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Abstract

The vws package facilitates the vertical weighted strips (VWS) method in R. VWS is an
approach to constructing proposals for rejection sampling which is explored in Raim, Livsey,
and Irimata (2025). The vws package provides an API to program the necessary components
for the proposal and carry out rejection sampling. The API of the vws package is in C++ and
makes use of templates and object-oriented programming; a working understanding of these
techniques is assumed. The primary intended usage is that sampler logic is implemented in
C++ as a variate generation function; this is exposed in R for use in applications. This vignette
presents the API and several complete examples; multiple variations of VWS samplers are
presented with each example. The vws package and this vignette have been written primarily
for univariate targets; however, it is intended that the framework can be used to handle
multivariate problems as well.
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1 Introduction

The vws package facilitates vertical weighted strips (VWS) sampling (Raim, Livsey, and Irimata
2025). VWS is an approach to construct proposals distributions for rejection sampling. Here, the
target density is regarded as a weighted density - the product of a nonnegative weight function and
a base density. The weight function is majorized by a given function (which bounds it above) to
yield an envelope which is recombined with the base density to form a proposal distribution. If it is
convenient to generate draws from the proposal, and the distance between the original and majorized
weight function is not too large, such a proposal can be effectively used in rejection sampling. When
the weight function is majorized in a piecewise manner over the support, the resulting proposal can
be regarded as a finite mixture. Such a mixture can be refined to reduce the rejection probability to
an acceptable tolerance.

The vws package provides tools to construct and utilize VWS proposal distributions. Variate
generation functions are constructed in C++ and may be exposed for use in R via the Rcpp package
(Eddelbuettel 2013). C++ is taken as the primary programming language because of its efficiency
as a compiled language and its formal approach to object-orientation and template programming.
The fntl package (Raim 2024) is integral to vws usage; it provides a simplified C++ interface to
useful routines in the R application programming interface (API) which is described in R Core Team
(2025), as well as other useful numerical routines, where functions are supplied as lambdas. The vws

package has been designed primarily to generate from univariate distributions (both continuous and
discrete). It is also possible to construct proposals for multivariate distributions using the VWS
approach; the vws package is intended to support code development for such settings as well.

This vignette presents an overview of the package, its API, and several examples of working samplers.
An R> prompt is shown in some code displays to emphasize interaction via the console. Examples
make liberal use of the tidyverse (Wickham et al. 2019), especially ggplot2 to plot and dplyr to
manipulate tables. Some of the lengthier codes for the examples are not presented in this document;
however, complete codes are provided with the package. They can be accessed in the doc/examples

folder of the installed vws package. This path can be accessed in R with the following command.

> file.path(path.package("vws"), "doc", "examples")

The remainder of the vignette proceeds as follows. Section 2 briefly reviews VWS sampling. Section 3
gives an overview of the package, its major components, and important preliminaries for programming.
Section 4 provides a detailed specification of the C++ API. Section 5 develops several VWS samplers
to generate from the Von Mises Fisher (VMF) distribution following the application in Raim, Livsey,
and Irimata (2025). Section 6 develops samplers in a disclosure avoidance setting considered by
Raim (2021), Irimata et al. (2022), and Janicki et al. (2025+). Section 7 develops VWS samplers
for the Bessel count distribution (Devroye 2002).

Quick Start

Readers looking for a quick start can go directly to the first example in Section 5.1 whose
contents are described with the highest amount of detail.
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2 A Brief Review of Vertical Weighted Strips

The objective of VWS is to sample from a weighted target density

f(x) = f0(x)/ψ, f0(x) = w(x)g(x), ψ =
∫

Ω
f0(x)dν(x), (1)

where Ω is the support, ν is a dominating measure, g is assumed to be a normalized density, w(x) is
a nonnegative weight function, and ψ is a normalizing constant. We will construct a proposal of the
form

h(x) = h0(x)/ψN , h0(x) = w(x)g(x), ψN =
∫

Ω
h0(x)dν(x).

We will say that a function ϕ majorizes w on A ⊆ Ω if ϕ(x) ≥ w(x) for x ∈ A. Let I{x ∈ A} denote
the indicator function for x ∈ A. Suppose Ω is partitioned into regions D1, . . . ,DN and there are
corresponding functions w1, . . . , wN where wj majorizes w on Dj. Then w(x) =

∑N
j=1 wj(x) I{x ∈ Dj}

majorizes w on Ω and the unnormalized proposal becomes

h0(x) = g(x)
N∑

j=1

wj(x) I{x ∈ Dj}.

With this construction, f0(x) ≤ h0(x) for all x ∈ Ω. Therefore, classical rejection sampling can
be carried out by drawing u from Uniform(0, 1), x from h, and accepting x as a draw from f if
u ≤ f0(x)/h0(x). A benefit of this construction is that the functional form of the density can help
to guide proposal selection. The normalized h can be obtained by defining

ξj =
∫

Dj

wj(x)g(x)dν(x)

and

ψN =
N∑

j=1

ξj,

giving the finite mixture

h(x) = h0(x)/ψN =
N∑

j=1

πjgj(x), (2)

a finite mixture with mixing weights and component densities,

πj =
ξj

∑N
ℓ=1 ξℓ

, and gj(x) = wj(x)g(x) I{x ∈ Dj}/ξj,

respectively. The gj are truncated and reweighted versions of base distribution g. In addition to the
majorizer, suppose that wj is a minorizer of w so that 0 ≤ wj(x) ≤ w(x) for all x ∈ Dj, and let
ξ

j
=
∫

Dj
wj(x)g(x)dν(x). Note that the majorizer and minorizer need not have the same functional
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form. When h is used as a proposal in rejection sampling, an upper bound for the probability of
rejection is

ρ+ =
N∑

j=1

ρj, where ρj =
ξj − ξj
∑N

j=1 ξℓ

. (3)

The quantities ρ1, . . . , ρN are the contributions of each region to ρ+. The bound ρ+ can be used to
determine whether a VWS proposal will be viable for rejection sampling; if it is not much less than
1, rejections may be too frequent for practical use. The proposal may be refined by altering the
partitioning or considering a different majorizer. Several specific choices of majorizer are considered
by Raim, Livsey, and Irimata (2025) and will be reviewed in remainder of this section. Section 2.1
discusses the use of a constant majorizing function. A linear majorizing function is discussed in
Section 2.2. Section 2.3 reviews several knot selection methods.

2.1 Constant Majorizer

Suppose Ω = (α0, αN ] is an interval whose endpoints may or may not be finite and w(x) <∞ on
Ω. We can majorize w using a constant wj ≥ supx∈Dj

w(x) on each Dj so that the majorizer is

w(x) =
∑N

j=1 wj I{x ∈ Dj}. Here we obtain component densities of finite mixture (2) as

gj(x) = g(x) I{x ∈ Dj}/P(T ∈ Dj), with ξj = wj P(T ∈ Dj).

Furthermore, if we assume a constant minorizer wj ≤ infx∈Dj
w(x), then ξ

j
= wj P(T ∈ Dj).

2.2 Linear Majorizer

Suppose Ω = (α0, αN ] is an interval whose endpoints may or may not be finite and 0 < w(x) <∞
on Ω. Furthermore, suppose Ω is partitioned into regions Dj = (αj−1, αj] where w is entirely
either log-convex or log-concave for each j = 1 . . . , N . An exponentiated linear function wj(x) =
exp{β0j + β1jx} can be used to majorize w on Dj with an appropriate choice of coefficients β0j and

β1j. Therefore, the piecewise linear function w(x) =
∑N

j=1 wj(x) I{x ∈ Dj} is a majorizer on Ω. Here
the component densities of finite mixture (2) are

gj(x) = exp{β0j + β1jx}g(x) I{x ∈ Dj}/ξj, with ξj = eβ0j

∫ αj

αj−1

eβ1j ·xg(x)dν(x).

In certain cases, such as where g is in an exponential family, the integral in ξj can be simplified and gj

is seen to be a familiar distribution. We may also assume a linear minorizer w(x) =
∑N

j=1 wj(x) I{x ∈
Dj} with wj(x) = exp{β

0j
+ β

1j
x} for appropriate coefficients β

0j
and β

1j
.

To identify coefficients β0j, β1j, β0j
, and β

1j
, consider the following remarks corresponding to the

log-concave and log-convex cases, respectively.
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Remark 2.1. Suppose w is log-concave on Dj. For any c ∈ Dj,

logw(x) ≤ logw(c) + (x− c)∇(c)

= βj0 + βj1 · x, (4)

so that wj(x) = exp{βj0 +βj1 ·x} with βj0 = logw(c)−c ·∇(c), βj1 = ∇(c), and ∇(x) = d
dx

logw(x).
For an accompanying minorizer, let λ ∈ [0, 1] for a given x ∈ Dj so that x = (1 − λ)αj−1 + λαj.
Concavity of logw(x) gives

logw(x) ≥ (1− λ) logw(αj−1) + λ logw(αj)

= logw(αj−1) +
x− αj−1

αj − αj−1

[logw(αj)− logw(αj−1)]

= β
j0

+ β
j1
· x, (5)

so that wj(x) = exp{β
j0

+ β
j1
· x} with β

j0
= logw(αj−1) − αj−1βj1

and β
j1

= {logw(αj) −
logw(αj−1)}/{αj − αj−1}. ■

Remark 2.2. Suppose w is log-convex on Dj. A majorizer and minorizer are obtained from (5) and
(4), respectively. Note that they have switched roles from Remark 2.1. ■

The following remark describes one possible choice for the expansion point c which will be utilized
in the examples in Sections 5.3, 6.3, and 7.3.

Remark 2.3. For a majorizer in the log-concave case, we choose c to minimize the L1 distance
between unnormalized densities,

c∗ = argmin
c∈Dj

∫

Dj

[wj(x)− w(x)]g(x)dν(x)

= argmin
c∈Dj

{

w(c) exp{−c∇(c)}
∫

Dj

exp{x∇(c)}g(x)dν(x)
}

= argmin
c∈Dj

{

logw(c)− c∇(c) + logMj(∇(c))
}

, (6)

where wj(x) = exp{βj0 + βj1 · x}, βj0 = logw(c) − c · ∇(c), βj1 = ∇(c), ∇(x) = d
dx

logw(x), and
Mj(s) =

∫ αj

αj−1
exsg(x)dν(x). A similar choice of c for a minorizer in the log-convex case is

c∗ = argmin
c∈Dj

∫

Dj

[w(x)− wj(x)]g(x)dν(x)

= argmax
c∈Dj

∫

Dj

wj(x)g(x)dν(x)

= argmax
c∈Dj

{

logw(c)− c∇(c) + logMj(∇(c))
}

. (7)

where wj(x) = exp{β
j0

+ β
j1
· x}, β

j0
= logw(c)− c · ∇(c), β

j1
= ∇(c), ∇(x) = d

dx
logw(x). ■
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2.3 Knot Selection

After selecting a decomposition of the target into weighted form (1), the choice of knots is important
to obtain an efficient proposal distribution. One option is to specify knots at known locations. For
example, we can consider using evenly spaced points on a given interval within the support; however,
this may not take into account important features of the target and add wasteful components to the
finite mixture which do not contribute much to the quality of the approximation. An automated
option that often achieves much better results is the rule of thumb proposed by Raim, Livsey, and
Irimata (2025), shown here as Algorithm 1. This method sequentially refines an initial partition
of the support consisting of one or more regions. At each step a region is selected and bifurcated
at its midpoint. The selection is probabilistic, with probabilities proportional to ρ1, . . . , ρN . A
deterministic (“greedy”) variation can be considered by instead always selecting a region ℓ whose
value ρℓ is largest.

