
Package ‘zfit’
August 27, 2023

Type Package

Title Fit Models in a Pipe

Version 0.4.0

Author Magnus Thor Torfason

Maintainer Magnus Thor Torfason <m@zulutime.net>

Description Improve the usage of model fitting functions within a piped
work flow.

License MIT + file LICENSE

URL https://torfason.github.io/zfit/,

https://github.com/torfason/zfit/

Depends R (>= 3.5.0)

Suggests dplyr, estimatr, MASS, pls, testthat (>= 3.0.0), tibble

Encoding UTF-8

Language en-US

RoxygenNote 7.2.3

NeedsCompilation no

Repository CRAN

Date/Publication 2023-08-27 10:00:02 UTC

R topics documented:
zfit . 2
zfunction . 3
zglm . 5
zlm . 7
zlm_robust . 8
zprint . 9

Index 11

1

https://torfason.github.io/zfit/
https://github.com/torfason/zfit/

2 zfit

zfit zfit: Fit Models in a Pipe

Description

Improve the usage of model fitting functions within a piped work flow.

Details

zfit makes it easier to use a piped workflow with functions that don’t have the “correct” order of
parameters (the first parameter of the function does not match the object passing through the pipe).

The issue is especially prevalent with model fitting functions, such as when passing and processing
a data.frame (or tibble) before passing them to lm() or similar functions. The pipe passes the
data object into the first parameter of the function, but the conventional estimation functions expect
a formula to be the first parameter.

This package addresses the issue with three functions that make it trivial to construct a pipe-friendly
version of any function:

• zfunction() reorders the arguments of a function. Just pass the name of a function, and the
name of the parameter that should receive the piped argument, and it returns a version of the
function with that parameter coming first.

• zfold() creates a fold (a wrapper) around a function with the reordered arguments. This
is sometimes needed instead of a simple reordering, for example for achieving correct S3
dispatch, and for functions that report its name or other information in output.

• zfitter() takes any estimation function with the standard format of a formula and data
parameter, and returns a version suitable for us in pipes (with the data parameter coming
first). Internally, it simply calls the zfold() function to create a fold around the fitter function.

The package also includes ready made wrappers around the most commonly used estimation func-
tions. zlm()and zglm() correspond to lm() and glm(), and zlogit(), zprobit(), and zpoisson(),
use glm() to perform logistic or poisson regression within a pipe.

Finally, the package includes the zprint() function, which is intended to simplify the printing of
derived results, such as summary(), within the pipe, without affecting the modeling result itself.

See Also

• zlm is the wrapper lm, probably the most common fitting function. The help file for this
function includes several usage examples.

• zglm is a wrapper for glm, to fit generalized linear models.

• zprint is helpful for printing a summary of a model, but assigning the evaluated model to a
variable

zfunction 3

zfunction Create a pipe-friendly version of a function

Description

These functions all serve the role of rearranging the arguments of other functions, in order to create
pipe-friendly versions.

zfunction() rearranges the arguments of any function moving the specified argument to the front
of the list, so that this argument becomes the recipient of piping. It returns a copy of the input
function, that is identical to the original except for the order of the arguments.

zfold() creates a pipe-friendly version of a function of the standard format by creating a fold (or
wrapper) around it with the parameters reordered. Compared to using zfunction(), which makes a
copy of the original function with rearranged the parameters, this creates a wrapper that in turn will
call the original function with all passed parameters. This is good for making pipe-friendly versions
of S3 generics, whereas rearranging parameters directly will break the S3 dispatch mechanism.

zfitter() creates a pipe-friendly version of a fitting function of the standard format –– that is a
function with a formula parameter followed by a data parameter. It also shortens very long data
names (longer than 32 characters by default), which otherwise are a nuisance when the data comes
from the pipe, because the pipeline gets converted to a very long function call.

