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The welchADF Package for Robust
Hypothesis Testing in Unbalanced
Multivariate Mixed Models with
Heteroscedastic and Non-normal Data
by Pablo J. Villacorta

Abstract A new R package is presented for dealing with non-normality and variance heterogeneity of
sample data when conducting hypothesis tests of main effects and interactions in mixed models. The
proposal departs from an existing SAS program which implements Johansen’s general formulation of
Welch-James’s statistic with approximate degrees of freedom, which makes it suitable for testing any
linear hypothesis concerning cell means in univariate and multivariate mixed model designs when
the data pose non-normality and non-homogeneous variance. Improved type I error rate control is
obtained using bootstrapping for calculating an empirical critical value, whereas robustness against
non-normality is achieved through trimmed means and Winsorized variances. A wrapper function
eases the application of the test in common situations, such as performing omnibus tests on all effects
and interactions, pairwise contrasts, and tetrad contrasts of two-way interactions. The package is
demonstrated in several problems including unbalanced univariate and multivariate designs.

Introduction

The problem of testing for mean equality between several groups can be accomplished using classical
techniques such as Student’s t test, when only two groups are compared, or ANOVA when more than
two groups are involved. Both of them have been widely applied in the past in a number of areas
ranging from ecology and biology to psychology, social sciences and medicine (Levin, 1997; Coates
and McKenzie-Mohr, 2010), although their use tends to decrease for the reasons mentioned next.

In order for these approaches to work well, the data must satisfy three conditions, namely inde-
pendence, normality and homoscedasticity of the errors. While ANOVA is known to be robust to
small departures from normality, homogeneity of population variances is crucial as concluded by
simulation studies in which these methods have been found to exhibit type I error rates oscillating
from too conservative to extremely liberal, specially in unbalanced designs leading to very heteroge-
neous cell variances. The behaviour depends on the relation between the variance of the cell with the
fewest observations and the number of observations contained in it (Milligan et al., 1987). Indeed,
data from a number of experiments conducted in the aforementioned research fields often exhibit
non-homogeneous variances. This is not a problem for one-way designs since the built-in function
oneway.test in package stats is able to account for different variances. Unfortunately, real-world
studies usually require more complex designs, like the typical mixed between x within-subjects designs
for clinical trials involving either animals or persons. For both reasons, the application of simple
ANOVA in serious analyses of experimental data is nowadays not very common.

A distinction should be made here on what homogeneity of variances means depending on the
design being considered (Lix and Keselman, 1995). In univariate settings with between-subjects factors
only, all the cell variances should be equal, while in multivariate settings, it refers to the equality of the
population covariance matrices across all cells. In mixed designs with at least one between-subjects
factor, a set of orthonormalized contrasts on the repeated measures must have common covariance
matrices (sphericity assumption), and all those matrices must be equal across all cells of the between-
subject factors. When both conditions are met, it is said that multisample sphericity holds (Huynh,
1978).

A number of alternatives have been proposed to overcome the parametric restrictions (Higgins,
2003). Traditionally the most widely used choices have been nonparametric tests such as Mann-
Whitney-Wilcoxon rank sum test and Kruskal test for two groups, or Wilcoxon signed-rank test and
Friedman test (for which paired versions exist) for more than two groups. However, they cannot
handle multiple factors or interactions. Generalized Linear Models can deal with multiple factors and
interactions with non-normal data, but require specifying the link function and are unable to handle
repeated measures. Since our study focuses on the most general models, i.e. those with between-
subjects and within-subjects interactions, the aforementioned tests are not useful. The generalization
of Mixed Models, namely Generalized Linear Mixed Models (Bolker et al., 2009), do constitute a valid
alternative. They present some drawbacks, though, such as being complex to apply and interpret,
not very widely available, and requiring a particular treatment for each problem since a suitable link
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function must be supplied in each case, which is not always possible.

Two surveys on nonparametric techniques in experimental design can be found in Sawilowsky
(1990); Salazar-Alvarez et al. (2014). In these works, several rank transformation variants are empha-
sized, as they constitute the most widely used nonparametric approach for detecting interactions
Conover (2012). Among them, the Aligned Rank Transform (Higgins and Tashtoush, 1994), for which
an implementation in R has been made available in package ART (Villacorta, 2015), is one of the best
performing for this task, keeping type I error rates close to the theoretical significance level while
preserving good power. Although it has been applied to a split-plot design (one between- and one
within-subjects factor) in Beasley (2002), showing good type I error rates and power, it lacks a general
unified formulation for mixed models with any number of between- and within-subjects factors
that also works in unbalanced and multivariate settings. Erce-Hurn and Mirosevich (2008); Ruscio
and Roche (2012) constitute two more broad surveys (the latter dealing with variance heterogeneity
in depth) covering both classical nonparametric methods and recent research efforts like the one
implemented here, which is cited in both works.

Some other valid alternatives for nonparametric analysis of any mixed model are the Improved
General Approximation (IGA), the generalization of Welch-James (WJ) test statistic, the Kenward-
Roger correction with mixed models (KR), and the modified Brown and Forsythe (MBF) procedure.
They all do a correction for the degrees of freedom to account for heterogeneous variances, hence the
name ADF for approximate degrees of freedom. The IGA (Huynh, 1978) was specifically developed to
account for multisample sphericity violations in repeated measures designs by adjusting the critical
value, and was generalized to any mixed model by Algina (1997). Similarly, Welch’s non-pooled
statistic with approximate degrees of freedom (ADF) (Welch, 1951) was also conceived for this purpose,
using the sample data to estimate the error degrees of freedom. Several non-pooled ADF statistics
have been proposed later but all can be derived from the general matrix formulation of Welch’s
statistic given by Lix and Keselman (1995) based on Johansen (1980), which makes it applicable for
univariate and multivariate mixed models with an arbitrary number of effects. Lix and Keselman
(1995) shows how the same statistic can be employed in different models for both omnibus contrasts
(testing whether a given effect is significant or not) and pairwise comparisons for a given effect (for
every pair of categories of a given effect, testing whether the response is significantly different for one
of the categories against one another). Generally, the IGA and WJ statistic perform similarly; however
a slight advantage favorable to WJ has been reported by Algina (1997) in some contexts. The WJ ADF
approach has been successfully tested in nonparametric analysis of a variety of mixed models; see
Keselman et al. (2003) and references therein. The KR correction for the degrees of freedom can be
implemented on top of a conventional mixed model and performs similarly to the MBF procedure
with slight advantage for the latter (Vallejo and Livacic-Rojas, 2005). Both yield reasonably good
results. With respect to the comparison between the MBF and the generalized WJ statistic, there is no
consensus about the results. In most conditions they perform similarly, but some authors state that
MBF is better at detecting interaction effects when the number of subjects is not high enough (Vallejo
et al., 2001, 2006). However, to the best of our knowledge, there is no general formulation of MBF
for any mixed model with an arbitrary number of between- x within-subjects factors, although it has
been tested in split-plot designs (Vallejo et al., 2006) (which are probably the most common design in
medicine and particularly in psychological studies) and factorial designs (Vallejo et al., 2008).

