Package ‘BayesPIM’

March 22, 2025
Title Bayesian Prevalence-Incidence Mixture Model
Version 1.0.0

Description Models time-to-event data from interval-censored
screening studies. It accounts for latent prevalence at baseline and
incorporates misclassification due to imperfect test sensitivity. For usage
details, see the package vignette ("~ BayesPIM_intro"). Further details can be
found in T. Klausch, B. I. Lissenberg-Witte, and V. M. Coupe (2024),
" A Bayesian prevalence-incidence mixture model for screening outcomes with
misclassification", <doi:10.48550/arXiv.2412.16065>.

License MIT + file LICENSE
URL https://github.com/thomasklausch2/bayespim

BugReports https://github.com/thomasklausch2/BayesPIM/issues
Encoding UTF-8

RoxygenNote 7.3.2

LinkingTo Rcpp

Imports Rcpp, mvtnorm, MASS, ggamma, doParallel, foreach, parallel,
actuar

Depends R (>=3.5.0), coda

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation yes

Author Thomas Klausch [aut, cre]

Maintainer Thomas Klausch <t.klausch@amsterdamumc.nl>
Repository CRAN

Date/Publication 2025-03-22 11:40:02 UTC

https://doi.org/10.48550/arXiv.2412.16065
https://github.com/thomasklausch2/bayespim
https://github.com/thomasklausch2/BayesPIM/issues

2 bayes.2S

Contents
bayes.2S . . . L 2
bayes.2S_Seq e 8
gendat e e e e 13
getIC_2S . . o 16
get.ppd.2S . Lo e 18
search.prop.sd L L 21
search.prop.sd_seq e e 22
trMMCMC L Lo oo e 24

Index 26

bayes.2S Fitting Bayesian Prevalence-Incidence Mixture Model
Description

Estimates the Pattern Mixture model of Klausch et al. (2025) using a Bayesian Gibbs sampler.
The model is formulated as an interval-censored survival model over successive intervals, with the
possibility of missed events due to imperfect test sensitivity. In addition, baseline tests at time zero
may fail to detect pre-study events (prevalence).

Usage
bayes.2S(
Vobs,
Z.X = NULL,
Z.W = NULL,
r = NULL,
dist.X = "weibull”,
kappa = 0.5,

update.kappa = FALSE,
kappa.prior = NULL,

ndraws = 1000,

prop.sd.X = NULL,

chains = 3,

thining = 1,

parallel = TRUE,
update.till.converge = FALSE,
maxit = Inf,

conv.crit = "upper”,
min_effss = chains * 10,
beta.prior = "norm”,

beta.prior.X =1,
sig.prior.X = 1,
tau.w = 1,
fix.sigma.X = FALSE,

bayes.2S

prev.run = NULL,

update.burnin

= TRUE,

ndraws.update = NULL,

prev = TRU

Ey

vanilla = FALSE,

ndraws.naive

= 10000,

naive.run.prop.sd.X = prop.sd.X,
par.exp = FALSE,
collapsed.g = TRUE,

k.prior

fix.k = FALSE

Arguments

Vobs

Z.X

ZW

dist.X
kappa
update.kappa

kappa.prior

ndraws

prop.sd.X

chains
thining
parallel

1,

A list of length n of numeric vectors representing screening times. The first
element of each vector should always be @ and the last element Inf in the case
of right censoring.

A numeric matrix of dimension n X p, containing covariates for the AFT inci-
dence model. Missing values are not allowed.

A numeric matrix of dimension n X p,, containing covariates for the probit
prevalence model. Missing values are not allowed.

A binary vector of length n indicating whether a baseline test was conducted (1
for yes, @ for no / missing baseline test).

Character. Specifies the distribution for the time-to-incidence variable; choices
are 'weibull', 'lognormal’, or 'loglog' (log-logistic).

Numeric. The test sensitivity value to be used if update.kappa = FALSE; other-
wise, the starting value for estimating «.

Logical. If TRUE, the test sensitivity () is updated during the Gibbs sampler.

A numeric vector of length 2. When specified, a Beta distribution prior is used
for k, centered at kappa.prior[1] with standard deviation kappa.prior[2].
If NULL, a uniform prior (Beta(1,1)) is used.

Integer. The total number of MCMC draws for the main Gibbs sampler.

Numeric. The standard deviation for the proposal (jumping) distribution in the
Metropolis sampler used for updating 3,;. Can be searched for automatically
using search.prop.sd.

Integer. The number of MCMC chains to run.
Integer. The thinning interval for the MCMC sampler.

Logical. If TRUE, parallel processing is enabled for the Gibbs sampler. Each
chain is assigned to one core (via the foreach package). Alternatively, use
bayes.2S_seq which employs a for loop over the chains.

update.till.converge

Logical. If TRUE, the model is updated iteratively until convergence criteria are
met. Convergence is assessed using the Gelman-Rubin diagnostic (R < 1.1) and
a minimum effective sample size (min_effss) for each parameter, respectively.

maxit

conv.crit

min_effss

beta.prior

beta.prior.X

sig.prior.X

tau.w

fix.sigma.X

prev.run

update.burnin

ndraws.update

prev

vanilla

ndraws.naive

bayes.2S

Numeric. The maximum number of MCMC draws allowed before interrupting
the update process when update.till.converge is enabled. Default is Inf
(i.e., no automatic interruption).

Character. Specifies whether the convergence check uses the point estimate
('point') or the upper bound ('upper') of the Gelman-Rubin diagnostic es-
timate (R).

Integer. The minimum effective sample size required for each parameter before
convergence is accepted during iterative updating.

Character. Specifies the type of prior for the incidence regression coefficients
(By;); options are 'norm' for normal and 't for student-t.

Numeric. The hyperparameter for the prior distribution of the regression coeffi-
cients (8,;) in the AFT incidence model. For a normal prior, this is the standard
deviation; for a student-t prior, it represents the degrees of freedom. The default
produces a standard-normal prior.

Numeric. The hyperparameter (standard deviation) for a half-normal prior on
the scale parameter (o) of the AFT incidence model.

Numeric. The hyperparameter (standard deviation) for the normal prior distri-
bution of the regression coefficients (3,,;) in the probit prevalence model. The
default produces a standard-normal prior.

Logical. If TRUE, the scale parameter (o) in the AFT incidence model is fixed at
the value provided in sig.prior.X; if FALSE, it is updated.

Optional. An object of class BayesPIM containing results from a previous run.
When provided, data and prior settings are adopted from the previous run, and
the MCMC chain continues from the last draw.

