Package 'treebalance'

December 14, 2023
Title Computation of Tree (Im)Balance Indices
Version 1.2.0
Description The aim of the 'R' package 'treebalance' is to provide functions for the computation of a large variety of (im)balance indices for rooted trees. The package accompanies the book "Tree balance indices: a comprehensive survey" by M. Fischer, L. Herbst, S. Kersting, L. Kuehn and K. Wicke (2023) <ISBN: 978-3-031-39799-8>, [doi:10.1007/978-3-031-39800\(1](doi:10.1007/978-3-031-39800%5C(1)\), which gives a precise definition for the terms 'balance index' and 'imbalance index' (Chapter 4) and provides an overview of the terminology in this manual (Chapter 2). For further information on (im)balance indices, see also Fischer et al. (2021) <https: //treebalance .wordpress . com>. Considering both established and new (im)balance indices, 'treebalance' provides (among others) functions for calculating the following 18 established indices and index families: the average leaf depth, the B1 and B2 index, the Colijn-Plazzotta rank, the normal, corrected, quadratic and equal weights Colless index, the family of Colless-like indices, the family of I-based indices, the Rogers J index, the Furnas rank, the rooted quartet index, the s-shape statistic, the Sackin index, the symmetry nodes index, the total cophenetic index and the variance of leaf depths. Additionally, we include 9 tree shape statistics that satisfy the definition of an (im)balance index but have not been thoroughly analyzed in terms of tree balance in the literature yet. These are: the total internal path length, the total path length, the average vertex depth, the maximum width, the modified maximum difference in widths, the maximum depth, the maximum width over maximum depth, the stairs 1 and the stairs 2 index. As input, most functions of 'treebalance' require a rooted (phylogenetic) tree in 'phylo' format (as introduced in 'ape' 1.9 in November 2006). 'phylo' is used to store (phylogenetic) trees with no vertices of out-degree one. For further information on the format we kindly refer the reader to E. Paradis (2012) <http:
//ape-package.ird.fr/misc/FormatTreeR_240ct2012.pdf>.
Author Mareike Fischer [aut],
Lina Herbst [aut],
Sophie Kersting [aut],
Luise Kuehn [aut, cre],
Kristina Wicke [aut]
Maintainer Luise Kuehn treebalanceindices@gmail.com
Depends R (>= 3.5.0)
Imports ape, memoise, gmp
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
NeedsCompilation no
Repository CRAN
Date/Publication 2023-12-14 10:00:03 UTC
R topics documented:
areaPerPairI 3
avgLeafDepI 4
avgVertDep 5
B1I 6
B2I 7
cherryI 8
collessI 9
collesslikeI 11
colPlaLab 12
colPlaLab_inv 13
ewCollessI 15
furnasI 16
furnasI_inv 17
getDescMatrix 18
IbasedI 21
maxDelW 23
maxDepth 24
maxWidth 25
mCherryI 26
mWovermD 27
rogersI 28
rQuartetI 29
sackinI 30
sShapeI 31
stairs1 32
stairs2 33
symNodesI 34
totCophI 35
totIntPathLen 36
totPathLen 37
varLeafDepI 38
wedEth 39
weighL1dist 40
Index 41

```
areaPerPairI Calculation of the area per pair index for rooted trees
```


Description

This function calculates the area per pair index $A P P(T)$ for a given rooted tree T. The tree must not necessarily be binary. $A P P(T)$ is defined as

$$
A P P(T)=\frac{2}{n \cdot(n-1)} \cdot \sum_{1 \leq i<j \leq n} d_{T}(i, j)
$$

in which n denotes the number of leaves in T, and $d_{T}(i, j)$ denotes the number of edges on the path between the two leaves i and j. Note that $A P P(T)$ can also be computed from the Sackin index $S(T)$ and the total cophenetic index $T C I(T)$ of T as $A P P(T)=\frac{2}{n} \cdot S(T)-\frac{4}{n(n-1)} \cdot T C I(T)$ enabling efficient computation.

The area per pair index does not fulfill the definition of an (im)balance index given in "Tree balance indices: a comprehensive survey" (Fischer et al., 2023).

For details on the area per pair index, see also Chapter 24 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_24).

Usage

areaPerPairI(tree)

Arguments

tree A rooted tree in phylo format.

Value

areaPerPairI returns the area per pair index of the given tree.

Author(s)

Luise Kuehn

References

T. Araujo Lima, F. M. D. Marquitti, and M. A. M. de Aguiar. Measuring Tree Balance with Normalized Tree Area. arXiv e-prints, art. arXiv:2008.12867, 2020.

Examples

```
tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
areaPerPairI(tree)
```

avgLeafDepI Calculation of the average leaf depth index for rooted trees

Description

This function calculates the average leaf depth $N(T)$ for a given rooted tree T. The tree must not necessarily be binary. $N(T)$ is defined as

$$
N(T)=\frac{1}{n} \cdot \sum_{u \in V_{i n}(T)} n_{u}
$$

in which n denotes the number of leaves in $T, V_{i n}(T)$ denotes the set of inner nodes of T and n_{u} denotes the number of leaves in the pending subtree that is rooted at the inner node u. Note that $N(T)$ can also be computed from the Sackin index $S(T)$ as $N(T)=\frac{1}{n} \cdot S(T)$. The average leaf depth is an imbalance index.

For $n=1$ the function returns $N(T)=0$ and a warning.
For details on the average leaf depth, see also Chapter 6 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_6).

Usage

avgLeafDepI (tree)

Arguments

$$
\text { tree } \quad \text { A rooted tree in phylo format. }
$$

Value

avgLeafDepI returns the average leaf depth of the given tree.

Author(s)

Luise Kuehn

References

M. J. Sackin. "Good" and "Bad" Phenograms. Systematic Biology, 21(2):225-226, 1972. doi: 10.1093/sysbio/21.2.225.
K.-T. Shao and R. R. Sokal. Tree Balance. Systematic Zoology, 39(3):266, 1990. doi: 10.2307/2992186.

Examples

```
tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
avgLeafDepI(tree)
```


Description

This function calculates the average vertex depth $A V D(T)$ for a given rooted tree T. The tree must not necessarily be binary. $A V D(T)$ is defined as

$$
A V D(T)=\frac{1}{|V(T)|} \cdot \sum_{x \in V(T)} \delta(x)
$$

in which $V(T)$ denotes the set of vertices of T, and $\delta(x)$ denotes the depth of the vertex x. The average vertex depth is a normalised version of the total path length and an imbalance index.

For $n=1$ the function returns $A V D(T)=0$ and a warning.
For details on the average vertex depth, see also Chapter 23 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_23).

Usage

avgVertDep(tree)

Arguments

tree A rooted tree in phylo format.

Value

avgVertDep returns the average vertex depth of the given tree.

Author(s)

Luise Kuehn

References

A. Herrada et al. Scaling properties of protein family phylogenies. BMC Evolutionary Biology, 11(1), June 2011. doi: 10.1186/1471-2148-11-155.

Examples

```
tree <- ape::read.tree(text="((((,),),(,)),(((,,),),(,)));")
avgVertDep(tree)
```


Description

This function calculates the $B 1$ index $B 1(T)$ for a given rooted tree T. The tree must not necessarily be binary. $B 1(T)$ is defined as

$$
B 1(T)=\sum_{u \in V_{i n}(T) \backslash\{\rho\}} h\left(T_{u}\right)^{-1}
$$

in which $V_{i n}(T) \backslash\{\rho\}$ denotes the set of inner vertices of T without the root, and $h\left(T_{u}\right)$ denotes the height of the pending subtree rooted at u. When restricted to binary trees, the $B 1$ index is a balance index. For arbitrary trees it does not fulfill the definition of an (im)balance index.

For $n=1$ the function returns $B 1(T)=0$ and a warning.
For details on the B1 index, see also Chapter 10 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_10).

Usage

B1I (tree)

Arguments

tree A rooted tree in phylo format.

Value

B1I returns the B 1 index of the given tree.