Software available for robust testing of mixed models not meeting parametric assump-
tions

Wilcox (2012) constitutes an important source dealing with robust estimation. The book is accompanied
by an R package called WRS 1 that implements all the methods reviewed in the book, including the
Welch-James test following Johansen’s approach with robust mean estimators described in sections
7.2, 8.6 and 8.7 which our package welchADF also implements. The functions described in those
sections, bwtrim,t1way,t1waybt,t2way,t2way,t3way, include the most common designs such as one,
two and three-way and split-plot (one between x one within subjects designs) also with bootstrapping
and trimming. Although not included in WRS2, the original WRS exposes functions bbw-,bww- for
between x between x within, and between x within x within subjects designs, and their trimmed and
bootstrap versions. While useful, they do not provide a uniform, easy-to-use interface in a single
function valid for any mixed design.

There exists a CRAN task force on robust statistical methods2. Unfortunately, none of the packages
mentioned there implements the aforementioned approaches. Nevertheless, packages robustbase
(Maechler et al., 2016), robust (Wang et al., 2017) (by the authors of Maronna et al. (2006)) and function

1Not on CRAN but in http://github.com/nicebread/WRS. A less-comprehensive but more user-friendly
version can be found in package WRS2 (Mair and Wilcox, 2017).

2http://cran.r-project.org/web/views/Robust.html
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rlmer in package robustlmm (Koller, 2017) are some remarkable efforts. The latter implements the
techniques proposed in Koller (2013) for linear mixed models on a basis of a parametric model having
some contaminated data (Koller, 2016). However, it does not focus on testing inherently heterogeneous
and non-normal data. Package nlme (Pinheiro et al., 2017) provides a way of capturing and modeling
variance heterogeneity in mixed models through the argument weights of function lme, which can be
set to different covariance matrix structures that are fitted from the data. The well-known package
lme4 (Bates et al., 2016, 2015) is also a good choice for dealing with non-normal models in presence of
within-subjects effects (called generalized linear mixed models as an extension to generalized linear
models where the user can specify the probabilistic model to be used). Package glmmADMB 3 (Skaug
et al., 2016; Fournier et al., 2012) has a similar purpose.

SAS (SAS Institute, 2011) implementations of the WJ statistic, MBF statistic (split-plot and fac-
torial designs only) and IGA do exist; see Keselman et al. (2003); Vallejo et al. (2006); Algina (1997)
respectively. While SAS is still widely used mainly in social and biomedical sciences, it is proprietary
software. The same applies to the ERP-PCA software (Dien, 2010) written in Matlab. Interestingly,
ERP-PCA incorporates a Matlab translation of the SAS code described in Keselman et al. (2003) for
the WJ statistic. For these reasons, together with the fast expansion of R and open-source statistical
software in general -closely related to the growing interest in reproducible research- among researchers
of many different disciplines, we consider the R package introduced here a useful effort.

Main contributions

The present work describes an R package called welchADF (Villacorta, 2017) that implements Jo-
hansen’s formulation of the Welch-James test, with two additional improvements: first, the use of
trimmed means and Winsorized variances to deal with non-normality, and second, the use of bootstrap
for calculating an empirical critical value for achieving better type I error control. Both aspects are
mentioned in Wilcox et al. (1998) and implemented in Keselman et al. (2003). Trimmed means and
Winsorized variances are being used in medical and behavioral research in the last years; see Müller
et al. (2011); Aronoff et al. (2011); Ryzin et al. (2011).

The core of our code is an R translation of the SAS program4 described in Keselman et al. (2003). A
new wrapper function has been built on top of it that poses the following benefits:

• It can be applied to univariate and multivariate mixed models with an arbitrary number of
within- and between-subjects effects.

• It simplifies some common tasks such as performing omnibus tests on effects or interactions,
multiple pairwise comparisons on the levels of one factor, and tetrad contrasts. All of these
can be done without indicating the contrast matrices, which are automatically formed by the
program depending on the kind of test required and the number of levels found in each factor.

• It provides a more natural and uniform data input mechanism through data frames that do not
depend on the model specified. In the original SAS code, the input data had to be carefully
arranged in matrices whose shape had to mirror the experimental design being analyzed in
each problem, which can be error-prone.

• It integrates with other similar packages of the R ecosystem through a formula interface and
also provides additional interfaces that accept model objects returned by some commonly used
functions such as stats::lm, lme4::lmer and stats::aov.

• It enables selecting one among several built-in p-value correction methods when performing
multiple pairwise comparisons.

There are several reasons that justify an R implementation of this particular test:

• The generalized WJ test described in Lix and Keselman (1995); Keselman et al. (2003) has good
theoretical properties and has proven successful in controlling type I error rate while preserving
high power. Moreover, the use of trimmed means and Winsorized variances can protect both
against skewness and outliers in the data, as noted by Keselman et al. (2008). The percentage of
trimming can be adjusted to deal with higher ratios of outliers and skewness. The statistic is also
able to cope with heterogeneous variances, which commonly (but not only) arise when having
very different cell sample sizes. In this sense, one should notice the sample size requirement
stated right after this list.

• These two works have received a number of citations, and the approach explained there is
being used in current research in different fields such as medicine (Dien et al., 2008; Dien, 2010),
psychology (Müller et al., 2011; Kayser et al., 2014; Huang and Jun, 2015) and behavioral research
(Symes et al., 2010), just to cite a few.

3http://glmmadmb.r-forge.r-project.org/
4Available at http://homepage.usask.ca/~lml321/Program.pdf
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• The function interface is simple and the test can be used in a straightforward way for the most
common tasks. This may contribute positively towards its adoption by the research community,
specially by researchers with little expertise in statistics, but with an understanding of the
importance of applying suitable, robust techniques when parametric conditions are not met.

• Despite the existence of different alternatives explained before, some of them also implemented
in R, these are either not applicable to multivariate mixed models with heterogeneous variance
or non-normal data, or are generally complex and more difficult to use.

The WJ approach also has some disadvantages. The first one is the sample size needed to assure an
effective control of type I error under some (somewhat extreme) circumstances, specially in repeated-
measures designs, like when the cell with the fewest subjects presents the largest variance (i.e. cell
size and cell variance are negatively paired). In general, the number of subjects of the smallest cell
should be four or five times greater than the number of repeated measures minus one, and sometimes
even more when testing an interaction. However, when combined with trimmed means, robustness is
increased and some of these problems are mitigated as a much smaller number of subjects are required
(Keselman et al., 2000). The second drawback is that welchADF is only applicable to categorical
predictors. In case the design has numeric predictors, the reader may try the packages mentioned in
the preceding section, as well as gamm4 (Wood and Scheipl, 2017) and mgcv (Wood, 2017) for fitting
generalized additive mixed models.

Finally, the application of bootstrap to contaminated data has been extensively studied and even
questioned by some authors in the past (Singh, 1998), specially regarding numerical instability: some
bootstrap samples that intervene in the computation of the final bootstrapped estimate may contain
a higher proportion of outliers than the general dataset, and therefore be too heavily influenced by
them (Salibián-Barrera et al., 2008). Singh (1998) proposed using bootstrapping with Winsorized
observations, which is what we do in this package when enabling trimming and bootstrapping at
the same time, as it provides some additional benefits. Salibián-Barrera et al. (2008) introduce a fast
and robust bootstrap (FRB) method that improves classical bootstrapping. Although it has not been
incorporated to welchADF, it may be done in the future.

The remainder of this contribution is structured as follows. In first place, the mathematical
background is briefly reviewed. In second place, we present the function exposed by the package
and explain its arguments, together with some issues regarding the arrangement of the data. In third
place, we address three case studies, namely a univariate one-way between-subjects design, a two-way
factorial design, a mixed design, and a doubly multivariate design analyzed as a multivariate mixed
design. Finally, we present some conclusions and further work.