Logical. If TRUE (default) and prev.run is provided, the burn-in period is up-
dated to half of the total draws (sum of previous and current runs); otherwise,
the burn-in is maintained as half of the draws from the initial run.

Integer. The number of MCMC draws for updating a previous run or for conver-
gence updates. If unspecified, ndraws is used.

Logical. If TRUE, prevalence adjustment is applied; if FALSE, prevalence is as-
sumed to be zero.

Logical. If TRUE, a vanilla run is performed that assumes no prevalence ad-
justment and fixes k = 1, equivalent to a standard Bayesian interval-censored
survival regression.

Integer. The number of MCMC draws for a preliminary vanilla run used to
obtain starting values. Increase if initial values lead to issues (e.g., an infinite
posterior).

naive.run.prop.sd.X

par.exp

Numeric. The standard deviation for the proposal distribution used in the vanilla
run. Adjust only if the acceptance rate is significantly off target, as indicated by
an interruption message.

Logical. If TRUE, the parameter expansion technique of Liu & Wiu (1999) with
a Haar prior is employed for updating the regression coefficients (3,,;) in the
prevalence model. Experimental: tests suggest that it does not improve conver-
gence or reduce autocorrelation.

bayes.2S 5

collapsed.g Logical. If TRUE, the latent prevalence class membership update in the Gibbs
sampler is integrated (collapsed) over the latent incidence time variable. This
setting is recommended to improve convergence.

k.prior Experimental prior parameter for generalized gamma; currently not used.
fix.k Experimental fixing of prior parameter for generalized gamma; currently not
used.
Details

This Bayesian prevalence-incidence mixture model (PIM) characterizes the time to incidence using
an accelerated failure time (AFT) model of the form:

log(x;) = 25,8, + o€;

where ¢; is chosen such that x; follows aweibull, lognormal, or loglog (log-logistic) distribution,
as specified by the dist argument. The covariate vector z,; for individual 7 is provided in the Z.X
matrix.

Baseline prevalence is modeled using a probit formulation Pr(g; = 1|zy;) = Pr(w; > 0]2y;)
with

Wi = z1,111'/6w + 1

where 1); follows a standard normal distribution, and the covariate vector z,,; is given in the Z.W
matrix. The latent variable w; determines prevalence status, such that g; = 1 if w; > 0and g; = 0
otherwise.

The argument Vobs provides the observed testing times for all individuals. It is a list of numeric
vectors, where each vector starts with @ (representing the baseline time) and is followed by one or
more screening times. The final entry is Inf in the case of right censoring or indicates the time of a
positive test if an event is observed. Specifically:

« If the baseline test is positive, the vector consists solely of c(0).

* If the baseline test is negative and right censoring occurs before the first regular screening, the
vector is c(@, Inf).

» Otherwise, the vector ends with Inf in the case of right censoring (e.g., c(@, 1, 3, 6, Inf))
or ends at the event time (e.g., c(@, 1, 3, 6) for an event detected at time 6).

By convention, every vector in Vobs starts with @. However, the binary vector r of length n indi-
cates whether the baseline test was conducted (r[i] = 1) or missing (r[i] = @) for each individual
i in Vobs. For further details on coding, see Section 2 of the main paper.

Test sensitivity can be fixed to a value kappa by setting update . kappa = FALSE, or it can be esti-
mated if update.kappa = TRUE. When estimated, a Beta prior is used, centered on the first element
of kappa.prior, with a standard deviation equal to its second element. An internal optimization
process finds the Beta prior hyperparameters that best match this choice. If the chosen prior is not
feasible, unexpected behavior may occur. If kappa.prior is not specified (the default), an uninfor-
mative uniform(0,1) prior is used. In general, we advise against using an uninformative prior, but
this default avoids favoring any specific informative prior.

bayes.2S

The Gibbs sampler runs for ndraws iterations for each of chains total chains. The Metropolis
step used for sampling the parameters of the incidence model applies a normal proposal (jump-
ing) distribution with a standard deviation prop.sd.X, which must be selected by trial and error.
An optimal acceptance rate is approximately 23%, which can be computed per MCMC run from
the model output. Alternatively, the function search.prop.sd provides a heuristic for selecting an
effective proposal distribution standard deviation.

If parallel = TRUE, the Gibbs sampler runs in parallel with one chain per CPU (if possible), using
the foreach package. If this package causes issues on some operating systems, set parallel =
FALSE or use the bayes.2S_seq function, which iterates over 1:chains using a for loop. This
sequential function may also be useful in Monte Carlo simulations that parallelize experimental
replications using foreach.

We recommend running at least two chains in parallel, and preferably more, to facilitate standard
MCMC diagnostics such as the Gelman-Rubin R statistic. Additionally, we suggest first running
the sampler for a moderate number of iterations to assess its behavior before using the updating
functionality in prev. run to extend sampling (see below).

The option update.till.convergence = TRUE allows bayes.2S to run until convergence. Con-
vergence is achieved when R < 1.1 for all parameters and the minimum effective sample size
min_effs is reached. The sampler continues updating until convergence is attained or maxit is
reached.

The priors for the regression coefficients in the prevalence and incidence models can be controlled
using beta.prior, beta.prior.X, sig.prior.X, and tau.w. Specifically:

* beta.prior determines the prior type for 3, (either normal or Student-t t).

* beta.prior.X specifies either the standard deviation (for normal priors) or degrees of free-
dom (for Student-t priors). The default is a standard normal prior.

* A half-normal prior is used for o, with sig.prior.X controlling the standard deviation.

* A zero-centered normal prior is assigned to 3,,;, with tau.w controlling its standard deviation
(default: standard normal).

Sometimes model fitting can be improved by fixing the o parameter to a value, which is achieved
through setting fix.sigma.X = TRUE. Then, the value specified as sig.prior.X is regarded as the
correct value for o, akin to a point prior on this value. The functionality can also be used to
obtain the exponential distribution, aking to a Markov model. For this choose dist="weibull’,
sig.prior.X =1, and fix.sigma.X=TRUE.

The prev. run argument allows updating a previous run with additional MCMC draws. The MCMC
chain resumes from the last draws, continues, and merges with the original run. If an initial model

was fit using mod <- bayes.2S(...), it can be updated using mod_update <- bayes.2S(prev.run
=mod). By default, ndraws additional iterations are added unless otherwise specified via ndraws . update.
When updating, the number of discarded burn-in draws can be adjusted to half of the total draws
(update.burnin = TRUE) or remain at the initial number (update.burnin = FALSE).

