approximations that are designed for large-entropy sampling designs, large samples, and large populations, i.e., care should be taken with highly-stratified samples, e.g. Berger (2005).

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal probabilities. Australian \& New Zealand Journal of Statistics, 47, 365-373.

Escobar, E. L. and Berger, Y. G. (2013) A jackknife variance estimator for self-weighted two-stage samples. Statistica Sinica, 23, 595-613.

Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite population. The Annals of Mathematical Statistics, 35, 4, 1491-1523.

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.

Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. SpringerVerlag, Inc.

See Also

VE.Jk.EB.SW2.RegCo.Hajek
VE.Jk.Tukey.RegCoI. Hajek
VE.Jk.CBS.HT.RegCoI.Hajek
VE.Jk.CBS.SYG.RegCoI.Hajek
VE.Jk.B.RegCoI.Hajek

Examples

data(oaxaca)		\#Loads the Oaxaca municipalities dataset
s	<- oaxaca\$sSW_10_3	\#Defines the sample to be used
SampData	- oaxaca[s==1,]	\#Defines the sample dataset
nII	3	\#Defines the 2nd stage fixed sample size
CluLab.	- SampData\$IDDISTRI	\#Defines the clusters' labels
CluSize.s	<- SampData\$SIZEDIST	\#Defines the clusters' sizes
piI	<- (10 * CluSize.s / 570)	\#Reconstructs clusters' 1st order incl. probs
pik.s	<- piIi.s * (nII/CluSize.s)	\#Reconstructs elements' 1st order incl. probs.
y1.s	<- SampData\$POP10	\#Defines the variable y1
y2.s	<- SampData\$POPMAL10	\#Defines the variable y2
$\mathrm{x} . \mathrm{s}$	<- SampData\$HOMES10	\#Defines the variable x
\#Computes the var. est. of the intercept reg. coeff. point estimator using y1		
VE.Jk.EB.SW2.RegCoI.Hajek(y1.s, x.s, pik.s, nII, piIi.s, CluLab.s, CluSize.s)		
\#Computes the var. est. of the intercept reg. coeff. point estimator using y2		
VE.Jk.EB.SW2.RegCoI.Hajek(y2.s, x.s, pik.s, nII, piIi.s, CluLab.s, CluSize.s)		

```
VE.Jk.EB.SW2.Total.Hajek
    The self-weighted two-stage sampling Escobar-Berger (2013) jack-
    knife variance estimator for the Hajek (1971) estimator of a total
```


Description

Computes the self-weighted two-stage sampling Escobar-Berger (2013) jackknife variance estimator for the Hajek estimator of a total.

Usage

VE.Jk.EB.SW2.Total.Hajek(VecY.s, VecPk.s, nII, VecPi.s, VecCluLab.s, VecCluSize.s, N)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the total sample size. Its length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the elements' first-order inclusion probabilities; its length is equal to n, the total sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.
n nI the second stage sample size, i.e. the fixed number of ultimate sampling units that were selected within each cluster. Its size must be less than or equal to the minimum cluster size in the sample.
VecPi.s vector of the clusters' first-order inclusion probabilities; its length is equal to n, the total sample size. Hence values are expected to be repeated in the utilised sample dataset. Values in VecPi.s must be greater than zero and less than or equal to one. There must not be missing values.
VecCluLab.s vector of the clusters' labels for the elements; its length is equal to n, the total sample size. The labels must be integer numbers.
VecCluSize.s vector of the clusters' sizes; its length is equal to n, the total sample size. Hence values are expected to be repeated in the utilised sample dataset. None of the sizes must be smaller than nII.
$\mathrm{N} \quad$ the population size. It must be an integer or a double-precision scalar with zerovalued fractional part.

Details

For the population total of the variable y :

$$
t=\sum_{k \in U} y_{k}
$$

the approximately unbiased Hajek (1971) estimator of t is given by:

$$
\hat{t}_{H a j e k}=N \frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}}
$$

where $w_{k}=1 / \pi_{k}$ and π_{k} denotes the inclusion probability of the k-th element in the sample s. If s is a self-weighted two-stage sample, the variance of $\hat{t}_{\text {Hajek }}$ can be estimated by the Escobar-Berger (2013) jackknife variance estimator (implemented by the current function):

$$
\begin{gathered}
\hat{V}\left(\hat{t}_{\text {Hajek }}\right)=v_{c l u}+v_{o b s} \\
v_{c l u}=\sum_{i \in s}\left(1-\pi_{I i}^{*}\right) \varsigma_{(I i)}^{2}-\frac{1}{\hat{d}}\left(\sum_{i \in s}\left(1-\pi_{I i}\right) \varsigma_{(I i)}\right)^{2} \\
v_{o b s}=\sum_{k \in s} \phi_{k} \varepsilon_{(k)}^{2}
\end{gathered}
$$

where $\hat{d}=\sum_{i \in s}\left(1-\pi_{I i}\right), \phi_{k}=I\left\{k \in s_{i}\right\} \pi_{I i}^{*}\left(M_{i}-n_{I I}\right) /\left(M_{i}-1\right), \pi_{I i}^{*}=\pi_{I i} n_{I I}\left(M_{i}-\right.$ $1) /\left(n_{I I}-1\right) M_{i}$, with s_{i} denoting the sample elements from the i-th cluster, $I\left\{k \in s_{i}\right\}$ is an indicator that takes the value 1 if the k-th observation is within the i-th cluster and 0 otherwise, $\pi_{I i}$ is the inclusion probability of the i-th cluster in the sample s, M_{i} is the size of the i-th cluster, $n_{I I}$ is the sample size within each cluster, n_{I} is the number of sampled clusters, and where

$$
\begin{aligned}
\varsigma_{(I i)} & =\frac{n_{I}-1}{n_{I}}\left(\hat{t}_{\text {Hajek }}-\hat{t}_{\text {Hajek }(I i)}\right) \\
\varepsilon_{(k)} & =\frac{n-1}{n}\left(\hat{t}_{\text {Hajek }}-\hat{t}_{\text {Hajek }(k)}\right)
\end{aligned}
$$

where $\hat{t}_{H a j e k(I i)}$ and $\hat{t}_{\text {Hajek(k) }}$ have the same functional form as $\hat{t}_{\text {Hajek }}$ but omitting the i-th cluster and the k-th element, respectively, from the sample s. Note that this variance estimator implicitly utilises the Hajek (1964) approximations that are designed for large-entropy sampling designs, large samples, and large populations, i.e., care should be taken with highly-stratified samples, e.g. Berger (2005).

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal probabilities. Australian \& New Zealand Journal of Statistics, 47, 365-373.
Escobar, E. L. and Berger, Y. G. (2013) A jackknife variance estimator for self-weighted two-stage samples. Statistica Sinica, 23, 595-613.

Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite population. The Annals of Mathematical Statistics, 35, 4, 1491-1523.

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.

See Also

```
VE.Jk.Tukey.Total.Hajek
VE.Jk.CBS.HT.Total.Hajek
VE.Jk.CBS.SYG.Total.Hajek
VE.Jk.B.Total.Hajek
```


Examples

data(oaxaca) s <- oaxaca\$sSW_10_3	\#Loads the Oaxaca municipalities dataset
N	\#Defines the sample to be used

VE.Jk.Tukey.Corr.Hajek
The Tukey (1958) jackknife variance estimator for the estimator of a correlation coefficient using the Hajek point estimator

Description

Computes the Quenouille(1956); Tukey (1958) jackknife variance estimator for the estimator of a correlation coefficient of two variables using the Hajek (1971) point estimator.