Author(s)

Sophie Kersting

References

K.-T. Shao and R. R. Sokal. Tree Balance. Systematic Zoology, 39(3):266, 1990. doi: 10.2307/2992186.

Examples

```
tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
B1I(tree)
```


Description

This function calculates the B 2 index $B 2(T)$ for a given rooted tree T. The tree must not necessarily be binary. $B 2(T)$ is defined as

$$
B 2(T)=-\sum_{x \in V_{L}(T)} p_{x} \cdot \log \left(p_{x}\right)
$$

in which $V_{L}(T)$ denotes the leaf set of T, and in which

$$
p_{x}=\prod_{v \in \operatorname{anc}(x)} \frac{1}{|\operatorname{child}(v)|}
$$

denotes the probability of reaching leaf x when starting at the root and assuming equiprobable branching at each vertex $v \in \operatorname{anc}(x)$ with $\operatorname{anc}(x)$ denoting the set of ancestors of x excluding x. $\operatorname{child}(v)$ denotes the set of children of the inner vertex v.
The $B 2$ index is a balance index.
For $n=1$ the function returns $B 2(T)=0$ and a warning.
For details on the B2 index, see also Chapter 11 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_11).

Usage

B2I(tree, logbase = 2)

Arguments

tree A rooted tree in phylo format.
logbase The base that shall be used for the logarithm. For binary trees it is common to use base 2 .

Value

$B 2 I$ returns the $B 2$ index of the given tree.

Author(s)

Sophie Kersting, Luise Kuehn

References

K.-T. Shao and R. R. Sokal. Tree Balance. Systematic Zoology, 39(3):266, 1990.
doi: 10.2307/2992186.
P.-M. Agapow and A. Purvis. Power of Eight Tree Shape Statistics to Detect Nonrandom Diversification: A Comparison by Simulation of Two Models of Cladogenesis. Systematic Biology, 51(6):866-872, 2002.doi: 10.1080/10635150290102564.
URL https://doi.org/10.1080/10635150290102564.
M. Hayati, B. Shadgar, and L. Chindelevitch. A new resolution function to evaluate tree shape statistics. PLOS ONE, 14(11):e0224197, 2019. doi: 10.1371/journal.pone. 0224197.
URL https://doi.org/10.1371/journal.pone.0224197.
M. Kirkpatrick and M. Slatkin. Searching for evolutionary patterns in the shape of a phylogenetic tree. Evolution, 47(4):1171-1181, 1993. doi: 10.1111/j.1558-5646.1993.tb02144.x.

Examples

```
tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
B2I(tree)
```

cherryI Calculation of the cherry index for rooted trees

Description

This function calculates the cherry index $C h I(T)$ for a given rooted tree T. The tree must not necessarily be binary. $\operatorname{ChI}(T)$ is defined as the number of cherries in the tree. A cherry is a pair of leaves that have the same direct ancestor. Note, if a vertex u has x leaves as direct descendants, the number of cherries induced by u is $\operatorname{binom}(x, 2)$.

The cherry index does not fulfill the definition of an (im)balance index given in "Tree balance indices: a comprehensive survey" (Fischer et al., 2023).

For details on the cherry index, see also Chapter 24 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_24).

Usage
 cherryI(tree)

Arguments

tree A rooted tree in phylo format.

Value

cherryI returns the cherry index of the given tree.

Author(s)

Sophie Kersting

References

A. McKenzie and M. Steel. Distributions of cherries for two models of trees. Mathematical Biosciences, 164(1):81-92, 2000. doi: 10.1016/s0025-5564(99)00060-7.

Examples

```
tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
cherryI(tree)
tree <- ape::read.tree(text="((,),((((,),),),(,)));")
cherryI(tree)
tree <- ape::read.tree(text="((,,,),(,,));")
cherryI(tree)
```

collessI Calculation of the Colless index for rooted binary trees

Description

This function calculates variants of the Colless index for a given rooted binary tree T. All of them are imbalance indices.

The original Colless index $C(T)$ is defined as

$$
C(T)=\sum_{u \in V_{i n}(T)}\left|n_{u_{a}}-n_{u_{b}}\right|
$$

in which $V_{i n}(T)$ denotes the set of all inner vertices of T, and in which $n_{u_{a}}$ and $n_{u_{b}}$ denote the number of leaves in the two pending subtrees that are rooted at the direct descendants of u.

The corrected Colless index $I_{C}(T)$ of T is defined as $I_{C}(T)=0$ for $n=1$ and $n=2$ and for $n>2$ as

$$
I_{C}(T)=\frac{2 \cdot C(T)}{(n-1) \cdot(n-2)}
$$

in which n denotes the total number of leaves in T.
The quadratic Colless index $Q C(T)$ of T is defined as

$$
Q C(T)=\sum_{u \in V_{i n}(T)}\left|n_{u_{a}}-n_{u_{b}}\right|^{2}
$$

Special cases: For $n=1$ the function returns $C(T)=I_{C}(T)=Q C(T)=0$ and a warning.

For details on the original, corrected and quadratic Colless indices, see also Chapters 12, 13 and 15 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_12, https://doi.org/10.1007/978-3-031-39800-1_13, https://doi.org/10.1007/978-3-031-39800-1_15).

Usage

collessI(tree, method = "original")

Arguments

$$
\begin{array}{ll}
\text { tree } & \text { A rooted binary tree in phylo format. } \\
\text { method } & \begin{array}{l}
\text { A character string specifying the version that shall be computed. It can be one } \\
\text { of the following: "original", "corrected", "quadratic". }
\end{array}
\end{array}
$$

Value

collessI returns the Colless index of the given tree according to the chosen method.

Author(s)

Luise Kuehn and Sophie Kersting

References

D. Colless. Review of Phylogenetics: the theory and practice of phylogenetic systematics. Systematic Zoology, 1982. ISSN 00397989.
T. M. Coronado, M. Fischer, L. Herbst, F. Rossello, and K. Wicke. On the minimum value of the Colless index and the bifurcating trees that achieve it. Journal of Mathematical Biology, 2020.doi: 10.1007/s00285-020-01488-9.
S. B. Heard. Patterns in tree balance among cladistic, phenetic, and randomly generated phylogenetic trees. Evolution, 1992. doi: 10.1111/j.1558-5646.1992.tb01171.x.
K. Bartoszek, T. M. Coronado, A. Mir, and F. Rossello. Squaring within the Colless index yields a better balance index. Mathematical Biosciences, 331:108503, 2021. doi: 10.1016/j.mbs.2020.108503.

Examples

```
tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
collessI(tree, method="original")
collessI(tree, method="corrected")
collessI(tree, method="quadratic")
```

collesslikeI Calculation of the Colless-like indices for rooted trees

Description

This function calculates the Colless-like index for a given rooted tree T according to the chosen weight function f and dissimilarity D. The Colless-like index $C L(T)$ relative to D and f is the sum of the (D, f)-balance values over all inner vertices of the tree. More precisely,

$$
C L(T)=\sum_{v \in V_{i n}(T)} b a l_{D, f}(v)
$$

where $V_{i n}(T)$ is the set of inner vertices of T. The (D, f)-balance value of v with children v_{1}, \ldots, v_{k} is computed as

$$
b a l_{D, f}(v)=D\left(f s\left(T_{v_{1}}\right), \ldots, f s\left(T_{v_{k}}\right)\right)
$$

with D denoting the dissimilarity and $f s$ denoting the f.size.
The f.size $f s(T)$ of a tree T uses the function f, which maps any integer to a non-negative real number, to build a weighted sum of the out-degrees of all vertices in T. More precisely,

$$
f s(T)=\sum_{v \in V(T)} f(\operatorname{deg}+(v))
$$

where $V(T)$ is the set of all vertices of T and $d e g+(v)$ denotes the out-degree (i.e. the number of children) of the vertex v. The f-functions that are already implemented are $f(x)=e^{x}$ and $f(x)=\ln (x+e)$.
The dissimilarity $D\left(x_{1}, \ldots, x_{k}\right)$ of a vector x_{1}, \ldots, x_{k} assigns a non-negative value to the vector, is independent of the order of the vector entries and equals zero if and only if $x_{1}=\ldots=x_{k}$. In this implementation the following dissimilarity functions are already built-in: mean deviation from the median ($m d m$), the sample variance ($v a r$) and the sample standard deviation ($s d$).
collesslikeI also allows the use of other functions for the weight function f and the dissimilarity D.

