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BatchContextualEpsilonGreedyPolicy
Batch Contextual Epsilon-Greedy Policy

Description

Batch Contextual Epsilon-Greedy Policy
Batch Contextual Epsilon-Greedy Policy

Details

Implements an epsilon-greedy exploration strategy for contextual bandits with batched updates.

Super class

cramR: :NA

Public fields

epsilon Probability of selecting a random arm (exploration rate).

batch_size Number of rounds per batch before updating model parameters.

A_cc List of Gram matrices (one per arm), used to accumulate sufficient statistics across batches.
b_cc List of reward-weighted context sums (one per arm), updated batch-wise.

class_name Internal class name identifier.

Methods

Public methods:
e BatchContextualEpsilonGreedyPolicy$new()
e BatchContextualEpsilonGreedyPolicy$set_parameters()
* BatchContextualEpsilonGreedyPolicy$get_action()
¢ BatchContextualEpsilonGreedyPolicy$set_reward()
* BatchContextualEpsilonGreedyPolicy$clone()

Method new(): Constructor for the Batch Epsilon-Greedy policy.

Usage:
BatchContextualEpsilonGreedyPolicy$new(epsilon = 0.1, batch_size = 1)

Arguments:
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epsilon Numeric between 0 and 1. Probability of random arm selection.

batch_size Integer. Number of observations between parameter updates.

Method set_parameters(): Initializes the parameter structures for each arm.

Usage:
BatchContextualEpsilonGreedyPolicy$set_parameters(context_params)

Arguments:
context_params A list with at least ‘d‘ (number of features) and ‘k‘ (number of arms).

Method get_action(): Chooses an arm based on epsilon-greedy logic and the current esti-

mates.
Usage:
BatchContextualEpsilonGreedyPolicy$get_action(t, context)

Arguments:

t Integer time step.
context A list with contextual features and arm count.

Returns: A list with the selected action.

Method set_reward(): Updates model statistics based on observed reward. Updates occur
once per batch.

Usage:
BatchContextualEpsilonGreedyPolicy$set_reward(t, context, action, reward)

Arguments:

t Integer time step.
context List of contextual features used for the action.

action A list with the chosen arm.

reward A list with the observed reward.

Returns: Updated parameter estimates.

Method clone(): The objects of this class are cloneable with this method.

Usage:
BatchContextualEpsilonGreedyPolicy$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.
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BatchContextualLinTSPolicy
Batch Contextual Thompson Sampling Policy

Description

Batch Contextual Thompson Sampling Policy
Batch Contextual Thompson Sampling Policy

Details

Implements Thompson Sampling for linear contextual bandits with batch updates.

Methods

3

- ‘initialize(v = 0.2, batch_size = 1)*: Constructor, sets variance and batch size. - ‘set_parameters(context_params)‘:
Initializes arm-level matrices. - ‘get_action(t, context)‘: Samples from the posterior and selects ac-
tion. - ‘set_reward(t, context, action, reward)‘: Updates posterior statistics using observed feedback.

Super class

cramR: :NA

Public fields

sigma Numeric, posterior variance scale parameter.

batch_size Integer, size of mini-batches before parameter updates.
A_cc List of accumulated Gram matrices per arm.

b_cc List of reward-weighted context sums per arm.

class_name Internal name of the class.

Methods

Public methods:
e BatchContextualLinTSPolicy$new()
* BatchContextualLinTSPolicy$set_parameters()
* BatchContextuallLinTSPolicy$get_action()
e BatchContextualLinTSPolicy$set_reward()
* BatchContextualLinTSPolicy$clone()

Method new(): Constructor for the batch-based Thompson Sampling policy.

Usage:
BatchContextualLinTSPolicy$new(v = 0.2, batch_size = 1)

Arguments:
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v Numeric. Standard deviation scaling parameter for posterior sampling.

batch_size Integer. Number of rounds before parameters are updated.

Method set_parameters(): Initializes per-arm sufficient statistics.

Usage:
BatchContextualLinTSPolicy$set_parameters(context_params)

Arguments:
context_params List with entries: ‘unique‘ (feature vector), ‘k‘ (number of arms).

Method get_action(): Samples from the posterior distribution of expected rewards and selects

an action.

Usage:
BatchContextualLinTSPolicy$get_action(t, context)

Arguments:

t Integer. Time step.
context List containing the current context and arm information.

Returns: A list with the chosen arm (‘choice*).

Method set_reward(): Updates Gram matrix and response vector for the chosen arm. Param-
eters are refreshed every ‘batch_size‘ rounds.

