| Type: | Package | 
| Title: | D-Vine Quantile Regression | 
| Version: | 0.11.0 | 
| Maintainer: | Thomas Nagler <mail@tnagler.com> | 
| Description: | Implements D-vine quantile regression models with parametric or nonparametric pair-copulas. See Kraus and Czado (2017) <doi:10.1016/j.csda.2016.12.009> and Schallhorn et al. (2017) <doi:10.48550/arXiv.1705.08310>. | 
| License: | GPL-3 | 
| Imports: | rvinecopulib (≥ 0.6.1.1.2), kde1d (≥ 1.1.0), Rcpp, assertthat | 
| LinkingTo: | rvinecopulib, RcppEigen, Rcpp, BH, wdm, RcppThread, kde1d | 
| RoxygenNote: | 7.3.2 | 
| Suggests: | knitr, rmarkdown, ggplot2, AppliedPredictiveModeling, quantreg, tidyr, dplyr, purrr, scales, mgcv, testthat, covr | 
| VignetteBuilder: | knitr | 
| URL: | https://tnagler.github.io/vinereg/ | 
| BugReports: | https://github.com/tnagler/vinereg/issues | 
| Encoding: | UTF-8 | 
| NeedsCompilation: | yes | 
| Packaged: | 2025-01-11 17:37:28 UTC; n5 | 
| Author: | Thomas Nagler [aut, cre], Dani Kraus [ctb] | 
| Repository: | CRAN | 
| Date/Publication: | 2025-01-11 18:00:02 UTC | 
Conditional log-likelihood
Description
Calculates the conditional log-likelihood of the response given the covariates.
Usage
cll(object, newdata, cores = 1)
Arguments
| object | an object of class  | 
| newdata | matrix of response and covariate values for which to compute the conditional distribution. | 
| cores | integer; the number of cores to use for computations. | 
Examples
# simulate data
x <- matrix(rnorm(100), 50, 2)
y <- x %*% c(1, -2)
dat <- data.frame(y = y, x = x, z = as.factor(rbinom(50, 2, 0.5)))
# fit vine regression model
fit <- vinereg(y ~ ., dat)
cll(fit, dat)
fit$stats$cll
Conditional PDF
Description
Calculates the conditional density of the response given the covariates.
Usage
cpdf(object, newdata, cores = 1)
Arguments
| object | an object of class  | 
| newdata | matrix of response and covariate values for which to compute the conditional density | 
| cores | integer; the number of cores to use for computations. | 
Examples
# simulate data
x <- matrix(rnorm(100), 50, 2)
y <- x %*% c(1, -2)
dat <- data.frame(y = y, x = x, z = as.factor(rbinom(50, 2, 0.5)))
# fit vine regression model
fit <- vinereg(y ~ ., dat)
cpdf(fit, dat)
Conditional probability integral transform
Description
Calculates the conditional distribution of the response given the covariates.
Usage
cpit(object, newdata, cores = 1)
Arguments
| object | an object of class  | 
| newdata | matrix of response and covariate values for which to compute the conditional distribution. | 
| cores | integer; the number of cores to use for computations. | 
Examples
# simulate data
x <- matrix(rnorm(100), 50, 2)
y <- x %*% c(1, -2)
dat <- data.frame(y = y, x = x, z = as.factor(rbinom(50, 2, 0.5)))
# fit vine regression model
fit <- vinereg(y ~ ., dat)
hist(cpit(fit, dat)) # should be approximately uniform
Plot marginal effects of a D-vine regression model
Description
The marginal effects of a variable is the expected effect, where expectation is meant with respect to all other variables.
Usage
plot_effects(object, alpha = c(0.1, 0.5, 0.9), vars = object$order)
Arguments
| object | a  | 
| alpha | vector of quantile levels. | 
| vars | vector of variable names. | 
Examples
# simulate data
x <- matrix(rnorm(100), 50, 2)
y <- x %*% c(1, -2)
dat <- data.frame(y = y, x = x, z = as.factor(rbinom(50, 2, 0.5)))
# fit vine regression model
fit <- vinereg(y ~ ., dat)
plot_effects(fit)
Predict conditional mean and quantiles from a D-vine regression model
Description
Predict conditional mean and quantiles from a D-vine regression model
Usage
## S3 method for class 'vinereg'
predict(object, newdata, alpha = 0.5, cores = 1, ...)