The Gibbs sampler requires starting values, which are obtained from an initial Bayesian interval-
censored survival model using the specified dist distribution. The jumping distribution vari-
ance and the number of MCMC draws for this initialization are controlled via ndraws.naive and
naive.run.prop.sd.X. The default values typically suffice but may need adjustment if initializa-
tion fails (e.g., increasing ndraws.naive or tuning naive.run.prop.sd.X). If starting values are
found but still lead to an infinite posterior at initialization, the error "Bad starting values" is returned.
Then it usually sufficces to re-run bayes. 2S with an increased ndraws. naive value.

bayes.2S 7

Value

A list containing the following elements:

par.X.all An meme. list of MCMC samples for the incidence and prevalence model pa-
rameters.

par.X.bi An mcme. list of MCMC samples for the incidence and prevalence model pa-
rameters after burn-in removal.

X A matrix of posterior draws for the latent event times x;, with one column per
chain.

C A matrix of posterior draws for prevalence class membership g;, with one col-

umn per chain.

ac.X A matrix with MCMC draws in rows and chains in columns, where each row
indicates whether the Metropolis sampler accepted (1) or rejected (0) a sample.

ac.X.cur Same as ac. X, but only for the last update.

dat A data frame containing the last observed interval.

priors A list of prior specifications for the model parameters, including beta.prior.X
(incidence regression coefficients) and sig.prior.X (scale parameter for the
AFT model).

runtime The total runtime of the MCMC sampler.

Additionally, most input arguments are returned as part of the output for reference.

References

T. Klausch, B. I. Lissenberg-Witte, and V. M. Coupe (2024). "A Bayesian prevalence-incidence
mixture model for screening outcomes with misclassification.", doi:10.48550/arXiv.2412.16065.

J. S. Liu and Y. N. Wu, “Parameter Expansion for Data Augmentation,” Journal of the American
Statistical Association, vol. 94, no. 448, pp. 1264-1274, 1999, doi:10.2307/2669940.

Examples

library(BayesPIM)

Generate data according to the Klausch et al. (2024) PIM
set.seed(2025)
dat <- gen.dat(kappa = 0.7, n = 1e3, theta = 0.2,
p =1, p.discrete =1,
beta.X = c(0.2, 0.2), beta.W = c(0.2, 0.2),
v.min = 20, v.max = 30, mean.rc = 80,
sigma.X = 0.2, mu.X = 5, dist.X = "weibull”,
prob.r = 1)

Initial model fit with fixed test sensitivity kappa (approx. 1-3 minutes runtime)
mod <- bayes.2S(Vobs = dat$Vobs,

Z.X = dat$z,

Z.W = dat$z,

r = dats$r,

doi:10.48550/arXiv.2412.16065
doi:10.2307/2669940

8 bayes.2S_seq

kappa = 0.7,
update.kappa = FALSE,
ndraws = le4,

chains = 2,

prop.sd.X = 0.008,
parallel = TRUE,
dist.X = "weibull")

Inspect results

mod$runtime # Runtime of the Gibbs sampler

plot(trim.mcmc(mod$par.X.all, thining = 10)) # MCMC chains including burn-in, also see ?trim.mcmc
plot(trim.mecmc(mod$par.X.bi, thining = 10)) # MCMC chains excluding burn-in

apply(mod$ac.X, 2, mean) # Acceptance rates per chain

gelman.diag(mod$par.X.bi) # Gelman convergence diagnostics

Model updating
mod_update <- bayes.2S(prev.run = mod) # Adds ndraws additional MCMC draws
mod_update <- bayes.2S(prev.run = mod,

ndraws.update = 1e3) # Adds ndraws.update additional MCMC draws

Example with kappa estimated/updated
mod2 <- bayes.2S(Vobs = dat$Vobs,
Z.X = dat$z,
Z.W = dat$z,
r = dat$r,
kappa = 0.7,
update.kappa = TRUE,
kappa.prior = c(0.7, 0.1), # Beta prior, mean = 0.7, s.d. = 0.1
ndraws = le4,
chains = 2,
prop.sd.X = 0.008,
parallel = TRUE,
dist.X = "weibull")

Inspect results
mod2$runtime # runtime of Gibbs sampler
plot(trim.mcmc(mod2$par.X.all, thining = 10)) # kappa returned as part of the mcmc.list

bayes.2S_seq bayes.2S_seq: Bayesian Prevalence-Incidence Mixture Model (se-
quential processing)

Description

Estimates the Pattern Mixture model of Klausch et al. (2025) using a Bayesian Gibbs sampler.
Identical to bayes.2S but uses a for loop over MCMC chains instead of foreach.

bayes.2S_seq

Usage

bayes.2S_seq(
Vobs,
Z.X = NULL,
Z.W = NULL,
r = NULL,

dist.X = "weibull”,

kappa = 0.5,

update.kappa = FALSE,

kappa.prior =
ndraws = 1000

NULL,

’

prop.sd.X = NULL,

chains = 3,
thining = 1,

parallel = TRUE,
update.till.converge = FALSE,

maxit = Inf,

conv.crit = "upper”,
min_effss = chains * 10,

beta.prior =

"norm" ,

beta.prior.X =1,

sig.prior.X =
tau.w = 1,
fix.sigma.X =

1,

FALSE,

prev.run = NULL,

update.burnin
ndraws.update
prev = TRUE,

= TRUE,
= NULL,

vanilla = FALSE,

ndraws.naive

= 5000,

naive.run.prop.sd.X = prop.sd.X,
par.exp = FALSE,

collapsed.g =
k.prior =1,
fix.k = FALSE

Arguments

Vobs

Z.X

ZW

TRUE,

A list of length n of numeric vectors representing screening times. The first
element of each vector should always be @ and the last element Inf in the case
of right censoring.

A numeric matrix of dimension n X p, containing covariates for the AFT inci-
dence model. Missing values are not allowed.

A numeric matrix of dimension n X p,, containing covariates for the probit
prevalence model. Missing values are not allowed.

A binary vector of length n indicating whether a baseline test was conducted (1
for yes, @ for no / missing baseline test).

10

dist.X
kappa
update.kappa

kappa.prior

ndraws

prop.sd.X

chains
thining
parallel

bayes.2S_seq

Character. Specifies the distribution for the time-to-incidence variable; choices
are 'weibull', 'lognormal’, or 'loglog' (log-logistic).

Numeric. The test sensitivity value to be used if update.kappa = FALSE; other-
wise, the starting value for estimating «.

Logical. If TRUE, the test sensitivity (x) is updated during the Gibbs sampler.

A numeric vector of length 2. When specified, a Beta distribution prior is used
for x, centered at kappa.prior[1] with standard deviation kappa.prior[2].
If NULL, a uniform prior (Beta(1,1)) is used.