Usage

VE.Jk.Tukey.Corr.Hajek(VecY.s, VecX.s, VecPk.s, N, FPC= TRUE)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.

VecX.s vector of the variable of interest X ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecY.s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.

N
the population size. It must be an integer or a double-precision scalar with zerovalued fractional part. This information is utilised for the finite population correction only, see FPC below.
FPC logical value. If an ad hoc finite population correction $F P C=1-n / N$ is to be used. The default is TRUE.

Details

For the population correlation coefficient of two variables y and x :

$$
C=\frac{\sum_{k \in U}\left(y_{k}-\bar{y}\right)\left(x_{k}-\bar{x}\right)}{\sqrt{\sum_{k \in U}\left(y_{k}-\bar{y}\right)^{2}} \sqrt{\sum_{k \in U}\left(x_{k}-\bar{x}\right)^{2}}}
$$

the point estimator of C, assuming that N is unknown (see Sarndal et al., 1992, Sec. 5.9), is:

$$
\hat{C}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k}\left(y_{k}-\hat{\bar{y}}_{\text {Hajek }}\right)\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)}{\sqrt{\sum_{k \in s} w_{k}\left(y_{k}-\hat{\bar{y}}_{\text {Hajek }}\right)^{2}} \sqrt{\sum_{k \in s} w_{k}\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)^{2}}}
$$

where $\hat{\bar{y}}_{\text {Hajek }}$ is the Hajek (1971) point estimator of the population mean $\bar{y}=N^{-1} \sum_{k \in U} y_{k}$,

$$
\hat{\bar{y}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}}
$$

and $w_{k}=1 / \pi_{k}$ with π_{k} denoting the inclusion probability of the k-th element in the sample s. The variance of $\hat{C}_{\text {Hajek }}$ can be estimated by the Quenouille(1956); Tukey (1958) jackknife variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{C}_{H a j e k}\right)=\left(1-\frac{n}{N}\right) \frac{n-1}{n} \sum_{k \in s}\left(\hat{C}_{H a j e k(k)}-\hat{C}_{H a j e k}\right)^{2}
$$

where $\hat{C}_{H a j e k(k)}$ has the same functional form as $\hat{C}_{\text {Hajek }}$ but omitting the k-th element from the sample s. Note that we are implementing the Tukey (1958) jackknife variance estimator using the 'ad hoc' finite population correction $1-n / N$ (see Shao and Tu, 1995; Wolter, 2007). If FPC=FALSE then the term $1-n / N$ is ommited from the above formula.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.
Quenouille, M. H. (1956) Notes on bias in estimation. Biometrika, 43, 353-360.
Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. SpringerVerlag, Inc.
Shao, J. and Tu, D. (1995) The Jackknife and Bootstrap. Springer-Verlag, Inc.
Tukey, J. W. (1958) Bias and confidence in not-quite large samples (abstract). The Annals of Mathematical Statistics, 29, 2, p. 614.
Wolter, K. M. (2007) Introduction to Variance Estimation. 2nd Ed. Springer, Inc.

See Also

> VE.Jk.CBS.HT.Corr.Hajek
> VE.Jk.CBS.SYG.Corr.Hajek
> VE.Jk.B.Corr.Hajek
> VE.Jk.EB.SW2.Corr.Hajek

Examples

VE.Jk. Tukey. Corr.NHT	The Tukey (1958) jackknife variance estimator for the estimator of a correlation coefficient using the Narain-Horvitz-Thompson point esti- mator

Description

Computes the Quenouille(1956); Tukey (1958) jackknife variance estimator for the estimator of a correlation coefficient of two variables using the Narain (1951); Horvitz-Thompson (1952) point estimator.

Usage

VE.Jk.Tukey.Corr.NHT(VecY.s, VecX.s, VecPk.s, N, FPC= TRUE)

Arguments

VecY.s vector of the variable of interest Y ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.
VecX.s vector of the variable of interest X ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecY.s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk. s must be greater than zero and less than or equal to one. There must not be missing values.

N
the population size. It must be an integer or a double-precision scalar with zerovalued fractional part. This information is also utilised for the finite population correction; see FPC below.
FPC
logical value. If an ad hoc finite population correction $F P C=1-n / N$ is to be used. The default is TRUE.

Details

For the population correlation coefficient of two variables y and x :

$$
C=\frac{\sum_{k \in U}\left(y_{k}-\bar{y}\right)\left(x_{k}-\bar{x}\right)}{\sqrt{\sum_{k \in U}\left(y_{k}-\bar{y}\right)^{2}} \sqrt{\sum_{k \in U}\left(x_{k}-\bar{x}\right)^{2}}}
$$

the point estimator of C is given by:

$$
\hat{C}=\frac{\sum_{k \in s} w_{k}\left(y_{k}-\hat{\bar{y}}_{N H T}\right)\left(x_{k}-\hat{\bar{x}}_{N H T}\right)}{\sqrt{\sum_{k \in s} w_{k}\left(y_{k}-\hat{\bar{y}}_{N H T}\right)^{2}} \sqrt{\sum_{k \in s} w_{k}\left(x_{k}-\hat{\bar{x}}_{N H T}\right)^{2}}}
$$

where $\hat{\bar{y}}_{N H T}$ is the Narain (1951); Horvitz-Thompson (1952) estimator for the population mean $\bar{y}=N^{-1} \sum_{k \in U} y_{k}$,

$$
\hat{\bar{y}}_{N H T}=\frac{1}{N} \sum_{k \in s} w_{k} y_{k}
$$

and $w_{k}=1 / \pi_{k}$ with π_{k} denoting the inclusion probability of the k-th element in the sample s. The variance of \hat{C} can be estimated by the Quenouille(1956); Tukey (1958) jackknife variance estimator (implemented by the current function):

$$
\hat{V}(\hat{C})=\left(1-\frac{n}{N}\right) \frac{n-1}{n} \sum_{k \in s}\left(\hat{C}_{(k)}-\hat{C}\right)^{2}
$$

where $\hat{C}_{(k)}$ has the same functional form as \hat{C} but omitting the k-th element from the sample s. We are implementing the Tukey (1958) jackknife variance estimator using the 'ad hoc' finite population correction $1-n / N$ (see Shao and Tu, 1995; Wolter, 2007). If FPC=FALSE, then the term $1-n / N$ is omitted from the above formula.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663-685.

Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 3, 169-175.
Quenouille, M. H. (1956) Notes on bias in estimation. Biometrika, 43, 353-360.
Shao, J. and Tu, D. (1995) The Jackknife and Bootstrap. Springer-Verlag, Inc.
Tukey, J. W. (1958) Bias and confidence in not-quite large samples (abstract). The Annals of Mathematical Statistics, 29, 2, p. 614.

Wolter, K. M. (2007) Introduction to Variance Estimation. 2nd Ed. Springer, Inc.