Special cases: For $n=1$ the function returns $C L(T)=0$ and a warning.
For details on the family of Colless-like indices, see also Chapter 16 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_16).

Usage

collesslikeI(tree, f.size, dissim)

Arguments

tree A rooted binary tree in phylo format.
f.size A character string specifying the function f that shall be used to compute the f.size. It can be one of the following: "exp", "ln" or the name of a function as a string.
dissim A character string specifying the dissimilarity that shall be used. It can be one of the following: "mdm", "var", "sd" or the name of a function as a string.

Value

collesslikeI returns the Colless-like index of the given tree according to the chosen function and dissimilarity.

Author(s)

Luise Kuehn, Sophie Kersting

References

A. Mir, L. Rotger, and F. Rossello. Sound Colless-like balance indices for multifurcating trees. PLOSONE, 13(9):e0203401, 2018. doi: 10.1371/journal.pone. 0203401

Examples

```
tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
collesslikeI(tree, f.size="exp", dissim="mdm")
collesslikeI(tree, f.size="exp", dissim="var")
collesslikeI(tree, f.size="ln", dissim="sd")
myfsize <- function(x) return(x+1)
mydissim <- function(x) return (var(x))
collesslikeI(tree, f.size="myfsize",dissim = "mydissim")
```

colPlaLab Calculation of the Colijn-Plazzotta rank for rooted binary trees

Description

This function calculates the Colijn-Plazzotta rank $C P(T)$ for a given rooted binary tree T.
For a binary tree T, the Colijn-Plazzotta rank $C P(T)$ is recursively defined as $C P(T)=1$ if T consists of only one leaf and otherwise

$$
C P(T)=\frac{1}{2} \cdot C P\left(T_{1}\right) \cdot\left(C P\left(T_{1}\right)-1\right)+C P\left(T_{2}\right)+1
$$

with $C P\left(T_{1}\right) \geq C P\left(T_{2}\right)$ being the ranks of the two pending subtrees rooted at the children of the root of T. This rank of T corresponds to its position in the lexicographically sorted list of (i, j) : $(1),(1,1),(2,1),(2,2),(3,1), \ldots$ The Colijn-Plazzotta rank of binary trees has been shown to be an imbalance index.

For $n=1$ the function returns $C P(T)=1$ and a warning.
Note that problems can sometimes arise even for trees with small leaf numbers due to the limited range of computable values (ranks can reach INF quickly).

For details on the Colijn-Plazzotta rank, see also Chapter 21 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_21).

Usage

```
    colPlaLab(tree)
```


Arguments

tree A rooted binary tree in phylo format.

Value

colPlaLab returns the Colijn-Plazotta rank of the given tree. Since the values can get quite large, the function returns them in big. z format (package gmp).

Author(s)

Sophie Kersting, Luise Kuehn

References

C. Colijn and G. Plazzotta. A Metric on Phylogenetic Tree Shapes. Systematic Biology, doi: 10.1093/sysbio/syx046.
N. A. Rosenberg. On the Colijn-Plazzotta numbering scheme for unlabeled binary rooted trees. Discrete Applied Mathematics, 2021. doi: 10.1016/j.dam.2020.11.021.

Examples

```
tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
colPlaLab(tree)
```

colPlaLab_inv Generation of the rooted binary tree corresponding to a given Colijn- Plazzotta rank

Description

This function generates the unique rooted binary tree T (in phylo format) that corresponds to the given Colijn-Plazzotta rank $C P(T)$. It is the inverse function of colPlaLab().
colPlaLab(): For a given rooted binary tree $T, C P(T)$ is recursively defined as $C P(T)=1$ if T consists of only one vertex and otherwise $C P(T)=\frac{1}{2} \cdot C P\left(T_{1}\right) \cdot\left(C P\left(T_{1}\right)-1\right)+C P\left(T_{2}\right)+1$ with $C P\left(T_{1}\right) \geq C P\left(T_{2}\right)$ being the ranks of the two pending subtrees rooted at the children of the root of T. The rank $C P(T)$ of T corresponds to its position in the lexicographically sorted list of $(i, j):(1),(1,1),(2,1),(2,2),(3,1), \ldots$
colPlaLab_inv(): For a given rank $C P$ the corresponding tree T can be reconstructed by starting
from one vertex ρ (labelled $C P$) and recursively splitting vertices whose labels h are greater than 1 into two children with the labels:

$$
i=\left\lceil\frac{1+\sqrt{8 \cdot h-7}}{2}\right\rceil-1
$$

and

$$
j=h-\frac{i \cdot(i-1)}{2}-1
$$

until there are no more vertices to split.
For $C P=1$ the function returns the smallest possible tree in the phylo format: the tree consisting of a single edge.

Note that problems can arise for extremely high input values $(>10 \mathrm{e}+18)$.
For details on the Colijn-Plazzotta rank, see also Chapter 21 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_21).

Usage

colPlaLab_inv(rank)

Arguments

rank An integer denoting the Colijn-Plazzotta rank of the sought tree.

Value

colPlaLab_inv returns the unique rooted binary tree for the given rank.

Author(s)

Sophie Kersting

References

C. Colijn and G. Plazzotta. A Metric on Phylogenetic Tree Shapes. Systematic Biology, 67(1):113126,2018. doi: 10.1093/sysbio/syx046.
N. A. Rosenberg. On the Colijn-Plazzotta numbering scheme for unlabeled binary rooted trees. Discrete Applied Mathematics, 291:88-98, 2021. doi: 10.1016/j.dam.2020.11.021.

Examples

colPlaLab_inv(22)

Description

This function calculates the equal weights Colless index $I_{2}(T)$ for a given rooted binary tree T. $I_{2}(T)$ is defined as

$$
I_{2}(T)=\frac{1}{n-2} \cdot \sum_{u \in V_{i n}(T), n_{u}>2} \frac{\left|n_{u_{a}}-n_{u_{b}}\right|}{n_{u}-2}
$$

in which $V_{i n}(T)$ denotes the set of all inner vertices of T, and in which $n_{u}, n_{u_{a}}$ and $n_{u_{b}}$ denote the number of leaves in the pending subtrees that are rooted at u and the two direct descendants of u. The equal weights Colless index is an imbalance index.

For $n=1$ and $n=2$ the function returns $I_{2}(T)=0$ and a warning.
For details on the equal weigths Colless index, see also Chapter 14 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_14).

Usage

ewCollessI(tree)

Arguments

tree A rooted binary tree in phylo format.

Value

ewCollessI returns the equal weights Colless index of the given tree.

Author(s)

Luise Kuehn

References

A. O. Mooers and S. B. Heard. Inferring Evolutionary Process from Phylogenetic Tree Shape. The Quarterly Review of Biology, 72(1), 1997. doi: 10.1086/419657.

Examples

```
tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
ewCollessI(tree)
```

furnasI Calculation of the Furnas rank for rooted binary trees

Description

This function calculates the Furnas rank $F(T)$ for a given rooted binary tree $T . F(T)$ is the unique rank of the tree T among all rooted binary trees with n leaves in the left-light rooted ordering. For details on the left-light rooted ordering as well as details on how the Furnas rank is computed, see "The generation of random, binary unordered trees" by G.W. Furnas (1984) or "Tree balance indices: a comprehensive survey" by Fischer et al. (2023). The Furnas rank is a balance index.

The concept of assigning each rooted binary tree a unique tuple (rank, n) allows to store many trees with minimal storage use.

For details on the Furnas rank, see also Chapter 22 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_22).

Usage

furnasI(tree)

Arguments

tree A rooted binary tree in phylo format.

Value

furnasI returns the unique Furnas rank of the given tree, i.e. the rank of the tree among all rooted binary trees with n leaves in the left-light rooted ordering. Since the values can get quite large, the function returns them in big.z format (package $g m p$).