Usage

zfunction(fun, x, x_not_found = c("error", "warning", "ok"))

zfold(fun, x, x_not_found = c("error", "warning", "ok"))

zfitter(fun)

Arguments

fun The function to adapt (for zfitter() this should be a fitting function that takes
formula and data parameters). The name should not be quoted, rather, the
actual function should be passed (prefixed with package if needed).

x The name of the argument that should be moved to the front of the argument
list. Can be passed with or without quotes, and is processed using non-standard
evaluation unless surrounded with curlies, as in {value}, see details below.

x_not_found How to handle the case where the value of x is not the name of a parameter
in fun. If error, abort the function. If ok, prepend the value to the existing
parameter list. This can be useful if looking to pipe data into a parameter that is
hidden by a

Details

The x parameter is processed using non-standard evaluation, which can be disabled using curly
brackets. In other words, the following are all equivalent, and return a file renaming function with
the to parameter as the first one:

4 zfunction

• zfunction(file.rename, to)

• zfunction(file.rename, "to")

• param_name <- "to"; zfunction(file.rename, {param_name})

Examples

A a grep function with x as first param is often useful
zgrep <- zfunction(grep, x)
carnames <- rownames(mtcars)
grep("ll", carnames, value=TRUE)
zgrep(carnames, "ll", value=TRUE)

zfunction() is the best approach to wrapping functions such as
`pls::plsr()` that hide the data parameter behind the `...`.
if (requireNamespace("pls")) {

zplsr <- zfunction(pls::plsr, data, x_not_found = "ok")
zplsr(cars, dist ~ speed)

}

Curly {x} handling: These are all equivalent
param_name <- "to";
f1 <- zfunction(file.rename, to)
f2 <- zfunction(file.rename, "to")
f3 <- zfunction(file.rename, {param_name})

Using zfold() to create a grep() wrapper with the desired arg order
zgrep <- zfold(grep, x)
carnames <- rownames(mtcars)
grep("ll", carnames, value=TRUE)
zgrep(carnames, "ll", value=TRUE)

Using zfitter to wrap around a fitting function
(this is the actual way zlm_robust is defined in this package)
if (requireNamespace("estimatr", quietly = TRUE)) {

zlm_robust <- zfitter(estimatr::lm_robust)
zlm_robust(cars, speed~dist)

The resulting function works well the native pipe ...
if (getRversion() >= "4.1.0") {
cars |> zlm_robust(speed ~ dist)

}
}

... or with dplyr
if (require("dplyr", warn.conflicts=FALSE)) {

Pipe cars dataset into zlm_robust for fitting
cars %>% zlm_robust(speed ~ dist)

Process iris with filter() before piping. Print a summary()
of the fitted model using zprint() before assigning the
model itself (not the summary) to m.

zglm 5

m <- iris %>%
dplyr::filter(Species=="setosa") %>%
zlm_robust(Sepal.Length ~ Sepal.Width + Petal.Width) %>%
zprint(summary)

}

zglm Run a glm model in a pipe

Description

These functions are wrappers for the glm function. The zglm function can be used to estimate any
generalized linear model in a pipe. The zlogit, zprobit, and zpoisson functions can be used to
estimate specific models. All of these functions rely on the glm function for the actual estimation,
they simply pass the corresponding values to the family parameter of the glm function.

Usage of these functions is very similar to the zlm function (a wrapper for lm), for detailed exam-
ples, check out the entry for that function.

The zlogit function calls zglm, specifying family=binomial(link="logit").

The zprobit function calls zglm, specifying family=binomial(link="probit").

The zpoisson function calls zglm, specifying family="poisson".

Usage

zglm(
data,
formula,
family = gaussian,
weights,
subset,
na.action,
start = NULL,
etastart,
mustart,
offset,
control = list(...),
model = TRUE,
method = "glm.fit",
x = FALSE,
y = TRUE,
singular.ok = TRUE,
contrasts = NULL,
...

)

zlogit(data, formula, ...)

6 zglm

zprobit(data, formula, ...)

zpoisson(data, formula, ...)

Arguments

data A data.frame containing the model data.

formula The formula to be fitted.

family See the glm function.

weights See the glm function.

subset See the glm function.

na.action See the glm function.

start See the glm function.

etastart See the glm function.

mustart See the glm function.

offset See the glm function.

control See the glm function.

model See the glm function.

method See the glm function.

x See the glm function.

y See the glm function.

singular.ok See the glm function.

contrasts See the glm function.

... Other arguments to be passed to the glm function.

Value

A fitted model.

See Also

• zlm is the wrapper for lm, probably the most common fitting function. The help file for zlm
function includes several usage examples.

zlm 7

zlm Run an lm model in a pipe.

Description

This function wraps around the lm function in order to make it more friendly to pipe syntax (with
the data first).