The Welch-James ADF test statistic

Here we summarize the theoretical background given in Lix and Keselman (1995); Keselman et al.
(2003). Following the General Linear Model,

Y = Xβ + ξ (1)

where Y is an N × p matrix of observations on p dependent variables or p repeated measures, N is
the sample size, X is the design matrix (formed by zeros and ones, such that rank(X) = r with r being
the number of different groups or cells5), β is an r× p matrix of non random (unknown) parameters
(population means) and ξ is an N × p matrix of random error components.

If we denote by Yj(j = 1, ..., r) the submatrix of Y that contains the observations of the nj subjects
of the j-th cell, the original parametric model assumes Yj ∼ N (βj, Σj) where βj = (µj1, ..., µjp) is the
j-th row of matrix β, and Σj 6= Σj′ when j 6= j′.

We proceed to explain how population means and variances are estimated. The matrix of popula-
tion means can be estimated by the usual least-squares approach (Eq. 2) or by using robust estimation
techniques such as trimming, discussed later. Now, let Xj(j = 1, ..., r) be the j-th column of X, com-
posed of zeros and ones, and let 1p be a p× 1 vector of ones. Define Yj = Y ◦ (Xj1T

p ) as the N × p
matrix that results of the Hadamard (i.e. element-wise) product between matrices Y and Xj1T

p . Then,
the following expressions are used to estimate population means and variances:

β̂ = (XTX)−1XTY (2)

Σ̂j =
(Yj − Xj β̂j)

T(Yj − Xj β̂j)

nj − 1
(3)

5This does not entail that one-way designs are the only possible. The formulation is valid also for several factor
designs.
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The matrix formulation of the WJ statistic always tests the following general linear hypothesis:

H0 : Rµ = 0 (4)

with R = C⊗UT . In this expression, ⊗ is the Kronecker product, C is a d fC × r matrix that indicates
the contrasts on the between-subjects effects, so that rank(C) = d fC ≤ r, and U is a p× d fU matrix
that indicates the contrasts on the within-subjects effects, so that rank(U) = d fU ≤ p. Therefore R has
d fCd fU rows and rp columns. Note that µ = vec(βT) = (β1, ...βr)

T , which is a column vector with rp
elements obtained by stacking the columns of βT , one on top of another. Matrices C and U determine
the type of contrast being performed, be it an omnibus contrast, a pairwise contrast, etc. We provide
details about the structure of both matrices in the general case in Section 2.2.1.

The generalized Welch-James test statistic presented by Johansen in Johansen (1980) is

TWJ = (Rµ̂)T(RΣ̂RT)−1(Rµ̂) (5)

Σ̂ = diag(Σ̂1/n1, ..., Σ̂r/nr)

where µ̂ is an estimate of µ (either with LS or any other technique), and Σ̂ is a block diagonal matrix
whose blocks are Σ̂j/nj. It is known that TWJ/c approximately follows an F(ν1; ν2) where

ν1 = d fCd fU ; ν2 = ν1(ν1 + 2)/(3A) ; c = ν1 + 2A− (6A)/(ν1 + 2)

A =
1
2

r

∑
j=1

tr
[
Σ̂RT(RΣ̂RT)−1RQj

]2
+
(
tr
[
Σ̂RT(RΣ̂RT)−1RQj

])2

nj − 1

where tr is the trace of an square matrix (sum of the elements on the main diagonal), and Qj is an
rp× rp matrix associated with Xj in which the (s, t)-th diagonal block of Qj = Ip when s = t = j and
is 0 otherwise.

In a between-subjects design (no within-subjects factors), U must be set to Ip where p is the number
of dependent variables (in univariate designs, it reduces to U = 1). In a within-subjects design (no
between-subjects factors), C must be set to 1 both in the univariate and multivariate cases.

Structure of the contrast matrices

The preceding formulation of the model is valid for any type of contrasts. Most often the user may
want to perform two types of contrasts, namely omnibus contrasts to check whether a given effect
or interaction is statistically significant, and in case it is, post-hoc pairwise contrasts on one effect or
interaction to check whether the response associated to some of the levels of that factor or interaction
is statistically different than the responses associated to other levels of the factor.

Omnibus contrasts This test is aimed at checking whether the level adopted by a given variable
of interest (effect or interaction) has an influence over the response variable. In the simplest case,
consider a one-way design, either univariate or multivariate, whose single factor A has a different
levels. Then C would be an (a− 1)× a matrix specifying linearly independent contrasts between the
levels. We will call this matrix CA (capital A) because it is the matrix we use to conduct an omnibus
test on effect A. If for instance, a = 3, we would have

CA =

[
1 −1 0
1 0 −1

]
; U = Ip

Algina and Olejnik (1984) provide a general formulation to compose matrix C for omnibus tests on
factorial designs with several between-subjects factors. The same idea, slightly modified, is also valid
to compose matrix U in designs with several within-subjects factors. These procedures have been
implemented in our welchADF package. Let Ca (non-capital a) be the (a− 1)× a matrix of linear
contrasts associated to the a levels of effect A. Its rows define a− 1 linearly independent contrasts
between the levels of A. When the design has no more factors than A, then CA = Ca as in the case
above. However, when more than one between-subjects factor exists, then C has to be properly set
according to the factor to which we want to apply an omnibus test. In those cases, C is the Kronecker
product of one matrix (or vector) per factor existing in the design, as follows.

Assume a between-subjects design with four effects A, B, C, D. Let 1T
a denote a (1× a) vector of

ones. If we want to perform an omnibus contrast on a main effect, say B, then C = CB = 1T
a ⊗ Cb ⊗

1T
c ⊗ 1T

d . In other words, if the factor matches the effect being tested, the corresponding contrast matrix
appears in the product; otherwise, a vector of ones appears. The same applies to interactions. If we
want to test the B× D interaction, for instance, we would have C = CBD = 1T

a ⊗ Cb ⊗ 1T
c ⊗ Cd. Since
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factors B and D are involved in the interaction BD being tested, their contrast matrices appear in the
product, while a vector of ones appears in the positions of the remaining factors of the design.

For within-subjects designs a similar rule applies. Assume that now A is a within-subjects factor,
and let Ua = CT

a , so that the columns of Ua define a− 1 linearly independent contrasts between the
levels of A. In a within-subjects design with several factors, the transposes of the U contrast matrices
of those factors involved in the effect or interaction being tested appear in the Kronecker product;
otherwise, a row vector of ones is used in that place as explained before. If the design is multivariate
with p dependent response variables, an additional factor Ip always appears in the last place of
the product. At the end, the result of the Kronecker product must be transposed again to obtain
U. For example, in a two-factor within-subjects multivariate design, the U matrices for conducting
ominbus tests on effects A, B and the interaction AB would be, respectively, UA = (UT

a ⊗ 1T
b ⊗ Ip)T ,

UB = (1T
a ⊗UT

b ⊗ Ip)T , and UAB = (UT
a ⊗UT

b ⊗ Ip)T .

In case we want to test a main effect (either a between- or a within-subjects effect) in a design
containing both between- and within-subjects factors, the same rules apply: C and U are composed
separately, and one of them will (for sure) be the result of the Kronecker product of vectors of ones
only (including Ip as well when constructing U if the design is multivariate). Finally, if we want to test
an interaction involving one or more between-subjects factors and one or more within-subjects, C must
be formed as if we were testing only the between-subjects factors involved in the mixed interaction,
and U as if testing the within-subjects factors, following the rules explained above.

