Inferring Cell-Specific Gene Regulatory Network


[Up] [Top]

Documentation for package ‘inferCSN’ version 1.0.8

Help Pages

inferCSN-package _*inferCSN*_: *infer*ring *C*ell-*S*pecific gene regulatory *N*etwork
as_matrix Convert dgCMatrix into a dense matrix
calculate_acc Calculate accuracy value
calculate_auc Calculate AUPRC and AUROC values
calculate_gene_rank Rank TFs and genes in network
check_sparsity Check sparsity of matrix
coef.srm Extracts a specific solution in the regularization path
coef.srm_cv Extracts a specific solution in the regularization path
example_ground_truth Example ground truth data
example_matrix Example matrix data
example_meta_data Example meta data
filter_sort_matrix Filter and sort matrix
fit_sparse_regression Fit a sparse regression model
inferCSN *infer*ring *C*ell-*S*pecific gene regulatory *N*etwork
inferCSN-method *infer*ring *C*ell-*S*pecific gene regulatory *N*etwork
log_message Print diagnostic message
network_format Format network table
network_sift Sifting network
normalization Normalize numeric vector
parallelize_fun Parallelize a function
plot_contrast_networks Plot contrast networks
plot_dynamic_networks Plot dynamic networks
plot_embedding Plot embedding
plot_network_heatmap Plot network heatmap
plot_scatter Plot expression data in a scatter plot
plot_static_networks Plot dynamic networks
plot_weight_distribution Plot weight distribution
predict.srm Predicts response for a given sample
predict.srm_cv Predicts response for a given sample
print.srm Prints a summary of 'fit_sparse_regression'
print.srm_cv Prints a summary of 'fit_sparse_regression'
r_square R^2 (coefficient of determination)
single_network Construct network for single target gene
sparse_regression Sparse regression model
table_to_matrix Switch network table to matrix