Author(s)

Luise Kuehn, Lina Herbst

References

G. W. Furnas. The generation of random, binary unordered trees. Journal of Classification, 1984. doi: 10.1007/bf01890123. URL https://doi.org/10.1007/bf01890123.
M. Kirkpatrick and M. Slatkin. Searching for evolutionary patterns in the shape of a phylogenetic tree. Evolution, 1993. doi: 10.1111/j.1558-5646.1993.tb02144.x.

Examples

```
tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
furnasI(tree)
```


Description

This function calculates the unique tree T (in phylo format) for two given integer values r and n, with n denoting the number of leaves of T and r denoting the rank of T in the left-light rooted ordering of all rooted binary trees with n leaves. It is the inverse function of furnasI (). For details on how to calculate T (including algorithm) see "The generation of random, binary unordered trees" by G.W. Furnas (1984) or "Tree balance indices: a comprehensive survey" by Fischer et al. (2023).
furnasI_inv can be used e.g. to generate random rooted binary trees with a certain number of leaves. Also, the concept of assigning each rooted binary tree a unique tuple (rank, n) allows to store many trees with minimal storage use.

For details on the Furnas rank, see also Chapter 22 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_22).

Usage

furnasI_inv(rank, n)

Arguments

rank An integer denoting the rank of the sought tree among all rooted binary trees with n leaves.
$\mathrm{n} \quad$ An integer denoting the number of leaves of the sought tree.

Value

furnasI_inv returns the unique tree (in phylo format) for the given leaf number and rank.

Author(s)

Sophie Kersting

References

G. W. Furnas. The generation of random, binary unordered trees. Journal of Classification, 1984. doi: $10.1007 / \mathrm{bf01890123}$. URL https://doi.org/10.1007/bf01890123.

Examples

furnasI_inv(rank=6,n=8)
getDescMatrix Auxiliary functions

Description

getDescMatrix - Creates a matrix that contains the descendants of node i in row i.
getAncVec - Creates a vector that contains the parent (direct ancestor) of node i at position i.
getNodesOfDepth - Creates a matrix that contains the nodes of depth i in row i.
symBucketLexicoSort - Sorts the pairs of numbers lexicographically and returns ranking. Uses bucket sort.
getAllAncestors - Returns all ancestors of v including v itself.
cPL_inv - Returns the binary tree that belongs to the input label in an incomplete Newick format.
maxDepthLeaf - Returns the maximumy< depth of a leaf in the subtree that is rooted at v.
get. subtreesize - Creates a vector that contains at the i-th position the number of leaves in the pending subtree rooted at i.
getlca - Returns the name of the lowest common ancestor of the two input vertices v and w.
we_eth - Returns the Wedderburn-Etherington number $w e(n)$ for a given non-negative integer n.
getfurranks - Returns for each vertex i the Furnas rank of the subtree rooted at i.
getsubtree - Returns the pending subtree (in phylo format) that is rooted at the input vertex. If the input vertex is a leaf, the function returns the standard tree for $n=1$ (with 1 edge).
is_binary - Returns TRUE if the input tree is binary and FALSE otherwise.
is_phylo - Tests all requirements of the phylo format, and returns TRUE if the tree is correctly formatted, else FALSE with detailed feedback on the features that are not met.
tree_decomposition - Returns a list of length two, which contains the two pending subtrees that are rooted at the children of the root of the input tree. The smaller one (according to the number of leaves) is stated first.
tree_merge - Returns a rooted tree T in phylo format, which contains the input trees tree 1 and tree 2 as "left" and "right" maximal pending subtrees.
treenumber - Returns the unique tree number $\operatorname{tn}(T)$ of the given tree. $\operatorname{tn}(T)$ is the rank of the tree T among all rooted binary trees in the left-light rooted ordering. It can be calculated as follows:

$$
\operatorname{tn}(T)=F(T)+\sum_{i=1}^{n-1} w e(i)
$$

in which n is the number of leaves in $T, F(T)$ is the Furnas rank of T, i.e. the rank of T in the left-light rooted ordering of all rooted binary trees with n leaves, and we(i) is the WedderburnEtherington number of i. The concept of assigning each rooted binary tree a unique tree number allows to store many trees with minimal storage use. For $n=1$ the function returns $\operatorname{tn}(T)=1$ and a warning.
treenumber_inv - Returns the unique tree (in phylo format) for the given tree number. auxE_1_X - Returns the sum of all products of 1 different values in X .

```
Usage
    getDescMatrix(tree)
    getAncVec(tree)
    getNodesOfDepth(mat, root, n)
    symBucketLexicoSort(workLabs)
    getAllAncestors(tree, v)
    cPL_inv(label)
    maxDepthLeaf(tree, v = length(tree$tip.label) + 1)
    get.subtreesize(tree)
    getlca(tree, v, w)
    we_eth(n)
    getfurranks(tree)
    getsubtree(tree, subroot)
    is_binary(tree)
    is_phylo(tree)
    tree_decomposition(tree)
    tree_merge(tree1, tree2)
    treenumber(tree)
    treenumber_inv(treenum)
    auxE_l_X(subX, Xset)
```


Arguments

tree	A rooted tree in phylo format, $>=2$ leaves
mat	Descendants matrix from getDescMatrix
root	Number (label) of the root of the tree
n	Number of leaves of the tree
workLabs	numeric matrix (2 columns)
\vee	A vertex of the tree.

label A Colijn-Plazotta label of desired tree, a positive integer.
w
A vertex of the tree.
subroot A vertex of the tree. It is not recommended to use leaves as subroots.
tree1 A rooted tree in phylo format.
tree2 A rooted tree in phylo format.
treenum An integer denoting the tree number of the sought tree.
subX integer $>=1$, size of the subsets of X.
Xset Vector (multiset) of numeric values.

Value

desc_mat numeric matrix
anc_vec numeric vector
nodes_of_depth numeric matrix
ranking numeric vector
vectorWi thAncs numeric vector

Author(s)
Sophie Kersting, Luise Kuehn and Lina Herbst

Examples

```
mat <- cbind(c(7,7,6,5,5,6),c(1,2,3,4,6,7))
tree <- list(edge=mat, tip.label=c("","","",""), Nnode=3)
getDescMatrix(tree)
mat <- cbind(c(5,5,5,5),c(1,2,3,4))
tree <- list(edge=mat, tip.label=c("","","",""), Nnode=1)
getDescMatrix(tree)
getAncVec(tree)
getNodesOfDepth(mat=getDescMatrix(tree),root=length(tree$tip.label)+1,
n=length(tree$tip.label))
myWorkLabs <- cbind(c(0,1,2,3,1,0),c(0, 2, 2,4,1,0))
symBucketLexicoSort(myWorkLabs)
getAllAncestors(tree,v=6)
cPL_inv(label=6)
maxDepthLeaf(tree,v=6)
get.subtreesize(tree)
getlca(tree,1,2)
we_eth(5)
getfurranks(tree)
getsubtree(tree,4)
is_binary(ape::read.tree(text="((((,),),(,)),(((,),),(,)));"))
is_phylo(ape::read.tree(text="((((,),),(,)),(((,),),(,)));"))
tree_decomposition(ape::read.tree(text="((((,),),(,)),(((,),),(,)));"))
treeA <- ape::read.tree(text="(((,),),(,));")
treeB <- ape::read.tree(text="((,),);")
tree_merge(treeA, treeB)
```

```
treenumber(ape::read.tree(text="((((,),),(,)),(((,),),(,)));"))
treenumber_inv(192)
auxE_l_X(subX=3,Xset=c(1,1,2,2))
```


Description

This function calculates I-based indices $I(T)$ for a given rooted tree T. Note that the leaves of the tree may represent single species or groups of more than one species. Thus, a vector is required that contains for each leaf the number of species that it represents. The tree may contain few polytomies, which are not allowed to concentrate in a particular region of the tree (see p. 238 in Fusco and Cronk (1995)).