Usage:
BatchContextualLinTSPolicy$set_reward(t, context, action, reward)

Arguments:

t Integer. Time step.

context Context object containing feature info.
action Chosen action (arm index).

reward Observed reward for the action.

Returns: Updated internal parameters.

Method clone(): The objects of this class are cloneable with this method.

Usage:
BatchContextualLinTSPolicy$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.
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BatchLinUCBDisjointPolicyEpsilon
Batch Disjoint LinUCB Policy with Epsilon-Greedy

Description

Batch Disjoint LinUCB Policy with Epsilon-Greedy
Batch Disjoint LinUCB Policy with Epsilon-Greedy

Details

Implements the disjoint LinUCB algorithm with upper confidence bounds and epsilon-greedy ex-
ploration, using batched updates.

Methods

3

- ‘initialize(alpha = 1.0, epsilon = 0.1, batch_size = 1)‘: Constructor. - ‘set_parameters(context_params)‘:
Initializes sufficient statistics for each arm. - ‘get_action(t, context): Selects an arm using UCB
scores and epsilon-greedy rule. - ‘set_reward(t, context, action, reward)‘: Updates statistics and
refreshes model at batch intervals.

Super class

cramR: :NA

Public fields

alpha Numeric, UCB exploration strength parameter.

epsilon Numeric, probability of taking a random exploratory action.
batch_size Integer, number of rounds per batch update.

A_cc List of Gram matrices per arm, accumulated across batch.

b_cc List of reward-weighted context vectors per arm.

class_name Internal class name identifier.

Methods

Public methods:
* BatchLinUCBDisjointPolicyEpsilon$new()
e BatchLinUCBDisjointPolicyEpsilon$set_parameters()
e BatchLinUCBDisjointPolicyEpsilon$get_action()
* BatchLinUCBDisjointPolicyEpsilon$set_reward()
e BatchLinUCBDisjointPolicyEpsilon$clone()

Method new(): Constructor for batched LinUCB with epsilon-greedy exploration.
Usage:
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BatchLinUCBDisjointPolicyEpsilon$new(alpha = 1, epsilon = 0.1, batch_size = 1)

Arguments:

alpha Numeric. UCB width parameter (exploration strength).
epsilon Numeric. Probability of selecting a random arm.
batch_size Integer. Number of rounds before updating parameters.

Method set_parameters(): Initialize arm-specific parameter containers.

Usage:
BatchLinUCBDisjointPolicyEpsilon$set_parameters(context_params)

Arguments:
context_params List containing at least ‘unique‘ (feature size) and ‘k‘ (number of arms).

Method get_action(): Chooses an arm based on UCB and epsilon-greedy sampling.

Usage:
BatchLinUCBDisjointPolicyEpsilon$get_action(t, context)
Arguments:

t Integer timestep.

context List containing the context for the decision.

Returns: A list with the selected action.

Method set_reward(): Updates arm-specific sufficient statistics based on observed reward.
Parameter updates occur only at the end of a batch.

Usage:
BatchLinUCBDisjointPolicyEpsilon$set_reward(t, context, action, reward)
Arguments:

t Integer timestep.

context Context object used for decision-making.

action List containing the chosen action.

reward List containing the observed reward.

Returns: Updated internal model parameters.

Method clone(): The objects of this class are cloneable with this method.

Usage:
BatchLinUCBDisjointPolicyEpsilon$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.
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ContextualLinearBandit
Contextual Linear Bandit Environment

Description

Contextual Linear Bandit Environment

Contextual Linear Bandit Environment

Details

An R6 class for simulating a contextual linear bandit environment with normally distributed re-
wards.

Methods

3

- ‘initialize(k, d, list_betas, sigma = 0.1, binary_rewards = FALSE)‘: Constructor. - ‘post_initialization()*:
Loads correct coefficients based on ‘sim_id‘. - ‘get_context(t)‘: Returns context and sets internal
reward vector. - ‘get_reward(t, context_common, action)‘: Returns observed reward for an action.

Super class

cramR: :NA -> ContextualLinearBandit

Public fields

rewards A vector of rewards for each arm in the current round.

betas Coefficient matrix of the linear reward model (one column per arm).
sigma Standard deviation of the Gaussian noise added to rewards.

binary Logical, indicating whether to convert rewards into binary outcomes.
weights The latent reward scores before noise and/or binarization.
list_betas A list of coefficient matrices, one per simulation.

sim_id Index for selecting which simulation’s coefficients to use.

class_name Name of the class for internal tracking.

