Package 'truelies'

October 14, 2022

Type Package
Title Bayesian Methods to Estimate the Proportion of Liars in Coin Flip Experiments
Version 0.2.0
Author David Hugh-Jones <davidhughjones@gmail.com></davidhughjones@gmail.com>
Maintainer David Hugh-Jones <davidhughjones@gmail.com></davidhughjones@gmail.com>
Description Implements Bayesian methods, described in Hugh-Jones (2019) <doi:10.1007 s40881-019-00069-x="">, for estimating the proportion of liars in coin flip-style experiments, where subjects report a random outcome and are paid for reporting a ``good" outcome.</doi:10.1007>
License MIT + file LICENSE
<pre>URL https://github.com/hughjonesd/truelies</pre>
<pre>BugReports https://github.com/hughjonesd/truelies/issues</pre>
Imports hdrcde
Suggests dplyr, ggplot2, MASS, purrr, tidyr
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2019-08-26 20:40:03 UTC
R topics documented:
compare_dists
difference_dist
dist_hdr
dist_mean
dist_quantile
·
1

2 compare_dists

Index		10
	update_prior	9
	print.densityFunction	8
	power_calc_difference	7
	power_calc	7

compare_dists

Calculate probability that one posterior is larger than another

Description

Given two distributions with density functions ϕ_1, ϕ_2 , this calculates:

$$\int_0^1 \int_0^{l_1} \phi_1(l_1)\phi_2(l_2)dl_2dl_1,$$

the probability that the value of the first distribution is greater.

Usage

```
compare_dists(dist1, dist2)
```

Arguments

dist1 Density of distribution 1, as a one-argument function.

dist2 Density of distribution 2.

Value

A probability scalar.

```
d1 <- update_prior(30, 50, P = 0.5, prior = stats::dunif)
d2 <- update_prior(25, 40, P = 0.5, prior = stats::dunif)
compare_dists(d1, d2)</pre>
```

difference_dist 3

difference_dist

Find density of the difference of two distributions

Description

Given two probability density functions dist1 and dist2, difference_dist returns the density of "dist1 - dist2'.

Usage

```
difference_dist(dist1, dist2)
```

Arguments

```
dist1, dist2 Probability density functions
```

Details

At the moment this only works when dist1 and dist2 are defined on [0, 1].

Value

A probability density function defined on [-1, 1].

Examples

```
d1 <- update_prior(30, 50, P = 0.5, prior = stats::dunif)
d2 <- update_prior(32, 40, P = 0.5, prior = stats::dunif)
dd <- difference_dist(d1, d2)
dist_hdr(dd, 0.95)</pre>
```

dist_hdr

Compute highest density region for a density function

Description

This is a wrapper for hdrcde::hdr. The highest density region is the interval that covers conf_level of the data and has the highest average density. See:

Usage

```
dist_hdr(dist, conf_level, bounds = attr(dist, "limits"))
```

4 dist_mean

Arguments

 $\begin{array}{ll} \mbox{dist} & \mbox{A one-argument function} \\ \mbox{conf_level} & \mbox{A scalar between 0 and 1} \end{array}$

bounds A length 2 vector of the bounds of the distribution's support

Details

Rob J Hyndman (1996) "Computing and graphing highest density regions". American Statistician, 50, 120-126.

Value

A length 2 vector of region endpoints

Examples

```
d1 <- update_prior(33, 50, P = 0.5, prior = stats::dunif) dist_hdr(d1, 0.95)
```

dist_mean

Find mean of a probability density function

Description

Find mean of a probability density function

Usage

```
dist_mean(dist, l = attr(dist, "limits")[1], r = attr(dist,
   "limits")[2])
```

Arguments

dist A one-argument function returned from update_prior()

Lower bound of the density's support

r Upper bound of the density's support

Value

A scalar

```
d1 <- update_prior(10, 40, P = 5/6, prior = stats::dunif)
dist_mean(d1)</pre>
```

dist_quantile 5

4:0+	quant	:10
aist	αuanτ	лте

Find quantiles given a probability density function

Description

Find quantiles given a probability density function

Usage

```
dist_quantile(dist, probs, bounds = attr(dist, "limits"))
```

Arguments

dist A one argument function probs A vector of probabilities

bounds A length 2 vector of the bounds of the distribution's support

Value

A vector of quantiles

Examples

```
d1 <- update_prior(33, 50, P = 0.5, prior = stats::dunif) dist_quantile(d1, c(0.025, 0.975))
```

empirical_bayes

Estimate proportions of liars in multiple samples using empirical Bayes

Description

This function creates a prior by fitting a Beta distribution to the heads/N vector, using MASS::fitdistr(). The prior is then updated using data from each individual sample to give the posterior distributions.