## S3 method for class 'vinereg'
fitted(object, alpha = 0.5, ...)
Arguments
| object | an object of class  | 
| newdata | matrix of covariate values for which to predict the quantile. | 
| alpha | vector of quantile levels;  | 
| cores | integer; the number of cores to use for computations. | 
| ... | unused. | 
Value
A data.frame of quantiles where each column corresponds to one
value of alpha.
See Also
Examples
# simulate data
x <- matrix(rnorm(100), 50, 2)
y <- x %*% c(1, -2)
dat <- data.frame(y = y, x = x, z = as.factor(rbinom(50, 2, 0.5)))
## fixed variable order (no selection)
(fit <- vinereg(y ~ ., dat, order = c("x.2", "x.1", "z.1")))
# model predictions
mu_hat <- predict(fit, newdata = dat, alpha = NA) # mean
med_hat <- predict(fit, newdata = dat, alpha = 0.5) # median
# observed vs predicted
plot(cbind(y, mu_hat))
D-vine regression models
Description
Sequential estimation of a regression D-vine for the purpose of quantile prediction as described in Kraus and Czado (2017).
Usage
vinereg(
  formula,
  data,
  family_set = "parametric",
  selcrit = "aic",
  order = NA,
  par_1d = list(),
  weights = numeric(),
  cores = 1,
  ...,
  uscale = FALSE
)
Arguments
| formula | an object of class "formula"; same as  | 
| data | data frame (or object coercible by  | 
| family_set | see  | 
| selcrit | selection criterion based on conditional log-likelihood.
 | 
| order | the order of covariates in the D-vine, provided as vector of
variable names (after calling
 | 
| par_1d | list of options passed to  | 
| weights | optional vector of weights for each observation. | 
| cores | integer; the number of cores to use for computations. | 
| ... | further arguments passed to  | 
| uscale | if TRUE, vinereg assumes that marginal distributions have been taken care of in a preliminary step. | 
Details
If discrete variables are declared as ordered() or factor(), they are
handled as described in Panagiotelis et al. (2012). This is different from
previous version where the data was jittered before fitting.
Value
An object of class vinereg. It is a list containing the elements
- formula
- the formula used for the fit. 
- selcrit
- criterion used for variable selection. 
- model_frame
- the data used to fit the regression model. 
- margins
- list of marginal models fitted by - kde1d::kde1d().
- vine
- an - rvinecopulib::vinecop_dist()object containing the fitted D-vine.
- stats
- fit statistics such as conditional log-likelihood/AIC/BIC and p-values for each variable's contribution. 
- order
- order of the covariates chosen by the variable selection algorithm. 
- selected_vars
- indices of selected variables. 
 Use
predict.vinereg() to predict conditional quantiles. summary.vinereg()
shows the contribution of each selected variable with the associated
p-value derived from a likelihood ratio test.
References
Kraus and Czado (2017), D-vine copula based quantile regression, Computational Statistics and Data Analysis, 110, 1-18
Panagiotelis, A., Czado, C., & Joe, H. (2012). Pair copula constructions for multivariate discrete data. Journal of the American Statistical Association, 107(499), 1063-1072.
See Also
Examples
# simulate data
x <- matrix(rnorm(100), 50, 2)
y <- x %*% c(1, -2)
dat <- data.frame(y = y, x = x, z = as.factor(rbinom(50, 2, 0.5)))
# fit vine regression model
(fit <- vinereg(y ~ ., dat))
# inspect model
summary(fit)
plot_effects(fit)
# model predictions
mu_hat <- predict(fit, newdata = dat, alpha = NA) # mean
med_hat <- predict(fit, newdata = dat, alpha = 0.5) # median
# observed vs predicted
plot(cbind(y, mu_hat))
## fixed variable order (no selection)
(fit <- vinereg(y ~ ., dat, order = c("x.2", "x.1", "z.1")))