Methods

Public methods:
e ContextuallLinearBandit$new()
e ContextuallLinearBandit$post_initialization()
e ContextuallLinearBandit$get_context()
e ContextuallLinearBandit$get_reward()
e ContextuallLinearBandit$clone()

Method new():
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Usage:
ContextuallLinearBandit$new(
K,
d,
list_betas,
sigma = 0.1,
binary_rewards = FALSE
)
Arguments:
k Number of arms
d Number of features
list_betas A list of true beta matrices for each simulation
sigma Standard deviation of Gaussian noise
binary_rewards Logical, use binary rewards or not

Method post_initialization(): Set the simulation-specific coefficients for the current sim-
ulation.

Usage:
ContextuallLinearBandit$post_initialization()

Returns: No return value; modifies the internal state of the object.

Method get_context():
Usage:
ContextuallinearBandit$get_context(t)
Arguments:
t Current time step

Returns: A list containing context vector ‘X‘ and arm count ‘k*

Method get_reward():
Usage:
ContextuallLinearBandit$get_reward(t, context_common, action)

Arguments:

t Current time step

context_common Context shared across arms
action Action taken by the policy

Returns: A list with reward and optimal arm/reward info

Method clone(): The objects of this class are cloneable with this method.
Usage:
ContextuallinearBandit$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.
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cram_bandit Cram Bandit: On-policy Statistical Evaluation in Contextual Bandits

Description

Performs the Cram method for On-policy Statistical Evaluation in Contextual Bandits

Usage

cram_bandit(pi, arm, reward, batch = 1, alpha = 0.05)

Arguments
pi An array of shape (T x B, T, K) or (T x B, T), where T is the number of learning
steps (or policy updates), B is the batch size, K is the number of arms, T x B
is the total number of contexts. If 3D, pi[j, t, a] gives the probability that the
policy pi_t assigns arm a to context X_j. If 2D, pi[j, t] gives the probability that
the policy pi_t assigns arm A_j (arm actually chosen under X_j in the history)
to context X_j. Please see vignette for more details.
arm A vector of length T x B indicating which arm was selected in each context
reward A vector of observed rewards of length T x B
batch (Optional) A vector or integer. If a vector, gives the batch assignment for each
context. If an integer, interpreted as the batch size and contexts are assigned to
a batch in the order of the dataset. Default is 1.
alpha Significance level for confidence intervals for calculating the empirical cover-
age. Default is 0.05 (95% confidence).
Value

A list containing:

raw_results A data frame summarizing key metrics: Empirical Bias on Policy Value, Aver-
age relative error on Policy Value, RMSE using relative errors on Policy Value,
Empirical Coverage of Confidence Intervals.

interactive_table
An interactive table summarizing the same key metrics in a user-friendly inter-
face.

Examples
# Example with batch size of 1

# Set random seed for reproducibility
set.seed(42)

# Define parameters
T <- 100 # Number of timesteps
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K <-4 # Number of arms

# Simulate a 3D array pi of shape (T, T, K)

# - First dimension: Individuals (context Xj)

# - Second dimension: Time steps (pi_t)

# - Third dimension: Arms (depth)

pi <- array(runif(T * T x K, 0.1, 1), dim = c(T, T, K))

# Normalize probabilities so that each row sums to 1 across arms
for (t in 1:T) {
for (j in 1:T) {
pilj, t, 1 <- pilj, t, 1 / sum(pilj, t, 1)
}
}

# Simulate arm selections (randomly choosing an arm)
arm <- sample(1:K, T, replace = TRUE)

# Simulate rewards (assume normally distributed rewards)
reward <- rnorm(T, mean = 1, sd = 0.5)

result <- cram_bandit(pi, arm, reward, batch=1, alpha=0.05)
result$raw_results
result$interactive_table

cram_bandit_est Cram Bandit Policy Value Estimate

Description

This function implements the contextual armed bandit on-policy evaluation by providing the policy
value estimate.

Usage

cram_bandit_est(pi, reward, arm, batch = 1)

Arguments

pi An array of shape (T x B, T, K) or (T x B, T), where T is the number of learning
steps (or policy updates), B is the batch size, K is the number of arms, T x B
is the total number of contexts. If 3D, pi[j, t, a] gives the probability that the
policy pi_t assigns arm a to context X_j. If 2D, pilj, t] gives the probability that
the policy pi_t assigns arm A_j (arm actually chosen under X_j in the history)
to context X_j. Please see vignette for more details.

reward A vector of observed rewards of length T x B

arm A vector of length T x B indicating which arm was selected in each context
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batch (Optional) A vector or integer. If a vector, gives the batch assignment for each
context. If an integer, interpreted as the batch size and contexts are assigned to
a batch in the order of the dataset. Default is 1.

Value

The estimated policy value.

cram_bandit_sim Cram Bandit Simulation

Description

This function runs on-policy simulation for contextual bandit algorithms using the Cram method. It
evaluates the statistical properties of policy value estimates.

