Kernel Functions and Tools for Machine Learning Applications


[Up] [Top]

Documentation for package ‘kerntools’ version 1.0.1

Help Pages

Acc Accuracy
Acc_rnd Accuracy of a random model
Boots_CI Confidence Interval using Bootstrap
BrayCurtis Kernels for count data
centerK Centering a kernel matrix
centerX Centering a squared matrix by row or column
cosNorm Cosine normalization of a kernel matrix
cosnormX Cosine normalization of a matrix
desparsify This function deletes those columns and/or rows in a matrix/data.frame that only contain 0s.
Dirac Kernels for categorical variables
dummy_data Convert categorical data to dummies.
dummy_var Levels per factor variable
estimate_gamma Gamma hyperparameter estimation (RBF kernel)
F1 F1 score
Frobenius Frobenius kernel
frobNorm Frobenius normalization
heatK Kernel matrix heatmap
histK Kernel matrix histogram
Intersect Kernels for sets
Jaccard Kernels for sets
Kendall Kendall's tau kernel
kPCA Kernel PCA
kPCA_arrows Plot the original variables' contribution to a PCA plot
kPCA_imp Contributions of the variables to the Principal Components ("loadings")
KTA Kernel-target alignment
Laplace Laplacian kernel
Linear Linear kernel
minmax Minmax normalization
MKC Multiple Kernel (Matrices) Combination
nmse NMSE (Normalized Mean Squared Error)
Normal_CI Confidence Interval using Normal Approximation
plotImp Importance barplot
Prec Precision or PPV
Procrustes Procrustes Analysis
RBF Gaussian RBF (Radial Basis Function) kernel
Rec Recall or Sensitivity or TPR
Ruzicka Kernels for count data
showdata Showdata
simK Kernel matrix similarity
Spe Specificity or TNR
Spectrum Spectrum kernel
svm_imp SVM feature importance
TSS Total Sum Scaling
vonNeumann Von Neumann entropy