Let v be a vertex of T that fulfills the following criteria: a) The number of descendant (terminal) species of v is $k_{v}>3$ (note that if each leaf represents only one species k_{v} is simply the number of leaves in the pending subtree rooted at v), and b) v has exactly two children.

Then, we can calculate the I_{v} value as follows:

$$
I_{v}=\frac{k_{v_{a}}-\left\lceil\frac{k_{v}}{2}\right\rceil}{k_{v}-1-\left\lceil\frac{k_{v}}{2}\right\rceil}
$$

in which $k_{v_{a}}$ denotes the number of descendant (terminal) species in the bigger one of the two pending subtrees rooted at v.

As the expected value of I_{v} under the Yule model depends on k_{v}, Purvis et al. (2002) suggested to take the corrected values I_{v}^{\prime} or I_{v}^{w} instead.
The I_{v}^{\prime} value of v is defined as follows: $I_{v}^{\prime}=I_{v}$ if k_{v} is odd and $I_{v}^{\prime}=\frac{k_{v}-1}{k_{v}} \cdot I_{v}$ if k_{v} is even.
The I_{v}^{w} value of v is defined as follows:

$$
I_{v}^{w}=\frac{w\left(I_{v}\right) \cdot I_{v}}{\operatorname{mean}_{V^{\prime}(T)} w\left(I_{v}\right)}
$$

where $V^{\prime}(T)$ is the set of inner vertices of T that have precisely two children and $k_{v} \geq 4$, and $w\left(I_{v}\right)$ is a weight function with $w\left(I_{v}\right)=1$ if k_{v} is odd and $w\left(I_{v}\right)=\frac{k_{v}-1}{k_{v}}$ if k_{v} is even and $I_{v}>0$, and $w\left(I_{v}\right)=\frac{2 \cdot\left(k_{v}-1\right)}{k_{v}}$ if k_{v} is even and $I_{v}=0$.

The I-based index of T can now be calculated using different methods. Here, we only state the version for the I^{\prime} correction method, but the non-corrected version or the I_{v}^{w} corrected version works analoguously. 1) root: The I^{\prime} index of T equals the I_{v}^{\prime} value of the root of T, i.e. $I^{\prime}(T)=I_{\rho}^{\prime}$, provided that the root fulfills the two criteria. Note that this method does not fulfil the definition of an (im)balance index. 2) median: The I^{\prime} index of T equals the median I_{v}^{\prime} value of all vertices v that fulfill the two criteria. 3) total: The I^{\prime} index of T equals the summarised I_{v}^{\prime} values of all vertices v that fulfill the two criteria. 4) mean: The I^{\prime} index of T equals the mean I_{v}^{\prime} value of all vertices v that fulfill the two criteria. 5) quartile deviation: The I^{\prime} index of T equals the quartile deviation
(half the difference between third and first quartile) of the I_{v}^{\prime} values of all vertices v that fulfill the two criteria.

For details on the family of I-based indices, see also Chapter 17 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_17).

Usage

```
IbasedI(
        tree,
        specnum = rep(1, length(tree$tip.label)),
        method = "mean",
        correction = "none",
        logs = TRUE
)
```


Arguments

tree A rooted tree in phylo format (with possibly few polytomies).
specnum A vector whose i-th entry is the number of species that the i-th leaf represents. (default is $1, \ldots, 1$)
method A character string specifying the method that shall be used to calculate $I(T)$. It can be one of the following: "root", "median", "total", "mean", "quartdev".
correction A character string specifying the correction method that shall be applied to the I values. It can be one of the following: "none", "prime", "w".
logs Boolean value, (default true), determines if the number of suitable nodes (i.e. nodes that fulfill the criteria) and polytomies in the tree should be printed.

Value

IbasedI returns an I-based balance index of the given tree according to the chosen (correction and) method.

Author(s)

Luise Kuehn and Sophie Kersting

References

G. Fusco and Q. C. Cronk. A new method for evaluating the shape of large phylogenies. Journal of Theoretical Biology, 1995. doi: 10.1006/jtbi.1995.0136. URL https://doi.org/10.1006/jtbi.1995.0136.
A. Purvis, A. Katzourakis, and P.-M. Agapow. Evaluating Phylogenetic Tree Shape: Two Modifications to Fusco \& Cronks Method. Journal of Theoretical Biology, 2002. doi: 10.1006/jtbi.2001.2443. URL https://doi.org/10.1006/jtbi.2001.2443.

Examples

```
tree <- ape::read.tree(text="(((((,),),),),);")
IbasedI(tree, method="mean")
IbasedI(tree, method="mean", correction="prime", specnum=c(1,1,2,1,1,1))
```

maxDelW

Calculation of the (modified) maximum difference in widths for a rooted tree

Description

This function calculates the maximum difference in widths $\operatorname{del} W(T)$ and the modified maximum difference in width $\operatorname{mdel} W(T)$ for a given rooted tree T. The tree must not necessarily be binary. $\operatorname{del} W(T)$ is defined as

$$
\operatorname{del} W(T)=\max _{i=0, \ldots, h(T)-1}|w(i+1)-w(i)|
$$

and $\operatorname{mdel} W(T)$ is defined as

$$
\operatorname{mdel} W(T)=\max _{i=0, \ldots, h(T)-1} w(i+1)-w(i)
$$

in which $h(T)$ denotes the height of the tree T and $w(i)$ denotes the number of vertices in T that have depth i. The modified maximum difference in widths is a balance index, while the maximum difference in widths is neither a balance nor imbalance index.

Note that there was a spelling error in the previous manual of this function - we wrote "maximum difference in widths" while the given definition and the R code corresponded to the "modified maximum difference in width".

For details on the maximum difference in widths and the modified maximum difference in widths, see also Chapters 24 and 23 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_24, https://doi.org/10.1007/978-3-031-39800-1_23).

Usage

maxDelW(tree, method = "modified")

Arguments

tree A rooted tree in phylo format.
method A character string specifying whether the original maximum difference in widths or the modified maximum difference in widths shall be computed. Can be any of "original" or "modified" (default is modified).

Value

maxDelW returns the maximum difference in widths of a tree (if method is set to original) or the modified maximum difference in widths (if method is set to modified).

Author(s)

Sophie Kersting, Luise Kuehn

References

C. Colijn, J. Gardy. Phylogenetic tree shapes resolve disease transmission patterns. Evolution, Medicine, and Public Health, 2014(1):96-108, 2014. ISSN 2050-6201. doi: 10.1093/emph/eou018.

Examples

```
tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
maxDelW(tree, method="original")
tree <- ape::read.tree(text="((,),((((,),),),(,)));")
maxDelW(tree, method="modified")
```

maxDepth Calculation of the maximum depth of the tree

Description

This function calculates the maximum depth of any vertex in a rooted tree T, which is at the same time its height $h(T)$. The tree must not necessarily be binary. Formally, $h(T)$ is defined as

$$
h(T)=\max _{v \in V(T)} \delta(v)
$$

with $\delta(v)$ being the depth of the vertex v. The maximum depth is an imbalance index.
For $n=1$ the function returns $h(T)=0$ and a warning.
For details on the maximum depth, see also Chapter 23 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_23).

Usage

maxDepth(tree)

Arguments

tree A rooted tree in phylo format.

Value

maxDepth returns the maximum depth, i.e. height, of a tree.
maxWidth

Author(s)

Luise Kuehn, Sophie Kersting

References

C. Colijn and J. Gardy. Phylogenetic tree shapes resolve disease transmission patterns. Evolution, Medicine, and Public Health, 2014(1):96-108, 2014. ISSN 2050-6201. doi: 10.1093/emph/eou018.

Examples

```
tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
maxDepth(tree)
tree <- ape::read.tree(text="((,),((((,),),),(,)));")
maxDepth(tree)
```

maxWidth Calculation of the maximum width of the tree

Description

This function calculates the maximum width $\max \operatorname{Width}(T)$ for a given rooted tree T. The tree must not necessarily be binary. $\max \operatorname{Width}(T)$ is defined as

$$
\max W i d t h(T)=\max _{i=0, \ldots, h(T)} w(i)
$$

in which $h(T)$ denotes the height of the tree T and $w(i)$ denotes the number of vertices in T that have depth i. The maximum width is a balance index.