Usage
cram_bandit_sim(
horizon,
simulations,
bandit,
policy,
alpha = 0.05,
do_parallel = FALSE,
seed = 42
)
Arguments
horizon An integer specifying the number of timesteps (rounds) per simulation.
simulations An integer specifying the number of independent Monte Carlo simulations to
perform.
bandit A contextual bandit environment object that generates contexts (feature vectors)
and observed rewards for each arm chosen.
policy A policy object that takes in a context and selects an arm (action) at each timestep.
alpha Significance level for confidence intervals for calculating the empirical cover-

age. Default is 0.05 (95% confidence).

do_parallel Whether to parallelize the simulations. Default to FALSE. We recommend keep-
ing to FALSE unless necessary, please see vignette.

seed An optional integer to set the random seed for reproducibility. If NULL, no seed
is set.



14 cram_bandit_sim

Value

A list containing:

estimates A table containing the detailed history of estimates and errors for each simula-
tion.
raw_results A data frame summarizing key metrics: Empirical Bias on Policy Value, Aver-

age relative error on Policy Value, RMSE using relative errors on Policy Value,
Empirical Coverage of Confidence Intervals.

interactive_table
An interactive table summarizing the same key metrics in a user-friendly inter-
face.

Examples

# Number of time steps
horizon <- 500L

# Number of simulations
simulations <- 100L

# Number of arms
k =4

# Number of context features
d= 3

# Reward beta parameters of linear model (the outcome generation models,
# one for each arm, are linear with arm-specific parameters betas)
list_betas <- cramR::get_betas(simulations, d, k)

# Define the contextual linear bandit, where sigma is the scale
# of the noise in the outcome linear model

bandit <- cramR::ContextualLinearBandit$new(k = k,
d=d,
list_betas = list_betas,
sigma = 0.3)

# Define the policy object (choose between Contextual Epsilon Greedy,
# UCB Disjoint and Thompson Sampling)
policy <- cramR::BatchContextualEpsilonGreedyPolicy$new(epsilon=0.1,
batch_size=5)
# policy <- cramR: :BatchLinUCBDisjointPolicyEpsilon$new(alpha=1.0,epsilon=0.1,batch_size=1)
# policy <- cramR::BatchContextualLinTSPolicy$new(v = 0.1, batch_size=1)

sim <- cram_bandit_sim(horizon, simulations,

bandit, policy,

alpha=0.05, do_parallel = FALSE)
sim$summary_table
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cram_bandit_var Cram Bandit Variance of the Policy Value Estimate

Description

This function implements the crammed variance estimate of the policy value estimate for the con-
textual armed bandit on-policy evaluation setting.

Usage

cram_bandit_var(pi, reward, arm, batch = 1)

Arguments
pi An array of shape (T x B, T, K) or (T x B, T), where T is the number of learning
steps (or policy updates), B is the batch size, K is the number of arms, T x B
is the total number of contexts. If 3D, pi[j, t, a] gives the probability that the
policy pi_t assigns arm a to context X_j. If 2D, pi[j, t] gives the probability that
the policy pi_t assigns arm A_j (arm actually chosen under X_j in the history)
to context X_j. Please see vignette for more details.
reward A vector of observed rewards of length T x B
arm A vector of length T x B indicating which arm was selected in each context
batch (Optional) A vector or integer. If a vector, gives the batch assignment for each
context. If an integer, interpreted as the batch size and contexts are assigned to
a batch in the order of the dataset. Default is 1.
Value

The crammed variance estimate of the policy value estimate.

cram_estimator Cram Policy Estimator for Policy Value Difference (Delta)

Description

This function returns the cram policy estimator for the policy value difference (delta).

Usage

cram_estimator(X, Y, D, pi, batch_indices, propensity = NULL)
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Arguments

X
Y
D

pi

batch_indices

propensity

Value

cram_expected_loss

A matrix or data frame of covariates for each sample.
A vector of outcomes for the n individuals.
A vector of binary treatments for the n individuals.

A matrix of n rows and (nb_batch + 1) columns, where n is the sample size and
nb_batch is the number of batches, containing the policy assignment for each
individual for each policy. The first column represents the baseline policy.

A list where each element is a vector of indices corresponding to the individuals
in each batch.

The propensity score function

The estimated policy value difference (Delta).

cram_expected_loss Cram ML Expected Loss Estimate

Description

This function computes the Cram ML expected loss estimator based on the given loss matrix and

batch indices.