Bifurcation at a midpoint is mostly straightforward in univariate settings where the support is a
subset of the real line. However, there may be multiple ways to characterize this operation when the
support is multivariate, perhaps with more structure like a multinomial sample space. The necessary
operations can be coded for such settings within the vws framework; however, this document does
not consider such cases in detail.

Algorithm 1 Probabilistic rule of thumb for sequential knot selection.
Input: maximum number of knots to add N .
Input: initial vector of internal knots α1, . . . , αN0−1; may be empty with N0 = 0.
Input: tolerance ϵ > 0.

1: j ← 0
2: while j ≤ N do

3: Let Dℓ with ρℓ for ℓ ∈ {1, . . . , N0 + j} be current regions.
4: If

∑N0+j
ℓ=1 ρℓ < ϵ, break from the loop.

5: Draw ℓ ∈ {1, . . . N0 + j} from Discrete(ρ1, . . . , ρN0+j).
6: Let α∗ be midpoint of Dℓ; add α∗ to vector of knots.
7: Let j ← j + 1.
8: end while

9: return (α0, . . . , αN0+j).

3 Overview of Package

The vws package aims to support the methodology which was described in the previous section.
The present section will describe tools in the package which can be used to formulate a problem,
construct a proposal, and generate samples.

Use of the vws package centers on two classes. The FMMProposal class represents a finite mixture
of the form (2) and encapsulates the operations needed for rejection sampling. The Region class
represents region Dj and the operations required for VWS. Region itself is an abstract base class
which defines an interface needed by the framework. All problem-specific logic is coded within a
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subclass of Region: either by using one of the provided subclasses or by coding a new subclass.
The subclasses RealConstRegion and IntConstRegion provide implementations of the constant
majorizer from Section 2.1, for continuous and discrete univariate distributions, respectively. The
linear majorizer described in Section 2.2 requires more customization than the constant majorizer;
here, users should create a subclass of Region. An FMMProposal object is created from N ≥ 1
Region objects that represent the partition D1, . . . ,DN of Ω.

The rejection function takes an object h of class FMMProposal and carries out rejection sampling to
obtain n draws. The rejection function returns a vector of accepted draws along with information
about the number of rejections. Figure 3.1 displays a diagram of the high-level design just described.

• Evaluate

1. Weight w(x)
2. Base g(x)
3. Majorized wj(x),
4. Constants ξ

1
and ξ

1

5. Reweighted g1

• Draw from g1
• Bifurcate

· · ·

• Evaluate

1. Weight w(x)
2. Base g(x)
3. Majorized wj(x),
4. Constants ξN and ξ

N
5. Reweighted gN

• Draw from gN
• Bifurcate

• Compute density h(x) or h0(x)
• Draw from h

• Unnormalized target f0(x) = w(x)g(x)
• Bound for probability of rejection

refine() rejection()

x1, . . . , xn

Region D1 Region DN

Proposal

Figure 3.1: Design of vws package.

The following display outlines a typical workflow for VWS rejection sampling in C++. Suppose this
code is saved is in a file named sample.cpp.

// [[Rcpp::depends(vws, fntl)]] 1

#include "vws.h" 2

#include "MyRegion.h"

// [[Rcpp::export]] 3

Rcpp::List sample(unsigned int n)

{

MyRegion supp( ... ); 4

vws::FMMProposal<double, MyRegion> h(supp); 5

h.refine(N - 1, 0.01); 6

auto out = vws::rejection(h, n); 7
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return Rcpp::List::create( 8

Rcpp::Named("draws") = out.draws,

Rcpp::Named("rejects") = out.rejects

);

}

1 This annotation ensures that vws and fntl packages are linked during compilation. fntl is not
explicitly used in this example, but it is needed for linking by the vws library regardless.

2 Include the main header for the vws package so that the API is accessible.
3 This annotation exports the sample function for use in R. This is not needed if the sample

function will be used only in C++.
4 Construct a region of type MyRegion which we have presumably defined in MyRegion.h. The

symbol ... here is a placeholder for any arguments needed by the constructor.
5 Construct an FMMProposal based on a single region supp. Note that it is a template class that

needs two template arguments: the first (double) indicates the data type of the distribution
and the second (MyRegion) indicates the type of region it will contain.

6 Refine the proposal using Algorithm 1 up to N − 1 times or until tolerance 0.01 is achieved for
(3).

7 Carry out rejection sampling with the refined proposal h.
8 Pack elements of the struct out into an Rcpp::List and return them to the caller.

Note that the FMMProposal class, the rejection function, and other elements of the vws API are
accessed in the vws namespace. Details for the API are given in Section 4. Once the sample function
is successfully exported as an R function, we may invoke it as usual.

> Rcpp::sourceCpp("sample.cpp")

> out = sample(n = 100)

> head(out$draws)

> head(out$rejects)

Working Examples

A complete VWS example is given in Section 5.1; this demonstrates the use of RealConstRegion

to implement a sampler with a minimal amount of coding. Section 5.2 is an improvement
which requires more coding; here we provide functions to determine values of the constant
majorizer and minorizer analytically. Finally, Section 5.3 demonstrates how to subclass Region

to implement a linear majorizer, which requires more intricate coding. Subsequent examples
are given in Section 6 and Section 7, but with less explanation.

It is useful to mention several other preliminaries for the vws package; see the following remarks.

Remark 3.1. Lambdas in C++ are functions which can be defined within the course of a program,
regarded as objects which can be passed to other functions, and capture variables in the environment
so that they do not need to be passed as arguments. They should feel very familiar to R programmers
who likely use R functions in this way. Here is a snippet with several examples of lambdas.
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double z = 3;

typedef function<double(double)> dfdd;

dfdd f1 = [&](double x, double y) -> double { return x*y*z; };

dfdd f2 = [&](double x, double y) { return x*y*z; };

dfdd f3 = [=](double x, double y) { return x*y*z; };

dfdd f4 = [](double x, double y) { return x*y*3; };

These four functions carry out the same operation and may be invoked in the usual way.

double out = f1(1, 2);

The typedef dfdd is given as a shorthand for a Standard Template Library (STL) function which
takes two double variables as arguments and returns a double. An STL function can be passed to
other functions like any other variable. Function f1 explicitly states the return type of the lambda
using -> double while it is omitted in the others to be inferred by the compiler. The variable z

is captured by f1, f2, and f3; in other words, it is “baked in” to the function definition without
needing to be passed as an argument. Functions f1 and f2 capture z by reference while f3 captures
z by value, indicated with the syntaxes [&] and [=] respectively. Function f4 uses empty square
brackets [] to indicate that it does not capture any outside variables.

The fntl package defines several function typedefs used in the vws package, and also provides access
to numerical tools such as integration, differentiation, and optimization which take STL functions
as arguments. ■

Remark 3.2. Many of the computations in this vignette and within the vws package are carried out
on the logarithmic scale. This is to avoid loss of precision when working with very large or small
magnitude numbers. Several functions to support log-scale arithmetic are given in Section 4.9. ■

Remark 3.3. To help automate computation of constant majorizers and minorizers for use with
RealConstRegion and IntConstRegion, the default is to use numerical optimization to find appro-
priate constants on each region in the partition. The particular optimization method is presented
in Section 4.8. This can be somewhat of a computational burden; it can sometimes be avoided
when there is a closed form solution or other informed way to arrive at maximizing / minimizing
constants. The API for RealConstRegion and IntConstRegion accepts user-specified lambdas to
specify alternative methods. ■

4 C++ API

This section documents functions, classes, and other components in the C++ API. Note that some
functions in the C++ API are also exposed as R functions; see the vws package manual for these.
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4.1 Typedefs

The following typedef is used to represent functions that take double and bool arguments and
return a double. It is used as the type for weight functions in particular, with x the argument of
the weight function and log = true if the result is to be returned on the log-scale.

typedef std::function<double(double x, bool log)> dfdb;

The following typedef represents a function that optimizes (i.e., maximizes or minimizes) a weight
function on a given interval.

typedef std::function<double(

const dfdb& w, 1

double lo, 2

double hi, 3

bool log 4

)> optimizer;

1 A weight function.
2 Lower bound of the interval; may be R_NegInf.
3 Upper bound of the interval; may be R_PosInf.
4 Logical; log = true specifies that the result should be the optimal value logw(x∗), given on the

log-scale. Otherwise, the result should be the optimal value w(x∗) on the original scale.

The following typedef represents a function that computes the midpoint of a given interval. Note
that this type name can clash with the midpoint function in the STL; therefore, it is reference using
its namespace vws::midpoint within the vws package.

typedef std::function<double(double a, double b)> midpoint;

4.2 Finite Mixture Proposal

The class FMMProposal represents a VWS proposal in the form of (2).

4.2.1 Class Definition

FMMProposal has two template arguments: T is the data type for the underlying distribution (e.g.,
T = double for a real-valued univariate random variable) and R is the type of region which the
proposal will be based upon.

template <class T, class R>

class FMMProposal { ... };
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4.2.2 Constructor

The primary constructor takes a vector of regions of type R. There must be at least one region in
the vector These regions are expected to be a partition of the support Ω.

FMMProposal(const std::vector<R>& regions);

A second constructor takes a single region. This is a special case of the previous one which is
provided for convenience.

FMMProposal(const R& region);

4.2.3 Distribution Methods

The following functions make use of the proposal as a distribution. They are especially utilized in
rejection sampling.

std::vector<T> r(unsigned int n = 1) const; 1

std::pair<std::vector<T>, std::vector<unsigned int>> 2

r_ext(unsigned int n = 1) const;

double d(const T& x, bool normalize = true, bool log = false) const; 3

double w_major(const T& x, bool log = true) const; 4

double d_target_unnorm(const T& x, bool log = true) const; 5

1 Draw n variates of type T from the proposal.
2 Draw n variates of type T from the proposal and retain the indices of the regions used in each

draw. The result is an STL pair whose first element is the vector of draws and second element
is the vector of indices.

3 Evaluate the density h on the given x. If normalize = false, h0(x) is computed; otherwise
h(x) is computed.

4 Evaluate the majorized weight function w(x).
5 Evaluate the unnormalized target f0(x) = w(x)g(x).

For the log argument, the value on the log-scale is returned if true; otherwise, the value on the
original scale is returned.