Pairwise contrasts Now for a given effect, we are aimed at testing for every pair of categories of the
effect whether the response is significantly different for one of the categories against one another. The
procedure is similar to the omnibus contrasts. The only difference is that contrast matrices Ca and
Ua associated to an effect A are replaced by contrast vectors, as follows. When testing for significant
differences between factor levels j and j′ of an effect A, either Ca is replaced by a row vector cjj′ if A is
a between-subjects factor, or Ua is replaced by a column vectors ujj′ if A is a within-subjects factor.
In a pairwise contrast vector, all positions are set to 0 except for those corresponding to the factor
levels j and j′ being tested, which are set to 1 and -1 respectively. These vectors are then used in the
corresponding positions of the Kronecker products described before. For probing interactions (once
the omnibus test on such interaction proved significant), tetrad contrasts have been implemented
in our package. The null hypothesis being tested in a tetrad contrast involving two factors A and B,
from which the interaction between levels j and j′ from A, and k and k′ from B is being tested, can be
written as

Hjj′ ;kk′ : (µjk − µjk′ )− (µj′k − µj′k′ ) = 0 (6)

Trimmed means and Winsorized variances

Trimmed means help mitigate the effects of non-normality. When least-squares means are substituted
by trimmed means, the null hypotheses being tested are the equality of population trimmed means:
Rµ(t) = 0. Let Y(1)j ≤ Y(2)j ≤ ... ≤ Y(nj)j be the sorted observations of the j-th group, and gj = dγnje
with γ being the proportion of observations to be trimmed in each tail of the distribution. Therefore
the sample size for the j-th group becomes hj = nj − 2gj, and its sample trimmed mean is computed
by averaging the hj central observations of that group:

µ̂
(t)
j =

1
hj

nj−gj

∑
k=gj+1

Y(k)j (7)

Some authors suggest using 20 % trimming.

The sample Winsorized mean is a similar measure that is computed by replacing all observations
smaller than Y(gj+1)j (i.e. the 20th percentile) by that value, and those larger than Y(nj−gj)j (i.e. the 80th
percentile) by that value, and then averaging over all the (modified) observations. In the j-th group:

µ̂
(W)
j =

1
nj

nj

∑
i=1

Xij, where Xij =





Y(gj+1)j if Yij ≤ Y(gj+1)j
Yij if Y(gj+1)j < Yij < Y(nj−gj)j

Y(nj−gj)j if Yij ≥ Y(nj−gj)j

(8)

This measure is required to compute the sample Winsorized variance:

σ̂
2(W)
j =

1
nj − 1

nj

∑
i=1

(Xij − µ̂
(W)
j )2 (9)
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Therefore, in order to compute the trimmed version of the WJ statistic, T(t)
W J , trimmed means replace

least-squares means, Winsorized variances replace least-squares variances, and the new sample sizes
hj replace the original nj in all groups. Past studies have found the trimmed version of the WJ statistic
to be more robust and provide better type I error control to non-normality, also in more complex
designs; see Keselman et al. (2000) and references therein.

Bootstrapping to obtain an empirical critical value

After computing the cell trimmed means, let Cij = Yij − µ̂
(t)
j , i.e. the Cij are shifted observations so that

the null hypothesis of equal trimmed means is true in the sample. Repeat B times the next two steps (B
is the user-supplied number of bootstrap simulations): (i) for each cell, generate a bootstrap sample of
size nj by sampling with replacement from the original sample. When the bootstrap samples of all the

cells are put together, an N-sample bootstrap dataset is obtained; (ii) compute the value F∗(t) = T(t)
W J/c

on the bootstrap dataset. Sort the B values obtained in ascending order, F∗(t)
(1) ≤ ... ≤ F∗(t)

(B) . An estimate

of an appropriate critical value is F∗(t)
(a) where a = (1− α)B rounded to the nearest integer. This critical

value should be compared with T(t)
W J/c computed on the original data. The null hypothesis Rµ(t) = 0

of trimmed means equality will be rejected if T(t)
W J/c ≥ F∗(t)

(a) .

The process explained before applies to omnibus contrasts. For focused contrasts such as pairwise
tests on marginal means, the same idea with minor modifications is used. For more details as well as a
generalization to other designs, see Keselman et al. (2003) and references therein.

Effect size and confidence intervals

As stated in Keselman et al. (2008); APA (2013), it is now widely recommended to report an estimate
of the effect size when performing a hypothesis test. Many different measures exist for this purpose,
although few of them are valid for non-homogeneous variances. The approach implemented in our
package was proposed in Keselman et al. (2008) and has the following formulation for the case of two
groups:

δ̂
(R)
j = η

µ̂
(t)
2 − µ̂

(t)
1

σ̂
(W)
j

(10)

Note this approach uses trimmed means and Winsorized standard deviation and for that reason, it is
robust to non-normality. Factor η stands for a scaling factor of the Winsorized standard deviation. In
case 20 % trimming is used (as recommended), η = .642 which is the Winsorized standard deviation for
a 20% trimmed standard normal distribution. In our code, η is computed according to the percentage
of trimming indicated by the user. For building a robust CI around this value, a percentile bootstrap
method is run to determine the empirical bounds of the interval as recommended in Keselman et al.
(2008).

An R implementation of the WJ statistic

The WJ test is implemented in our package as an S3 generic called welchADF.test. The name has
been chosen to be compliant with other existing tests such as t.test,wilcox.test, etc. The function
receives parameters to modulate its behaviour, such as the type of contrast to be performed (omnibus
or pairwise), whether trimming should be employed or not, and if employed, the percentage of
data to be trimmed at each side, and whether bootstrapping should be used or not. The default S3
method expects a data.frame in the formula parameter, but additional S3 methods are provided for
classes formula, lm, lmer and aov, which allow our package to integrate well with other linear models
functions, as described later in this section.

The prototype of the S3 default method is

welchADF.test(formula, response, between.s, within.s = NULL, subject = NULL,
contrast = c("omnibus", "all.pairwise"), effect = NULL,
correction = c("hochberg", "holm"), trimming = FALSE, per = 0.2,
bootstrap = FALSE, numsim_b = 999, effect.size = FALSE, numsim_es = 999,
scaling = TRUE, standardize.effsz = TRUE, alpha = 0.05, seed = 0, ...)

We summarize below the meaning of the arguments; the reader may refer to the package docu-
mentation for further detail. Note only the three first arguments are required.

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 316

A B X W Subject Y1 Y2

A1 B1 X1 W1 1 (1)YA1B1X1W1
1

(1)YA1B1X1W1
2

...
...

...
... 1

...
...

A1 B1 X1 Ww 1 (1)YA1B1X1Ww
1

(1)YA1B1X1Ww
2

A1 B1 X2 W1 1 (1)YA1B1X1W1
1

(1)YA1B1X1W1
2

...
...

...
... 1

...
...

A1 B1 Xx Ww 1 (1)YA1B1XxWw
1

(1)YA1B1XxWw
2

A1 B1 X1 W1 2 (2)YA1B1X1W1
1

(2)YA1B1X1W1
2

...
...

...
... 2

...
...

A1 B1 Xx Ww 2 (2)YA1B1XxWw
1

(2)YA1B1XxWw
2

...
...

...
...

...
...

...
A1 B1 Xx Ww nA1B1

(nA1 B1 )YA1B1XxWw
1

(nA1 B1 )YA1B1XxWw
2

A1 B2 X1 W1 nA1B1 + 1 (nA1 B1 )YA1B1XxWw
1

(nA1 B1 )YA1B1XxWw
2

...
...