For details on the maximum width, see also Chapter 23 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_23).

Usage

maxWidth(tree)

Arguments

tree A rooted tree in phylo format.

Value

maxWidth returns the maximum width of a tree.

Author(s)

Sophie Kersting

References

C. Colijn and J. Gardy. Phylogenetic tree shapes resolve disease transmission patterns. Evolution, Medicine, and Public Health, 2014(1):96-108, 2014. ISSN 2050-6201. doi: 10.1093/emph/eou018.

Examples

```
tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
maxWidth(tree)
tree <- ape::read.tree(text="((,),((((,),),),(,)));")
maxWidth(tree)
```

mCherryI Calculation of the modified cherry index for rooted binary trees

Description

This function calculates the modified cherry index $m C h I(T)$ for a given rooted binary tree T. Note that compared to the original cherry index $\operatorname{ChI}(T)$, the modified cherry index is defined for binary trees only. $m C h I(T)$ is defined as $n-2 \cdot \operatorname{ChI}(T)$, i.e. it counts the number of leaves of the tree which are not in a cherry. A cherry is a pair of leaves that have the same direct ancestor.

The modified cherry index does not fulfill the definition of an (im)balance index given in "Tree balance indices: a comprehensive survey" (Fischer et al., 2023).

For details on the modified cherry index, see also Chapter 24 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_24).

Usage

mCherryI(tree)

Arguments

tree A rooted binary tree in phylo format.

Value

mCherryI returns the modified cherry index of the given tree.

Author(s)

Luise Kuehn

References

S. J. Kersting, M. Fischer. Measuring tree balance using symmetry nodes - A new balance index and its extremal properties. Mathematical Biosciences, 341:108690, 2021. doi: 10.1016/j.mbs.2021.108690.

Examples

```
tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
mCherryI(tree)
tree <- ape::read.tree(text="((,),((((,),),),(,)));")
mCherryI(tree)
```

mWovermD Calculation of the maximum width over maximum depth of the tree

Description

This function calculates the maximum width over maximum depth $m W$ overm $D(T)$ for a given rooted tree T. The tree must not necessarily be binary. For $n>1, m \operatorname{Voverm} D(T)$ is defined as

$$
m W \operatorname{overm} D(T)=\operatorname{maxWidth}(T) / h(T)
$$

in which $h(T)$ denotes the height of the tree T, which is the same as the maximum depth of any leaf in the tree, and $\max W \operatorname{idth}(T)$ denotes the maximum width of the tree T. The maximum width over maximum depth is a balance index.

For details on the maximum width over maximum depth, see also Chapter 23 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_23).

Usage

mWovermD (tree)

Arguments

tree A rooted tree in phylo format.

Value

mWovermD returns the maximum width over maximum depth of a tree.

Author(s)

Luise Kuehn

References

C. Colijn and J. Gardy. Phylogenetic tree shapes resolve disease transmission patterns. Evolution, Medicine, and Public Health, 2014(1):96-108, 2014. doi: 10.1093/emph/eou018.

Examples

```
tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
mWovermD(tree)
tree <- ape::read.tree(text="((,),((((,),),),(,)));")
mWovermD(tree)
```

rogersI

Calculation of the Rogers J index for rooted binary trees

Description

This function calculates the Rogers \mathbf{J} index $J(T)$ for a given rooted binary tree T. It is defined as the number of inner vertices whose balance value is unequal to zero, more precisely

$$
J(T)=\sum_{u \in V_{i n}(T)}\left(1-I\left(n_{u_{a}}=n_{u_{b}}\right)\right)
$$

in which $V_{i n}(T)$ denotes the set of all inner vertices of T, and in which $n_{u_{a}}$ and $n_{u_{b}}$ denote the number of leaves in the two pending subtrees that are rooted at the direct descendants of u.
Special cases: For $n=1$, the function returns $J(T)=0$ and a warning.
For details on the Rogers J index, see also Chapter 19 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_19).

Usage

rogersI(tree)

Arguments

tree A rooted binary tree in phylo format.

Value

rogersI returns the Rogers J index of the given tree.

Author(s)

Sophie Kersting

References

J. S. Rogers. Central Moments and Probability Distributions of Three Measures of Phylogenetic Tree Imbalance. Systematic Biology, 45(1):99-110, 1996. doi: 10.1093/sysbio/45.1.99.

Examples

```
tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
rogersI(tree)
```

rQuartetI

Calculation of the rooted quartet index for rooted trees

Description

This function calculates the rooted quartet index $r Q I(T)$ for a given rooted tree T. The tree must not necessarily be binary.

Let T be a rooted tree, whose leaves are $1, \ldots, n$. Let P_{4} denote the set of all subsets of $\{1, \ldots, n\}$ that have cardinality 4 . Let $T(Q)$ denote the rooted quartet on $Q \in P_{4}$ that is obtained by taking the subgraph of T that is induced by Q and supressing its outdegree- 1 vertices. $T(Q)$ can have one of the five following shapes:

- Q_{0}^{*} : This is the caterpillar tree shape on 4 leaves, i.e. " $(,(,())) ;$,$" in Newick format. It has 2$ automorphisms.
- Q_{1}^{*} : This is the tree shape on 4 leaves that has three pending subtrees rooted at the children of the root of T, one of them being a cherry and the other two being single vertices, i.e. " $((),,) ;$,$" in$ Newick format. It has 4 automorphisms.
- Q_{2}^{*} : This is the tree shape on 4 leaves that has two pending subtrees rooted at the children of the root of T, one of them being a star tree shape on 3 leaves and the other one being a single vertex, i.e. " $((,),$,$) ;" in Newick format. It has 6$ automorphisms.
- Q_{3}^{*} : This is the fully balanced binary tree shape on 4 leaves, i.e. " $((),,()) ;$,$" in Newick format.$ It has 8 automorphisms.
- Q_{4}^{*} : This is the star tree shape on 4 leaves, i.e. " (, , , ; " in Newick format. It has 24 automorphisms.
$T(Q)$ is assigned an rQI-value based on its shape, i.e. $r Q I(T(Q))=q_{i}$ if $T(Q)$ has the shape Q_{i}^{*}. The values q_{0}, \ldots, q_{4} are chosen in such a way that they increase with the symmetry of the shape as measured by means of its number of automorphisms. Coronado et al. (2019) suggested the values $q_{0}=0$ and $q_{i}=i$ or $q_{i}=2^{i}$ for $i=1, \ldots, 4$.
The rooted quartet index $r Q I(T)$ of the tree T is then defined as the sum of the rQI-values of its rooted quartets:

$$
r Q I(T)=\sum_{Q \in P_{4}} r Q I(T(Q))
$$

The rooted quartet index is a balance index.
For details on the rooted quartet index, see also Chapter 20 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_20).

Usage

rQuartetI(tree, shapeVal $=c(0,1,2,3,4))$

Arguments

tree A rooted tree in phylo format.
shapeVal A vector of length 5 containing the shape values q_{0}, \ldots, q_{4}. Default is $\left(q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right)=$ $(0,1,2,3,4)$.

Value

rQuartet I returns the rooted quartet index of the given tree based on the chosen shape values (see description for details).

Author(s)

Sophie Kersting

References

T. M. Coronado, A. Mir, F. Rossello, and G. Valiente. A balance index for phylogenetic trees based on rooted quartets. Journal of Mathematical Biology, 79(3):1105-1148, 2019. doi: 10.1007/s00285-019-01377-w. URL https://doi.org/10.1007/s00285-019-01377-w.

Examples

tree <- ape:: read.tree(text=" ((($(),,),(),),(((),),,())) ; "$,
rQuartetI(tree)
sackinI Calculation of the Sackin index for rooted trees

Description

This function calculates the Sackin index $S(T)$ for a given rooted tree T. The tree must not necessarily be binary. $S(T)$ is defined as

$$
S(T)=\sum_{x \in V_{L}(T)} \delta(x)=\sum_{u \in V_{i n}(T)} n_{u}
$$

in which $V_{L}(T)$ denotes the leaf set of $T, \delta(x)$ denotes the depth of the leaf $x, V_{i n}(T)$ denotes the set of inner vertices in T, and n_{u} denotes the number of leaves in the pending subtree that is rooted at u. The Sackin index is an imbalance index.