Usage

```
empirical_bayes(heads, ...)
## Default S3 method:
empirical_bayes(heads, N, P, ...)
## S3 method for class 'formula'
empirical_bayes(formula, data, P, subset, ...)
```

6 empirical_bayes

Arguments

heads	A vector of numbers of the good outcome reported
	Ignored
N	A vector of sample sizes
P	Probability of bad outcome
formula	A two-sided formula of the form heads ~ group. heads is a logical vector specifying whether the "good" outcome was reported. group specifies the sample.
data	A data frame or matrix. Each row represents one individual.
subset	A logical or numeric vector specifying the subset of data to use

Details

The formula interface allows calling the function directly on experimental data.

Value

A list with two components:

- prior, the calculated empirical prior (of class densityFunction).
- posterior, a list of posterior distributions (objects of class densityFunction). If heads was named, the list will have the same names.

```
heads <- c(Baseline = 30, Treatment1 = 38, Treatment2 = 45)
N < -c(50, 52, 57)
res <- empirical_bayes(heads, N, P = 0.5)
compare_dists(res$posteriors$Baseline, res$posteriors$Treatment1)
plot(res$prior, ylim = c(0, 4), col = "grey", lty = 2)
plot(res$posteriors$Baseline, add = TRUE, col = "blue")
plot(res$posteriors$Treatment1, add = TRUE, col = "orange")
plot(res$posteriors$Treatment2, add = TRUE, col = "red")
# starting from raw data:
raw_data <- data.frame(</pre>
       report = sample(c("heads", "tails"),
         size = 300,
         replace = TRUE,
         prob = c(.8, .2)
        ),
        group = rep(LETTERS[1:10], each = 30)
empirical_bayes(I(report == "heads") ~ group, data = raw_data, P = 0.5)
```

power_calc 7

	-	
power	cal	
DOWEI	Сал	٠.

Calculate power to detect non-zero lying

Description

This uses simulations to estimate the power to detect a given level of lying in a sample of size N by this package's methods.

Usage

```
power_calc(N, P, lambda, alpha = 0.05, prior = stats::dunif,
  nsims = 200)
```

Arguments

N	Total number in sample
Р	Probability of bad outcome
lambda	Probability of a subject lying
alpha	Significance level to use for the null hypothesis
prior	Prior over lambda. A function which takes a vector of values between 0 and 1, and returns the probability density. The default is the uniform distribution.
nsims	Number of simulations to run

Value

Estimated power, a scalar between 0 and 1.

Examples

```
power_calc(N = 50, P = 0.5, lambda = 0.2)
```

power_calc_difference Estimate power to detect differences in lying between two samples

Description

Using simulations, estimate power to detect differences in lying using compare_dists(), given values for λ , the probability of lying, in each sample.

Usage

```
power_calc_difference(N1, N2 = N1, P, lambda1, lambda2, alpha = 0.05,
  alternative = c("two.sided", "greater", "less"),
  prior = stats::dunif, nsims = 200)
```

Arguments

N1 N of sample 1 N2 N of sample 2

P Probability of *bad* outcome lambda1 Probability of lying in sample 1 lambda2 Probability of lying in sample 2

alpha Significance level

alternative "two.sided", "greater" (sample 1 is greater), or "less". Can be abbreviated

prior Prior over lambda. A function which takes a vector of values between 0 and 1,

and returns the probability density. The default is the uniform distribution.

nsims Number of simulations to run

Value

Estimated power, a scalar between 0 and 1.

Examples

```
power_calc_difference(N1 = 100, P = 0.5, lambda = 0, lambda2 = 0.25)
```

print.densityFunction Print/plot an object of class densityFunction.

Description

Print/plot an object of class densityFunction.

Usage

```
## S3 method for class 'densityFunction'
print(x, ...)
## S3 method for class 'densityFunction'
plot(x, ...)
```

Arguments

x The object ... Unused

update_prior 9

Examples

```
d1 <- update_prior(33, 50, P = 0.5, prior = stats::dunif)
d1
plot(d1)
# show the actual R code (techies only)
unclass(d1)</pre>
```

update_prior

Calculate posterior distribution of the proportion of liars

Description

update_prior uses the equation for the posterior:

$$\phi(\lambda|R;N,P) = Pr(R|\lambda;N,P)\phi(\lambda)/\int Pr(R|\lambda';N,P)\phi(\lambda')d\lambda'$$

where ϕ is the prior and $Pr(R|\lambda; N, P)$ is the probability of R reports of heads given that people lie with probability λ :

$$Pr(R|\lambda; N, P) = binom(N, (1 - P) + \lambda P)$$

Usage

```
update_prior(heads, N, P, prior = stats::dunif, npoints = 1000)
```

Arguments

heads	Number of good outcomes reported
N	Total number in sample
Р	Probability of bad outcome
prior	Prior over lambda. A function which takes a vector of values between 0 and 1, and returns the probability density. The default is the uniform distribution.
npoints	How many points to integrate on?

Value

The probability density of the posterior distribution, as a one-argument function.

```
posterior <- update_prior(heads = 30, N = 50, P = 0.5, prior = stats::dunif)
plot(posterior)</pre>
```

Index