Usage

cram_expected_loss(loss, batch_indices)

Arguments

loss

batch_indices

Value

A matrix of loss values with N rows (data points) and K+1 columns (batches).
We assume that the first column of the loss matrix contains only zeros. The
following nb_batch columns contain the losses of each trained model for each
individual.

A list where each element is a vector of indices corresponding to a batch.

The Cram ML expected loss estimate
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cram_learning Cram Policy Learning

Description

This function performs the learning part of the Cram Policy method.

Usage

cram_learning(

batch,

model_type = "causal_forest”,
learner_type = "ridge",
baseline_policy = NULL,
parallelize_batch = FALSE,
model_params = NULL,
custom_fit = NULL,
custom_predict = NULL,
n_cores = detectCores() - 1,
propensity = NULL

)
Arguments

X A matrix or data frame of covariates for each sample.

D A vector of binary treatment indicators (1 for treated, O for untreated).

Y A vector of outcome values for each sample.

batch Either an integer specifying the number of batches (which will be created by
random sampling) or a vector of length equal to the sample size providing the
batch assignment (index) for each individual in the sample.

model_type The model type for policy learning. Options include "causal_forest”, "s_learner”,

and "m_learner”. Defaultis "causal_forest". Note: you can also set model_type
to NULL and specify custom_fit and custom_predict to use your custom model.

learner_type  The learner type for the chosen model. Options include "ridge” for Ridge Re-
gression, "fnn" for Feedforward Neural Network and "caret"” for Caret. De-
faultis "ridge”. if model_type is ’causal_forest’, choose NULL, if model_type
is ’s_learner’ or 'm_learner’, choose between ’ridge’, *fnn’ and ’caret’.
baseline_policy
A list providing the baseline policy (binary O or 1) for each sample. If NULL, the

baseline policy defaults to a list of zeros with the same length as the number of
rows in X.
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parallelize_batch
Logical. Whether to parallelize batch processing (i.e. the cram method learns
T policies, with T the number of batches. They are learned in parallel when
parallelize_batch is TRUE vs. learned sequentially using the efficient data.table
structure when parallelize_batch is FALSE, recommended for light weight train-
ing). Defaults to FALSE.

model_params A list of additional parameters to pass to the model, which can be any parameter
defined in the model reference package. Defaults to NULL.

custom_fit A custom, user-defined, function that outputs a fitted model given training data
(allows flexibility). Defaults to NULL.

custom_predict A custom, user-defined, function for making predictions given a fitted model
and test data (allow flexibility). Defaults to NULL.

n_cores Number of cores to use for parallelization when parallelize_batch is set to TRUE.
Defaults to detectCores() - 1.
propensity The propensity score
Value

A list containing:
final_policy_model
The final fitted policy model, depending on model_type and learner_type.

policies A matrix of learned policies, where each column represents a batch’s learned
policy and the first column is the baseline policy.

batch_indices The indices for each batch, either as generated (if batch is an integer) or as
provided by the user.

See Also

causal_forest, cv.glmnet, keras_model_sequential

cram_ml Cram ML: Simultaneous Machine Learning and Evaluation

Description

Performs the Cram method for simultaneous machine learning and evaluation.

Usage

cram_ml(
data,
batch,
formula = NULL,
caret_params = NULL,
parallelize_batch = FALSE,
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loss_name = NULL,
custom_fit = NULL,
custom_predict = NULL,
custom_loss = NULL,
alpha = 0.05,

classify = FALSE

)
Arguments
data A matrix or data frame of covariates. For supervised learning, must include the
target variable specified in formula.
batch Integer specifying number of batches or vector of pre-defined batch assignments.
formula Formula for supervised learning (e.g.,y ~ .).

caret_params  List of parameters for caret::train() containing:

non

* method: Model type (e.g., "rf", "glm", "xgbTree" for supervised learning)
* Additional method-specific parameters

parallelize_batch

Logical indicating whether to parallelize batch processing (default = FALSE).

loss_name Name of loss metric (supported: "se", "logloss", "accuracy").

custom_fit Optional custom model training function.

custom_predict Optional custom prediction function.

custom_loss Optional custom loss function.

alpha Confidence level for intervals (default = 0.05).

classify Indicate if this is a classification problem. Defaults to FALSE.
Value

A list containing:

» raw_results: Data frame with performance metrics
* interactive_table: The same performance metrics in a user-friendly interface

¢ final_ml_model: Trained model object

See Also

train for model training parameters

Examples

# Load necessary libraries
library(caret)

# Set seed for reproducibility
set.seed(42)
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# Generate example dataset

X_data <- data.frame(x1 = rnorm(100), x2 = rnorm(100), x3 = rnorm(100))