For $n=1$ the function returns $S(T)=0$ and a warning.
For details on the Sackin index, see also Chapter 5 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_5).

Usage

sackinI(tree)

Arguments

tree A rooted tree in phylo format.

Value

sackinI returns the Sackin index of the given tree.

Author(s)

Luise Kuehn

References

M.J. Sackin. "Good" and "Bad" Phenograms. Systematic Biology, 21(2):225-226, 1972. doi: 10.1093/sysbio/21.2.225.
K.-T. Shao and R.R. Sokal. Tree Balance. Systematic Zoology, 39(3):266, 1990. doi: 10.2307/2992186.

Examples

```
tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
sackinI(tree)
```

sShapeI Calculation of the s-shape statistic for rooted trees

Description

This function calculates the s-shape statistic sShape (T) for a given rooted tree T. The tree must not necessarily be binary, however sShape only fulfils the definition of an imbalance index on the space of binary trees. $\operatorname{sShape}(T)$ is defined as

$$
\operatorname{sShape}(T)=\sum_{u \in V_{i n}(T)} \log \left(n_{u}-1\right)
$$

in which $V_{i n}(T)$ denotes the set of inner vertices of T and n_{u} denotes the number of leaves in the pending subtree that is rooted at u. An arbitrary logarithm base can be used (for binary trees it is common to use base 2).

For $n=1$ the function returns $s \operatorname{Shape}(T)=0$ and a warning.
For details on the s-shape statistic, see also Chapter 9 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_9).

Usage

sShapeI(tree, logbase = 2)

Arguments

tree A rooted tree in phylo format.
logbase The logarithm base that shall be used.

Value

sShapeI returns the s-shape statistic of the given tree.

Author(s)

Luise Kuehn

References

M.G. Blum and O. Francois. Which random processes describe the tree of life? a large-scale study of phylogenetic tree imbalance. Systematic Biology, 2006.

Examples

```
tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
sShapeI(tree)
```

stairs1

Calculation of the stairs1 value for rooted binary trees

Description

This function calculates the stairs 1 value $s t 1(T)$ for a given rooted binary tree T. It is a modified version of the Rogers J index and is defined as the fraction of inner vertices whose balance value is unequal to zero, more precisely

$$
\operatorname{st1}(T)=\frac{1}{n-1} \cdot \sum_{u \in V_{i n}(T)}\left(1-I\left(n_{u_{a}}=n_{u_{b}}\right)\right)
$$

in which $V_{i n}(T)$ denotes the set of all inner vertices of T, and in which $n_{u_{a}}$ and $n_{u_{b}}$ denote the number of leaves in the two pending subtrees that are rooted at the direct descendants of u. The stairs1 value is an imbalance index.

Special cases: For $n=1$, the function returns $s t 1(T)=0$ and a warning.
For details on the stairs1 value, see also Chapter 23 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_23).

Usage

```
    stairs1(tree)
```


Arguments

tree A rooted binary tree in phylo format.

Value

stairs1 returns the stairs1 value of the given tree.

Author(s)

Sophie Kersting

References

M. M. Norstrom, M. C. Prosperi, R. R. Gray, A. C. Karlsson, and M. Salemi. PhyloTempo: A Set of R Scripts for Assessing and Visualizing Temporal Clustering in Genealogies Inferred from Serially Sampled Viral Sequences. Evolutionary Bioinformatics, 8:EBO.S9738, 2012. ISSN 1176-9343, 1176-9343. doi:10.4137/EBO.S9738.

Examples

```
tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
stairs1(tree)
```

stairs2

Calculation of the stairs 2 value for rooted binary trees

Description

This function calculates the stairs2 value $s t 2(T)$ for a given rooted binary tree T. It is defined as the mean ratio between the leaf numbers of the smaller and larger pending subtree over all inner vertices, more precisely

$$
s t 2(T)=\frac{1}{n-1} \cdot \sum_{u \in V_{i n}(T)} \frac{n_{u_{a}}}{n_{u_{b}}}
$$

in which $V_{i n}(T)$ denotes the set of all inner vertices of T, and in which $n_{u_{a}} \geq n_{u_{b}}$ denote the number of leaves in the two pending subtrees that are rooted at the direct descendants of u. The stairs2 value is an imbalance index.

Special cases: For $n=1$, the function returns $s t 2(T)=0$ and a warning.
For details on the stairs2 value, see also Chapter 23 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_23).

Usage

```
    stairs2(tree)
```


Arguments

> tree A rooted binary tree in phylo format.

Value

stairs2 returns the stairs2 value of the given tree.

Author(s)

Sophie Kersting

References

C. Colijn, J. Gardy. Phylogenetic tree shapes resolve disease transmission patterns. Evolution, Medicine, and Public Health, 2014(1):96-108, 2014. ISSN 2050-6201. doi: 10.1093/emph/eou018.

Examples

```
tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
stairs2(tree)
```


Description

This function calculates the symmetry nodes index $S N I(T)$ for a given rooted binary tree T. $S N I(T)$ is defined as the number of inner vertices v that are not symmetry nodes, i.e. the two pending subtrees rooted at the children of v do not have the same tree shape.

For $n=1$ the function returns $S N I(T)=0$ and a warning.
For details on the symmetry nodes index, see also Chapter 18 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_18).

Usage

symNodesI(tree)

Arguments

tree A rooted binary tree in phylo format.

Value

symNodesI returns the symmetry nodes index of the given tree.

Author(s)

Sophie Kersting

References

S. J. Kersting, M. Fischer. Measuring tree balance using symmetry nodes - A new balance index and its extremal properties. Mathematical Biosciences, page 108690, 2021. ISSN 0025-5564. doi:https://doi.org/10.1016/j.mbs.2021.108690

Examples

```
tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
symNodesI(tree)
```

totCophI Calculation of the total cophenetic index for rooted trees

Description

This function calculates the total cophenetic index $T C I(T)$ of a given rooted tree T. The tree must not necessarily be binary. $T C I(T)$ is defined as

$$
T C I(T)=\sum_{1 \leq i<j \leq n} \delta(l c a(i, j))=\sum_{u \in V_{i n}(T) \backslash\{\rho\}} \operatorname{binom}\left(n_{u}, 2\right)
$$

in which $\delta(l c a(i, j))$ denotes the depth of the lowest common ancestor of the two leaves i and j and $V_{i n}(T) \backslash\{\rho\}$ denotes the set of all inner vertices exept the root and n_{u} denotes the number of descendant leaves of u. The second formula is useful for efficient computation of $T C I(T)$. The total cophenetic index is an imbalance index.

For $n=1$ the function returns $T C I(T)=0$.
For details on the total cophenetic index, see also Chapter 8 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_8).

Usage

totCophI(tree)

Arguments

tree A rooted tree in phylo format.

Value
totCophI returns the total cophenetic index of the given tree.

Author(s)

Sophie Kersting

References

A. Mir, F. Rossello, and L. Rotger. A new balance index for phylogenetic trees. Mathematical Bio-sciences, 241(1):125-136, 2013. doi: 10.1016/j.mbs.2012.10.005.

Examples

```
tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
totCophI(tree)
tree <- ape::read.tree(text="((,),((((,),),),(,)));")
totCophI(tree)
tree <- ape::read.tree(text="((,,,),(,,));")
totCophI(tree)
```

totIntPathLen Calculation of the total internal path length for rooted trees

Description

This function calculates the total internal path length $T I P(T)$ for a given rooted tree T. The tree must not necessarily be binary. $T I P(T)$ is defined as

$$
T I P(T)=\sum_{x \in V_{i n}(T)} \delta(x)
$$

in which $V_{i n}(T)$ denotes the set of inner vertices of T, and $\delta(x)$ denotes the depth of the vertex x. The total internal path length is an imbalance index.