See Also

```
Est.Corr.Hajek
```


Examples

data(oaxaca)	\#Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca\$HOMES00)	\#Reconstructs the 1st order incl. probs.
s <- oaxaca\$sH0MES00	\#Defines the sample to be used
N <- dim(oaxaca)[1]	\#Defines the population size
y1 <- oaxaca\$POP10	\#Defines the variable of interest y1
y2 <- oaxaca\$POPMAL10	\#Defines the variable of interest y2
x <- oaxaca\$HOMES10	\#Defines the variable of interest x
\#Computes the var. est. of the corr. coeff. point estimator using y	
VE.Jk.Tukey.Corr.NHT (y1[s==1], $\mathrm{x}[\mathrm{s}==1]$, pik.U[s==1], N)	
\#Computes the var. est. of the corr. coeff.	point estimator using y2
VE.Jk.Tukey.Corr.NHT (y2[s==1], $\mathrm{x}[\mathrm{s}==1]$, pik.	$\mathrm{U}[\mathrm{s}==1], \mathrm{N}, \mathrm{FPC}=\mathrm{FALSE})$

```
VE.Jk.Tukey.Mean.Hajek
```

The Tukey (1958) jackknife variance estimator for the Hajek estimator of a mean

Description

Computes the Quenouille(1956); Tukey (1958) jackknife variance estimator for the Hajek (1971) estimator of a mean.

Usage

VE.Jk.Tukey.Mean.Hajek(VecY.s, VecPk.s, N, FPC= TRUE)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.

N
the population size. It must be an integer or a double-precision scalar with zerovalued fractional part. This information is also utilised for the finite population correction; see FPC below.

FPC
logical value. If an ad hoc finite population correction $F P C=1-n / N$ is to be used. The default is TRUE.

Details

For the population mean of the variable y :

$$
\bar{y}=\frac{1}{N} \sum_{k \in U} y_{k}
$$

the approximately unbiased Hajek (1971) estimator of \bar{y} is given by:

$$
\hat{\bar{y}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}}
$$

where $w_{k}=1 / \pi_{k}$ and π_{k} denotes the inclusion probability of the k-th element in the sample s. The variance of $\hat{\bar{y}}_{\text {Hajek }}$ can be estimated by the Quenouille(1956); Tukey (1958) jackknife variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{\bar{y}}_{\text {Hajek }}\right)=\left(1-\frac{n}{N}\right) \frac{n-1}{n} \sum_{k \in s}\left(\hat{\bar{y}}_{\text {Hajek }(k)}-\hat{\bar{y}}_{\text {Hajek }}\right)^{2}
$$

where

$$
\hat{\bar{y}}_{H a j e k(k)}=\frac{\sum_{l \in s, l \neq k} w_{l} y_{l}}{\sum_{l \in s, l \neq k} w_{l}}
$$

We are implementing the Tukey (1958) jackknife variance estimator using the 'ad hoc' finite population correction $1-n / N$ (see Shao and Tu, 1995; Wolter, 2007). If FPC=FALSE, then the term $1-n / N$ is omitted from the above formula.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.

Quenouille, M. H. (1956) Notes on bias in estimation. Biometrika, 43, 353-360.
Shao, J. and Tu, D. (1995) The Jackknife and Bootstrap. Springer-Verlag, Inc.
Tukey, J. W. (1958) Bias and confidence in not-quite large samples (abstract). The Annals of Mathematical Statistics, 29, 2, p. 614.
Wolter, K. M. (2007) Introduction to Variance Estimation. 2nd Ed. Springer, Inc.

See Also

$$
\begin{aligned}
& \text { VE.Jk.CBS.HT.Mean.Hajek } \\
& \text { VE.Jk.CBS.SYG.Mean.Hajek } \\
& \text { VE.Jk.B.Mean.Hajek } \\
& \text { VE.Jk.EB.SW2.Mean.Hajek }
\end{aligned}
$$

Examples

(oaxaca)	\#Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca\$HOMES00)	\#Reconstructs the 1st order incl. probs.
s <- oaxaca\$sHOMES00	\#Defines the sample to be used
N <- dim(oaxaca)[1]	\#Defines the population size
y1 <- oaxaca\$POP10	\#Defines the variable of interest y1
y2 <- oaxaca\$POPMAL10	\#Defines the variable of interest y2
\#Computes the var. est. of the Hajek mean point estimator using y1	
VE.Jk.Tukey.Mean.Hajek (y1[s==1], pik.U[s==1], N)	
\#Computes the var. est. of the Hajek mean point estimator using y2	
.Jk.Tukey.Mean.Hajek(y2[s==1], pik.U[s==	$\mathrm{N}, \mathrm{FPC}=\mathrm{FALSE})$

VE.Jk.Tukey.Ratio The Tukey (1958) jackknife variance estimator for the estimator of a ratio

Description

Computes the Quenouille(1956); Tukey (1958) jackknife variance estimator for the estimator of a ratio of two totals/means.

Usage

VE.Jk.Tukey.Ratio(VecY.s, VecX.s, VecPk.s, N, FPC= TRUE)

Arguments

VecY.s vector of the numerator variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.
VecX.s vector of the denominator variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk. s and VecY. s. There must not be missing values. All values of VecX. s should be greater than zero. A warning is displayed if this does not hold, and computations continue if mathematical expressions allow this kind of values for the denominator variable.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk. s must be greater than zero and less than or equal to one. There must not be missing values.
N
the population size. It must be an integer or a double-precision scalar with zerovalued fractional part. This information is also utilised for the finite population correction; see FPC below.
FPC logical value. If an ad hoc finite population correction $F P C=1-n / N$ is to be used. The default is TRUE.

Details

For the population ratio of two totals/means of the variables y and x :

$$
R=\frac{\sum_{k \in U} y_{k} / N}{\sum_{k \in U} x_{k} / N}=\frac{\sum_{k \in U} y_{k}}{\sum_{k \in U} x_{k}}
$$

the ratio estimator of R is given by:

$$
\hat{R}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k} x_{k}}
$$

where $w_{k}=1 / \pi_{k}$ and π_{k} denotes the inclusion probability of the k-th element in the sample s. The variance of \hat{R} can be estimated by the Quenouille(1956); Tukey (1958) jackknife variance estimator (implemented by the current function):

$$
\hat{V}(\hat{R})=\left(1-\frac{n}{N}\right) \frac{n-1}{n} \sum_{k \in s}\left(\hat{R}_{(k)}-\hat{R}\right)^{2}
$$

where

$$
\hat{R}_{(k)}=\frac{\sum_{l \in s, l \neq k} w_{l} y_{l}}{\sum_{l \in s, l \neq k} w_{l} x_{l}}
$$

We are implementing the Tukey (1958) jackknife variance estimator using the 'ad hoc' finite population correction $1-n / N$ (see Shao and Tu, 1995; Wolter, 2007). If FPC=FALSE, then the term $1-n / N$ is omitted from the above formula.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Quenouille, M. H. (1956) Notes on bias in estimation. Biometrika, 43, 353-360.
Shao, J. and Tu, D. (1995) The Jackknife and Bootstrap. Springer-Verlag, Inc.
Tukey, J. W. (1958) Bias and confidence in not-quite large samples (abstract). The Annals of Mathematical Statistics, 29, 2, p. 614.

Wolter, K. M. (2007) Introduction to Variance Estimation. 2nd Ed. Springer, Inc.