Y_data <- rnorm(100) # Continuous target variable for regression

data_df <- data.frame(X_data, Y = Y_data) # Ensure target variable is included

# Define caret parameters for simple linear regression (no cross-validation)
caret_params_lm <- list(

method = "1m",

trControl = trainControl(method = "none")

)
nb_batch <- 5
# Run ML learning function

result <- cram_ml(
data = data_df,

formula = Y ~ ., # Linear regression model
batch = nb_batch,

loss_name = 'se',

caret_params = caret_params_lm

)

result$raw_results
result$interactive_table
result$final_ml_model

cram_policy Cram Policy: Efficient Simultaneous Policy Learning and Evaluation

Description

This function performs the cram method (simultaneous policy learning and evaluation) for binary
policies on data including covariates (X), binary treatment indicator (D) and outcomes (Y).

Usage

cram_policy(

batch,

model_type = "causal_forest”,
learner_type = "ridge",
baseline_policy = NULL,
parallelize_batch = FALSE,
model_params = NULL,
custom_fit = NULL,
custom_predict = NULL,

alpha = 0.05,
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propensity =
)
Arguments

X
D
Y
batch

model_type

learner_type

baseline_policy

21

NULL

A matrix or data frame of covariates for each sample.
A vector of binary treatment indicators (1 for treated, O for non-treated).
A vector of outcome values for each sample.

Either an integer specifying the number of batches (which will be created by
random sampling) or a vector of length equal to the sample size providing the
batch assignment (index) for each individual in the sample.

n on

The model type for policy learning. Options include "causal_forest”, "s_learner”,
and "m_learner”. Defaultis "causal_forest". Note: you can also set model_type
to NULL and specify custom_fit and custom_predict to use your custom model.

The learner type for the chosen model. Options include "ridge"” for Ridge Re-
gression, "fnn" for Feedforward Neural Network and "caret"” for Caret. De-
faultis "ridge"”. if model_type is ’causal_forest’, choose NULL, if model_type
is ’s_learner’ or 'm_learner’, choose between ’ridge’, *fnn’ and ’caret’.

A list providing the baseline policy (binary O or 1) for each sample. If NULL,
defaults to a list of zeros with the same length as the number of rows in X.

parallelize_batch

model_params
custom_fit
custom_predict
alpha

propensity

Value

A list containing:

Logical. Whether to parallelize batch processing (i.e. the cram method learns
T policies, with T the number of batches. They are learned in parallel when
parallelize_batch is TRUE vs. learned sequentially using the efficient data.table
structure when parallelize_batch is FALSE, recommended for light weight train-
ing). Defaults to FALSE.

A list of additional parameters to pass to the model, which can be any parameter
defined in the model reference package. Defaults to NULL.

A custom, user-defined, function that outputs a fitted model given training data
(allows flexibility). Defaults to NULL.

A custom, user-defined, function for making predictions given a fitted model
and test data (allow flexibility). Defaults to NULL.

Significance level for confidence intervals. Default is 0.05 (95% confidence).

The propensity score function for binary treatment indicator (D) (probability for
each unit to receive treatment). Defaults to 0.5 (random assignment).

* raw_results: A data frame summarizing key metrics with truncated decimals:

— Delta Estimate: The estimated treatment effect (delta).

— Delta Standard Error: The standard error of the delta estimate.

— Delta CI Lower: The lower bound of the confidence interval for delta.
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Delta CI Upper: The upper bound of the confidence interval for delta.

Policy Value Estimate: The estimated policy value.

Policy Value Standard Error: The standard error of the policy value estimate.

Policy Value CI Lower: The lower bound of the confidence interval for policy value.

Policy Value CI Upper: The upper bound of the confidence interval for policy value.

Proportion Treated: The proportion of individuals treated under the final policy.
* interactive_table: An interactive table summarizing key metrics for detailed exploration.

e final_policy_model: The final fitted policy model based on model_type and learner_type
or custom_fit.

See Also

causal_forest, cv.glmnet, keras_model_sequential

Examples

# Example data

X_data <- matrix(rnorm(10@ * 5), nrow = 100, ncol = 5)
D_data <- as.integer(sample(c(@, 1), 100, replace = TRUE))
Y_data <- rnorm(100)

nb_batch <- 5

# Perform CRAM policy
result <- cram_policy(X = X_data,
D = D_data,
Y = Y_data,
batch = nb_batch)

# Access results
result$raw_results
result$interactive_table
result$final_policy_model

cram_policy_value_estimator
Cram Policy: Estimator for Policy Value (Psi)

Description

This function returns the cram estimator for the policy value (psi).