Usage

zlm(
data,
formula,
subset,
weights,
na.action,
method = "qr",
model = TRUE,
x = FALSE,
y = FALSE,
qr = TRUE,
singular.ok = TRUE,
contrasts = NULL,
offset,
...

)

Arguments

data A data.frame containing the model data.

formula The formula to be fitted.

subset See the lm function.

weights See the lm function.

na.action See the lm function.

method See the lm function.

model See the lm function.

x See the lm function.

y See the lm function.

qr See the lm function.

singular.ok See the lm function.

contrasts See the lm function.

offset See the lm function.

... Other arguments to be passed to the lm function.

8 zlm_robust

Value

A fitted model.

See Also

• zglm is a wrapper for glm, to fit generalized linear models.

Examples

Usage is possible without pipes
zlm(cars, dist ~ speed)

zfit works well with dplyr and magrittr pipes
if (require("dplyr", warn.conflicts=FALSE)) {

Pipe cars dataset into zlm for fitting
cars %>% zlm(speed ~ dist)

Process iris with filter before piping to zlm
iris %>%
filter(Species == "setosa") %>%
zlm(Sepal.Length ~ Sepal.Width + Petal.Width)

}

zfit also works well with the native pipe
if (require("dplyr") && getRversion() >= "4.1.0") {

Pipe cars dataset into zlm for fitting
cars |> zlm(speed ~ dist)

Process iris with filter() before piping. Print a
summary of the fitted model using zprint() before
assigning the model itself (not the summary) to m.
m <- iris |>
filter(Species == "setosa") |>
zlm(Sepal.Length ~ Sepal.Width + Petal.Width) |>
zprint(summary)

}

zlm_robust Pipe-friendly wrappers for external fitters

Description

These functions provide pipe-friendly wrappers around model fitters provided by several external
packages. The functions require the corresponding packages to be installed, if the required package
is missing the functions warns with directions for how to install it.

zprint 9

zlm_robust() wraps estimatr::lm_robust(), which fits a linear model with a variety of options
for estimating robust standard errors.

zpolr() wraps MASS::polr(), which fits an ordered logistic response for multi-value ordinal vari-
ables, using a proportional odds logistic regression.

zplsr() wraps pls::plsr(), which performs a partial least squares regression.

Examples

if (requireNamespace("estimatr") && getRversion() >= "4.1.0")
zlm_robust(cars, dist ~ speed) |> summary() |> try()

if (requireNamespace("MASS") && getRversion() >= "4.1.0")
zpolr(mtcars, ordered(gear) ~ mpg + hp) |> summary() |> try()

if (requireNamespace("pls") && getRversion() >= "4.1.0")
zplsr(cars, dist ~ speed) |> summary() |> try()

zprint Print the result of a function in a pipe but return original object

Description

Given x and f, this function prints f(x) before returning the original x. It is useful in a pipe, when
one wants a to print the derivative of an object in the pipe but then return or assign the original
object. A common use case is printing the ‘summary() of an estimated model but then assigning the
original model (rather than the summary object) to a variable for further processing.

Usage

zprint(x, f = NULL, ...)

Arguments

x An object, typically in a pipe.

f A function to be applied to x before printing.

... Other arguments to be passed to f.

Value

The original object x.

10 zprint

Examples

if (getRversion() >= "4.1.0" && require("dplyr")) {

Print summary before assigning model to variable
m <- lm(speed ~ dist, cars) |>
zprint(summary) # prints summary(x)

m # m is the original model object

Print grouped data before filtering original
cw_subset <- chickwts |>

zprint(count, feed, sort=TRUE) |> # prints counts by feed
filter(feed=="soybean")

cw_subset # cw_subset is ungrouped, but filtered by feed
}

Index

estimatr::lm_robust(), 9

glm, 5

lm, 6, 7

MASS::polr(), 9

pls::plsr(), 9

zfit, 2
zfit-package (zfit), 2
zfitter (zfunction), 3
zfold (zfunction), 3
zfunction, 3
zglm, 2, 5, 8
zlm, 2, 5, 6, 7
zlm_robust, 8
zlogit (zglm), 5
zplsr (zlm_robust), 8
zpoisson (zglm), 5
zpolr (zlm_robust), 8
zprint, 2, 9
zprobit (zglm), 5

11

	zfit
	zfunction
	zglm
	zlm
	zlm_robust
	zprint
	Index