See Also

```
VE.Lin.HT.Ratio
VE.Lin.SYG.Ratio
VE.Jk.CBS.HT.Ratio
VE.Jk.CBS.SYG.Ratio
VE.Jk.B.Ratio
VE.Jk.EB.SW2.Ratio
VE.EB.HT.Ratio
VE.EB.SYG.Ratio
```


Examples

data(oaxaca)	\#Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca\$HOMES00)	\#Reconstructs the 1st order incl. probs.
<- oaxaca\$sHOMES00	\#Defines the sample to be used
N <- dim(oaxaca)[1]	\#Defines the population size
y1 <- oaxaca\$POP10	\#Defines the numerator variable y1
y2 <- oaxaca\$POPMAL10	\#Defines the numerator variable y2
<- oaxaca\$HOMES10	\#Defines the denominator variable x
\#Computes the var. est. of the ratio point	estimator using y1
VE.Jk.Tukey.Ratio (y1[s==1], $\mathrm{x}[\mathrm{s}==1]$, pik.U[s	=1], N)
\#Computes the var. est. of the ratio point	estimator using y2
VE.Jk.Tukey.Ratio (y2[s==1], $\mathrm{x}[\mathrm{s}==1]$, pik.U[s	= 1$], \mathrm{N}, \mathrm{FPC}=\mathrm{FALSE}$)

VE.Jk.Tukey.RegCo.Hajek

The Tukey (1958) jackknife variance estimator for the estimator of the regression coefficient using the Hajek point estimator

Description

Computes the Quenouille(1956); Tukey (1958) jackknife variance estimator for the estimator of the regression coefficient using the Hajek (1971) point estimator.

Usage

```
VE.Jk.Tukey.RegCo.Hajek(VecY.s, VecX.s, VecPk.s, N, FPC= TRUE)
```


Arguments

VecY.s vector of the variable of interest Y ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.
VecX.s vector of the variable of interest X ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecY.s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.
N the population size. It must be an integer or a double-precision scalar with zerovalued fractional part. This information is utilised for the finite population correction only; see FPC below.
FPC logical value. If an ad hoc finite population correction $F P C=1-n / N$ is to be used. The default is TRUE.

Details

From Linear Regression Analysis, for an imposed population model

$$
y=\alpha+\beta x
$$

the population regression coefficient β, assuming that the population size N is unknown (see Sarndal et al., 1992, Sec. 5.10), can be estimated by:

$$
\hat{\beta}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k}\left(y_{k}-\hat{\bar{y}}_{\text {Hajek }}\right)\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)}{\sum_{k \in s} w_{k}\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)^{2}}
$$

where $\hat{\bar{y}}_{\text {Hajek }}$ and $\hat{\bar{x}}_{\text {Hajek }}$ are the Hajek (1971) point estimators of the population means $\bar{y}=$ $N^{-1} \sum_{k \in U} y_{k}$ and $\bar{x}=N^{-1} \sum_{k \in U} x_{k}$, respectively,

$$
\begin{aligned}
& \hat{\bar{y}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}} \\
& \hat{\bar{x}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} x_{k}}{\sum_{k \in s} w_{k}}
\end{aligned}
$$

and $w_{k}=1 / \pi_{k}$ with π_{k} denoting the inclusion probability of the k-th element in the sample s. The variance of $\hat{\beta}_{H a j e k}$ can be estimated by the Quenouille(1956); Tukey (1958) jackknife variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{\beta}_{H a j e k}\right)=\left(1-\frac{n}{N}\right) \frac{n-1}{n} \sum_{k \in s}\left(\hat{\beta}_{H a j e k(k)}-\hat{\beta}_{H a j e k}\right)^{2}
$$

where $\hat{\beta}_{\text {Hajek(k) }}$ has the same functional form as $\hat{\beta}_{\text {Hajek }}$ but omitting the k-th element from the sample s. We are implementing the Tukey (1958) jackknife variance estimator using the 'ad hoc' finite population correction $1-n / N$ (see Shao and Tu, 1995; Wolter, 2007). If FPC=FALSE, then the term $1-n / N$ is omitted from the above formula.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.

Quenouille, M. H. (1956) Notes on bias in estimation. Biometrika, 43, 353-360.
Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. SpringerVerlag, Inc.

Shao, J. and Tu, D. (1995) The Jackknife and Bootstrap. Springer-Verlag, Inc.
Tukey, J. W. (1958) Bias and confidence in not-quite large samples (abstract). The Annals of Mathematical Statistics, 29, 2, p. 614.

Wolter, K. M. (2007) Introduction to Variance Estimation. 2nd Ed. Springer, Inc.

See Also

```
VE.Jk.Tukey.RegCoI.Hajek
VE.Jk.CBS.HT.RegCo.Hajek
VE.Jk.CBS.SYG.RegCo.Hajek
VE.Jk.B.RegCo.Hajek
VE.Jk.EB.SW2.RegCo.Hajek
```


Examples

```
data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#Computes the var. est. of the regression coeff. point estimator using y1
VE.Jk.Tukey.RegCo.Hajek(y1[s==1], x[s==1], pik.U[s==1], N)
#Computes the var. est. of the regression coeff. point estimator using y2
VE.Jk.Tukey.RegCo.Hajek(y2[s==1], x[s==1], pik.U[s==1], N, FPC= FALSE)
```

```
VE.Jk.Tukey.RegCoI.Hajek
    The Tukey (1958) jackknife variance estimator for the estimator of the
    intercept regression coefficient using the Hajek point estimator
```


Description

Computes the Quenouille(1956); Tukey (1958) jackknife variance estimator for the estimator of the intercept regression coefficient using the Hajek (1971) point estimator.

Usage

VE.Jk.Tukey.RegCoI.Hajek(VecY.s, VecX.s, VecPk.s, N, FPC= TRUE)

Arguments

VecY.s vector of the variable of interest Y ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.
VecX.s vector of the variable of interest X ; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecY.s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.
N
the population size. It must be an integer or a double-precision scalar with zerovalued fractional part. This information is utilised for the finite population correction only; see FPC below.
FPC logical value. If an ad hoc finite population correction $F P C=1-n / N$ is to be used. The default is TRUE.

Details

From Linear Regression Analysis, for an imposed population model

$$
y=\alpha+\beta x
$$

the population intercept regression coefficient α, assuming that the population size N is unknown (see Sarndal et al., 1992, Sec. 5.10), can be estimated by:

$$
\hat{\alpha}_{\text {Hajek }}=\hat{\bar{y}}_{\text {Hajek }}-\frac{\sum_{k \in s} w_{k}\left(y_{k}-\hat{\bar{y}}_{\text {Hajek }}\right)\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)}{\sum_{k \in s} w_{k}\left(x_{k}-\hat{\bar{x}}_{\text {Hajek }}\right)^{2}} \hat{\bar{x}}_{\text {Hajek }}
$$

where $\hat{\bar{y}}_{\text {Hajek }}$ and $\hat{\bar{x}}_{\text {Hajek }}$ are the Hajek (1971) point estimators of the population means $\bar{y}=$ $N^{-1} \sum_{k \in U} y_{k}$ and $\bar{x}=N^{-1} \sum_{k \in U} x_{k}$, respectively,

$$
\hat{\bar{y}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}}
$$

$$
\hat{\bar{x}}_{\text {Hajek }}=\frac{\sum_{k \in s} w_{k} x_{k}}{\sum_{k \in s} w_{k}}
$$

and $w_{k}=1 / \pi_{k}$ with π_{k} denoting the inclusion probability of the k-th element in the sample s. The variance of $\hat{\alpha}_{\text {Hajek }}$ can be estimated by the Quenouille(1956); Tukey (1958) jackknife variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{\alpha}_{H a j e k}\right)=\left(1-\frac{n}{N}\right) \frac{n-1}{n} \sum_{k \in s}\left(\hat{\alpha}_{H a j e k(k)}-\hat{\alpha}_{H a j e k}\right)^{2}
$$

where $\hat{\alpha}_{H a j e k(k)}$ has the same functional form as $\hat{\alpha}_{H a j e k}$ but omitting the k-th element from the sample s. We are implementing the Tukey (1958) jackknife variance estimator using the 'ad hoc' finite population correction $1-n / N$ (see Shao and Tu, 1995; Wolter, 2007). If FPC=FALSE, then the term $1-n / N$ is omitted from the above formula.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.
Quenouille, M. H. (1956) Notes on bias in estimation. Biometrika, 43, 353-360.
Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. SpringerVerlag, Inc.
Shao, J. and Tu, D. (1995) The Jackknife and Bootstrap. Springer-Verlag, Inc.
Tukey, J. W. (1958) Bias and confidence in not-quite large samples (abstract). The Annals of Mathematical Statistics, 29, 2, p. 614.
Wolter, K. M. (2007) Introduction to Variance Estimation. 2nd Ed. Springer, Inc.