Usage

cram_policy_value_estimator(X, Y, D, pi, batch_indices, propensity = NULL)
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Arguments
X A matrix or data frame of covariates for each sample.
Y A vector of outcomes for the n individuals.
D A vector of binary treatments for the n individuals.
pi A matrix of n rows and (nb_batch + 1) columns, where n is the sample size and

nb_batch is the number of batches, containing the policy assignment for each
individual for each policy. The first column represents the baseline policy.

batch_indices A list where each element is a vector of indices corresponding to the individuals
in each batch.

propensity Propensity score function

Value

The estimated policy value.

cram_simulation Cram Policy Simulation

Description

This function performs the cram method (simultaneous learning and evaluation) on simulation data,
for which the data generation process (DGP) is known. The data generation process for X can be
given directly as a function or induced by a provided dataset via row-wise bootstrapping. Results
are averaged across Monte Carlo replicates for the given DGP.

Usage

cram_simulation(
X = NULL,
dgp_X = NULL,
dgp_D,
dgp_Y,
batch,
nb_simulations,
nb_simulations_truth = NULL,
sample_size,

model_type = "causal_forest”,
learner_type = "ridge",
alpha = 0.05,

baseline_policy = NULL,
parallelize_batch = FALSE,
model_params = NULL,
custom_fit = NULL,
custom_predict = NULL,
propensity = NULL
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Arguments

X Optional. A matrix or data frame of covariates for each sample inducing empir-
ically the DGP for covariates.

dgp_X Optional. A function to generate covariate data for simulations.

dgp_D A vectorized function to generate binary treatment assignments for each sample.

dgp_Y A vectorized function to generate the outcome variable for each sample given
the treatment and covariates.

batch Either an integer specifying the number of batches (which will be created by

random sampling) or a vector of length equal to the sample size providing the
batch assignment (index) for each individual in the sample.

nb_simulations The number of simulations (Monte Carlo replicates) to run.

nb_simulations_truth
Optional. The number of additional simmulations (Monte Carlo replicates) be-
yond nb_simulations to use when calculating the true policy value difference
(delta) and the true policy value (psi)

sample_size The number of samples in each simulation.

model_type The model type for policy learning. Options include "causal_forest”, "s_learner”,
and "m_learner". Defaultis "causal_forest”. Note: you can also set model_type
to NULL and specify custom_fit and custom_predict to use your custom model.

learner_type  The learner type for the chosen model. Options include "ridge” for Ridge Re-
gression, "fnn" for Feedforward Neural Network and "caret” for Caret. De-
faultis "ridge”. if model_type is ’causal_forest’, choose NULL, if model_type
is ’s_learner’ or 'm_learner’, choose between ’ridge’, *fnn’ and ’caret’.

alpha Significance level for confidence intervals. Default is 0.05 (95% confidence).

baseline_policy
A list providing the baseline policy (binary O or 1) for each sample. If NULL,
defaults to a list of zeros with the same length as the number of rows in X.

parallelize_batch
Logical. Whether to parallelize batch processing (i.e. the cram method learns
T policies, with T the number of batches. They are learned in parallel when
parallelize_batch is TRUE vs. learned sequentially using the efficient data.table
structure when parallelize_batch is FALSE, recommended for light weight train-
ing). Defaults to FALSE.

model_params A list of additional parameters to pass to the model, which can be any parameter
defined in the model reference package. Defaults to NULL.

custom_fit A custom, user-defined, function that outputs a fitted model given training data
(allows flexibility). Defaults to NULL.

custom_predict A custom, user-defined, function for making predictions given a fitted model
and test data (allow flexibility). Defaults to NULL.

propensity The propensity score model
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Value
A list containing:

avg_proportion_treated The average proportion of treated individuals across simulations.
avg_delta_estimate The average delta estimate across simulations.
avg_delta_standard_error The average standard error of delta estimates.
delta_empirical_bias The empirical bias of delta estimates.
delta_empirical_coverage The empirical coverage of delta confidence intervals.
avg_policy_value_estimate The average policy value estimate across simulations.
avg_policy_value_standard_error The average standard error of policy value estimates.
policy_value_empirical_bias The empirical bias of policy value estimates.

policy_value_empirical_coverage The empirical coverage of policy value confidence inter-
vals.