...
...

...
...

...
Aa Bb Xx Wx N (N)YAa Bb XxWw

1
(N)YAa Bb XxWw

2

Table 1: An example dataset with two between-subjects factors A, B, with a and b different levels,
respectively; two within-subjects factors X, W with x and w different levels, and a multivariate
response with p = 2 correlated response columns Y1, Y2. The total number of subjects is N.

• formula is a data frame object containing the observations and the level combination to which
they correspond. The next four arguments refer to the column names.

• response,between.s,within.s,subject are strings (or string vectors) indicating the column
names for the response, the between-subjects effect(s), the within-subject(s) effects, and the
subject column that stores which subject corresponds to each row (hence it cannot be a vector
but a single string). In case the design is multivariate, the response will be a vector of columns,
one for each response variable. A sample data frame is displayed in Table 1. Each cell AiBj has
nAi Bj subjects, and nAi Bj · x·w rows in the data frame. Here, N = ∑i,j nAi Bj subjects.

• contrast refers to the type of contrast to be performed. Both in "omnibus" and "all.pairwise"
contrasts, the corresponding contrasts matrices are automatically computed as described in
Section 2.2.1.

• effect is the effect (i.e. column name) involved in the selected contrast. If effect is a vector
with length 2 or greater and contrast = "omnibus", then an omnibus contrast on an interaction
effect will be tested involving simultaneously all the effects of the vector. If contrast =
"all.pairwise", then effect must have length 1 or 2 to indicate a single effect or a two-way
interaction to which tetrad contrasts will be applied; otherwise an error will be thrown. If left
blank, the contrast will be applied separately to all of the existing effects and their interactions.

• The rest of arguments specify whether trimmed means and Winsorized variances will be used
and the percentage of trimming (use.robust.estimators, per), whether bootstrapping should
be used to compute an empirical critical value and how many iterations to do (use.bootstrap,
numsim_b), and whether the effect size and a confidence interval should be computed (again
via bootstrap). Effect size allows the choice of using scaling (scaling = TRUE) or not (if not,
η = 1 in Eq. 10) and the number of effect-size bootstrap simulations (effect.size, scaling,
numsim_es, loc1, loc2).

The aforementioned function is an R wrapper that configures the parameters needed for each type
of problem by two private functions, which lie at the core of our package. Both are R translations of the
SAS functions wjglm and bootcom and have been named almost the same. Function wjglm is used in all
cases (including those in which bootstrapping is needed), except when bootstrap is applied to obtain
an empirical critical value for a family of contrasts. A modification of function bootcom is only invoked
in that case in order to control family-wise type I error rate (FWER) via percentile bootstrapping. This
scenario arises when performing all pairwise contrasts or tetrad contrasts via bootstrap (i.e. contrast
= "all.pairwise",bootstrap = TRUE).

The prototype of the S3 method for class formula is as usual:

welchADF.test(formula,data,subset,...)

where data is a data frame following the same rules as described above for the formula parameter
of the default method, subset is an indexing vector to indicate which rows of data should be used
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(all by default), and ... stands for the rest of arguments accepted by welchADF.test.default and
described above to configure the behavior of the test. As with other models, the terms in formula
are first sought in data and then in the environment of the formula. Note, however, that only
between-subjects and within-subjects effects and interactions can be specified together with a Subject
column when conducting a WJ test, but no model is fit to the data. For this reason, formula should be
understood only as a way to indicate the factors involved and their nature (between- or within-subjects)
but not as a description of a particular model structure. The presence or absence of an interaction
in the formula only affects which effects are tested when contrast = "omnibus",effect = NULL;
otherwise it does not affect at all. The structure should mirror that of the lme4 package, e.g.

welchADF.test(cbind(visits,time,latency) ~ nurs*tunnel + (tunnel|Subject), miceData)

means that there is a multivariate response composed of three correlated variables visits, time,
latency, and the design has one between-subjects factor nurs (because it appears outside but not inside
the parenthesis term) and one within-subjects factor tunnel because it appears inside the parenthesis.
While a within-subjects effect may appear outside the parenthesis to indicate an interaction with a
between-subjects effect, between-subjects must not appear inside the parenthesis.

The function returns an object of class welchADFt, which is actually a tagged list of lists, one sub-list
per effect in an omnibus contrast, or per category involved a pairwise contrast of a given effect. The call
is also stored as the last element of the upper-level list with the name call, no matter the S3 method em-
ployed (be it welchADF.test.default, or the ones for class formula,lm,aov or lmer). This allows to im-
plement S3 method update for class welchADFt, no matter which S3 method was called to calculate the
model object 6. Each sub-list has elements named welch.T,numeratorDF,denominatorDF,contrast.matrix,

mean.vector,sigma.matrix which store, respectively, the value of the TW J/c statistic (or T(t)
W J/c if the

trimmed version was used), the approximate degrees of freedom of the numerator and denominator,
the contrast matrix R obtained as R = C⊗ UT , and the estimates µ̂ and Σ̂. It also stores the user
arguments when the function was called and, in case the user asked for the effect size, it provides the
effect size along with a confidence interval. Refer to the package documentation for further detail.

The package implements S3 methods summary, format and print for objects of class welchADFt, as
well as other methods widely used on model objects such as confint to get confidence intervals of the
effect size (in case the user requested to compute it), model.frame to extract the input data frame, and
formula to extract the formula (not available if the object was generated by welchADF.test.default).

Case studies

All the datasets analyzed in this section were mentioned in examples designed by the authors of the
SAS implementation (Lix and Keselman, 1995), and have also been included in our R package. For
that reason it is not necessary to explicitly read them from text files. They are described in detail in the
package documentation.

Univariate one-way between-subject design

The dataset was artificially created by Lix et al. and can be downloaded from her personal website7.
The data recreate those reported by a real study on perception and concentration, on which 42 students
were given several puzzles to be solved. The students are divided into three balanced groups as
they had previously been asked to imagine solving puzzles in the distant future, near future, or not
to imagine anything at all (control group). The response variable represents the number of puzzles
each student was able to solve, out of 12. The data are delivered in our package in a variable named
perceptionData.

This design presents one between-subjects variable, namely the Group to which the student
belongs, and no within-subjects variables as each student is measured on only one response variable
and then the student is never measured again. The following R commands demonstrate the types of
analyses that can be done with this dataset. The results can be checked on the PDF file of the footnote.

> str(perceptionData)
'data.frame': 42 obs. of 2 variables:
\$ Group: Factor w/ 3 levels "control","distantFuture",..: 2 2 2 2 2 2 2 2 2 2 ...
\$ y : int 7 5 8 9 8 8 7 7 6 2 ...

> omnibus_LSM <- welchADF.test(perceptionData, response = "y", between.s = "Group")

6The update should be done in accordance with the function that generated the welchADFt object, i.e. passing a
formula is not allowed if the object was generated by the default method, and vice-versa.