Integer. The total number of MCMC draws for the main Gibbs sampler.

Numeric. The standard deviation for the proposal (jumping) distribution in the
Metropolis sampler used for updating 3;;. Can be searched for automatically
using search.prop.sd.

Integer. The number of MCMC chains to run.
Integer. The thinning interval for the MCMC sampler.

Logical. If TRUE, parallel processing is enabled for the Gibbs sampler. Each
chain is assigned to one core (via the foreach package). Alternatively, use
bayes.2S_seq which employs a for loop over the chains.

update.till.converge

maxit

conv.crit

min_effss

beta.prior

beta.prior.X

sig.prior.X

tau.w

fix.sigma.X

Logical. If TRUE, the model is updated iteratively until convergence criteria are
met. Convergence is assessed using the Gelman-Rubin diagnostic (R < 1.1) and
a minimum effective sample size (min_effss) for each parameter, respectively.

Numeric. The maximum number of MCMC draws allowed before interrupting
the update process when update.till.converge is enabled. Default is Inf
(i.e., no automatic interruption).

Character. Specifies whether the convergence check uses the point estimate
('pointA') or the upper bound ('upper') of the Gelman-Rubin diagnostic es-
timate (R).

Integer. The minimum effective sample size required for each parameter before
convergence is accepted during iterative updating.

Character. Specifies the type of prior for the incidence regression coefficients
(Bz;); options are 'norm' for normal and 't for student-t.

Numeric. The hyperparameter for the prior distribution of the regression coeffi-
cients (f3;) in the AFT incidence model. For a normal prior, this is the standard
deviation; for a student-t prior, it represents the degrees of freedom. The default
produces a standard-normal prior.

Numeric. The hyperparameter (standard deviation) for a half-normal prior on
the scale parameter (o) of the AFT incidence model.

Numeric. The hyperparameter (standard deviation) for the normal prior distri-
bution of the regression coefficients (3,,;) in the probit prevalence model. The
default produces a standard-normal prior.

Logical. If TRUE, the scale parameter (o) in the AFT incidence model is fixed at
the value provided in sig.prior.X; if FALSE, it is updated.

bayes.2S_seq

prev.run

update.burnin

ndraws.update

prev

vanilla

ndraws.naive

11

Optional. An object of class BayesPIM containing results from a previous run.
When provided, data and prior settings are adopted from the previous run, and
the MCMC chain continues from the last draw.

Logical. If TRUE (default) and prev.run is provided, the burn-in period is up-
dated to half of the total draws (sum of previous and current runs); otherwise,
the burn-in is maintained as half of the draws from the initial run.

Integer. The number of MCMC draws for updating a previous run or for conver-
gence updates. If unspecified, ndraws is used.

Logical. If TRUE, prevalence adjustment is applied; if FALSE, prevalence is as-
sumed to be zero.

Logical. If TRUE, a vanilla run is performed that assumes no prevalence ad-
justment and fixes k = 1, equivalent to a standard Bayesian interval-censored
survival regression.

Integer. The number of MCMC draws for a preliminary vanilla run used to
obtain starting values. Increase if initial values lead to issues (e.g., an infinite
posterior).

naive.run.prop.sd.X

par.exp

collapsed.g

k.prior
fix.k

Details

Numeric. The standard deviation for the proposal distribution used in the vanilla
run. Adjust only if the acceptance rate is significantly off target, as indicated by
an interruption message.

Logical. If TRUE, the parameter expansion technique of Liu & Wiu (1999) with
a Haar prior is employed for updating the regression coefficients (3,,;) in the
prevalence model. Experimental: tests suggest that it does not improve conver-
gence or reduce autocorrelation.

Logical. If TRUE, the latent prevalence class membership update in the Gibbs
sampler is integrated (collapsed) over the latent incidence time variable. This
setting is recommended to improve convergence.

Experimental prior parameter for generalized gamma; currently not used.

Experimental fixing of prior parameter for generalized gamma; currently not
used.

This function is dentical to bayes.2S with the only difference being that the chains MCMC chains
are run in sequence using a for loop instead of parallel processing. This can be useful if operating
systems do not support foreach or for simulation studies that parallize replication of experiments
using foreach and/or need a worker that does not apply foreach internally.

Value

A list containing the following elements:

par.X.all

par.X.bi

An memce. list of MCMC samples for the incidence and prevalence model pa-
rameters.

An mcme. list of MCMC samples for the incidence and prevalence model pa-
rameters after burn-in removal.

12 bayes.2S_seq

X A matrix of posterior draws for the latent event times x;, with one column per
chain.
C A matrix of posterior draws for prevalence class membership g;, with one col-

umn per chain.

ac.X A matrix with MCMC draws in rows and chains in columns, where each row
indicates whether the Metropolis sampler accepted (1) or rejected (0) a sample.

ac.X.cur Same as ac. X, but only for the last update.

dat A data frame containing the last observed interval.

priors A list of prior specifications for the model parameters, including beta.prior.X
(incidence regression coefficients) and sig.prior.X (scale parameter for the
AFT model).

runtime The total runtime of the MCMC sampler.

Additionally, most input arguments are returned as part of the output for reference.

References

T. Klausch, B. I. Lissenberg-Witte, and V. M. Coupe (2024). "A Bayesian prevalence-incidence
mixture model for screening outcomes with misclassification.”, doi:10.48550/arXiv.2412.16065.

J. S. Liu and Y. N. Wu, “Parameter Expansion for Data Augmentation,” Journal of the American
Statistical Association, vol. 94, no. 448, pp. 1264-1274, 1999, doi: 10.2307/2669940.