See Also

VE.Jk.Tukey.RegCo. Hajek
VE.Jk.CBS.HT.RegCoI.Hajek
VE.Jk.CBS.SYG.RegCoI.Hajek
VE.Jk.B.RegCoI.Hajek
VE.Jk.EB.SW2.RegCoI.Hajek

Examples

```
data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
```

```
N <- dim(oaxaca)[1]
y1 <- oaxaca$POP10
y2 <- oaxaca$POPMAL10
x <- oaxaca$HOMES10
#Computes the var. est. of the intercept reg. coeff. point estimator using y1
VE.Jk.Tukey.RegCoI.Hajek(y1[s==1], x[s==1], pik.U[s==1], N)
#Computes the var. est. of the intercept reg. coeff. point estimator using y2
VE.Jk.Tukey.RegCoI.Hajek(y2[s==1], x[s==1], pik.U[s==1], N, FPC= FALSE)
```

```
VE.Jk.Tukey.Total.Hajek
    The Tukey (1958) jackknife variance estimator for the Hajek estimator
    of a total
```


Description

Computes the Quenouille(1956); Tukey (1958) jackknife variance estimator for the Hajek (1971) estimator of a total.

Usage

VE.Jk.Tukey.Total.Hajek(VecY.s, VecPk.s, N, FPC= TRUE)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk. s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.

N
the population size. It must be an integer or a double-precision scalar with zerovalued fractional part. This information is also utilised for the finite population correction; see FPC below.

FPC logical value. If an ad hoc finite population correction $F P C=1-n / N$ is to be used. The default is TRUE.

Details

For the population total of the variable y :

$$
t=\sum_{k \in U} y_{k}
$$

the approximately unbiased Hajek (1971) estimator of t is given by:

$$
\hat{t}_{\text {Hajek }}=N \frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k}}
$$

where $w_{k}=1 / \pi_{k}$ and π_{k} denotes the inclusion probability of the k-th element in the sample s. The variance of $\hat{t}_{H a j e k}$ can be estimated by the Quenouille(1956); Tukey (1958) jackknife variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{t}_{\text {Hajek }}\right)=\left(1-\frac{n}{N}\right) \frac{n-1}{n} \sum_{k \in s}\left(\hat{t}_{\text {Hajek }(k)}-\hat{t}_{\text {Hajek }}\right)^{2}
$$

where

$$
\hat{t}_{H a j e k(k)}=N \frac{\sum_{l \in s, l \neq k} w_{l} y_{l}}{\sum_{l \in s, l \neq k} w_{l}}
$$

We are implementing the Tukey (1958) jackknife variance estimator using the 'ad hoc' finite population correction $1-n / N$ (see Shao and Tu, 1995; Wolter, 2007). If FPC=FALSE, then the term $1-n / N$ is omitted from the above formula.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.
Quenouille, M. H. (1956) Notes on bias in estimation. Biometrika, 43, 353-360.
Shao, J. and Tu, D. (1995) The Jackknife and Bootstrap. Springer-Verlag, Inc.
Tukey, J. W. (1958) Bias and confidence in not-quite large samples (abstract). The Annals of Mathematical Statistics, 29, 2, p. 614.
Wolter, K. M. (2007) Introduction to Variance Estimation. 2nd Ed. Springer, Inc.

See Also

VE.Jk.CBS.HT.Total. Hajek
VE.Jk.CBS.SYG.Total.Hajek
VE.Jk.B.Total.Hajek
VE.Jk.EB.SW2.Total.Hajek

Examples

```
data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
#Computes the var. est. of the Hajek total point estimator using y1
```

```
VE.Jk.Tukey.Total.Hajek(y1[s==1], pik.U[s==1], N)
#Computes the var. est. of the Hajek total point estimator using y2
VE.Jk.Tukey.Total.Hajek(y2[s==1], pik.U[s==1], N, FPC= FALSE)
```

VE.Lin.HT.Ratio	The unequal probability linearisation variance estimator for the esti- mator of a ratio (Horvitz-Thompson form)

Description

Computes the unequal probability Taylor linearisation variance estimator for the estimator of a ratio of two totals/means. It uses the Horvitz-Thompson (1952) variance form.

Usage

VE.Lin.HT.Ratio(VecY.s, VecX.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the numerator variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.
VecX.s vector of the denominator variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk. s and VecY.s. There must not be missing values. All values of VecX. s should be greater than zero. A warning is displayed if this does not hold, and computations continue if mathematical expressions allow this kind of values for the denominator variable.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk. s must be greater than zero and less than or equal to one. There must not be missing values.
MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns equals n, the sample size. Values in MatPkl.s must be greater than zero and less than or equal to one. There must not be missing values.

Details

For the population ratio of two totals/means of the variables y and x :

$$
R=\frac{\sum_{k \in U} y_{k} / N}{\sum_{k \in U} x_{k} / N}=\frac{\sum_{k \in U} y_{k}}{\sum_{k \in U} x_{k}}
$$

the ratio estimator of R is given by:

$$
\hat{R}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k} x_{k}}
$$

where $w_{k}=1 / \pi_{k}$ and π_{k} denotes the inclusion probability of the k-th element in the sample s. The variance of \hat{R} can be estimated by the unequal probability linearisation variance estimator
(implemented by the current function). For details see Woodruff (1971); Deville (1999); DemnatiRao (2004); Sarndal et al., (1992, Secs. 5.5 and 5.6):

$$
\hat{V}(\hat{R})=\sum_{k \in s} \sum_{l \in s} \frac{\pi_{k l}-\pi_{k} \pi_{l}}{\pi_{k l}} w_{k} u_{k} w_{l} u_{l}
$$

where

$$
u_{k}=\frac{y_{k}-\hat{R} x_{k}}{\hat{t}_{x, N H T}}
$$

with

$$
\hat{t}_{x, N H T}=\sum_{k \in s} w_{k} x_{k}
$$

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of the population total for the (denominator) variable VecX.s.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Demnati, A. and Rao, J. N. K. (2004) Linearization variance estimators for survey data. Survey Methodology, 30, 17-26.
Deville, J.-C. (1999) Variance estimation for complex statistics and estimators: linearization and residual techniques. Survey Methodology, 25, 193-203.
Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663-685.
Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 3, 169-175.
Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. SpringerVerlag, Inc.

Woodruff, R. S. (1971) A Simple Method for Approximating the Variance of a Complicated Estimate. Journal of the American Statistical Association, 66, 334, 411-414.