7http://homepage.usask.ca/~lml321/Example1.pdf
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> summary(omnibus_LSM, verbose = TRUE)
Call:

welchADF.test(formula = perceptionData, response = "y", between.s = "Group")

Welch-James Approximate DF Test (Least squares means & variances)
Omnibus test(s) of effect and/or interactions

WJ statistic Numerator DF Denominator DF Pr(>WJ)
Group 1.795 2 24.16 0.1875
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The omnibus contrast on the between-subjects effect Group determined it is not statistically significant
when using least-square means. But if we apply trimming:

> omnibus_trimmed <- update(omnibus_LSM, trimming = TRUE)
> omnibus_trimmed_boot <- update(omnibus_trimmed, bootstrap = TRUE, seed = 12345)
> summary(omnibus_trimmed)
Call:

welchADF.test(formula = perceptionData, response = "y", between.s = "Group",
trimming = TRUE)

WJ statistic Numerator DF Denominator DF Pr(>WJ)
Group 4.975 2 16.11 0.02076 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

By applying trimmed means and Winsorized variances we do get a statistically significant result.
Hence, since the omnibus test was significant on this factor, we do pairwise comparisons on it in order
to test which pairs of group levels make the associated groups of responses statistically different. Since
the result was obtained with trimming, we continue with it in pairwise comparisons. Only the result
of non-bootstrapped trimming is displayed here.

> pairwise_trimmed <- welchADF.test(y ~ Group, data = perceptionData, effect = "Group",
contrast = "all.pairwise", trimming = TRUE, effect.size = TRUE)

> pairwise_trimmed_boot <- update(pairwise_trimmed, bootstrap = TRUE, seed = 12345)
> summary(pairwise_trimmed)
Call:

welchADF.test(formula = y ~ Group, data = perceptionData, effect = "Group",
contrast = "all.pairwise", trimming = TRUE, effect.size = TRUE)

WJ statistic Numerator DF Denominator DF eff.size adj.pval
control:nearFuture 0.004398 1 10.089 -0.02674 0.9484
distantFuture:nearFuture 0.876366 1 9.778 0.38620 0.7435
control:distantFuture 10.088968 1 17.510 -1.09981 0.0161 *
---
Signif. codes (Hochberg p-values): 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The output shows that the responses associated to the control group significantly differs from those
associated to the distantFuture group. The confidence intervals on the effect size can be retrieved as

> confint(pairwise_trimmed)
2.5 % 97.5 %

control:nearFuture -0.8208 0.85290
distantFuture:nearFuture -0.3402 1.74365
control:distantFuture -2.2571 -0.09678

An important issue arises in this example that justifies again the use of trimmed estimators. As
can be seen in the omnibus tests, the Group is not significant with Least-squares means but it is when
we use trimmed means and Winsorized variances. This yields a significant result which could not
be detected unless trimming is applied. As the result of the omnibus test with trimmed means is
significant, we proceed to the pairwise comparisons using trimming as well. This yields that control
and distantFuture have associated significantly different values of the number of puzzles solved by
the students on average.
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Two-way factorial (between-subjects) design

Once again, this dataset8 was artificially created by Lix et al. Quoting from the PDF, the author used
summary data presented by Wicherts et al. (2005). These authors examined the effects of stereotype
threat on women’s mathematics ability. Study participants were assigned to one of six groups defined
by crossing the independent factors of test condition (control, nullified, stereotype threat) and sex
(male, female). Originally there were four different tests administered to study participants (arithmetic,
number series, word problems, and sums tests) the dataset contains only scores for the arithmetic test
(out of 40) because these scores exhibited a greater magnitude of variance heterogeneity than scores for
the other tests. It is an unbalanced design with cell sizes ranging from 45 to 50 participants, and a total
sample size of 283. The data are delivered in our package in a variable named womenStereotypeData.

The output of the omnibus tests using robust estimators (trimmed means and Winsorized variances)
with and without bootstrapping is shown in first place. Since the interaction between "condition" and
"sex" is significant according to trimmed means, the post-hoc pairwise comparisons (tetrad contrasts)
are shown using trimmed means with and without bootstrapping. The results match those presented
in pages 5 and 6 of the PDF.

> omnibus_LSM <- welchADF.test(womenStereotypeData, response = "y", between.s =
c("condition", "sex"), contrast = "omnibus")

> omnibus_trimmed <- update(omnibus_LSM, trimming = TRUE)
> summary(omnibus_LSM)
Call:

welchADF.test(formula = womenStereotypeData, response = "y",
between.s = c("condition", "sex"), contrast = "omnibus")

WJ statistic Numerator DF Denominator DF Pr(>WJ)
condition 2.151 2 154.7 0.11986
sex 2.933 1 216.4 0.08824 .
condition:sex 2.521 2 154.7 0.08368 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> summary(omnibus_trimmed)
Call:

welchADF.test(formula = womenStereotypeData, response = "y",
between.s = c("condition", "sex"), contrast = "omnibus",
trimming = TRUE)

WJ statistic Numerator DF Denominator DF Pr(>WJ)
condition 5.205 2 93.38 0.007189 **
sex 5.754 1 130.06 0.017875 *
condition:sex 3.130 2 93.38 0.048347 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In this case, the omnibus test is unclear when using least-square means (p-values only slightly
greater than the common significance threshold of 0.05 according to the summary of omnibus_LSM) but
trimming helps make things clearer. This results in both factors and their interaction being statistically
significant at a significance level of 0.05 (see the summary of omnibus_trimmed above).

Since the omnibus test confirms the significance of all effects, pairwise comparisons should be
done on all of them. Due to space constraints, only the two-way condition:sex interaction effect was
probed (as effect = c("condition","sex") in the call to create the pairwise_LSM object that was
subsequently updated to account for trimming and bootstrapping). Pairwise contrasts on two-way
interactions are also known as tetrad contrasts.

> pairwise_trimmed <- welchADF.test(y ~ condition*sex, data = womenStereotypeData,
contrast = "all.pairwise", effect = c("condition", "sex"), trimming = TRUE)

> pairwise_trimmed_boot <- update(pairwise_trimmed, bootstrap = TRUE, seed = 12345)

> summary(pairwise_trimmed_boot, verbose = TRUE)
Call:

welchADF.test(formula = y ~ condition * sex, data = womenStereotypeData,

8http://homepage.usask.ca/~lml321/Example2.pdf
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contrast = "all.pairwise", effect = c("condition", "sex"),
trimming = TRUE, bootstrap = TRUE, seed = 12345)

Welch-James Approximate DF Test (Trimmed means [20% trimming] & Winsorized variances)
Multiple tetrad interaction contrasts with respect to condition x sex interaction
using a Bootstrap Critical Value for FWER control

WJ statistic Numerator DF Denominator DF significant?
control:stereotype x female:male 0.4662 1 97.49 no
nullified:stereotype x female:male 1.9846 1 79.63 no
control:nullified x female:male 5.7662 1 88.55 yes

Bootstrap critical value: 5.145

Pairwise comparisons on the condition:sex interaction with trimmed bootstrapped means reveal only
one significant interaction between the pairs of levels control:nullified and female:male.

Multivariate (mixed) between- × within-subjects design

The problem and the data are described in Keselman et al. (2003). The data represent the reaction times
in milliseconds of children with attention-deficit hyperactivity (ADHD) and normal children when
they are presented four kinds of inputs: a target alone or an arrow stimuli incongruent, congruent and
neutral to the target. According to the authors, the dataset was artificially generated from the summary
measures given in the original study by Jonkman et al. (1999), in groups of 20 and 10 children to create
an unbalanced design. The data are delivered in our package in two variables named adhdData and
adhdData2.