4.2.4 Accessors

The following accessors are provided.

Rcpp::NumericVector xi_upper(bool log = true) const; 1

Rcpp::NumericVector xi_lower(bool log = true) const; 2

Rcpp::LogicalVector bifurcatable() const; 3

Rcpp::NumericVector pi(bool log = false) const; 4
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Rcpp::NumericVector bound_contrib(bool log = false) const; 5

double bound(bool log = false) const; 6

double nc(bool log = false) const; 7

unsigned int size() const; 8

1 Get the constants ξ1, . . . , ξN .
2 Get the constants ξ

1
, . . . , ξ

N
.

3 Get a vector of N logical values indicating whether the corresponding regions can be bifurcated.
For example, when the support T is int, a region (a, b] containing one integer should not be
bifurcated because one of the two resulting regions will not contain any points of the support.

4 Get the mixing proportions π1, . . . , πN .
5 Get the contributions ρ1, . . . , ρN to bound (3) corresponding to the N regions.
6 Get the overall rejection bound (3).
7 Get the normalizing constant ψN

8 Get the number of regions N .

Methods above with the a log argument return values on the log-scale when log = true; values
are returned on the original scale otherwise.

4.2.5 Iterators

The following methods can be used to get (read-only) iterators to internal data structures. These
can be more efficient than the accessors in Section 4.2 because they do not make a copy of the
data.

std::set<R>::const_iterator regions_begin() const; 1

std::set<R>::const_iterator regions_end() const;

Rcpp::NumericVector::const_iterator log_xi_upper_begin() const; 2

Rcpp::NumericVector::const_iterator log_xi_upper_end() const;

Rcpp::NumericVector::const_iterator log_xi_lower_begin() const; 3

Rcpp::NumericVector::const_iterator log_xi_lower_end() const;

Rcpp::LogicalVector::const_iterator bifurcatable_begin() const; 4

Rcpp::LogicalVector::const_iterator bifurcatable_end() const;

1 The start and end of the set of regions (of template type R) in the proposal.
2 The start and end of the vector (ξ1, . . . , ξN).
3 The start and end of the vector (ξ

1
, . . . , ξ

N
).

4 The start and end of the vector of indicators for whether regions are bifurcatable.

4.2.6 Refining the Proposal

Two functions are provided to refine the proposal from D1, . . . ,DN into a finer partition. Both
variants return a vector ρ

(
+0), . . . , ρ

(N0)
+ which represents values of the bound (3) at each refinement
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step; N0 is the number of steps taken, ρ
(
+j) represents the value at refinement j = 0, . . . , N0, and

ρ
(
+j) represents the initial value. The first variant partitions at a given vector of knots.

Rcpp::NumericVector refine(

const std::vector<T>& knots, 1

bool log = true 2

);

1 A vector of knots.
2 If log = true return bound values on the log-scale.

The second variant uses the rule of thumb for sequential knot selection from Raim, Livsey, and
Irimata (2025). Refining will halt when (3) reduces below tol; which is possible when tol is positive;
otherwise, refining halts after N steps.

Rcpp::NumericVector refine(

unsigned int N, 1

double tol = 0, 2

bool greedy = false, 3

unsigned int report = fntl::uint_max, 4

bool log = true 5

);

1 Number of refinements to make.
2 Tolerance for (3); refinement will halt if ρ+ reaches this.
3 If greedy = true, the region with the largest ρℓ is always selected for partitioning; otherwise,

regions are selected with probabilities proportional to ρ1, . . . , ρN .
4 If log = true return bound values ρ

(0)
+ , . . . , ρ

(N)
+ on the log-scale.

5 The period at which progress is reported to the console. E.g., use period = 2 to report progress
every two selections.

The seq function is provided as a convenience to generate equally-spaced knots for univariate
real-valued intervals.

std::vector<double> seq(double lo, double hi, unsigned int N,

bool endpoints = false);

4.2.7 Summary Methods

Several methods are provided to summarize the regions in the proposal. Table 4.1 describes the
columns in the summary and rows correspond to the N regions.

Rcpp::DataFrame summary() const; 1

void print(unsigned int n = 5) const; 2
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1 Get a data frame with the summary.
2 Print summary to the console.

Table 4.1: Data frame returned by summary method of FMMProposal.

Column Description

Region String describing region j.
log_xi_upper log ξj

log_xi_lower log ξ
j

log_volume log ρj

4.3 Region Base Class

Region is an abstract base class whose interface represents the problem-specific logic that must be
coded to implement VWS. Users create a subclass of this method to construct a proposal for a given
problem. However, for the most common application of VWS - univariate support with a constant
majorizer - users may be able to leverage the provided subclasses in Sections 4.4 and 4.5.

The class has one template argument T, which is the data type for the underlying distribution.

template <class T>

class Region { ... };

The interface consists of the following public methods. These are abstract and must be implemented
in a subclass.

virtual double d_base(const T& x, bool log = false) const = 0; 1

virtual std::vector<T> r(unsigned int n) const = 0; 2

virtual bool s(const T& x) const = 0; 3

virtual double w(const T& x, bool log = true) const = 0; 4

virtual double w_major(const T& x, bool log = true) const = 0; 5

virtual bool is_bifurcatable() const = 0; 6

virtual double xi_upper(bool log = true) const = 0; 7

virtual double xi_lower(bool log = true) const = 0; 8

virtual std::string description() const = 0; 9

1 Evaluate the density function g of the base distribution.
2 Generate a vector of n draws from gj specific to this region.
3 Indicator of whether x is in the support for gj specific to this region.
4 The weight function w.
5 Majorized weight function wj for this region.
6 Indicator of whether this region is bifurcatable into two smaller regions. This is used when

refining a proposal; see Section 2.3. One reason that a region should not be bifurcated is when
one of the resulting regions will not have any points in the support.

7 The quantity ξj for this region.
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8 The quantity ξ
j

for this region.

9 A string that describes this region; used for printing to the console.

The argument log = true in the methods above requests values to be returned on the log-scale.

Subclasses of Region are expected to provide several additional functions which are not specified in
the interface. Suppose MyRegion is a subclass of Region whose elements are variables of type type

(e.g., double); its definition should include the following.

class MyRegion : public Region<type>

{

public:

std::pair<MyRegion,MyRegion> bifurcate() const; 1

std::pair<MyRegion,MyRegion> bifurcate(const type& x) const; 2

MyRegion singleton(const type& x) const; 3

bool operator<(const MyRegion& x) const; 4

bool operator==(const MyRegion& x) const; 5

const MyRegion& operator=(const MyRegion& x); 6

...

};

1 Bifurcate the current region into two regions; this version takes no arguments and should include
logic to decide where to make the split.

2 Bifurcate the current region into two regions; the argument x is used as the location to make the
split.

3 Return a region on the singleton set (x, x] with the information in the current object.
4 Comparison operator; used to order regions of this type.
5 Equality operator; check whether two regions of this type are equal.
6 Assignment operator; assign information from x to this object.

4.4 Region on Real-Valued Support with Constant Majorizer

RealConstRegion is a subclass of Region, defined in Section 4.3, specifically for univariate problems
with continuous support where w(x) =

∑N
j=1 wj I{x ∈ Dj} is constructed from constants w1, . . . , wN .

It assumes a constant a minorizer w(x) =
∑N

j=1 wj I{x ∈ Dj} is constructed from constants
w1, . . . , wN . The wj and wj are obtained using numerical optimization by default; however, user-
supplied methods can be supplied to identify these values when it is possible.

4.4.1 Constructors

RealConstRegion has the following constructors. The first creates a region based on the interval
(a, b]; the second creates a region based on the singleton set {a}, which is intended primarily for
internal use.
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RealConstRegion(

double a, 1

double b, 2

const dfdb& w, 3

const UnivariateHelper& helper, 4

const optimizer& maxopt = maxopt_default, 5

const optimizer& minopt = minopt_default, 6

const midpoint& mid = midpoint_default 7

);

RealConstRegion(

double a, 1

const dfdb& w, 3

const UnivariateHelper& helper 4

const optimizer& maxopt = maxopt_default, 5

const optimizer& minopt = minopt_default, 6

const midpoint& mid = midpoint_default 7

);

1 Lower limit of interval that defines this region.
2 Upper limit of interval that defines this region.
3 Weight function w for the target distribution.
4 A container with operations of the base distribution g.
5 A function of type optimizer that maximizes w on the given region.
6 A function of type optimizer that minimizes w on the given region.
7 A function of type midpoint to compute the midpoint of region’s interval.

The default optimizers, maxopt_default and minopt_default, use a hybrid numerical optimization
method in Section 4.8 to optimize w.

The function midpoint_default is a version of the arithmetic midpoint with special handling for
infinite endpoints. It is used primarily to bifurcate a given region into two smaller regions. In
particular, the current implementation is

midpoint(a, b) =







0, if a = −∞ and b =∞,
b · 2−sign(b) − 1, if a = −∞ and b <∞,
a · 2sign(a) + 1, if a > −∞ and b =∞,
(a+ b)/2, otherwise,

where sign(x) = I(x > 0) − I(x < 0). If both endpoints are infinite, zero is returned. When one
endpoint is infinite, the finite endpoint is reduced in magnitude by a factor of 1/2 and brought
in by an additional unit of one. The exponential factor helps to avoid large numbers of wasted
regions during knot selection. The additive factor accommodates endpoints that are near zero;
without it, midpoint(a, b) only brings the finite endpoint closer to zero which likely to create wasteful
bifurcations.
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4.4.2 Methods

The midpoint method returns a midpoint for the current region.

double RealConstRegion::midpoint() const

The bifurcate method returns two disjoint regions whose union is the current region. The result is
given as an STL pair. The first version bifurcates at the midpoint of the current region, determined
by the midpoint method. The second version partitions at the given x.

std::pair<RealConstRegion,RealConstRegion> bifurcate() const;

std::pair<RealConstRegion,RealConstRegion> bifurcate(const double& x) const;

The is_bifurcatable function always returns true in the case of a continuous support.

bool is_bifurcatable() const;

The singleton method returns a singleton interval (x, x], using the current object’s member data.