For details on the total internal path length, see also Chapter 23 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_23).

Usage

totIntPathLen(tree)

Arguments

tree A rooted tree in phylo format.

Value

totIntPathLen returns the total internal path length of the given tree.

Author(s)

Luise Kuehn

References

D. E. Knuth. The art of computer programming: fundamental algorithms, volume 1. AddisonWesley, Reading, Mass, 3rd edition, 1997. ISBN 9780201896831.

Examples

```
tree <- ape::read.tree(text="((((,),),(,)),(((, ,),),(,)));")
totIntPathLen(tree)
```

totPathLen Calculation of the total path length for rooted trees

Description

This function calculates the total path length $T P L(T)$ for a given rooted tree T. The tree must not necessarily be binary. $T P L(T)$ is defined as

$$
T P L(T)=\sum_{x \in V(T)} \delta(x)
$$

in which $V(T)$ denotes the set of vertices of T, and $\delta(x)$ denotes the depth of the vertex x. The total path length is an imbalance index.

For $n=1$ the function returns $T P L(T)=0$ and a warning.
For details on the total path length, see also Chapter 23 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_23).

Usage

totPathLen(tree)

Arguments

$$
\text { tree } \quad \text { A rooted tree in phylo format. }
$$

Value

totPathLen returns the total path length of the given tree.

Author(s)

Luise Kuehn

References

see e.g. R. P. Dobrow, J. A. Fill. Total path length for random recursive trees. Combinatorics, Probability and Computing, 8(4):317-333, 1999. doi: 10.1017/S0963548399003855.
see e.g. L. Takacs. On the total heights of random rooted trees. Journal of Applied Probability, 29(3):543-556, 1992. doi: 10.2307/3214892.
see e.g. L. Takacs. On the total heights of random rooted binary trees. Journal of Combinatorial Theory, Series B, 61(2):155-166, 1994. ISSN 0095-8956. doi: 10.1006/jctb.1994.1041.

Examples

```
tree <- ape::read.tree(text="((((,),),(,)),(((,,),),(,)));")
totPathLen(tree)
```


Description

This function calculates the variance of leaf depths index $V L D(T)$ for a given rooted tree T. The tree must not necessarily be binary. $V L D(T)$ is defined as

$$
V L D(T)=\frac{1}{n} \cdot \sum_{x \in V_{L}(T)}(\delta(x)-N(T))^{2}
$$

in which n denotes the number of leaves of $T, V_{L}(T)$ denotes the set of leaves of $T, \delta(x)$ denotes the depth of the leaf x and $N(T)$ denotes the average leaf depth of T.

For $n=1$ the function returns $V L D(T)=0$ and a warning.
For details on the variance of leaf depths, see also Chapter 7 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_7).

Usage

varLeafDepI (tree)

Arguments

$$
\text { tree } \quad \text { A rooted tree in phylo format. }
$$

Value

varLeafDepI returns the variance of leaf depths index of the given tree.

Author(s)

Sophie Kersting

References

T. M. Coronado, A. Mir, F. Rossello, and L. Rotger. On Sackin's original proposal: the variance of the leaves' depths as a phylogenetic balance index. BMC Bioinformatics, 21(1), 2020. doi: 10.1186/s12859-020-3405-1. URL https://doi.org/10.1186/s12859-020-3405-1.
M. J. Sackin. "Good" and "Bad" Phenograms. Systematic Biology, 21(2):225-226, 1972. doi: 10.1093/sysbio/21.2.225.
K.-T. Shao and R. R. Sokal. Tree Balance. Systematic Zoology, 39(3):266, 1990. doi: 10.2307/2992186.

Examples

```
tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
varLeafDepI(tree)
```

wedEth Wedderburn Etherington numbers (from OEIS)

Description

Contains a vector of Wedderburn Etherington numbers for $n=1$ to $n=2545$.

Usage

data(wedEth)

Format

numerical vector

Source

OEIS Sequence A001190 available at https://oeis.org/A001190

Examples

```
data(wedEth)
```

wedEth[5]

Description

This function calculates the weighted 11 distance index $D_{l 1}(T)$ for a given rooted binary tree T. $D_{l 1}(T)$ is defined as

$$
D_{l 1}(T)=\sum_{z=2}^{n} z \cdot\left|f_{n}(z)-p_{n}(z)\right|
$$

in which n denotes the number of leaves of $T, f_{n}(z)$ denotes the frequency of pending subtrees of size z in T and $p_{n}(z)$ is the expected number of pending subtrees of size z under the Yule model, i.e. $p_{n}(z)=\frac{1}{n-1}$ if $z=n$ and otherwise $\frac{n}{n-1} \cdot \frac{2}{z \cdot(z+1)}$.

For $n=1$ the function returns $D_{l 1}(T)=0$.
For details on the weighted 11 distance index, see also Chapter 24 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_24).

Usage

weighL1dist(tree)

Arguments

> tree A rooted binary tree in phylo format.

Value

weighL1distI returns the weighted 11 distance index of the given tree.

Author(s)

Sophie Kersting

References

M. G. Blum and O. Francois. On statistical tests of phylogenetic tree imbalance: The Sackin and other indices revisited. Mathematical Biosciences, 195(2):141-153, 2005. doi: 10.1016/j.mbs.2005.03.003.

Examples

```
tree <- ape::read.tree(text="((((,),),(,)),(((,),),(,)));")
weighL1dist(tree)
```


Index

```
* datasets
    wedEth, 39
areaPerPairI, 3
auxE_l_X (getDescMatrix), 18
avgLeafDepI, 4
avgVertDep,5
B1I, }
B2I, }
cherryI, }
collessI,9
collesslikeI, 11
colPlaLab, 12
colPlaLab_inv,13
cPL_inv (getDescMatrix),18
ewCollessI, 15
furnasI, 16
furnasI_inv,17
get.subtreesize (getDescMatrix), 18
getAllAncestors (getDescMatrix),18
getAncVec (getDescMatrix), 18
getDescMatrix, 18
getfurranks (getDescMatrix),18
getlca (getDescMatrix), 18
getNodesOfDepth (getDescMatrix), 18
getsubtree (getDescMatrix), 18
IbasedI, 21
is_binary (getDescMatrix), 18
is_phylo (getDescMatrix),18
maxDelW, 23
maxDepth, 24
maxDepthLeaf (getDescMatrix),18
maxWidth, }2
mCherryI, 26
```

* datasets
wedEth, 39
areaPerPairI, 3
auxE_l_X (getDescMatrix), 18
avgLeafDepI, 4
avgVertDep, 5
B1I, 6
B2I, 7
cherryI, 8
collessI, 9
collesslikeI, 11
colPlaLab, 12
colPlaLab_inv, 13
cPL_inv (getDescMatrix), 18
ewCollessI, 15
furnasI, 16
furnasI_inv, 17
get. subtreesize (getDescMatrix), 18
getAllAncestors (getDescMatrix), 18
getAncVec (getDescMatrix), 18
getDescMatrix, 18
getfurranks (getDescMatrix), 18
getlca (getDescMatrix), 18
getNodesOfDepth (getDescMatrix), 18
getsubtree (getDescMatrix), 18
IbasedI, 21
is_binary (getDescMatrix), 18
is_phylo (getDescMatrix), 18
maxDelW, 23
maxDepth, 24
maxDepthLeaf (getDescMatrix), 18
maxWidth, 25
mCherryI, 26
mWovermD, 27
rogersI, 28
rQuartetI, 29
sackinI, 30
sShapeI, 31
stairs1, 32
stairs2, 33
symBucketLexicoSort (getDescMatrix), 18
symNodesI, 34
totCophI, 35
totIntPathLen, 36
totPathLen, 37
tree_decomposition (getDescMatrix), 18
tree_merge (getDescMatrix), 18
treenumber (getDescMatrix), 18
treenumber_inv (getDescMatrix), 18
varLeafDepI, 38
we_eth (getDescMatrix), 18
wedEth, 39
weighL1dist, 40

