This vignette shows how to render interactive plots and tabular results in Shiny using the visOmopResults package and functions that build on it. Specifically, we will demonstrate:
Small/static tables → gt, for
compact, fixed results such as cohort counts or
characteristics.
Large/dynamic tables → DT or
reactable, for large results or those that require
sorting/filtering to interpret.
Plots → build with ggplot2 and
(optionally) wrap with plotly::ggplotly() for interactivity
in shiny.
Load packages and mock data.
library(shiny)
library(bslib)
library(sortable)
library(shinyWidgets)
library(gt)
library(DT)
library(reactable)
library(plotly)
library(dplyr)
library(visOmopResults)
library(IncidencePrevalence)
library(CohortCharacteristics)
library(shinycssloaders)
# Mock results in visOmopResults
data <- visOmopResults::data
# Remove global options (just in case we have them from previous work)
setGlobalPlotOptions(style = NULL, type = NULL)
setGlobalTableOptions(style = NULL, type = NULL)We will use 3 different mock results, which are:
Baseline characteristics from the
CohortCharacteristics package
Incidence results from the
IncidencePrevalence package
Large scale characterisation, which is not a
<summarised_result>
The Shiny app has three panels, one for each result. All allow filtering by sex strata and provide panel-specific visualization options:
- Baseline characteristics: shows a gt
table with controls for headers, groups, and hidden columns..
- Large Scale characteristics: renders as a
datatable or reactable, with options to group
or hide columns.
- Incidence: displays a static ggplot
or interactive plotly plot, with options for colouring,
faceting, and ribbons.
ui <- bslib::page_navbar(
  title = "visOmopResults for Shiny",
  window_title = "visOmopResults • Shiny",
  collapsible = TRUE,
  # Baseline Characteristics (GT table)
  bslib::nav_panel(
    title = "Baseline Characteristics",
    icon = icon("users-gear"),
    bslib::layout_sidebar(
      sidebar = bslib::sidebar(
        title = "Filters",
        shinyWidgets::pickerInput(
          inputId = "summarise_characteristics_sex",
          label = "Sex",
          choices = c("overall", "Male", "Female"),
          selected = "overall",
          multiple = TRUE
        ),
        width = 320,
        position = "left",
        open = TRUE
      ),
      bslib::card(
        full_screen = TRUE,
        bslib::card_header("Table layout"),
        bslib::layout_sidebar(
          sidebar = bslib::sidebar(
            title = "Arrange columns",
            sortable::bucket_list(
              header = NULL,
              group_name = "col-buckets",
              orientation = "horizontal",
              add_rank_list(
                text = "None",
                labels = c("variable_name", "variable_level", "estimate_name"),
                input_id = "summarise_characteristics_table_none"
              ),
              add_rank_list(
                text = "Header",
                labels = c("sex"),
                input_id = "summarise_characteristics_table_header"
              ),
              add_rank_list(
                text = "Group columns",
                labels = c("cdm_name", "cohort_name"),
                input_id = "summarise_characteristics_table_group_column"
              ),
              add_rank_list(
                text = "Hide",
                labels = "table_name",
                input_id = "summarise_characteristics_table_hide"
              )
            ),
            position = "right",
            width = 400,
            open = FALSE
          ),
          # GT output
          gt::gt_output("summarise_characteristics_table") |>
            shinycssloaders::withSpinner(type = 4)
        )
      )
    )
  ),
  # Large Scale Characterisation (DT / reactable)
  bslib::nav_panel(
    title = "Large Scale Characterisation",
    icon = icon("table"),
    bslib::layout_sidebar(
      sidebar = bslib::sidebar(
        # title = "Display options",
        shinyWidgets::pickerInput(
          inputId = "large_scale_sex",
          label = "Sex",
          choices = c("overall", "Male", "Female"),
          selected = "overall",
          multiple = TRUE
        ),
        radioButtons(
          "large_engine",
          "Renderer",
          choices = c("DT", "reactable"),
          inline = TRUE
        ),
        sortable::bucket_list(
          header = NULL,
          group_name = "col-buckets",
          orientation = "horizontal",
          add_rank_list(
            text = "None",
            labels = c("variable_name", "variable_level", "estimate_name"),
            input_id = "large_scale_none"
          ),
          add_rank_list(
            text = "Group columns",
            labels = c("cdm_name", "cohort_name"),
            input_id = "large_scale_group_column"
          ),
          add_rank_list(
            text = "Hide",
            labels = character(),
            input_id = "large_scale_hide"
          )
        ),
        width = 320
      ),
      bslib::card(
        full_screen = TRUE,
        bslib::card_header("Cohort characteristics (large-scale)"),
        conditionalPanel(
          "input.large_engine == 'DT'",
          DTOutput("large_dt") |> shinycssloaders::withSpinner(type = 4)
        ),
        conditionalPanel(
          "input.large_engine == 'reactable'",
          reactableOutput("large_reactable") |> shinycssloaders::withSpinner(type = 4)
        )
      )
    )
  ),
  # Incidence (ggplot → plotly)
  bslib::nav_panel(
    title = "Incidence",
    icon = icon("chart-line"),
    bslib::layout_sidebar(
      sidebar = bslib::sidebar(
        title = "Plot options",
        shinyWidgets::pickerInput(
          "incidence_sex",
          "Sex strata",
          choices = c("overall", "Male", "Female"),
          selected = "overall",
          multiple = TRUE
        ),
        shinyWidgets::pickerInput(
          inputId = "facet",
          label = "Facet",
          selected = "sex",
          multiple = TRUE,
          choices = c("cdm_name", "incidence_start_date", "sex", "outcome_cohort_name"),
        ),
        shinyWidgets::pickerInput(
          inputId = "colour",
          label = "Colour",
          selected = "outcome_cohort_name",
          multiple = TRUE,
          choices = c("cdm_name", "incidence_start_date",  "sex", "outcome_cohort_name")
        ),
        checkboxInput("inc_ribbon", "Show ribbon (CI)", TRUE),
        checkboxInput("interactive", "Interactive Plot", TRUE),
        width = 320
      ),
      bslib::card(
        full_screen = TRUE,
        bslib::card_header("Incidence over time"),
        uiOutput("incidence_plot", height = "520px") |> shinycssloaders::withSpinner(type = 4)
      )
    )
  )
)The server filters results by the selected sex and creates a
gt table using the tableCharacteristics()
function from the CohortCharacteristics package. This
function is built on visOmopResults, which ensures
consistent styling and supports arguments to define headers, group
columns, and hide columns.