RealConstRegion singleton(const double& x) const;

The following methods determine an ordering of the current region and an another region specified
as argument x. Region (a1, b1] is considered “less than” (a2, b2] if b1 ≤ a2. The regions are considered
equal if a1 = a2 and b1 = b2. Note that other elements such as w are g are not explicitly checked,
and are assumed to be the same.

bool operator<(const RealConstRegion& x) const;

bool operator==(const RealConstRegion& x) const;

The following method assigns the current region to be equal to the argument x.

const RealConstRegion& operator=(const RealConstRegion& x);

4.5 Region on Integer-Valued Support with Constant Majorizer

The class IntConstRegion is a subclass of RealConstRegion that is specialized to integer-valued
distributions.

class IntConstRegion : public RealConstRegion { ... };

4.5.1 Constructors

IntConstRegion has the following constructors.
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IntConstRegion(

double a, 1

double b, 2

const dfdb& w, 3

const UnivariateHelper& helper, 4

const optimizer& maxopt = maxopt_default, 5

const optimizer& minopt = minopt_default, 6

const midpoint& mid = midpoint_default 7

);

IntConstRegion(

double a, 1

const dfdb& w, 3

const UnivariateHelper& helper 4

const optimizer& maxopt = maxopt_default, 5

const optimizer& minopt = minopt_default, 6

const midpoint& mid = midpoint_default 7

);

1 Lower limit of interval that defines this region.
2 Upper limit of interval that defines this region.
3 Weight function w for the target distribution.
4 A container with operations of the base distribution g.
5 A function of type optimizer that maximizes w on the given region.
6 A function of type optimizer that minimizes w on the given region.
7 A function of type midpoint to compute the midpoint of region’s interval.

The arguments here are analogous to those in Section 4.4.1. Note that a and b need not be integers
here.

4.5.2 Methods

The following methods are specialized from RealConstRegion.

std::pair<IntConstRegion,IntConstRegion> bifurcate() const;

std::pair<IntConstRegion,IntConstRegion> bifurcate(const double& x) const;

The is_bifurcatable function returns false for regions whose width is smaller than 1.

bool is_bifurcatable() const;

The singleton method returns a singleton interval (x, x], using the current object’s weight function,
base distribution, etc.

IntConstRegion singleton(const double& x) const;
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The following methods determine an ordering of the current region and an another region specified
as argument x. Region (a1, b1] is considered “less than” (a2, b2] if b1 ≤ a2. The regions are considered
equal if a1 = a2 and b1 = b2. Note that other elements such as w are g are not explicitly checked,
and are assumed to be the same.

bool operator<(const IntConstRegion& x) const;

bool operator==(const IntConstRegion& x) const;

The following method assigns the current region to be equal to the argument x.

const IntConstRegion& operator=(const IntConstRegion& x);

4.6 Univariate Helper

The class UnivariateHelper is intended for use with RealConstRegion and IntConstRegion. It
encapsulates several operations needed from the base distribution g. These operations are specified
as lambdas in the constructor.

UnivariateHelper(

const fntl::density& d, 1

const fntl::cdf& p, 2

const fntl::quantile& q 3

);

1 A function to evaluate density g.
2 A function to evaluate the cumulative distribution function (CDF) G.
3 A function to evaluate the quantile function G−.

The following methods on UnivariateHelper utilize the lambdas specified above.

double d(double x, bool log = false) const; 1

double p(double q, bool lower = true, bool log = false) const; 2

double q(double p, bool lower = true, bool log = false) const; 3

1 Evaluate the density function at argument x. Result is on the log-scale if log = true.
2 Evaluate the CDF at argument q. Result is on the log-scale if log = true. Result represents

P (X ≤ q) if lower = true and P (X > q) otherwise.
3 Evaluate the quantile function at argument p. Assume p is specified on the log-scale if log =

true. Request p quantile if lower = true and 1− p quantile otherwise.

4.7 Rejection Sampling

The following functions perform rejection sampling using a VWS proposal described in Section 4.2.
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template <typename T, typename R>

rejection_result<T> rejection(

const FMMProposal<T,R>& h, 1

unsigned int n, 2

const rejection_args& args 3

);

template <typename T, typename R>

rejection_result<T> rejection(

const FMMProposal<T,R>& h, 1

unsigned int n 2

);

1 An FMMProposal object to use as the proposal.
2 The number of desired draws.
3 Additional arguments for rejection sampling. Default values are assumed in the second form.

Template arguments T and R correspond to the given proposal h and are described in Section 4.2.
Additional arguments to rejection are provided via the following struct.

struct rejection_args {

unsigned int max_rejects = std::numeric_limits<unsigned int>::max(); 1

unsigned int report = std::numeric_limits<unsigned int>::max(); 2

double ratio_ub = std::exp(1e-5); 3

fntl::error_action action = fntl::error_action::STOP; 4

rejection_args() { }; 5

rejection_args(SEXP obj); 6

operator SEXP() const; 7

};

1 Maximum number of rejections to tolerate overall (among all n attempted draws) before bailing
out.

2 Determines period at which progress is logged to the console.
3 Maximum allowed value for the ratio f0(x)/h0(x), which may be slightly larger than 1 due to

numerical precision. An error is thrown if the ratio is larger than this value.
4 The action to take if max_rejects rejections is exceeded; see Table 4.2. The definition of the

enum fntl::error_action is given in Section 2 of Raim (2024).
5 Constructor that takes no arguments and initializes to default values.
6 Convert an Rcpp::List to a rejection_args struct.
7 Return a Rcpp::List from a rejection_args struct.
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Table 4.2: Value of action used in rejection_args.action and its effect in rejection.

Action Effect

fntl::error_action::NONE Error condition is ignored.
fntl::error_action::MESSAGE A message is emitted without halting.
fntl::error_action::WARNING A warning is emitted without halting.
fntl::error_action::STOP Halts when an error condition is encountered.

The return value of rejection is a struct of the following type.

template <typename T>

struct rejection_result

{

std::vector<T> draws; 1

std::vector<unsigned int> rejects; 2

operator SEXP() const; 3

};

1 Vector of draws.
2 Vector of rejection counts; the ith element represents number of rejections observed before

accepting the ith draw.
3 Return a Rcpp::List from a rejection_args struct.

If the maximum number og rejections are reached and fntl::error_action::STOP, the length of
the vectors draws and rejects will be less than n.

4.8 Optimization on an Interval

The function optimize_hybrid is a hybrid optimization method for univariate functions f(x) :
[a, b]→ R with bounds x ∈ [a, b] whose endpoints may be finite or infinite. Uses Brent’s method
if both bounds are finite and BFGS otherwise. In the latter case, the bounds are enforced via a
transformation.

optimize_hybrid_result optimize_hybrid(

const fntl::dfd& f, 1

double init, 2

double lower, 3

double upper, 4

bool maximize, 5

unsigned maxiter = 100000 6

);

1 Objective function.
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2 Initial value used with BFGS.
3 Lower bound a of domain [a, b].
4 Upper bound b of domain [a, b].
5 Logical; if true, optimization will be a maximization. Otherwise it is a minimization.
6 Maximum number of iterations.

The result is a optimize_hybrid_result struct which is defined as follows.

struct optimize_hybrid_result {

double par; 1

double value; 2

std::string method; 3

int status; 4

operator SEXP() const; 5

};

1 Final value of the optimization variable x.
2 Final value of the objective function f(x).
3 Description of the method used to obtain the result; see Table 4.3 for possible values.
4 Corresponds to a code from BFGS if it is used as method; otherwise 0.
5 Return an Rcpp::List from a optimize_hybrid_result struct.

Table 4.3: Possible values for method field of optimize_hybrid_result struct.

Message Description

"Brent" Brent optimization method was used.
"BFGS" BFGS method was used.
"Lower Limit Inf" For maximization, lower limit taken as par because its value is inf.
"Upper Limit Inf" For maximization, upper limit taken as par because its value is inf.
"Lower Limit NegInf" For minimization, lower limit taken as par because its value is -inf.
"Upper Limit NegInf" For minimization, upper limit taken as par because its value is -inf.
"Max at Lower Limit" Numerical maximization used, but larger value found at lower limit.
"Max at Upper Limit" Numerical maximization used, but larger value found at upper limit.
"Min at Lower Limit" Numerical minimization used, but smaller value found at lower limit.
"Min at Upper Limit" Numerical minimization used, but smaller value found at upper limit.

4.9 Log-Scale Arithmetic

As mentioned in Remark 3.2, calculations in the package are carried out on the log-scale, where
possible, to avoid issues from floating point numbers with very small or very large magnitudes.
Users may want to follow this convention when implementing their own sampling problems. Several
included functions help to avoid explicit exponentiation.
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The following computes the scalar f(x) = log{∑n
i=1 exp(xi)} from a vector x ∈ R

n using the method
described in this StackExchange post.

double log_sum_exp(const Rcpp::NumericVector& x);

The following functions carry out addition on the log scale using the property

log(ex + ey) = t+ log{1 + exp[s− t]}, s = min(x, y), t = max(x, y).

The first form takes scalar arguments x and y. The second and third forms take x, y ∈ R
n and

produce a vector with elements log(exi + eyi), i = 1, . . . , n.

double log_add2_exp(double x, double y);

std::vector<double> log_add2_exp(

const std::vector<double>& x,

const std::vector<double>& y

);

Rcpp::NumericVector log_add2_exp(

const Rcpp::NumericVector& x,

const Rcpp::NumericVector& y

);

The following carry out subtraction on the log scale using the property

log(ex − ey) = x+ log{1− exp[y − x]}.

When x is smaller than y, the results is assumed to be nan. The first form takes scalar arguments x
and y. The second and third forms take x, y ∈ R

n and produce a vector with elements log(exi − eyi),
i = 1, . . . , n.

double log_sub2_exp(double x, double y);

std::vector<double> log_sub2_exp(

const std::vector<double>& x,

const std::vector<double>& y

);

Rcpp::NumericVector log_sub2_exp(

const Rcpp::NumericVector& x,

const Rcpp::NumericVector& y

);

4.10 Generating from a Discrete Distribution

We make use of the Gumbel trick (e.g., Huijben et al. 2023) to draw from a discrete distribution with
probabilities p1, . . . , pk. This approach allows probabilities to be specified on the log-scale without
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the need to exponentiate or normalize them so that they sum to 1. The Gumbel trick generates a
draw x from the desired discrete distribution via

X = argmax{Z1 + log p1, . . . , Zk + log pk}, Z1, . . . , Zk
iid∼ Gumbel(0, 1),

where Gumbel(0, 1) is a standard Gumbel distribution with density f(x) = e−(x+ex) I(x > 0).

4.10.1 Categorical Distribution

The following functions generate a draw of X. The first form generates a single variate and the
second form generates a sample of size n.

unsigned int r_categ(

const Rcpp::NumericVector& p, 2

bool log = false, 3

bool one_based = false 4

);

Rcpp::IntegerVector r_categ(

unsigned int n, 1

const Rcpp::NumericVector& p, 2

bool log = false, 3

bool one_based = false 4

);

1 Desired sample size.
2 Vector of probabilities p1, . . . , pk.
3 Logical; if true, argument p is interpreted as log p1, . . . , log pk. Otherwise, it is interpreted as

p1, . . . , pk on the original scale.
4 Logical; if true, support is assumed to be {1, . . . , k}, where k is length of the given p. Otherwise

it is assumed to be {0, . . . , k − 1}. The former is useful to generate indices in C++ while the
latter is useful for indices in R.