Examples

library(BayesPIM)

Generate data according to the Klausch et al. (2025) PIM
set.seed(2025)
dat <- gen.dat(kappa = 0.7, n = 1e3, theta = 0.2,
p =1, p.discrete =1,
beta.X = c(0.2, 0.2), beta.W = c(0.2, 0.2),
v.min = 20, v.max = 30, mean.rc = 80,
sigma.X = 0.2, mu.X = 5, dist.X = "weibull”,
prob.r = 1)

Initial model fit with fixed test sensitivity kappa (approx. 4-12 minutes runtime)
mod <- bayes.2S_seq(Vobs = dat$Vobs,
Z.X = dat$z,
Z.W = dat$z,
r = dat$r,
kappa = 0.7,
update.kappa = FALSE,
ndraws = le4,
chains = 4,
prop.sd.X = 0.008,
parallel = TRUE,
dist.X = "weibull")

Inspect results

gen.dat 13

mod$runtime # Runtime of the Gibbs sampler

plot(trim.memc(mod$par.X.all, thining = 10)) # MCMC chains including burn-in, also see ?trim.mcmc
plot(trim.mcmc(mod$par.X.bi, thining = 10)) # MCMC chains excluding burn-in

apply(mod$ac.X, 2, mean) # Acceptance rates per chain

gelman.diag(mod$par.X.bi) # Gelman convergence diagnostics

Model updating
mod_update <- bayes.2S(prev.run = mod) # Adds ndraws additional MCMC draws
mod_update <- bayes.2S(prev.run = mod,

ndraws.update = 1e3) # Adds ndraws.update additional MCMC draws

Example with kappa estimated/updated
mod2 <- bayes.2S_seq(Vobs = dat$Vobs,
Z.X = dat$z,
Z.W = dat$z,
r = dat$r,
kappa = 0.7,
update.kappa = TRUE,
kappa.prior = c(0.7, 0.1), # Beta prior, mean = 0.7, s.d. = 0.1
ndraws = le4,
chains = 4,
prop.sd.X = 0.008,
parallel = TRUE,
dist.X = "weibull")

Inspect results
mod2$runtime # runtime of Gibbs sampler
plot(trim.mcmc(mod2$par.X.all, thining = 10)) # kappa returned as part of the mcmc.list

gen.dat gen.dat: Simulate Screening Data for a Prevalence-Incidence Mixture
Model

Description

Generates synthetic data according to the Bayesian prevalence-incidence mixture (PIM) frame-
work of Klausch et al. (2025) with interval-censored screening outcomes. The function simulates
continuous or discrete baseline covariates, event times from one of several parametric families,
and irregular screening schedules, yielding interval-censored observations suitable for testing or
demonstrating PIM-based or other interval-censored survival methods.

Usage

gen.dat(
kappa = 0.7,
n = 1000,
p =2,
p.discrete = 0,

14 gen.dat
r=20,
s =1,
sigma.X = 1/2,
mu.X = 4,
beta.X = NULL,
beta.W = NULL,
theta = 0.15,
v.min = 1,
v.max = 6,
mean.rc = 40,
dist.X = "weibull”,
k=1,
sel.mod = "probit”,
prob.r = @

)

Arguments

kappa Numeric. Test sensitivity parameter x used when generating misclassification.
A value of 1 implies perfect sensitivity.

n Integer. Sample size.

p Integer. Number of continuous baseline covariates to simulate.

p.discrete Integer. If 1, include an additional discrete covariate Zgjscrete from Bernoulli(0.5);
otherwise, none.

r Numeric. Correlation coefficient(s) used to build the covariance matrix of con-
tinuous covariates. If p > 1, off-diagonal entries of the correlation matrix are set
tor.

s Numeric. Standard deviation(s) of the continuous covariates. If p > 1, all con-
tinuous covariates share the same s.

sigma.X Numeric. Scale parameter o x in the AFT model for log(z;).

mu. X Numeric. Intercept 3, in the AFT model. In the linear predictor, it appears as
log(x;) = Pzo + ﬁ;ZZ- + oxe€;. Practically, mu. X is prepended to beta. X when
forming the full parameter vector.

beta.X Numeric vector. The coefficients 3, for the AFT model. Combined with mu. X,
the log-scale model is cbind (1, Z_i) %*% c(mu.X, beta.X).

beta.W Numeric vector. The coefficients 3,, for the prevalence model. The intercept
Buwo is derived from theta.

theta Numeric. Baseline prevalence parameter on the probability scale. Under:

* sel.mod = "probit": 8,0 = qnorm(6).
» sel.mod = "logit": B0 = log(8/(1 —0)).

v.min Numeric. Minimum spacing for irregular screening intervals.

V. max Numeric. Maximum spacing for irregular screening intervals.

mean.rc Numeric. Mean of the exponential distribution controlling a random right-

censoring time t,. after the first screening.

gen.dat 15
dist.X Character. Distribution for survival times z;: "weibull”, "lognormal”, "loglog"
(log-logistic), or "gengamma” (generalized gamma).
k Numeric. Shape parameter for "gengamma” only.
sel.mod Character. Either "probit” or "logit”, specifying the link function for the
prevalence model.
prob.r Numeric. Probability that a baseline test is performed (r; = 1). If prob.r =9,
no baseline tests are done.
Details

The data-generating process includes:

1.

Value

Covariates Z: Continuous covariates are simulated using a correlation structure specified by
r and a common standard deviation s. If p.discrete = 1, a single discrete covariate is added,
drawn from Bernoulli(0.5).

. Event Times X: An Accelerated Failure Time (AFT) model is used:

log(;) = Bao + By 2ai + 0x €,

where (. is the intercept (set by mu. X) and 3, are the other regression coefficients (provided
via beta.X). The error term ¢; is drawn from the distribution chosen by dist.X: "weibull”,
"lognormal”, "loglog" (log-logistic), or "gengamma" (generalized gamma). For "gengamma”,
the shape parameter k is additionally used.

. Irregular Screening Schedules V;: Each individual has multiple screening times generated

randomly between v.min and v.max, ending in right censoring or the time of detection. These
screening times (including a O for baseline and Inf for censoring) are returned in Vobs.

. Prevalence Indicator g;: Baseline prevalence is modeled via either a probit or logit link,

consistent with:
wi = Buwo + B 2wi + Vi,
where (3,9 is determined by theta, and 5,, by beta.W. Specifically:

* If sel.mod = "probit”, then 8,0 = qnorm(6).
* If sel.mod = "logit", then 3,0 = log(8/(1 — 0)).
We set g; = 1if w; > 0, and g; = 0 otherwise.

. Baseline Test Missingness ;: A baseline test indicator r; € {0, 1} is generated via Bernoulli(prob.r),

so r; = 1 means the baseline test is performed and r; = 0 means it is missing.

. Test Sensitivity x: A misclassification parameter ~ (test sensitivity) can be specified via

kappa. If ¥ < 1, some truly positive cases are missed.

A list with the following elements:

Vobs A list of length n, each entry containing screening times. The first element is O (baseline),

and Inf may indicate right censoring.

X.true Numeric vector of length n giving the true (latent) event times ;.

16 get.IC_2S

Z Numeric matrix of dimension n x p (plus an extra column if p.discrete = 1) containing the
covariates.

C Binary vector of length n, indicating whether an individual is truly positive at baseline (g; = 1).

r Binary vector of length n, indicating whether the baseline test was performed (r; = 1) or missing
(r; =0).

p.W Numeric vector of length n giving the true prevalence probabilities, P(g; = 1).

