Make it easier for humans to access data from the Maddison Data
Project in R. Later releases may include vignettes, etc., documenting
analyses using the [KFAS] (Kalman filtering and smoothing,
aka state space) techniques with these data.
Objectives: Make it relatively easy in R to do the following:
Find the countries with the highest gdppc for each
year for which data are available using
MaddisonLeaders().
Refine “1” by deleting companies with high gdppc
based on something narrow like a commodity, e.g., oil, since
1600:
library(MaddisonData)
MadDat1600 <- subset(MaddisonData, year>1600)
Leaders1600 <- MaddisonLeaders(c('ARE', 'KWT', 'QAT'), data=MadDat1600)
summary(Leaders1600)
#> ISO yearBegin yearEnd n p
#> ARE ARE 1965 1984 5 0.2500000
#> AUS AUS 1853 1891 17 0.4358974
#> CHE CHE 1931 1934 4 1.0000000
#> GBR GBR 1808 1898 67 0.7362637
#> KWT KWT 1953 1957 5 1.0000000
#> LUX LUX 1991 1995 5 1.0000000
#> NLD NLD 1601 1807 207 1.0000000
#> NOR NOR 1996 2002 7 1.0000000
#> NZL NZL 1873 1874 2 1.0000000
#> QAT QAT 1950 2022 45 0.6164384
#> USA USA 1882 1990 58 0.5321101gdppc and / or pop for a
selection of countries, e.g., world leaders.str(GBR_USA <- subset(MaddisonData::MaddisonData, ISO %in% c('GBR', 'USA')))
#> Classes 'tbl_df', 'tbl' and 'data.frame': 1004 obs. of 4 variables:
#> $ ISO : chr "GBR" "GBR" "GBR" "GBR" ...
#> $ year : num 1 1000 1252 1253 1254 ...
#> $ gdppc: num NA 1151 1320 1328 1317 ...
#> $ pop : num 800 2000 NA NA NA NA NA NA NA NA ...
GBR_USA1 <- MaddisonData::ggplotPath('year', 'gdppc', 'ISO', GBR_USA, 1000)
GBR_USA1+ggplot2::coord_cartesian(xlim=c(1500, 1850)) # for only 1500-1850 
GBR_USA1+ggplot2::coord_cartesian(xlim=c(1600, 1700), ylim=c(7, 17)) 
# label the lines
ISOll <- data.frame(x=c(1500, 1800), y=c(2.5, 1.7), label=c('GBR', 'USA'),
srt=c(0, 30), col=c('red', 'green'), size=c(2, 9))
GBR_USA2 <- ggplotPath('year', 'gdppc', 'ISO', GBR_USA, 1000,
labels=ISOll, fontsize = 20)
# h, vlines, manual legend only
Hlines <- c(1,3, 10, 30)
Vlines = c(1849, 1929, 1933, 1939, 1945)
(GBR_USA3 <- ggplotPath('year', 'gdppc', 'ISO', GBR_USA, 1000,
ylab='GDP per capita (2011 PPP K$)',
legend.position = NULL, hlines=Hlines, vlines=Vlines, labels=ISOll)) 
LATER:
Build a state space / Kalman models for gdppc and
pop for each country in the Maddison project data.
Use Kalman smooth to interpolate and extrapolate (forward but not
backwards) gdppc and pop for each country for
all years that appear anywhere in the Maddison project data.
Identify the world leader in gdppc for each year,
refining “1” using KFAS interpolation.
Identify the world technology leader for each year by evaluating
the gdppc leader for each year and replacing any whose
leadership was narrow like members of OPEC with a country with a
broad-based economy like the US.
You can install the development version of MaddisonData from GitHub with:
# install.packages("pak")
pak::pak("sbgraves237/MaddisonData")[Coming soon.]
library(MaddisonData)
## basic example code