See Also

```
VE.Lin.SYG.Ratio
VE.Jk.Tukey.Ratio
VE.Jk.CBS.SYG.Ratio
VE.Jk.B.Ratio
VE.Jk.EB.SW2.Ratio
VE.EB.HT.Ratio
VE.EB.SYG.Ratio
```


Examples

VE.Lin.SYG.Ratio \quad| The unequal probability linearisation variance estimator for the esti- |
| :--- |
| mator of a ratio (Sen-Yates-Grundy form) | mator of a ratio (Sen-Yates-Grundy form)

Description

Computes the unequal probability Taylor linearisation variance estimator for the estimator of a ratio of two totals/means. It uses the Sen (1953); Yates-Grundy(1953) variance form.

Usage

VE.Lin.SYG.Ratio(VecY.s, VecX.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the numerator variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s and VecX.s. There must not be missing values.

VecX.s vector of the denominator variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk. s and VecY.s. There must not be missing values. All values of VecX. s should be greater than zero. A warning is displayed if this does not hold, and computations continue if mathematical expressions allow this kind of values for the denominator variable.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns equals n, the sample size. Values in MatPkl.s must be greater than zero and less than or equal to one. There must not be missing values.

Details

For the population ratio of two totals/means of the variables y and x :

$$
R=\frac{\sum_{k \in U} y_{k} / N}{\sum_{k \in U} x_{k} / N}=\frac{\sum_{k \in U} y_{k}}{\sum_{k \in U} x_{k}}
$$

the ratio estimator of R is given by:

$$
\hat{R}=\frac{\sum_{k \in s} w_{k} y_{k}}{\sum_{k \in s} w_{k} x_{k}}
$$

where $w_{k}=1 / \pi_{k}$ and π_{k} denotes the inclusion probability of the k-th element in the sample s. The variance of \hat{R} can be estimated by the unequal probability linearisation variance estimator (implemented by the current function). For details see Woodruff (1971); Deville (1999); DemnatiRao (2004); Sarndal et al., (1992, Secs. 5.5 and 5.6):

$$
\hat{V}(\hat{R})=\frac{-1}{2} \sum_{k \in s} \sum_{l \in s} \frac{\pi_{k l}-\pi_{k} \pi_{l}}{\pi_{k l}}\left(w_{k} u_{k}-w_{l} u_{l}\right)^{2}
$$

where

$$
u_{k}=\frac{y_{k}-\hat{R} x_{k}}{\hat{t}_{x, N H T}}
$$

with

$$
\hat{t}_{x, N H T}=\sum_{k \in s} w_{k} x_{k}
$$

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of the population total for the (denominator) variable VecX.s.

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Demnati, A. and Rao, J. N. K. (2004) Linearization variance estimators for survey data. Survey Methodology, 30, 17-26.
Deville, J.-C. (1999) Variance estimation for complex statistics and estimators: linearization and residual techniques. Survey Methodology, 25, 193-203.
Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663-685.
Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 3, 169-175.
Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. SpringerVerlag, Inc.

Sen, A. R. (1953) On the estimate of the variance in sampling with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 5, 119-127.

Woodruff, R. S. (1971) A Simple Method for Approximating the Variance of a Complicated Estimate. Journal of the American Statistical Association, 66, 334, 411-414.

Yates, F. and Grundy, P. M. (1953) Selection without replacement from within strata with probability proportional to size. Journal of the Royal Statistical Society B, 15, 253-261.

See Also

```
VE.Lin.HT.RatioVE.Jk.Tukey.Ratio
VE.Jk.CBS.HT.Ratio
VE.Jk.B.Ratio
VE.Jk.EB.SW2.Ratio
VE.EB.HT.Ratio
VE.EB.SYG.Ratio
```


Examples

```
data(oaxaca) #Loads the Oaxaca municipalities dataset
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs.
s <- oaxaca$sHOMES00 #Defines the sample to be used for
y1 <- oaxaca$POP10 #Defines the numerator variable y1
y2 <- oaxaca$POPMAL10 #Defines the numerator variable y2
x <- oaxaca$HOMES10 #Defines the denominator variable x
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the ratio point estimator using y1
VE.Lin.SYG.Ratio(y1[s==1], x[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the ratio point estimator using y2
VE.Lin.SYG.Ratio(y2[s==1], x[s==1], pik.U[s==1], pikl.s)
```

VE.SYG.Mean.NHT	The Sen-Yates-Grundy variance estimator for the Narain-Horvitz- Thompson point estimator for a mean

Description

Computes the Sen (1953); Yates-Grundy(1953) variance estimator for the Narain (1951); HorvitzThompson (1952) point estimator for a population mean.

Usage

VE.SYG.Mean.NHT(VecY.s, VecPk.s, MatPkl.s, N)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk. s. There must not be missing values.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns equals n, the sample size. Values in MatPkl. s must be greater than zero and less than or equal to one. There must not be missing values.

N the population size. It must be an integer or a double-precision scalar with zerovalued fractional part.

Details

For the population mean of the variable y :

$$
\bar{y}=\frac{1}{N} \sum_{k \in U} y_{k}
$$

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of \bar{y} is given by:

$$
\hat{\bar{y}}_{N H T}=\frac{1}{N} \sum_{k \in s} \frac{y_{k}}{\pi_{k}}
$$

where π_{k} denotes the inclusion probability of the k-th element in the sample s. Let $\pi_{k l}$ denotes the joint-inclusion probabilities of the k-th and l-th elements in the sample s. The variance of $\hat{\bar{y}}_{N H T}$ is given by:

$$
V\left(\hat{\bar{y}}_{N H T}\right)=\frac{1}{N^{2}} \sum_{k \in U} \sum_{l \in U}\left(\pi_{k l}-\pi_{k} \pi_{l}\right) \frac{y_{k}}{\pi_{k}} \frac{y_{l}}{\pi_{l}}
$$

which, if the utilised sampling design is of fixed sample size, can therefore be estimated by the Sen-Yates-Grundy variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{\bar{y}}_{N H T}\right)=\frac{1}{N^{2}} \frac{-1}{2} \sum_{k \in s} \sum_{l \in s} \frac{\pi_{k l}-\pi_{k} \pi_{l}}{\pi_{k l}}\left(\frac{y_{k}}{\pi_{k}}-\frac{y_{l}}{\pi_{l}}\right)^{2}
$$

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663-685.

Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 3, 169-175.

Sen, A. R. (1953) On the estimate of the variance in sampling with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 5, 119-127.

Yates, F. and Grundy, P. M. (1953) Selection without replacement from within strata with probability proportional to size. Journal of the Royal Statistical Society B, 15, 253-261.

See Also

VE.HT.Mean.NHT
VE.Hajek.Mean.NHT

Examples

data(oaxaca) pik.U <- Pk.PropNorm.U(373, oaxaca\$HOMES00)	\#Loads the Oaxaca municipalities dataset
	\#Reconstructs the 1st order incl. probs.
s <- oaxaca\$sHOMES00	\#Defines the sample to be used
N <- dim(oaxaca)[1]	\#Defines the population size
y1 <- oaxaca\$POP10	\#Defines the variable of interest y1
y2 <- oaxaca\$HOMES10	\#Defines the variable of interest y2
\#This approx. is only suitable for large-entropy sampling designs	
pikl.s <- Pkl.Hajek.s(pik.U[s==1])	\#Approx. 2nd order incl. probs. from
\#Computes the var. est. of the NHT point estimator for y 1	
VE.SYG.Mean.NHT (y1[s==1], pik.U[s==1], pikl.s, N)	
\#Computes the var. est. of the NHT point estimator for y2	
VE.SYG.Mean.NHT (y2[s==1], pik.U[s==1], pikl.s, N)	

VE.SYG.Total.NHT	The Sen-Yates-Grundy variance estimator for the Narain-Horvitz- Thompson point estimator for a total

Description

Computes the Sen (1953); Yates-Grundy(1953) variance estimator for the Narain (1951); HorvitzThompson (1952) point estimator for a population total.