References

T. Klausch, B. I. Lissenberg-Witte, and V. M. Coupé, “A Bayesian prevalence-incidence mixture
model for screening outcomes with misclassification,” arXiv:2412.16065.

Examples

Generate a small dataset for testing
set.seed(2025)
sim_data <- gen.dat(n = 100, p = 1, p.discrete =1,
sigma.X = 0.5, mu.X = 2,
beta.X = c(0.2, 0.2), beta.W = c(0.5, -0.2),
theta = 0.2,
dist.X = "weibull”, sel.mod = "probit")
str(sim_data)

get.IC_2S Compute Information Criteria for a Bayesian Prevalence-Incidence
Mixture Model

Description

Computes and returns information criteria for a fitted Bayesian prevalence-incidence mixture model,
including the Widely Applicable Information Criterion 1 (WAIC-1), WAIC-2, and the Deviance In-
formation Criterion (DIC). These criteria are commonly used for model comparison and evaluation
in Bayesian analysis. See Gelman et al. (2014) for further details on these criteria.

Usage

get.IC_2S(mod, samples = nrow(mod$par.X.bi[[1]1]), cores = NULL)

Arguments
mod A fitted prevalence-incidence mixture model of class bayes. 2S.
samples The number of MCMC samples to use. Maximum is the number of post-burn-in
samples available in the bayes. 2S object.
cores The number of cores for parallel processing using foreach. If NULL (default),

all available cores will be used.

getIC_2S 17

Details

This function calculates information criteria for a fitted Bayesian prevalence-incidence mixture
model (bayes. 2S). The information criteria include:

* WAIC-1: Based on the sum of posterior variances of log-likelihood contributions.
* WAIC-2: Similar to WAIC-1 but incorporates an alternative variance estimate.

* DIC: Measures model fit by penalizing complexity via the effective number of parameters.

The computation is performed by evaluating log-likelihood values for MCMC samples. By de-
fault, all MCMC samples after burn-in are used, though a subset can be specified via the samples
argument.

Parallelization is available via the foreach package, utilizing multiple cores if cores is set accord-
ingly. If cores = NULL, all available cores will be used.

Value

A matrix containing WAIC-1, WAIC-2, and DIC values for the model.

References

Gelman, A., Hwang, J., & Vehtari, A. (2014). Understanding predictive information criteria for
Bayesian models. Stat Comput, 24(6), 997-1016.

Examples

Generate data according to the Klausch et al. (2024) PIM
set.seed(2025)
dat = gen.dat(kappa = 0.7, n= l1e3, theta = 0.2,
p =1, p.discrete =1,
beta.X = ¢(0.2,0.2), beta.W = ¢c(0.2,0.2),
v.min = 20, v.max = 30, mean.rc = 80,
sigma.X = 0.2, mu.X=5, dist.X = "weibull”,
prob.r =1)

An initial model fit with fixed test sensitivity kappa (approx. 1-3 minutes, depending on machine)
mod = bayes.2S(Vobs = dat$Vobs,
Z.X = dat$z,
Z.W = dat$z,
r= dat$r,
kappa = 0.7,
update.kappa = FALSE,
ndraws= 1e4,
chains = 2,
prop.sd.X = 0.008,
parallel = TRUE,
dist.X = 'weibull'
)

Get information criteria
get.IC_2S(mod, samples = 1e3, cores = 2)

18

get.ppd.2S

get.ppd.2S

Posterior Predictive Cumulative Incidence Function

Description

Computes the posterior predictive cumulative incidence function (CIF) from a bayes.2S prevalence-
incidence mixture model. The function can return quantiles corresponding to user-specified per-
centiles (i.e., time points at which the cumulative probability reaches certain thresholds), or vice
versa (percentiles at user-specified quantiles). Additionally, it allows for marginal or conditional
CIFs of either the mixture population (including prevalence as a point-mass at time zero) or the
non-prevalent (healthy) subpopulation.

Usage

get.ppd.2S(
mod,

fix_Z.X = NULL,
fix_Z.W = NULL,

pst.samples

1000,

perc = seq(@, 1, 0.01),

nyn

type = "x",

ppd. type

Arguments

mod

fix_Z.X

fix_Z.W

pst.samples

perc

type

ppd. type

quant

"percentiles”,
quant = NULL

A fitted prevalence-incidence mixture model of class bayes. 2S.

Either NULL for a marginal CIF or a numeric vector of length ncol(Z.X) to
request a conditional CIF. Numeric entries fix those covariates at the given value,
whereas NA entries are integrated out. See Details.

Same as fix_Z.X but for the prevalence model covariates; must be NULL to
obtain a marginal CIF.

Integer; number of posterior samples to draw when computing the posterior
predictive CIF. Must not exceed the total available posterior samples in mod.
Larger values can improve precision but increase computation time.

A numeric vector of cumulative probabilities (i.e., percentiles in (0,1)) for which
time points are returned when ppd. type = "quantiles”.

Character; "xstar" for the mixture CIF (prevalence + incidence), or "x" for the
non-prevalent (healthy) population CIF.

Character; "percentiles” to return cumulative probabilities at times quant, or
"quantiles” to return time points at cumulative probabilities perc.

A numeric vector of time points for which the function returns cumulative prob-
abilities when ppd. type = "percentiles”.

get.ppd.2S 19

Details

For a prevalence-incidence mixture model, some fraction of the population may already have expe-
rienced the event (prevalent cases) at baseline, while the remaining (healthy) fraction has not. This
function estimates the CIF in two ways:

* type = "xstar" (mixture CIF): Includes a point-mass at time zero representing baseline preva-
lence, with incidence beginning thereafter.

* type = "x" (non-prevalent CIF): Excludes prevalent cases, so it only shows incidence among
the initially healthy subpopulation.

You may request a marginal CIF by setting both fix_Z.X = NULL and fix_Z.W = NULL, thus inte-
grating over all covariates. Alternatively, a conditional CIF can be obtained by partially or fully
specifying fixed covariate values in fix_Z.X (and optionally fix_Z.W) while integrating out the
unspecified covariates (NA entries).

The function operates in two main modes:

* ppd.type = "quantiles”: Given a set of perc (cumulative probabilities), returns correspond-
ing quantiles (time points).

* ppd.type = "percentiles”: Given a set of quant (time points), returns corresponding per-
centiles (cumulative probabilities).