4.10.2 Gumbel Distribution

The following functions are provided for the Gumbel distribution with location parameter µ and
scale σ. They compute the density, CDF, quantile, and variate generation, respectively. The first
group operates on scalars and the second are vectorized versions which operate on an independent
and identically distributed sample.

double d_gumbel(

double x, 1

double mu = 0, 5

double sigma = 1, 6

bool log = false 7

);
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double p_gumbel(

double q, 2

double mu = 0, 5

double sigma = 1, 6

bool lower = true, 8

bool log = false 7

);

double q_gumbel(

double p, 3

double mu = 0, 5

double sigma = 1, 6

bool lower = true, 8

bool log = false 7

);

double r_gumbel(

double mu = 0, 5

double sigma = 1 7

);

Rcpp::NumericVector d_gumbel(

const Rcpp::NumericVector& x, 1

double mu = 0, 5

double sigma = 1, 6

bool log = false 7

);

Rcpp::NumericVector p_gumbel(

const Rcpp::NumericVector& q, 2

double mu = 0, 5

double sigma = 1, 6

bool lower = true, 8

bool log = false 7

);

Rcpp::NumericVector q_gumbel(

const Rcpp::NumericVector& p, 3

double mu = 0, 5

double sigma = 1, 6

bool lower = true, 8

bool log = false 7

);

Rcpp::NumericVector r_gumbel(

unsigned int n, 4

double mu = 0, 5

double sigma = 1 6

);
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1 Argument to the density.
2 Argument to the CDF.
3 Argument to the quantile function.
4 Number of draws.
5 Location parameter.
6 Scale parameter.
7 Logical; if true, probability arguments and return values are on the log-scale
8 Logical; if true, probability arguments and return values are lower tailed in the form P [X ≤ x];

otherwise, P [X > x].

5 Example: Von Mises Fisher Distribution

Let us consider generating from the von Mises Fisher (VMF) distribution as in Raim, Livsey,
and Irimata (2025). VMF is useful in modeling directional data whose support is the sphere
S

d−1 = {v ∈ R
d : v⊤v = 1} (e.g., Mardia and Jupp 1999). A random variable V with distribution

VMFd(µ, κ) has density

fVMF(v) =
κd/2−1

(2π)d/2Id/2−1(κ)
exp(κ · µ⊤v) · I{v ∈ S

d−1},

with modified Bessel function of the first kind Iν(x) =
∑∞

m=0{m! · Γ(m + ν + 1)}−1(x
2
)2m+ν and

gamma function Γ(x) =
∫∞

0 tx−1e−tdt. Parameters µ ∈ S
d−1 and κ > 0 determine the orientation on

the sphere and the concentration, respectively. First consider µ0 = (1, 0, . . . , 0). A random variable
V 0 ∼ VMFd(µ0, κ) can be obtained from the transformation

V 0 =
(

X,
√

1−X2 ·U
)

, (8)

where U is a uniform random variable on the sphere S
d−2 and X has density

f(x) =
(κ/2)d/2−1(1− x2)(d−3)/2 exp(κx)√

π · Id/2−1(κ) · Γ((d− 1)/2)
· I(−1 < x < 1). (9)

To obtain a draw from V ∼ VMFd(µ, κ) with an arbitrary µ, we can rotate V = QV 0 using
an orthonormal matrix Q whose first column is µ. To generate from V 0 in (8), we may draw

U = Z/
√

Z⊤Z from Z ∼ N(0, Id−1) and X independently from (9). In the following, we consider
the use of VWS to draw the univariate random variable X. Before proceeding, we identify a useful
distribution.

Definition 5.1. Denote X ∼ Exp(a,b)(κ) as a “doubly truncated” Exponential random variable with
density

g(x) =
κeκx

eκb − eκa
· I(a < x < b),
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where −∞ < a < b < ∞ and rate κ may be any real number. The CDF and quantile function
corresponding to g are

G(x) =
eκx − eκa

eκb − eκa
·, x ∈ (a, b),

G−1(φ) =
1

κ
log

[

eκa + φ(eκb − eκa)
]

, φ ∈ [0, 1].

■

Returning to target (9), let us decompose f into

f(x) ∝ (1− x2)(d−3)/2

︸ ︷︷ ︸

w(x)

exp(κx) · I(−1 < x < 1)
︸ ︷︷ ︸

g0(x)

,

excluding terms from the normalizing constant, so that w is the weight function and g0 is proportional
to the density of Exp(−1,1)(κ),

g(x) =
κeκx

eκ − e−κ
· I(−1 < x < 1).

Section 5.1 obtains a VWS sampler with this decomposition using a constant majorizer. Section 5.2
replaces the default numerical optimization with custom code, which reduces the amount of com-
putational overhead. Section 5.3 considers a linear majorizer which is substantially more involved
but also obtains substantially lower rejection rates with a moderate number of regions. Codes for
this example are in the folder examples/vmf. C++ functions for the Exp(a,b)(κ) distribution from
Definition 5.1 are given in the file examples/vmf/texp.h.

Remark 5.1. A caveat of this decomposition is that, in the d < 3 case, w(x)→∞ as x approaches
±1. One way to avoid this is by truncating the support to (α0, αN ] = (−1 + ϵ, 1− ϵ] for a small ϵ > 0.
Rejection sampling can proceed using the truncated support if the exclusion of (−1,−1+ϵ]∪(1−ϵ, 1]
is known to have a negligible impact on the result. Otherwise, Raim, Livsey, and Irimata (2025)
mention another strategy where the support is initially truncated and gradually expanded as
rejections are encountered. In this document, we assume (α0, αN ] = (−1, 1] for d > 3 and a fixed
truncation (α0, αN ] = (−1 + ϵ, 1− ϵ] for d < 3.

5.1 Constant Majorizer with Numerical Optimization

We now give our first example demonstrating the vws package. We consider a constant majorizer for
w which uses the default numerical optimization routine to identify appropriate constants wj and
wj. Because this is our first example, the source file for the sampler (examples/vmf/vmf-v1.cpp)
is displayed in its entirety as follows.

1 // [[Rcpp::depends(vws, fntl)]] 1

2 #include "vws.h" 2

3 #include "texp.h" 3

4
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5 // [[Rcpp::export]] 4

6 Rcpp::List r_vmf_pre_v1(unsigned int n, double kappa, double d,

7 unsigned int N, double tol = 0, unsigned int max_rejects = 10000,

8 unsigned int report = 10000)

9 {

10 vws::rejection_args args; 5

11 args.max_rejects = max_rejects;

12 args.report = report;

13

14 const vws::dfdb& w = 6

15 [&](double x, bool log = true) {

16 double out = R_NegInf;

17 if (std::fabs(x) < 1){

18 out = 0.5 * (d - 3) * std::log1p(-std::pow(x, 2));

19 }

20 return log ? out : std::exp(out);

21 };

22

23 fntl::density df = [&](double x, bool log = false) { 7

24 return d_texp(x, kappa, -1, 1, log);

25 };

26 fntl::cdf pf = [&](double q, bool lower = true, bool log = false) {

27 return p_texp(q, kappa, -1, 1, lower, log);

28 };

29 fntl::quantile qf = [&](double p, bool lower = true, bool log = false) {

30 return q_texp(p, kappa, -1, 1, lower, log);

31 };

32

33 vws::UnivariateHelper helper(df, pf, qf); 8

34 vws::RealConstRegion supp(-1, 1, w, helper); 9

35 vws::FMMProposal<double, vws::RealConstRegion> h(supp); 10

36

37 auto lbdd = h.refine(N - 1, tol); 11

38 auto out = vws::rejection(h, n, args); 12

39

40 return Rcpp::List::create( 13

41 Rcpp::Named("draws") = out.draws,

42 Rcpp::Named("rejects") = out.rejects,

43 Rcpp::Named("lbdd") = lbdd

44 );

45 }

1 Ensure that this code links with the vws and fntl packages during compilation.
2 Include the header for C++ framework in vws.
3 Include texp.h, which provides functions described in Definition 5.1.
4 Define a C++ function which invokes the sampler and export it for use in R.
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5 Prepare a struct with extra arguments for rejection sampling.
6 Define the weight function as a lambda. We are careful to avoid nan values that can occur when

x = ±1. Computations are carried out on the log-scale to avoid numerical loss of precision.
7 Specify the density, CDF, and quantile function of the base distribution Exp(−1,1)(κ). The density,

CDF, and quantile function types are defined in Section 4.1.
8 Create a “helper” object as a container for the distribution functions.
9 Construct a RealConstRegion which contains all problem-specific logic of the sampler. We

construct one initial region which contains the entire support (−1, 1].
10 Construct an FMMProposal based on our initial region supp. The first template argument

specifies that the data type of the support is double; the second specifies that regions (which
include the logic of the sampler) are of type RealConstRegion.

11 Request the proposal h to refine itself N-1 times using Algorithm 1 so that there are N regions.
12 Carry out rejection sampling with proposal h.
13 Assemble an Rcpp::List to return to the caller. It contains the draws in element draws, a

vector of rejection counts in rejects where the ith element represents the number of rejections

for the ith draw, and a vector in element lbdd with the N bounds ρ
(1)
+ , . . . , ρ

(N)
+ , where ρ

(j)
+ is

the value achieved with j regions.

The name of the function r_vmf_pre_v1 reflects that this is our first version of the sampler for target
(9), which is a precursor to transformation (8) to obtain a VMF random variable. The following R
snippet builds the C++ code and invokes the sampling function.

> Rcpp::sourceCpp("examples/vmf/vmf-v1.cpp")

> out1 = r_vmf_pre_v1(n = 1000, kappa = 5, d = 4, N = 50, tol = 0.10)

> head(out1$draws)

[1] 0.9056983 0.5062053 0.8663953 0.6000328 0.8686481 0.9627474

Figure 5.1 plots the bound for the rejection probability during the refinement process, which is
captured in the variable out$lbdd. Figure 5.2 plots the empirical distribution of the draws and
compares them to the density.

5.2 Constant Majorizer with Custom Optimization

It is not difficult to find the minimum and maximum of the function w on a given interval for this
example. We can reduce some of the computational burden by providing functions to compute these
two values.