Usage

VE.SYG.Total.NHT(VecY.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of VecPk.s. There must not be missing values.
VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in VecPk.s must be greater than zero and less than or equal to one. There must not be missing values.
MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns equals n, the sample size. Values in MatPkl.s must be greater than zero and less than or equal to one. There must not be missing values.

Details

For the population total of the variable y :

$$
t=\sum_{k \in U} y_{k}
$$

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of t is given by:

$$
\hat{t}_{N H T}=\sum_{k \in s} \frac{y_{k}}{\pi_{k}}
$$

where π_{k} denotes the inclusion probability of the k-th element in the sample s. Let $\pi_{k l}$ denotes the joint-inclusion probabilities of the k-th and l-th elements in the sample s. The variance of $\hat{t}_{N H T}$ is given by:

$$
V\left(\hat{t}_{N H T}\right)=\sum_{k \in U} \sum_{l \in U}\left(\pi_{k l}-\pi_{k} \pi_{l}\right) \frac{y_{k}}{\pi_{k}} \frac{y_{l}}{\pi_{l}}
$$

which, if the utilised sampling design is of fixed sample size, can therefore be estimated by the Sen-Yates-Grundy variance estimator (implemented by the current function):

$$
\hat{V}\left(\hat{t}_{N H T}\right)=\frac{-1}{2} \sum_{k \in s} \sum_{l \in s} \frac{\pi_{k l}-\pi_{k} \pi_{l}}{\pi_{k l}}\left(\frac{y_{k}}{\pi_{k}}-\frac{y_{l}}{\pi_{l}}\right)^{2}
$$

Value

The function returns a value for the estimated variance.

Author(s)

Emilio Lopez Escobar.

References

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663-685.
Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 3, 169-175.

Sen, A. R. (1953) On the estimate of the variance in sampling with varying probabilities. Journal of the Indian Society of Agricultural Statistics, 5, 119-127.
Yates, F. and Grundy, P. M. (1953) Selection without replacement from within strata with probability proportional to size. Journal of the Royal Statistical Society B, 15, 253-261.

See Also

VE.HT.Total.NHT
VE.Hajek.Total.NHT

Examples

Index

```
* correlation coefficient
    Est.Corr.Hajek,5
    Est.Corr.NHT,7
    VE.Jk.B.Corr.Hajek,50
    VE.Jk.CBS.HT.Corr.Hajek, }6
    VE.Jk.CBS.SYG.Corr.Hajek, 76
    VE.Jk.EB.SW2.Corr.Hajek, }9
    VE.Jk.Tukey.Corr.Hajek, }10
    VE.Jk.Tukey.Corr.NHT, 108
* datasets
    oaxaca, 22
* empirical cumulative distribution function
    Est.EmpDistFunc.Hajek, 8
    Est.EmpDistFunc.NHT, 10
* inclusion probabilities
    Pk.PropNorm.U, 24
    Pkl.Hajek.s, 25
    Pkl.Hajek.U, 27
* mean
    Est.Mean.Hajek, 11
    Est.Mean.NHT, 12
    VE.EB.HT.Mean.Hajek, 28
    VE.EB.SYG.Mean.Hajek, 36
    VE.Hajek.Mean.NHT,43
    VE.HT.Mean.NHT,47
    VE.Jk.B.Mean.Hajek, 52
    VE.Jk.CBS.HT.Mean.Hajek, }6
    VE.Jk.CBS.SYG.Mean.Hajek, 78
    VE.Jk.EB.SW2.Mean.Hajek, }9
    VE.Jk.Tukey.Mean.Hajek, 110
    VE.SYG.Mean.NHT, }12
* package
    samplingVarEst-package, 3
* point estimation
    Est.Corr.Hajek,5
    Est.Corr.NHT,7
    Est.EmpDistFunc.Hajek, 8
    Est.EmpDistFunc.NHT, 10
    Est.Mean.Hajek, 11
```

Est.Mean.NHT, 12
Est.Ratio, 14
Est.RegCo.Hajek, 15
Est.RegCoI.Hajek, 17
Est.Total.Hajek, 19
Est.Total.NHT, 20

* ratio
Est.Ratio, 14
VE.EB.HT.Ratio, 31
VE.EB.SYG.Ratio, 38
VE.Jk.B.Ratio, 54
VE.Jk.CBS.HT.Ratio, 67
VE.Jk.CBS.SYG.Ratio, 81
VE.Jk.EB.SW2.Ratio, 95
VE.Jk.Tukey.Ratio, 112
VE.Lin.HT.Ratio, 121
VE.Lin.SYG.Ratio, 123
* regression coefficient
Est.RegCo.Hajek, 15
Est.RegCoI.Hajek, 17
VE.Jk.B.RegCo.Hajek, 56
VE.Jk.B.RegCoI.Hajek, 59
VE.Jk.CBS.HT.RegCo.Hajek, 69
VE.Jk.CBS.HT.RegCoI.Hajek, 72
VE.Jk.CBS.SYG.RegCo.Hajek, 83
VE.Jk.CBS.SYG.RegCoI.Hajek, 85
VE.Jk.EB.SW2.RegCo.Hajek, 98
VE.Jk.EB.SW2.RegCoI.Hajek, 101
VE.Jk.Tukey.RegCo.Hajek, 114
VE.Jk.Tukey.RegCoI.Hajek, 117
* total
Est.Total.Hajek, 19
Est.Total.NHT, 20
VE.EB.HT.Total.Hajek, 33
VE.EB.SYG.Total.Hajek, 41
VE.Hajek.Total.NHT, 45
VE.HT.Total.NHT, 48
VE.Jk.B.Total.Hajek, 61
VE.Jk.CBS.HT.Total.Hajek, 74

VE.Jk.CBS.SYG.Total.Hajek, 88
VE.Jk.EB.SW2.Total. Hajek, 104
VE.Jk.Tukey.Total.Hajek, 119
VE.SYG.Total.NHT, 127