Value

A list with some or all of the following elements:

med.cdf e If ppd.type = "quantiles”, med.cdf contains the median quantiles (time points)
across posterior samples for each percentile in perc.
e If ppd.type = "percentiles”, med.cdf contains the median cumulative probabilities
across posterior samples for each time point in quant.

med.cdf.ci A 2-row matrix with the 2.5% and 97.5% posterior quantiles for the estimated med. cdf,
reflecting uncertainty.

quant If ppd. type = "percentiles”, this is a copy of the input quant (time points).
perc If ppd. type = "quantiles”, this is a copy of the input perc (cumulative probabilities).

Examples

Generate data according to the Klausch et al. (2024) PIM
set.seed(2025)
dat <- gen.dat(kappa = 0.7, n = 1e3, theta = 0.2,
p =1, p.discrete =1,
beta.X = c(0.2, 0.2), beta.W = c(0.2, 0.2),
v.min = 20, v.max = 30, mean.rc = 80,
sigma.X = 0.2, mu.X = 5, dist.X = "weibull”,
prob.r =1)

Fit a bayes.2S model (example with moderate ndraws = 2e4)

mod <- bayes.2S(Vobs = dat$Vobs, Z.X = dat$z, Z.W = dat$Z, r = dat$r,
kappa = 0.7, update.kappa = FALSE, ndraws = Te4,
chains = 2, prop.sd.X = 0.008, parallel = TRUE,

get.ppd.2S

dist.X = "weibull")

HHHHAHHHHEER
(1) Provide percentiles, get back quantiles (times)
WA
cif_nonprev <- get.ppd.2S(mod, pst.samples = 1e3, type = "x",
ppd.type = "quantiles”, perc = seq(@, 1, 0.01))
cif_mix <- get.ppd.2S(mod, pst.samples = 1e3, type = "xstar”,
ppd.type = "quantiles”, perc = seq(@, 1, 0.01))

Plot: Non-prevalent stratum CIF vs. mixture CIF (marginal)
oldpar <- par(no.readonly = TRUE)
par(mfrow = c(1,2))

plot(cif_nonprev$med.cdf, cif_nonprev$perc, type = "1", xlim = c(0,300), ylim = c(0,1),
xlab = "Time", ylab = "Cumulative Incidence")
lines(cif_nonprev$med.cdf.ci[1,], cif_nonprev$perc, 1ty
lines(cif_nonprev$med.cdf.ci[2,], cif_nonprev$perc, lty

2)
2)

plot(cif_mix$med.cdf, cif_mix$perc, type = "1", xlim = c(0,300), ylim = c(0,1),
xlab = "Time"”, ylab = "Cumulative Incidence")

lines(cif_mix$med.cdf.ci[1,], cif_mix$perc, 1ty = 2)

lines(cif_mix$med.cdf.ci[2,], cif_mix$perc, 1ty = 2)

S
(2) Provide quantiles (times), get back percentiles (cumulative probabilities)
AR
cif2_nonprev <- get.ppd.2S(mod, pst.samples = 1e3, type = "x",
ppd.type = "percentiles”, quant = 1:300)
cif2_mix <- get.ppd.2S(mod, pst.samples = 1e3, type = "xstar”,
ppd.type = "percentiles”, quant = 1:300)

Plot: Non-prevalent vs. mixture CIF using times on the x-axis
plot(cif2_nonprev$quant, cif2_nonprev$med.cdf, type = "1", xlim = c(0,300), ylim = c(0,1),
xlab = "Time"”, ylab = "Cumulative Incidence")
lines(cif2_nonprev$quant, cif2_nonprev$med.cdf.cil[1,], 1ty
lines(cif2_nonprev$quant, cif2_nonprev$med.cdf.ci[2,], lty

2)
2)

plot(cif2_mix$quant, cif2_mix$med.cdf, type = "1", xlim = c(0,300), ylim = c(0,1),
xlab = "Time", ylab = "Cumulative Incidence")

lines(cif2_mix$quant, cif2_mix$med.cdf.ci[1,], 1ty = 2)
lines(cif2_mix$quant, cif2_mix$med.cdf.ci[2,], 1ty = 2)
HHHEHHHEHEEH

(3) Conditional CIFs by fixing some covariates
SR

cif_mix_ml <- get.ppd.2S(mod, fix_Z.X = c(-1, NA), pst.samples = le3,

type = "xstar”, ppd.type = "quantiles”, perc = seq(0,1,0.01))
cif_mix_@ <- get.ppd.2S(mod, fix_Z.X = c(@, NA), pst.samples = 1e3,

type = "xstar"”, ppd.type = "quantiles”, perc = seq(0,1,0.01))
cif_mix_p1 <- get.ppd.2S(mod, fix_Z.X = c(1, NA), pst.samples = 1e3,

type = "xstar”, ppd.type = "quantiles"”, perc = seq(0,1,0.01))

search.prop.sd 21

Plot: mixture CIF for three different values of the first covariate

par(mfrow = c(1,1))

plot(cif_mix_ml1$med.cdf, cif_mix_ml1$perc, type = "1", xlim = c(0@,300), ylim = c(0,1),
xlab = "Time", ylab = "Cumulative Incidence”, col=1)

lines(cif_mix_@%$med.cdf, cif_mix_mi$perc, col=2)

lines(cif_mix_p1$med.cdf, cif_mix_mI$perc, col=3)

par(oldpar)
search.prop.sd Automated Heuristic Search of a Proposal Standard Deviation for
bayes. 2S
Description

The bayes.2S Gibbs sampler uses a Metropolis step for sampling the incidence model parameters
and requires specifying a standard deviation for the normal proposal (jumping) distribution. This
function uses a heuristic algorithm to find a proposal distribution standard deviation such that the
Metropolis sampler accepts proposed draws at an acceptance rate within the user-defined interval
(by default around 20-25%).

Usage

search.prop.sd(m, ndraws = 1000, succ.min = 3, acc.bounds.X = c(0.2, 0.25))

Arguments
m A model object of class bayes. 2S.
ndraws Starting number of MCMC iterations after which the acceptance rate is first
evaluated. Defaults to 1000.
succ.min The algorithm doubles the number of MCMC draws succ.min times (each time

the acceptance rate is within acc. bounds. X), ensuring stability. Defaults to 3.

acc.bounds.X A numeric vector of length two specifying the lower and upper bounds for the
acceptable acceptance rate. Defaults to (0.2, 0.25).

Details

Starting from an initial bayes.2S model object m, the function attempts to calibrate the standard
deviation of the proposal distribution. Specifically, it:
1. Runs an initial update of ndraws iterations and computes an acceptance rate.