We have

logw(x) =
d− 3

2
log(1− x2),

d

dx
logw(x) = −(d− 3)

x

1− x2
,

d2

dx2
logw(x) = −(d− 3)

1 + x2

(1− x2)2
.
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Figure 5.1: Refinement for VMF example with constant majorizer.
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Figure 5.2: Empirical distribution of draws (solid) versus target (dashed) for VMF example with
constant majorizer.
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Therefore, it is seen that logw(x) is concave when d > 3, convex when d = 2, and constant otherwise.
When d > 3, d

dx
logw(x) is positive for x ∈ (−1, 0), negative for x ∈ (0, 1), and has root x = 0;

therefore, logw(x) is unimodal on (−1, 1) with a maximum at x = 0. When d = 2, the point x = 0
is instead a minimum of logw(x). Finally, w is a constant in the case d = 3. The following code
implements these maximization and minimization routines as lambdas.

vws::optimizer opt1 = [&](const vws::dfdb& w, double lo, double hi, bool log)

{

double x = 0;

if (hi < 0) {

x = hi;

} else if (lo > 0){

x = lo;

}

double out = w(x, true);

return log ? out : std::exp(out);

};

vws::optimizer opt2 = [&](const vws::dfdb& w, double lo, double hi, bool log)

{

double w_lo = w(lo, true);

double w_hi = w(hi, true);

double out = std::min(w_lo, w_hi);

return log ? out : std::exp(out);

};

The following snippet creates pointers maxopt and minopt for the maximizer and minimizer functions.
The condition d > 3 is checked to determine which of opt1 and opt2 is the maximizer and which is
the minimizer.

vws::optimizer* maxopt;

vws::optimizer* minopt;

if (d >= 3) {

maxopt = &opt1;

minopt = &opt2;

} else {

minopt = &opt1;

maxopt = &opt2;

}

Finally, we create the initial region supp. The maxopt and minopt functions are provided to the
constructor as additional arguments. Note that we dereference our pointers and pass the function
objects themselves (which are taken as references by the constructor).
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vws::UnivariateHelper helper(df, pf, qf);

vws::RealConstRegion supp(-1, 1, w, helper, *maxopt, *minopt);

The following R snippet builds the C++ code and invokes the sampling function.

> Rcpp::sourceCpp("examples/vmf/vmf-v2.cpp")

> out2 = r_vmf_pre_v2(n = 1000, kappa = 5, d = 4, N = 50, tol = 0.10)

> head(out2$draws)

[1] 0.7548988 0.9020145 0.3765028 0.5477933 0.8755307 0.9491774

5.3 Linear Majorizer

We noted in Section 5.2 that w is log-convex when d < 3, log-concave when d > 3, and a
constant otherwise. Therefore, we can majorize w with exponentiated linear functions of the form
wj(x) = exp{βj0 + βj1x}. This yields the expression

ξj =
∫ αj

αj−1

wj(x)g(x)dx =
κ exp{βj0}

(κ+ βj1)(e
καN − eκα0)

{

exp{(κ+ βj1)αj} − exp{(κ+ βj1)αj−1}
}

.

The proposal h is then a finite mixture h(x) =
∑N

j=1 πjgj(x) with

gj(x) = wj(x)g(x) I{x ∈ Dj}/ξj

=
(κ+ βj1) exp{(κ+ βj1)x}

exp{(κ+ βj1)αj} − exp{(κ+ βj1)αj−1}
· I(αj−1 < x ≤ αj),

the density of Exp(αj−1,αj ](κ+ βj1). Remark 2.3 is used to select the expansion point c to determine
coefficients for the majorizer in the log-concave case, with

Mj(s) =
∫ αj

αj−1

esxg(x)dx =
esαj − esαj−1

s(αj − αj−1)
.

To compute (3), we assume the “trivial” minorizer wj(x) = w(x) so that

ξ
j

=
∫ αj

αj−1

w(x)g(x)dx =
∫ αj

αj−1

(1− x2)(d−3)/2κeκx

eκαN − eκα0

dx,

which we compute using numerical integration. The proposal is implemented with the vws package by
inheriting from the abstract Region base class (Section 4.3) and implementing each of the functions
using the expressions above. We name the resulting subclass LinearVWSRegion; its complete code is
given in examples/vmf/LinearVWSRegion.h. The code in examples/vmf/vmf-v3.cpp instantiates
a proposal with regions of type LinearVWSRegion, invokes rejection sampling, and returns an
Rcpp::List with the results. This code is displayed below.
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1 // [[Rcpp::depends(vws, fntl)]]

2 #include "vws.h"

3 #include "LinearVWSRegion.h"

4

5 // [[Rcpp::export]]

6 Rcpp::List r_vmf_pre_v3(unsigned int n, double kappa, double d, unsigned int N,

7 double tol = 0, unsigned int max_rejects = 10000,

8 unsigned int report = 10000)

9 {

10 vws::rejection_args args;

11 args.max_rejects = max_rejects;

12 args.report = report;

13

14 LinearVWSRegion supp(-1, 1, kappa, d);

15 vws::FMMProposal<double, LinearVWSRegion> h(supp);

16

17 auto lbdd = h.refine(N - 1, tol);

18 auto out = vws::rejection(h, n, args);

19

20 return Rcpp::List::create(

21 Rcpp::Named("draws") = out.draws,

22 Rcpp::Named("rejects") = out.rejects,

23 Rcpp::Named("lbdd") = lbdd

24 );

25 }

The following R snippet builds the C++ code and invokes the sampling function.

> Rcpp::sourceCpp("examples/vmf/vmf-v3.cpp")

> out3 = r_vmf_pre_v3(n = 1000, kappa = 5, d = 4, N = 50, tol = 0.01)

> head(out3$draws)

[1] 0.4913948 0.7346177 0.8208684 0.8185937 0.3202652 0.9625593

Remark 5.2. This code will fail if we attempt to use it with d = 2 as described in Remark 5.2. Here,
logw(x)→∞ as x→ ±1 so that the first and last regions cannot be bounded by an exponentiated
linear form. This can be averted by truncating the support to (−1 + ϵ, 1− ϵ] for a small ϵ > 0. ■

Figure 5.2 plots the empirical distribution of the draws and compares them to the density. Figure 5.4
plots the bound for the rejection probability for this sampler after each step of refining, along with
those from the previous two versions. A substantial improvement in efficiency is seen here; fewer
regions are needed to achieve a small rejection probability. Although versions 1 and 2 of the sampler
are based on the same proposal, the changes to their bounds are seen to differ due to the randomness
in knot selection.
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Figure 5.3: Empirical distribution of draws (solid) versus target (dashed) for VMF example with
linear majorizer.
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Figure 5.4: Refinement for VMF example with constant majorizer.
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6 Example: Lognormal-Normal Conditional Distribution

Suppose an official statistics agency collects sensitive data from respondents in a survey or census.
The agency then seeks to disseminate a tabulation to data users while protecting the privacy of the
respondents. The agency can consider adding random noise γ to the tabulation Y and releasing
Z = Y + γ. This setting is the basis of a modeling scenario considered by Raim (2021), Irimata et
al. (2022), and Janicki et al. (2025+) where the distribution for γ has been selected by the agency
and the data have been disseminated; the objective in these works is to carry out inference on the
unobserved Y given observed Z = z. The field of differential privacy studies the design of noise
mechanisms (including distributions of γ in the present setting) to satisfy mathematical criteria for
privacy (e.g., Dwork and Roth 2014). Abowd et al. (2022) describe work by the U.S. Census Bureau
to implement differential privacy in the release of data from the decennial census. Our present
motivation is to consider a simple but nontrivial sampling problem that arises in analysis of the
released z.

Suppose Y and γ are independently distributed with Y ∼ Lognormal(µ, σ2) and γ ∼ N(0, λ2). The
variance λ2 is assumed to be known and provided with the noisy data. Such transparency into the
noise mechanism is often featured in differential privacy.

Suppose the target distribution is the conditional [Y | Z = z, µ, σ2] whose density is given by

f(y | z, µ, σ2) ∝ 1

λ
√

2π
exp

{

− 1

2λ2
(z − y)2

}

· 1

yσ
√

2π
exp

{

− 1

2σ2
(log y − µ)2

}

I(y > 0)

∝ 1

λ
√

2π
exp

{

− 1

2λ2
(z − y)2

}

︸ ︷︷ ︸

g(y)

· 1
y

exp
{

− 1

2σ2
(log y − µ)2

}

I(y > 0)
︸ ︷︷ ︸

w(y)

. (10)

We have decomposed f into weight function w(y) = 1
y

exp
{

− 1
2σ2 (log y − µ)2

}

I{y ∈ (0,∞)}, from
the Lognormal component—dropping some of the terms in its normalizing constant—and base
distribution whose density g is N(z, λ2). The conditional [y | σ2,µ,z] in (10) would be encountered
in a Gibbs sampler for the posterior distribution [y,µ, σ2 | z], based on an observed sample
z = (z1, . . . , zn) with augmented data y = (y1, . . . , yn). The remaining conditionals [µ | σ2,y,z]
and [σ2 | µ,y,z] may be straightforward to generate if a convenient prior distribution is selected;
therefore, we will focus on (10).

Before proceeding, let us fix the following values for the parameters.

> mu = 5

> sigma = sqrt(0.5)

> lambda = 10

Jointly draw values of Y and Z from the model; Z will be observed by users of the data while Y is
unobserved and the objective for inference.

> source("examples/ln-norm/functions.R")

> y_true = rlnorm(1, mu, sigma)

> z = rnorm(1, y_true, lambda)
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> vws::printf("y_true = %g and z = %g\n", y_true, z)

y_true = 57.9052 and z = 62.9898

Coding the target density is helpful to evaluate the distribution of the draws. To compute the
normalizing constant, we use Hermite quadrature via the gauss.quad function in the statmod

package (Smyth 2005). The integral ψ =
∫∞

−∞ q(x)e−x2

dx is approximated as ψ ≈ ∑Q
j=1 ωjq(xj) using

quadrature points x1, . . . , xQ and weights ω1, . . . , ωQ; to identify the function q, we have

ψ =
∫ ∞

−∞
w(y)g(y)dy

=
∫ ∞

−∞
I{y > 0} · 1

y
exp

{

− 1

2σ2
(log y − µ)2

}
1

λ
√

2π
exp

{

− 1

2λ2
(z − y)2

}

dy

=
∫ ∞

−∞
I
(

z >
√

2λx
)

· 1

z −
√

2λx
exp

{

− 1

2σ2

[

log
(

z −
√

2λx
)

− µ
]2
}

1√
π
e−x2

dx,

using the transformation y = z −
√

2λx, so that

q(x) = I
(

z >
√

2λx
)

· 1

z −
√

2λx
exp

{

− 1

2σ2

[

log
(

x−
√

2λx
)

− µ
]2
}

1√
π

is used with gauss.quad.

We will consider three variations of a VWS sampler, progressing from easier-to-implement to more
computationally efficient. Section 6.1 considers a constant majorizer where the constant for each
region is obtained by numerical optimization. Section 6.2 replaces numerical optimization with
code for a closed-form solution. Section 6.3 makes use of a linear majorizer which subclasses the
abstract Region class. All codes for this example are in the folder examples/ln-norm. The function
d_target defined in examples/ln-norm/functions.R computes the target density.