If you have your own <summarised_result> table,
which don’t has a dedicated table function, you can instead use
visOmopTable() to generate a gt table in
Shiny. This allows you to group estimates and configure header, group,
and hidden column options in a similar way.
These results are not in <summarised_result>
format, as shown below:
data$large_scale_characteristics
#> # A tibble: 952 × 8
#>    cdm_name    cohort_name sex   concept_name window concept_id count percentage
#>    <chr>       <chr>       <chr> <chr>        <chr>  <chr>      <int>      <dbl>
#>  1 my_duckdb_… denominato… over… Acute aller… -inf … 4084167      113       4.41
#>  2 my_duckdb_… denominato… over… Acute bacte… -inf … 4294548      607      23.7 
#>  3 my_duckdb_… denominato… over… Acute bronc… -inf … 260139      2303      89.8 
#>  4 my_duckdb_… denominato… over… Acute chole… -inf … 198809        29       1.13
#>  5 my_duckdb_… denominato… over… Acute viral… -inf … 4112343     2388      93.1 
#>  6 my_duckdb_… denominato… over… Alzheimer's… -inf … 378419        15       0.59
#>  7 my_duckdb_… denominato… over… Anemia       -inf … 439777        73       2.85
#>  8 my_duckdb_… denominato… over… Angiodyspla… -inf … 4310024      281      11.0 
#>  9 my_duckdb_… denominato… over… Appendicitis -inf … 440448       125       4.88
#> 10 my_duckdb_… denominato… over… Atopic derm… -inf … 133834        54       2.11
#> # ℹ 942 more rowsIn this case, we use visTable() to generate tables as
either a datatable or a reactable, depending
on the user’s choice in the UI. The table type is specified with the
type argument.
For both table types, we pass the UI-selected columns to
groupColumn and hide. We do not generate a
header for this result, as it would require restructuring the estimates
into a single “estimate_value” column.
The look and behaviour of the tables can be customised through the style argument. Available options can be explored with:
tableStyle("datatable")
tableStyle("reactable")
In this vignette, we modify the datatable style in the
server code so filters appear at the top of the table instead of the
default bottom.
For incidence results, we use the plotIncidence()
function from the IncidencePrevalence package. This
function creates a ggplot object, which can be rendered as
a static plot with plotOutput or as an interactive plot
with plotlyOutput. Users can also select which columns to
use for colouring and faceting, and whether to display confidence
interval ribbons.
For other results—whether <summarised_reuslt>
class or not—you can generate plots in a similar way by using the
plotting functions available in visOmopResults.
Note: Both
CohortCharacteristicsandIncidencePrevalencefunctions for plotting and tabulation are built onvisOmopResults, which means they share a consistent interface and style.
server <- function(input, output, session) {
  # Baseline (GT)
  output$summarise_characteristics_table <- gt::render_gt({
    data$summarised_characteristics |>
      # filter results by sex
      filterStrata(sex %in% input$summarise_characteristics_sex) |>
      # create GT table
      CohortCharacteristics::tableCharacteristics(
        header = input$summarise_characteristics_table_header,
        groupColumn = input$summarise_characteristics_table_group_column,
        hide = input$summarise_characteristics_table_hide,
        type = "gt"
      )
  })
  # Large scale characteristics
  getLargeScaleResults <- reactive({
    data$large_scale_characteristics |>
      filter(.data$sex %in% input$large_scale_sex)
  })
  # To render as DT
  output$large_dt <- renderDT({
    getLargeScaleResults() |>
      visTable(
        hide = input$large_scale_hide,
        groupColumn = input$large_scale_group_column,
        type = "datatable",
        style = list(
          filter = "top",
          searchHighlight = TRUE,
          rownames = FALSE
        )
      )
  })
  # To render as reactable
  output$large_reactable <- reactable::renderReactable({
    getLargeScaleResults() |>
      visTable(
        hide = input$large_scale_hide,
        groupColumn = input$large_scale_group_column,
        type = "reactable",
        style = "default"
      )
  })
  # Incidence
  getIncidencePlot <- reactive({
    data$incidence |>
      filterStrata(sex %in% input$incidence_sex) |>
      plotIncidence(
        colour = input$colour,
        facet = input$facet,
        ribbon = input$inc_ribbon
      ) +
      theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1))
  })
  output$incidence_plot <- renderUI({
    plt <- getIncidencePlot()
    if (input$interactive) {
      ggplotly(plt)
    } else {
      renderPlot(plt)
    }
  })
}To run the Shiny app, copy the code chunks provided in this vignette
into a script named app.R, and add the
following line at the end:
You can find the complete code run the ShinyApp here.