2. If the acceptance rate lies within acc.bounds.X, the number of MCMC draws ndraws is
doubled, and the process repeats.

3. Otherwise, the proposal standard deviation o is adjusted based on whether the acceptance rate
p is below the lower bound a or above the upper bound b of acc.bounds. X.

22 search.prop.sd_seq

4. The formula for adjustment is:

(a—p) (p—b)

1 —
g+ o x(5

) ifp<a, oc+<ox(1+

) ifp>b.

By default, if the acceptance rate falls within [0.2, 0.25], that ¢ is considered acceptable, and the
process continues until succ.min consecutive successes (doubles) are achieved.

Value
A list with the following elements:

prop.sd.X The final (adjusted) proposal standard deviation.
ac.X The acceptance rate in the last iteration.

Examples

Generate data according to Klausch et al. (2025) PIM
set.seed(2025)
dat = gen.dat(kappa = 0.7, n = 1e3, theta = 0.2,
p =1, p.discrete = 1,
beta.X = c(0.2, 0.2), beta.W = c(0.2, 0.2),
v.min = 20, v.max = 30, mean.rc = 80,
sigma.X = 0.2, mu.X =5, dist.X = "weibull”,
prob.r =1)

An initial model fit with a moderate number of ndraws (e.g., 1e3)
mod = bayes.2S(
Vobs = dat$Vobs, Z.X = dat$z, Z.W = dat$z, r = dat$r,
kappa = 0.7, update.kappa = FALSE, ndraws = 1e3, chains = 2,
prop.sd.X = 0.005, parallel = TRUE, dist.X = "weibull”
)

Running the automated search
search.sd <- search.prop.sd(m = mod)
print(search.sd)

search.prop.sd_seq Automated Heuristic Search of a Proposal Standard Deviation for
bayes. 2S (sequential processing)

Description

The bayes.2S Gibbs sampler uses a Metropolis step for sampling the incidence model parameters
and requires specifying a standard deviation for the normal proposal (jumping) distribution. This
function uses a heuristic algorithm to find a proposal distribution standard deviation such that the
Metropolis sampler accepts proposed draws at an acceptance rate within the user-defined interval
(by default around 20-25%). This is the sequential processing analogue to search.prop.sd which
does parallel processing by default.

search.prop.sd_seq 23

Usage

search.prop.sd_seq(m, ndraws = 1000, succ.min = 3, acc.bounds.X = c(0.2, 0.25))

Arguments
m A model object of class bayes. 2S.
ndraws Starting number of MCMC iterations after which the acceptance rate is first
evaluated. Defaults to 1000.
succ.min The algorithm doubles the number of MCMC draws succ.min times (each time

the acceptance rate is within acc. bounds. X), ensuring stability. Defaults to 3.

acc.bounds.X A numeric vector of length two specifying the lower and upper bounds for the
acceptable acceptance rate. Defaults to c (0.2, 0.25).

Details

Starting from an initial bayes.2S model object m, the function attempts to calibrate the standard
deviation of the proposal distribution. Specifically, it:
1. Runs an initial update of ndraws iterations and computes an acceptance rate.

2. If the acceptance rate lies within acc.bounds.X, the number of MCMC draws ndraws is
doubled, and the process repeats.

3. Otherwise, the proposal standard deviation ¢ is adjusted based on whether the acceptance rate
p is below the lower bound a or above the upper bound b of acc.bounds.X.

4. The formula for adjustment is:

(a;p)) ifp <a, Jeax(1+(p;b))

oc—ox(1- iftp>b.
By default, if the acceptance rate falls within [0.2, 0.25], that o is considered acceptable, and the
process continues until succ.min consecutive successes (doubles) are achieved.

Value
A list with the following elements:

prop.sd.X The final (adjusted) proposal standard deviation.

ac.X The acceptance rate in the last iteration.

Examples

Generate data according to Klausch et al. (2025) PIM
set.seed(2025)
dat = gen.dat(kappa = 0.7, n = 1e3, theta = 0.2,
p =1, p.discrete = 1,
beta.X = c(0.2, 0.2), beta.W = c(0.2, 0.2),
v.min = 20, v.max = 30, mean.rc = 80,
sigma.X = 0.2, mu.X = 5, dist.X = "weibull”,
prob.r 1)

24

trim.mecmc

An initial model fit with a moderate number of ndraws (e.g., 1e3)
mod = bayes.2S(
Vobs = dat$Vobs, Z.X = dat$z, Z.W = dat$z, r = dat$r,
kappa = 0.7, update.kappa = FALSE, ndraws = 1e3, chains = 2,
prop.sd.X = 0.005, parallel = TRUE, dist.X = "weibull”
)

Running the automated search
search.sd <- search.prop.sd_seq(m = mod)
print(search.sd)

trim.memc Subset MCMC draws (burn-in and thinning)

Description

Takes an mcmc.list object (or a list of MCMC chains) and returns a new mcmc. list containing
only the specified subset of iterations (from burnin to end) with the specified thinning interval.

Usage

trim.memc(obj, burnin = 1, end = nrow(as.matrix(obj[[1]])), thining = 1)

Arguments
obj An object of class mcmc. 1ist (or a list of matrices) containing MCMC draws.
burnin A numeric scalar giving the starting iteration of the MCMC sample to keep.
Defaults to 1.
end A numeric scalar giving the last iteration of the MCMC sample to keep. Defaults
to the number of rows in the first chain of obj.
thining A numeric scalar for the thinning interval. Defaults to 1.
Details

This function subsets each chain of the input obj to the specified iteration indices and creates a new
mcme. 1list. If you have multiple MCMC chains, each chain is trimmed in the same way.

Value

An object of class memc. 1ist, representing the trimmed subset of the original MCMC draws.

trim.mcmc

Examples

Example with a toy mcmc.list
set.seed(123)

x1 <= matrix(rnorm(2000), ncol = 2)

x2 <- matrix(rnorm(2000), ncol = 2)
mcme_list <- memc.list(memec(x1), memc(x2))

Trim and thin the chains
trimmed_mcmc <- trim.mcmc(mcmc_list, burnin = 100, end = 800, thining = 5)
summary (trimmed_mcmc)

Index

bayes.2S,2,8,11,18,21, 22
bayes.2S_seq, 3,6, 8, 10

gen.dat, 13
get.IC_2S, 16
get.ppd.2S, 18

search.prop.sd, 3, 6, 10, 21, 22
search.prop.sd_seq, 22

trim.mcmc, 24

26

	bayes.2S
	bayes.2S_seq
	gen.dat
	get.IC_2S
	get.ppd.2S
	search.prop.sd
	search.prop.sd_seq
	trim.mcmc
	Index