One-way multivariate vs univariate mixed model This problem can be approached in two differ-
ent ways: (a) as a one-way multivariate design, which would be the non-parametric equivalent of
MANOVA (multivariate ANOVA), or (b) as a univariate mixed model having one between-subjects
factor (the student’s group) and one within-subjects factor (with four levels, namely the four stimuli
measured in every single student). In case we were analysing the data under parametric assumptions,
the second option requires sphericity while MANOVA does not (although it needs more data). On the
other hand, mixed models are able to capture the covariance structure of the dependent variables and
can be generalized to any number of factors. An in-depth discussion on this topic can be found in
chapter 9 of Maxwell and Delaney (2004). Keselman et al. (2003) (page 593) insist on using trimmed
means and/or bootstrapping with this kind of models in order to overcome deviations from sphericity.

Our package admits both types of analysis. When dealing with a one-way multivariate design, the
data must be formated as in Figure 1(a), while a mixed model requires the more systematic format of
Figure 1(b) which is valid for an arbitrary amount of factors of both types. As done in their paper, we
will analyze this dataset as a mixed model in which the stimuli are an explicit within-subjects factor.

Implicit within-subjects effect The package admits a third way to indicate the within-subjects
effects that simplifies its use. It is common to have a dataset with a within-subjects effect expressed in
the form of Figure 1(a). In this case, we may want to consider the within-subjects effect underlying
the multivariate response. Reshaping this file to match the structure of Figure 1(b) would require
some effort by the user. To avoid this, the function allows indicating that the multivariate response
is actually an implicit within-subjects effects by including the word "multivariate" in the vector of
within-subjects column names (if this argument was empty, then we just set the argument within.s
= "multivariate"). This can be generalized as follows: if we have K within-subjects effects, we
can have K− 1 columns in the data with their explicit names and levels, and leave one effect to be
indicated in the multivariate response. In that case, we set within.s = c("within1", "within2",
..., "within-k-1", "multivariate") and pass a multivariate response vector argument because the
data must have one response column per level of the K-th within-subjects effect. In the code below, the
variables with the termination _multi show the equivalent calls. Unless we change the model itself
(i.e. consider a mixed model or a multivariate one-way model with no within-subjects factor), the
results obtained are the same in all types of analyses (omnibus, pairwise, etc), no matter the structure
of the input data file. We demonstrate all the possibilities below.

> omnibus_LSM_mixed_implicit <- welchADF.test(adhdData, response = c("TargetAlone",
"Congruent", "Neutral", "Incongruent"), within.s = "multivariate", between.s = "Group",
contrast = "omnibus")

> omnibus_LSM_multi_oneway <- welchADF.test(cbind(TargetAlone, Congruent, Neutral,
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Group TargetAlone Incongruent Congruent Neutral

Normal 568.52 433.80 658.51 711.33
Normal 1034.82 864.79 639.42 815.18

...
...

...
...

ADHD 707.15 872.39 645.83 677.84

(a) As a one-way multivariate model,
stored in variable adhdData

Group Stimulus Subject Millisec

Normal TargetAlone 1 568.52
Normal Incongruent 1 433.80
Normal Congruent 1 658.51
Normal Neutral 1 711.33

...
...

...
ADHD TargetAlone 30 707.15
ADHD Incongruent 30 872.39
ADHD Congruent 30 645.83
ADHD Neutral 30 677.84

(b) A a mixed model with one between-× one
within-subjects factor, as in adhdData2

Figure 1: Two alternative ways of arranging the ADHD data input file (wide vs long format).

Incongruent) ~ Group, data = adhdData)
> omnibus_LSM_mixed <- welchADF.test(adhdData2, response = "Milliseconds",
between.s = "Group", within.s = "Stimulus", subject = "Subject", contrast = "omnibus")

> omnibus_LSM_mixed_formula <- welchADF.test(Milliseconds ~ Group*Stimulus +
(Stimulus|Subject), data = adhdData2)

> omnibus_trimmed_formula <- update(omnibus_LSM_mixed_formula, trimming = TRUE)
> omnibus_trimmed_boot <- update(omnibus_trimmed_formula, bootstrap = TRUE, seed = 12345)

Above we have demonstrated the possibilities of an omnibus contrast to both arrangements of the
data. The first and third models assume a mixed model, where the within-subjects factor is implicit in
omnibus_LSM_mixed_implicit (using adhdData) and explicit in omnibus_LSM_mixed (using adhdData2).
The second model assumes a multivariate one-way model with no within-subjects effects. The model
omnibus_LSM_mixed_formula assumes an explicit mixed model described by a formula. The formula
interface can be fitted only to data in long format like adhdData2. Finally, this model is updated to
include trimming, and the resulting updated model is updated again to include bootstrapping as well.

> summary(omnibus_LSM_mixed_implicit)
Call:

welchADF.test(formula = adhdData, response = c("TargetAlone",
"Congruent", "Neutral", "Incongruent"), between.s = "Group",
within.s = "multivariate", contrast = "omnibus")

WJ statistic Numerator DF Denominator DF Pr(>WJ)
Group 0.2249 1 24.84 0.639482
multivariate 5.6591 3 21.02 0.005282 **
Group : multivariate 0.5750 3 21.02 0.637759
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> summary(omnibus_LSM_multi_oneway)
Call:

welchADF.test(formula = cbind(TargetAlone, Congruent, Neutral,
Incongruent) ~ Group, data = adhdData)

WJ statistic Numerator DF Denominator DF Pr(>WJ)
Group 0.4227 4 20.52 0.7904
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The results match those presented in Keselman et al. (2003), page 594. The only significant effect
is the Stimulus, which acts as the within-subjects factor. When we consider a one-way multivariate
design, with no within-subjects factor, then the Group (the between-subjects factor) is deemed not
significant. In order perform all pairwise comparisons between the levels of Stimulus, we proceed as
follows (only the bootstrap results are shown due to space constraints). The comparison is statistically
significant when the value of the WJ statistic is greater than or equal to the bootstrap critical value. In
this case, there were two significant differences, namely Incongruent vs TargetAlone, and Incongruent
vs Congruent, as mentioned in page 595 of the aforementioned work.
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> pairwise_trimmed_formula <- update(omnibus_trimmed_formula, contrast = "all.pairwise",
effect = "Stimulus")

> pairwise_trimmed_formula_boot <- update(pairwise_trimmed_formula, bootstrap = TRUE,
seed = 123456)

> summary(pairwise_trimmed_formula_boot)
Call:

welchADF.test(formula = Milliseconds ~ Group * Stimulus + (Stimulus |
Subject), data = adhdData2, trimming = TRUE, contrast = "all.pairwise",
effect = "Stimulus", bootstrap = TRUE, seed = 123456)

WJ statistic Numerator DF Denominator DF significant?
Congruent:TargetAlone 3.3278 1 15.515 no
Incongruent:TargetAlone 17.3549 1 15.436 yes
Neutral:TargetAlone 0.8251 1 8.419 no
Congruent:Neutral 0.1818 1 8.852 no
Incongruent:Neutral 13.9212 1 15.305 yes
Congruent:Incongruent 8.0013 1 15.503 no

Bootstrap critical value: 8.577

Note that, when using the implicit within-subjects effect format, we have to specify effect =
"multivariate" to indicate that the effect to be tested is the within-subjects effect, even though there is
no column with such name in our data. In case we are using the formula interface, this is not available
because formula terms must strictly correspond to column names or variables in the environment of
the formula.

Multivariate within-subjects design (doubly multivariate)

The three case studies addressed before are probably the most common in practice. Nevertheless,
and with the aim of demonstrating the flexibility of the welchADF package, we present here an
additional, not-so-common setting, namely a doubly multivariate design also proposed by Lix and
Keselman (1995). In general, this design arises when several dependent variables are measured for
each individual at several time points (every variable measured at each time point), or under different
conditions; the latter is the case of the example addressed below.