6.1 Constant Majorizer with Numerical Optimization

We may adapt the code from Section 5.1 to the target density in the present problem. The present
weight function may be coded as follows.

const vws::dfdb& w = [&](double x, bool log = true) {

double out = R_NegInf;

if (x > 0) {

double sigma2 = std::pow(sigma, 2)

out = -std::log(x) - std::pow(std::log(x) - mu, 2) / (2 * sigma2);

}

return log ? out : std::exp(out);

};

The base distribution’s density, CDF, and quantile function are coded as lambdas and packaged
into a UnivariateHelper object. Here we can make use of the implementations of the normal
distribution in R’s API.
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fntl::density df = [&](double x, bool log = false) {

return R::dnorm(x, z, lambda, log);

};

fntl::cdf pf = [&](double q, bool lower = true, bool log = false) {

return R::pnorm(q, z, lambda, lower, log);

};

fntl::quantile qf = [&](double p, bool lower = true, bool log = false) {

return R::qnorm(p, z, lambda, lower, log);

};

vws::UnivariateHelper helper(df, pf, qf);

The following R snippet builds the C++ code and invokes the sampling function.

> Rcpp::sourceCpp("examples/ln-norm/ln-norm-v1.cpp")

> out1 = r_ln_norm_v1(n = 1000, z, mu, sigma, lambda, N = 50, tol = 0.10)

> head(out1$draws)

[1] 63.80234 73.74232 63.03024 55.11748 65.16079 57.30657

Figure 6.1 plots the bound for the rejection probability during the refinement process, which is
captured in the variable out$lbdd. Figure 6.2 plots the empirical distribution of the draws and
compares them to the density. It displays an interval based on the 0.025 and 0.975 quantiles of the
distribution [Y | Z = z] approximated from the empirical quantiles of the draws. The value of the
observed z and the latent y are also highlighted for reference.
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Figure 6.1: Refinement for lognormal-normal example with constant majorizer.
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Figure 6.2: Empirical distribution of draws (solid black) versus target (dashed black) for lognormal-
normal example with constant majorizer. Observed value of z (blue line) and latent
value of y (red line) are displayed along with a 95% interval (blue ribbon) based on
draws from [Y | Z = z].

6.2 Constant Majorizer with Custom Optimization

The log-weight function can be both maximized and minimized in closed form. Coding it explicitly
reduces computational overhead and avoids convergence issues from numerical optimization. This
section will demonstrate how to override the default optimize method of RealConstRegion.

We have first derivative

d

dy
logw(y) = −1

y

(

1 +
log y − µ

σ2

)

,

for y ∈ (0,∞). Let y∗ = exp(µ− σ2); it is seen that d
dy

logw(y) is positive when y < y∗, negative

when y > y∗, and takes value zero at y = y∗. Therefore, logw(y) is unimodal and y∗ maximizes
logw(y) with

logw(y∗) = − log[exp(µ− σ2)]− (log[exp(µ− σ2)]− µ)2

2σ2

= −µ+ σ2 − (σ2)2

2σ2

= −µ+ σ2/2.

Therefore, on a region Dj = (αj−1, αj] where both endpoints are smaller than y∗, the maximum of
logw(y) is logw(αj) and the minimum is logw(αj−1). On the other hand, for a region where both
endpoints are larger than y∗, the maximum of logw(y) is logw(αj−1) and the minimum is logw(αj).
Figure 6.3 displays a plot of logw(y) with our selected µ and σ2 values.

> y_star = exp(mu - sigmaˆ2)

> w_star = -mu + sigmaˆ2 / 2
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> vws::printf("Maximizer y = %g obtains value log w(%g) = %g.\n",

+ y_star, y_star, w_star)

Maximizer y = 90.0171 obtains value log w(90.0171) = -4.75.
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Figure 6.3: Weight function for Lognormal-Normal example on the log-scale, with the maximizer
y∗ = exp(µ− σ2) highlighted.

The maximizer may be coded as follows.

const vws::optimizer& maxopt = [&](const vws::dfdb& w, double lo,

double hi, bool log)

{

double y_star = exp(mu - sigma2);

double y = y_star;

if (y_star > hi) {

y = hi;

} else if (y_star < lo) {

y = lo;

}

double out = w(y, true);

return log ? out : exp(out);

};

Here is code for the minimizer.

const vws::optimizer& minopt = [&](const vws::dfdb& w, double lo,

double hi, bool log)
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{

double lwa = w(lo, true);

double lwb = w(hi, true);

double out = std::min(lwa, lwb);

return log ? out : exp(out);

};

We can construct the proposal using a single RealConstRegion that represents the support; the
maxopt and minopt arguments are specified here.

vws::RealConstRegion supp(0, R_PosInf, w, helper, maxopt, minopt);

The following R snippet builds the C++ code and invokes the sampling function.

> Rcpp::sourceCpp("examples/ln-norm/ln-norm-v2.cpp")

> out2 = r_ln_norm_v2(n = 1000, z, mu, sigma, lambda, N = 50, tol = 0.10)

> head(out2$draws)

[1] 65.52465 54.89391 70.52306 53.60235 79.18636 69.74638

6.3 Linear Majorizer

We can obtain a linear majorizer by noting the convexity of logw(y). Its second derivative is seen to
be

d2

dy2
logw(y) = − 1

y2

(

1 +
log y − µ− 1

σ2

)

,

which has root y0 = exp{µ−σ2 + 1}. The weight function w is log-concave for y < y0 and log-convex
for y > y0. This is plotted in Figure 6.4. We will assume that there are two initial regions D1 = (0, y0]
and D2 = (y0,∞] so that all partitions considered thereafter consist of regions on which logw(y) is
entirely concave or convex.

> y0 = exp(mu - sigmaˆ2 + 1)

> printf("Convexity changes at y = %g.\n", y0)

Convexity changes at y = 244.692.

As in Section 5.3, we can majorize w with exponentiated linear functions of the form wj(y) =
exp{βj0 + βj1y}. Here, we also assume a minorizer of the form wj(y) = exp{β

j0
+ β

j1
y}. Before

proceeding, the following remark gives an integral that will be used several times.
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Figure 6.4: Weight function for Lognormal-Normal example on the log-scale, highlighting y0 =
exp(µ− σ2 + 1) where there is a change in convexity.

Remark 6.1. Let ϕ(· | µ, σ2) and Φ(· | µ, σ2) be the density and CDF of Y ∼ N(µ, σ2), respectively.
If a < b are scalars (possibly infinite), then

∫ b

a
etyϕ(y | µ, σ2)dy = exp(µt+ t2σ2/2)

{

Φ(b | µ+ tσ2, σ2)− Φ(a | µ+ tσ2, σ2)
}

= exp(µt+ t2σ2/2) P(a < T ≤ b).

where T ∼ N(µ + tσ2, σ2). The special case a = −∞ and b = ∞ yields the moment-generating
function M(t) = exp(µt+ t2σ2/2) of Y . ■

Remark 6.1 yields the expressions

ξj =
∫ αj

αj−1

wj(y)g(y)dy

= exp{βj0}
∫ αj

αj−1

exp{βj1y}
1

λ
√

2π
exp

{

− 1

2λ2
(y − z)2

}

dy

= exp
{

β0j + zβ1j +
1

2
β

2

1jλ
2
}

P(αj−1 < T ≤ αj),

where T ∼ N(z + β1jλ
2, λ2), and similarly,

ξ
j

= exp
{

β
0j

+ zβ
1j

+
1

2
β2

1j
λ2
}

P(αj−1 < T ≤ αj),

where T ∼ N(z + β
1j
λ2, λ2). The proposal h is a finite mixture h(y) =

∑N
j=1 πjgj(y) with

gj(y) = wj(y)g(y) I{y ∈ Dj}/ξj

= exp{βj0 + βj1y}
1

λ
√

2π
exp

{

− 1

2λ2
(y − z)2

}

· I(αj−1 < y ≤ αj)/ξj

=

1
λ

√
2π

exp
{

− 1
2λ2 (y − z − λ2β1j)

2
}

P(αj−1 < T ≤ αj)
· I(αj−1 < y ≤ αj),
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which is the density of N(z + λ2β1j, λ
2) truncated to the interval (αj−1, αj]. Remark 2.3 is used to

select the expansion point c to determine coefficients for the majorizer in the log-concave case and
the minorizer in the log-convex case, with

Mj(s) = exp(zs+ s2λ2/2)
Φ(αj | z + sλ2, λ2)− Φ(αj−1 | z + sλ2, λ2)

Φ(αj | z, λ2)− Φ(αj−1 | z, λ2)
.

Adapting the code from Section 5.3 to the present problem, we implement LinearVWSRegion as a sub-
class of the abstract Region base class (Section 4.3). See the file examples/ln-norm/LinearVWSRegion.h.
The code in examples/ln-norm/ln-norm-v3.cpp instantiates a proposal from this region type and
proceeds with rejection sampling. This code is displayed below.

1 // [[Rcpp::depends(vws, fntl)]]

2 #include "vws.h"

3 #include "LinearVWSRegion.h"

4

5 // [[Rcpp::export]]

6 Rcpp::List r_ln_norm_v3(unsigned int n, double z, double mu, double sigma,

7 double lambda, double lo, double hi, unsigned int N, double tol = 0,

8 unsigned int max_rejects = 10000, unsigned int report = 10000)

9 {

10 vws::rejection_args args;

11 args.max_rejects = max_rejects;

12 args.report = report;

13

14 // Initially partition at y0 where convexity of the weight function changes

15 double y0 = exp(mu - std::pow(sigma, 2) + 1);

16 LinearVWSRegion r1(lo, y0, z, mu, sigma, lambda);

17 LinearVWSRegion r2(y0, hi, z, mu, sigma, lambda);

18 vws::FMMProposal<double, LinearVWSRegion> h({r1, r2});

19

20 auto lbdd = h.refine(N - 2, tol);

21 auto out = vws::rejection(h, n, args);

22

23 return Rcpp::List::create(

24 Rcpp::Named("draws") = out.draws,

25 Rcpp::Named("rejects") = out.rejects,

26 Rcpp::Named("lbdd") = lbdd

27 );

28 }

The following R snippet builds the C++ code and invokes the sampling function.