* variance estimation

VE.EB.HT.Mean.Hajek, 28
VE.EB.HT.Ratio, 31
VE.EB.HT.Total.Hajek, 33
VE.EB.SYG.Mean. Hajek, 36
VE.EB.SYG.Ratio, 38
VE.EB.SYG.Total.Hajek, 41
VE.Hajek. Mean. NHT, 43
VE.Hajek. Total. NHT, 45
VE.HT.Mean.NHT, 47
VE.HT.Total.NHT, 48
VE.Jk.B.Corr.Hajek, 50
VE.Jk.B.Mean.Hajek, 52
VE.Jk.B.Ratio, 54
VE.Jk.B.RegCo.Hajek, 56
VE.Jk.B.RegCoI. Hajek, 59
VE.Jk.B.Total.Hajek, 61
VE.Jk.CBS.HT.Corr.Hajek, 63
VE.Jk.CBS.HT.Mean.Hajek, 65
VE.Jk.CBS.HT.Ratio, 67
VE.Jk.CBS.HT.RegCo.Hajek, 69
VE.Jk.CBS.HT.RegCoI. Hajek, 72
VE.Jk.CBS.HT.Total.Hajek, 74
VE.Jk.CBS.SYG.Corr. Hajek, 76
VE.Jk.CBS.SYG.Mean. Hajek, 78
VE.Jk.CBS.SYG.Ratio, 81
VE.Jk.CBS.SYG.RegCo. Hajek, 83
VE.Jk.CBS.SYG.RegCoI. Hajek, 85
VE.Jk.CBS.SYG.Total. Hajek, 88
VE.Jk.EB.SW2.Corr. Hajek, 90
VE.Jk.EB.SW2.Mean.Hajek, 93
VE.Jk.EB.SW2.Ratio, 95
VE.Jk.EB.SW2.RegCo. Hajek, 98
VE.Jk.EB. SW2.RegCoI.Hajek, 101
VE.Jk.EB.SW2.Total.Hajek, 104
VE.Jk.Tukey.Corr.Hajek, 106
VE.Jk.Tukey.Corr. NHT, 108
VE.Jk.Tukey.Mean.Hajek, 110
VE.Jk.Tukey.Ratio, 112
VE.Jk.Tukey.RegCo.Hajek, 114
VE.Jk.Tukey.RegCoI.Hajek, 117
VE.Jk.Tukey.Total. Hajek, 119
VE.Lin.HT.Ratio, 121
VE.Lin.SYG.Ratio, 123

VE.SYG.Mean.NHT, 125
VE.SYG.Total.NHT, 127
Est.Corr.Hajek, 3, 5, 8, 110
Est.Corr.NHT, 3, 6, 7
Est.EmpDistFunc.Hajek, 3, 8, 11
Est.EmpDistFunc.NHT, 3, 9, 10
Est.Mean.Hajek, 3, 11, 13
Est.Mean.NHT, 3, 12, 12
Est.Ratio, 3, 14
Est.RegCo.Hajek, 3, 15, 18
Est.RegCoI.Hajek, 3, 17, 17
Est.Total. Hajek, 3, 19, 21
Est.Total.NHT, 3, 20, 20
oaxaca, 5, 22
Pk.PropNorm.U, 4, 24, 26, 28
Pkl.Hajek.s, 4, 24, 25, 28
Pkl.Hajek.U, 5, 24, 26, 27
samplingVarEst
(samplingVarEst-package), 3
samplingVarEst-package, 3
VE.EB.HT.Mean.Hajek, 4, 28, 38
VE.EB.HT.Ratio, 4, 31, 40, 56, 69, 82, 97, 114, 122, 125
VE.EB.HT.Total.Hajek, 4,33
VE.EB.SYG.Mean. Hajek, 4, 30, 36
VE.EB.SYG.Ratio, 4, 33, 38, 56, 69, 82, 97, 114, 122, 125
VE.EB.SYG.Total.Hajek, 4, 35, 41, 43
VE.Hajek.Mean.NHT, 4, 13, 43, 48, 127
VE.Hajek.Total.NHT, 3, 21, 45, 50, 129
VE.HT.Mean.NHT, 4, 13, 45, 47, 127
VE.HT.Total.NHT, 3, 21, 46, 48, 129
VE.Jk.B.Corr.Hajek, 4, 6, 50, 65, 78, 92, 108
VE.Jk.B.Mean.Hajek, 4, 12, 30, 38, 52, 67, 80, 95, 112
VE.Jk.B.Ratio, 4, 15, 33, 40, 54, 69, 82, 97, $114,122,125$
VE.Jk.B.RegCo.Hajek, 4, 17, 56, 61, 71, 85, 100, 116
VE.Jk.B.RegCoI.Hajek, 4, 18, 58, 59, 74, 87, 103, 118
VE.Jk.B.Total.Hajek, 4, 20, 35, 43, 61, 76, 90, 106, 120
VE.Jk.CBS.HT.Corr.Hajek, 4, 6, 52, 63, 78, 92, 108

VE.Jk.CBS.HT.Mean.Hajek, 4, 12, 38, 54, 65, 80, 95, 112
VE.Jk.CBS.HT.Ratio, 4, 15, 33, 40, 56, 67, 82, 97, 114, 125
VE.Jk.CBS.HT.RegCo.Hajek, 4, 17, 58, 69, 74, 85, 100, 116
VE.Jk.CBS.HT.RegCoI.Hajek, 4, 18, 61, 71, 72, 87, 103, 118
VE.Jk.CBS.HT.Total.Hajek, 4, 20, 43, 63, 74, 90, 106, 120
VE.Jk.CBS.SYG.Corr.Hajek, 4, 6, 52, 65, 76, 92, 108
VE.Jk.CBS.SYG.Mean.Hajek, 4, 12, 30, 54, 67, 78, 95, 112
VE.Jk.CBS.SYG.Ratio, 4, 15, 33, 40, 56, 69, 81, 97, 114, 122
VE.Jk.CBS.SYG.RegCo.Hajek, 4, 17, 58, 71, 83, 87, 100, 116
VE.Jk.CBS.SYG.RegCoI. Hajek, 4, 18, 61, 74, 85, 85, 103, 118
VE.Jk.CBS.SYG.Total.Hajek, 4, 20, 35, 63, 76, 88, 106, 120
VE.Jk.EB.SW2.Corr.Hajek, 4, 6, 52, 65, 78, 90, 108
VE.Jk.EB.SW2.Mean. Hajek, 4, 12, 30, 38, 54, 67, 80, 93, 112
VE.Jk.EB.SW2.Ratio, 4, 15, 33, 40, 56, 69, 82, 95, 114, 122, 125
VE.Jk.EB.SW2.RegCo.Hajek, 4, 17, 58, 71, 85, 98, 103, 116
VE.Jk.EB.SW2.RegCoI.Hajek, 4, 18, 61, 74, 87, 100, 101, 118
VE.Jk.EB.SW2.Total.Hajek, 4, 20, 35, 43, 63, 76, 90, 104, 120
VE.Jk.Tukey.Corr.Hajek, 4, 6, 52, 65, 78, 92, 106
VE.Jk.Tukey.Corr.NHT, 4, 8, 108
VE.Jk.Tukey.Mean.Hajek, 4, 12, 30, 38, 54, 67, 80, 95, 110
VE.Jk.Tukey.Ratio, 4, 15, 33, 40, 56, 69, 82, 97, 112, 122, 125
VE.Jk.Tukey.RegCo.Hajek, 4, 17, 58, 71, 85, 100, 114, 118
VE.Jk.Tukey.RegCoI. Hajek, 4, 18, 61, 74, 87, 103, 116, 117
VE.Jk.Tukey.Total.Hajek, 3, 20, 35, 43, 63, 76, 90, 106, 119
VE.Lin.HT.Ratio, $4,33,40,56,69,82,114$,

121, 125
VE.Lin.SYG.Ratio, 4, 33, 40, 56, 69, 82, 114, 122, 123
VE.SYG.Mean.NHT, 4, 13, 45, 48, 125
VE.SYG.Total.NHT, 3, 21, 46, 50, 127

[^0]: Est.EmpDistFunc. Hajek The Hajek estimator for the empirical cumulative distribution function

[^1]: VE.Jk.CBS.HT.RegCo.Hajek
 The Campbell-Berger-Skinner unequal probability jackknife variance estimator for the estimator of the regression coefficient using the Hajek point estimator (Horvitz-Thompson form)