We could not access the data employed by Lix, hence we have analyzed data from Wuensch (1992)
which are freely available in the author’s website9. In this experiment, wild strain house mice were,
at birth, cross fostered onto house mouse (Mus), deer mouse (Peromyscus) or rat (Rattus) nursing
mothers. Ten days after weaning, each subject was tested in an apparatus that allowed it to enter four
different tunnels: one scented with clean pine shavings, and the other three tunnels with shavings
bearing the scent of Mus, Peromyscus, or Rattus respectively. Three variables were measured for each
tunnel: the number of visits to the tunnel during a twenty minute test, the time spent by each subject
in each of the four tunnels and the latency to first visit of each tunnel.

In this design, the type of nursing mother is a between-subjects factor. The within-subjects factor is
scent, with four levels (clean, Mus, Peromyscus, and Rattus). The multivariate response is composed
of visits, time, and latency for each tunnel. With this approach, the multivariate response is not treated
as another within-subjects factor. The data are delivered in our package in a variable named miceData.

> head(miceData)
Subject nurs tunnel visits time latency

1 1 Mus Clean 6 721.35 207.90
2 1 Mus MusSc 4 318.15 26.78
3 1 Mus PeromyscusSc 2 48.83 1025.33
4 1 Mus RattusSc 0 0.00 1212.75
5 2 Mus Clean 8 119.70 685.13
6 2 Mus MusSc 7 207.90 113.40

We first do an omnibus contrast. In the second call we demonstrate how the formula interface can be
used in this design to obtain exactly the same result.

> omnibus_LSM <- welchADF.test(miceData, response = c("visits", "time", "latency"),
between.s = "nurs", within.s = "tunnel", subject = "Subject", contrast = "omnibus")

9http://core.ecu.edu/psyc/wuenschk/SPSS/TUNNEL4b.sav

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 323

> omnibus_LSM_formula <- welchADF.test(cbind(visits, time, latency) ~ nurs*tunnel +
(tunnel | Subject), data = miceData)

> summary(omnibus_LSM_formula)
Call:

welchADF.test(formula = cbind(visits, time, latency) ~ nurs *
tunnel + (tunnel | Subject), data = miceData)

WJ statistic Numerator DF Denominator DF Pr(>WJ)
nurs 4.008 6 21.46 0.0076171 **
tunnel 5.201 9 22.08 0.0007601 ***
nurs : tunnel 5.153 18 21.38 0.0002407 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The least-square means were able to deem all effects statistically significant. Therefore we move to
pairwise contrasts for each of the effects, with and without trimming. The pairwise results of the
interaction term are not displayed as they consist of a large table.

> pairwise_LSM_nurs <- update(omnibus_LSM_formula, effect = "nurs",
contrast = "all.pairwise")

> pairwise_LSM_tunnel <- update(pairwise_LSM_nurs, effect = "tunnel")
> pairwise_tunnel_trimmed <- update(pairwise_LSM_tunnel, trimming = TRUE)
> pairwise_nurs_trimmed <- update(pairwise_LSM_nurs, trimming = TRUE)

> summary(pairwise_LSM_nurs)
Call:

welchADF.test(formula = cbind(visits, time, latency) ~ nurs *
tunnel + (tunnel | Subject), data = miceData, effect = "nurs",
contrast = "all.pairwise")

WJ statistic Numerator DF Denominator DF adj.pval
Mus:Rattus 4.210 3 16.85 0.04287 *
Peromyscus:Rattus 6.141 3 17.34 0.01468 *
Mus:Peromyscus 1.255 3 17.44 0.32030
---
Signif. codes (Hochberg p-values): 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> summary(pairwise_LSM_tunnel)
Call:

welchADF.test(formula = cbind(visits, time, latency) ~ nurs *
tunnel + (tunnel | Subject), data = miceData, effect = "tunnel",
contrast = "all.pairwise")

WJ statistic Numerator DF Denominator DF adj.pval
Clean:RattusSc 0.9554 3 24.71 0.42925
MusSc:RattusSc 6.7816 3 23.36 0.01129 *
PeromyscusSc:RattusSc 2.4812 3 24.74 0.33190
Clean:PeromyscusSc 1.2393 3 22.83 0.42925
MusSc:PeromyscusSc 2.2319 3 23.84 0.33190
Clean:MusSc 3.0873 3 24.97 0.22712
---
Signif. codes (Hochberg p-values): 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We will now incorporate bootstrapping to the pairwise comparisons and check the results:

> pairwise_nurs_trimmed_boot <- update(pairwise_nurs_trimmed, bootstrap = TRUE, seed = 123)
> pairwise_tunnel_trimmed_boot <- update(pairwise_nurs_trimmed_boot, effect = "tunnel")

> summary(pairwise_nurs_trimmed_boot)
Call:

welchADF.test(formula = cbind(visits, time, latency) ~ nurs *
tunnel + (tunnel | Subject), data = miceData, effect = "nurs",
contrast = "all.pairwise", trimming = TRUE, bootstrap = TRUE,
seed = 123)
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WJ statistic Numerator DF Denominator DF significant?
Mus:Rattus 3.6147 3 10.662 no
Peromyscus:Rattus 6.3409 3 9.551 yes
Mus:Peromyscus 0.6982 3 10.438 no

Bootstrap critical value: 6.292

> summary(pairwise_tunnel_trimmed_boot)
Call:

welchADF.test(formula = cbind(visits, time, latency) ~ nurs *
tunnel + (tunnel | Subject), data = miceData, effect = "tunnel",
contrast = "all.pairwise", trimming = TRUE, bootstrap = TRUE,
seed = 123)

WJ statistic Numerator DF Denominator DF significant?
Clean:RattusSc 1.544 3 15.76 no
MusSc:RattusSc 6.053 3 15.20 yes
PeromyscusSc:RattusSc 3.729 3 15.03 no
Clean:PeromyscusSc 3.106 3 14.26 no
MusSc:PeromyscusSc 1.976 3 15.50 no
Clean:MusSc 4.842 3 14.12 no

Bootstrap critical value: 5.922

The pairwise comparisons using least-squares means are able to detect significant differences only
between MusSc and RattusSc in the tunnel effect, and the trimmed-bootstrapped comparison also
supports this fact and negates significant differences for any other pair of levels. Regarding the nurs
effect, the LSM comparison reveals significant differences in Mus vs Rattus and also in Peromyscus vs
Rattus, but the trimmed-bootstrapped only agrees with the latest.

Conclusions and further work

This contribution has demonstrated the applicability of the new welchADF package in a variety of
experimental designs, ranging from the most simple one, namely a univariate one-way between-
subjects design, to a more exotic one like a doubly-multivariate design. The unified approach of
Johansen (1980) that has been implemented here leads to a great ease of use for any case study. We
have shown in the example code that specifying the factors involved in the design and the type of
analysis are done in a straightforward way, and then the code automatically generates the contrast
matrices needed and runs the test, no matter how complex the user’s design is. Therefore, researchers
from other areas may find it more friendly and hence, our effort may contribute to the diffusion of the
Welch-James ADF test in applied studies.

In the future, an enhancement may be added so that custom contrasts can be done in addition to
the most common omnibus and pairwise contrasts. This requires designing a simple, yet powerful
mechanism for the user to describe the desired test in the function arguments.
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