> Rcpp::sourceCpp("examples/ln-norm/ln-norm-v3.cpp")

> out3 = r_ln_norm_v3(n = 1000, z, mu, sigma, lambda, lo = 1e-8, 1e8,

+ N = 50, tol = 0.10)

> head(out3$draws)
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[1] 58.33451 76.48139 65.70251 76.28704 70.20251 70.24626

Figure 6.5 plots the empirical distribution of the draws and compares them to the density. Figure 6.6
plots the bound for the rejection probability for this sampler after each step of refining, along with
those from the previous two versions. A substantial improvement in efficiency is seem here; fewer
regions are needed to achieve a small rejection probability. Although versions 1 and 2 of the sampler
are based on the same proposal, the changes to their bounds are seen to differ due to randomness in
knot selection.
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Figure 6.5: Empirical distribution of draws (solid) versus target (dashed) for lognormal-normal
example with constant majorizer.
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Figure 6.6: Refinement for lognormal-normal example with constant majorizer.
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7 Example: Bessel Count Distribution

Where Sections 5 and 6 considered continuous distributions, we now generate from a discrete target.
The Bessel distribution (Yuan and Kalbfleisch 2000) has density

f(x) =
(λ/2)2x+ν

Iv(λ) · x! · Γ(x+ ν + 1)
· I{x ∈ N}, ν > −1, λ > 0,

where N = {0, 1, 2, . . .} is the set of nonnegative integers and where

Iv(λ) =
∞∑

x=0

(λ/2)2x+ν

x! · Γ(x+ ν + 1)

is a modified Bessel function of the first kind. Let X ∼ Bessel(λ, ν) denote a random variable with
density f . Devroye (2002) develops a rejection sampling method to generate draws of X using
properties of the distribution. Here we implement several VWS samplers which do not require as
much insight. Our approach is to decompose the density into

f(x) =
(λ/2)2x+ν

Iv(λ) · x! · Γ(x+ ν + 1)
· I{x ∈ N}

∝ 1

Γ(x+ ν + 1)
︸ ︷︷ ︸

w(x)

(λ/2)2xe−λ2/4

x!
I{x ∈ N}

︸ ︷︷ ︸

g(x)

,

disregarding several terms in the normalizing constant, so that g is the density of a Poisson(λ2/4)
distribution and the weight function is specified by logw(x) = − log Γ(x+ ν + 1).

Before proceeding, let us fix values of λ and ν. Let us also load some useful R functions from the
script examples/bessel/bessel.R; primarily, d_bessel which computes the target density.

> source("examples/bessel/bessel.R")

> lambda = 10

> nu = 2

Three variations of VWS samplers are considered in subsections. Section 7.1 uses a constant
majorizer obtained by numerical optimization. Section 7.2 replaces numerical optimization with a
closed-form solution. Section 7.3 uses a linear majorizer and subclasses the abstract Region class.
All codes for this example are in the folder examples/bessel. The function d_bessel defined in
examples/bessel/bessel.R computes the target density.

7.1 Constant Majorizer with Numerical Optimization

The weight function may be coded as a lambda in C++ as follows.

const vws::dfdb& w = [&](double x, bool log = true) {

double out = -std::lgamma(x + nu + 1);
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return log ? out : std::exp(out);

};

The base distribution’s density, CDF, and quantile function may be supplied as a UnivariateHelper

object using Poisson functions in the R API.

fntl::density df = [&](double x, bool log = false) {

return R::dpois(x, mean, log);

};

fntl::cdf pf = [&](double q, bool lower = true, bool log = false) {

return R::ppois(q, mean, lower, log);

};

fntl::quantile qf = [&](double p, bool lower = true, bool log = false) {

return R::qpois(p, mean, lower, log);

};

vws::UnivariateHelper helper(df, pf, qf);

The following R snippet builds the C++ code and invokes the sampling function.

> Rcpp::sourceCpp("examples/bessel/bessel-v1.cpp")

> out1 = r_bessel_v1(n = 1000, lambda, nu, N = 50, tol = 0.10)

> head(out1$draws)

[1] 3 4 4 3 5 4

Figure 7.1 plots the bound for the rejection probability during the refinement process, which is
captured in the variable out$lbdd. Figure 7.2 plots the empirical distribution of the draws and
compares them to the target probability mass function (pmf).
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Figure 7.1: Refinement for lognormal-normal example with constant majorizer.
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Figure 7.2: Empirical distribution of draws (bars) versus target (points) for Bessel example with
constant majorizer.

7.2 Constant Majorizer with Custom Optimization

We can make several improvements to the default numerical majorizer by coding it explicitly. Note
that logw(x) = − log Γ(x+ ν + 1) is a decreasing function in x so that numerical optimization is
not necessary. Therefore,

logw(αj) ≤ logw(x) ≤ logw(αj−1), x ∈ Dj.

If the endpoints are not integers, we can improve the bounds by restricting consideration to integers,
using ⌊αj−1⌋ + 1 and ⌊αj⌋ to obtain the maximizer and minimizer, respectively. The following
functions put this into practice.

const vws::optimizer& maxopt = [](const vws::dfdb& w, double lo,

double hi, bool log)

{

if (lo < 0 && hi < 0) { Rcpp::stop("Did not code this case"); }

double x = (lo < 0) ? 0 : std::floor(lo) + 1;

double out = w(x, true);

return log ? out : std::exp(out);

};

const vws::optimizer& minopt = [](const vws::dfdb& w, double lo,

double hi, bool log)

{

if (lo < 0 && hi < 0) { Rcpp::stop("Did not code this case"); }

double x = std::isinf(hi) ? hi : std::floor(hi);

double out = w(x, true);

return log ? out : std::exp(out);

};
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We can construct the proposal using a single IntConstRegion that represents the support; the
maxopt and minopt arguments are specified here. Also note that we have specified a lower endpoint
α0 below zero to ensure that the support (α0, αN ] contains zero.

vws::IntConstRegion supp(-0.1, R_PosInf, w, helper, maxopt, minopt);

The following R snippet builds the C++ code and invokes the sampling function.

> Rcpp::sourceCpp("examples/bessel/bessel-v2.cpp")

> out2 = r_bessel_v2(n = 1000, lambda, nu, N = 50, tol = 0.10)

> head(out2$draws)

[1] 5 4 3 5 1 5

7.3 Linear Majorizer

Our decomposition of f into the given w and g lends itself well to a linear majorizer because the
function logw(x) = − log Γ(x + ν + 1) is log-concave. In fact, a theorem attributed to Bohr and
Mollerup (1922) states that the function q(x) = Γ(x) is uniquely characterized as the only function
on (0,∞) which is log-convex with q(1) = 1 and q(x + 1) = xq(x). The following remark is also
useful to formulate the linear majorizer.

Remark 7.1. By rearranging equation 6.5.13 of Abramowitz and Stegun (1972), the cdf of T ∼
Poisson(λ) can be written as

F (x | λ) = e−λ
n∑

k=0

λk

k!
=

Γ(x+ 1, λ)

Γ(x+ 1)
, x ∈ {1, 2, . . .},

where Γ(c, z) =
∫∞

z tc−1e−tdt and Γ(c) = Γ(c, 0). Therefore, for a, b ∈ R with 0 ≤ a ≤ b and
T ∼ Poisson(λ),

P(a < T ≤ b) = P(⌊a⌋+ 1 ≤ X ≤ ⌊b⌋)

=
⌊b⌋
∑

x=⌊a⌋+1

e−λλx

x!

=
⌊b⌋
∑

x=0

e−λλx

x!
−

⌊a⌋
∑

x=0

e−λλx

x!

=
Γ(⌊b⌋+ 1, λ)

Γ(⌊b⌋+ 1)
− Γ(⌊a⌋+ 1, λ)

Γ(⌊a⌋+ 1)
.

To verify the first equality, if a is an integer then

P(a < T ≤ b) = P(T ∈ {a+ 1, . . . , ⌊b⌋})
= P(T ∈ {⌊a⌋+ 1, . . . , ⌊b⌋}) = P(⌊a⌋+ 1 < T ≤ ⌊b⌋);
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otherwise, if a is not an integer then

P(a < T ≤ b) = P(T ∈ {⌈a⌉, . . . , ⌊b⌋})
= P(T ∈ {⌊a⌋+ 1, . . . , ⌊b⌋}) = P(⌊a⌋+ 1 < T ≤ ⌊b⌋).

■

We have the expression

ξj =
∫ αj

αj−1

wj(x)g(x)dν(x)

= exp{βj0}
∑

k∈(αj−1,αj ]

exp{βj1x}
(λ2/4)xe−λ2/4

x!

= exp

(

βj0 −
λ2

4
+
λ2

4
eβj1

)

P(αj−1 < T ≤ αj),

where T ∼ Poisson(eβj1λ2/4), and similarly,

ξ
j

= exp

(

βj0 −
λ2

4
+
λ2

4
eβj1

)

P(αj−1 < T ≤ αj).

where T ∼ Poisson(e
β

j1λ2/4). The proposal h is a finite mixture h(x) =
∑N

j=1 πjgj(x) with

gj(x) = wj(x)g(x) I{x ∈ Dj}/ξj

=
exp{βj0 + βj1x}(λ2/4)xe−λ2/4/x!

exp
(

βj0 − λ2

4
+ λ2

4
eβj1

)

P(αj−1 < T ≤ αj)
I{x ∈ Dj}

=
1

x!

(

λ2

4
eβj1

)x

exp

(

−λ
2

4
eβj1

)

1

P(αj−1 < T ≤ αj)
I(αj−1 < x ≤ αj),

which is the density of Poisson(λ2

4
eβj1) truncated to the interval (αj−1, αj]. Remark 2.3 is used

to select the expansion point c to determine coefficients for the majorizer in the log-concave case,
with

Mj(s) =
∫ αj

αj−1

esxg(x)dν(x)

= exp(−λ2/4) exp(esλ2/4)
∑

x∈(αj−1,αj ]

1

x!
exp{−esλ2/4}(esλ2/4)x

= exp

{

−λ
2

4
+ esλ

2

4

}

P(αj−1 < T ≤ αj),

where T ∼ Poisson(esλ2/4).

The following R snippet builds the C++ code and invokes the sampling function.
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> Rcpp::sourceCpp("examples/bessel/bessel-v3.cpp")

> out3 = r_bessel_v3(n = 1000, lambda, nu, lo = -0.1, hi = 1e5, N = 50,

+ tol = 0.10)

> head(out3$draws)

[1] 5 7 3 2 3 3

Figure 7.3 plots the bound for the rejection probability for this sampler after each step of refining,
along with that of the previous two versions. A substantial improvement in efficiency is seen here;
fewer regions are needed to achieve a small rejection probability. Although versions 1 and 2 of
the sampler are based on the same proposal, the changes to their bounds are seen to differ due to
randomness in knot selection. Figure 7.4 and Figure 7.5 display the three versions of majorized
weight functions and proposal distributions, respectively, after refinement. It is seen that the
majorizer from Section 7.1 does not provide a tight bound, even with many knots, because our
numerical optimization is not specific to the integers in the support. This is rectified by the manual
optimization from Section 7.2. The linear majorizer provides a tight bound with fewer knots.

Because the mass of our selected Bessel(λ, ν) distribution is focused on a relatively small set of
integers, the second and third versions of the proposal can be made practically equivalent to the
target with a sufficient number of regions. After being refined to this point, candidates are rarely
discarded in rejection sampling.
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Figure 7.3: Refinement for Bessel example with three majorizers.
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Figure 7.4: Majorizers (on the log-scale) for Bessel example for three sampler versions. The blue
curve with is the majorizer with a blue dot marking the right endpoint of each region.
The black triangle displays the value of logw(x) at integers x ∈ N.
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Figure 7.5: Proposal density (bars) for Bessel example for three sampler versions. Triangles display
the values of f(x), x ∈ N.
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