See Also

causal_forest, cv.glmnet, keras_model_sequential

Examples

set.seed(123)

# dgp_X <- function(n) {

# data.table::data.table(

# binary = rbinom(n, 1, 0.5),

# discrete = sample(1:5, n, replace = TRUE),
# continuous = rnorm(n)

# )

# 3

n <- 100

X_data <- data.table::data.table(

binary = rbinom(n, 1, 0.5),
discrete = sample(1:5, n, replace = TRUE),
continuous = rnorm(n)

dgp_D <- function(X) rbinom(nrow(X), 1, @.5)

dgp_Y <- function(D, X) {
theta <- ifelse(
X[, binary] == 1 & X[, discrete] <= 2, # Group 1: High benefit
1’
ifelse(X[, binary] == @ & X[, discrete] >= 4, # Group 3: Negative benefit
-1,
0.1) # Group 2: Neutral effect
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Y <- D x (theta + rnorm(length(D), mean = @, sd = 1)) +
(1 - D) * rnorm(length(D)) # Outcome for untreated
return(Y)
}

# Parameters

nb_simulations <- 100
nb_simulations_truth <- 200
batch <- 5

# Perform CRAM simulation
result <- cram_simulation(

X = X_data,
dgp_D = dgp_D,
dgp_Y = dgp_Y,

batch = batch,

nb_simulations = nb_simulations,
nb_simulations_truth = nb_simulations_truth,
sample_size = 500

)

result$raw_results
result$interactive_table

cram_variance_estimator
Cram Policy: Variance Estimate of the crammed Policy Value Differ-
ence (Delta)

Description
This function estimates the asymptotic variance of the cram estimator for the policy value difference
(delta).

Usage

cram_variance_estimator(X, Y, D, pi, batch_indices, propensity = NULL)

Arguments
X A matrix or data frame of covariates for each sample.
Y A vector of outcomes for the n individuals.
D A vector of binary treatments for the n individuals.
pi A matrix of n rows and (nb_batch + 1) columns, where n is the sample size and

nb_batch is the number of batches, containing the policy assignment for each
individual for each policy. The first column represents the baseline policy.
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batch_indices A list where each element is a vector of indices corresponding to the individuals
in each batch.

propensity The propensity score function

Value

The estimated variance of the policy value difference (Delta)

cram_variance_estimator_policy_value
Cram Policy: Variance Estimate of the crammed Policy Value estimate

(Psi)

Description

This function estimates the asymptotic variance of the cram estimator for the policy value (psi).

Usage

cram_variance_estimator_policy_value(

pi,
batch_indices,
propensity = NULL

)
Arguments
X A matrix or data frame of covariates for each sample.
Y A vector of outcomes for the n individuals.
D A vector of binary treatments for the n individuals.
pi A matrix of n rows and (nb_batch + 1) columns, where n is the sample size and

nb_batch is the number of batches, containing the policy assignment for each
individual for each policy. The first column represents the baseline policy.

batch_indices A list where each element is a vector of indices corresponding to the individuals
in each batch.

propensity Propensity score function

Value

The variance estimate of the crammed Policy Value estimate (Psi)
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cram_var_expected_loss
Cram ML: Variance Estimate of the crammed expected loss estimate

Description

This function computes the variance estimator based on the given loss matrix and batch indices.

Usage

cram_var_expected_loss(loss, batch_indices)

Arguments

loss A matrix of loss values with N rows (data points) and K+1 columns (batches).
We assume that the first column of the loss matrix contains only zeros. The
following nb_batch columns contain the losses of each trained model for each
individual.

batch_indices A list where each element is a vector of indices corresponding to a batch.

Value

The variance estimate of the crammed expected loss estimate

fit_model Cram Policy: Fit Model

Description
This function trains a given unfitted model with the provided data and parameters, according to
model type and learner type.

Usage

fit_model(model, X, Y, D, model_type, learner_type, model_params, propensity)

Arguments
model An unfitted model object, as returned by ‘set_model‘.
X A matrix or data frame of covariates for the samples.
Y A vector of outcome values.
D A vector of binary treatment indicators (1 for treated, O for untreated).
model_type The model type for policy learning. Options include "causal_forest”, "s_learner”,

and "m_learner”. Default is "causal_forest”.
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learner_type The learner type for the chosen model. Options include "ridge” for Ridge
Regression and "fnn" for Feedforward Neural Network. Default is "ridge”.

model_params A list of additional parameters to pass to the model, which can be any parameter
defined in the model reference package. Defaults to NULL.

propensity The propensity score
Value
The fitted model object.
fit_model_ml Cram ML: Fit Model ML
Description

This function trains a given unfitted model with the provided data and parameters, according to
model type and learner type.

Usage

fit_model_ml(data, formula, caret_params, classify)

Arguments
data The dataset
formula The formula

caret_params The parameters for caret model

classify Indicate if this is a classification problem. Defaults to FALSE
Value
The fitted model object.
get_betas Generate Reward Parameters for Simulated Linear Bandits
Description

Creates a list of matrices representing the arm-specific reward-generating parameters (betas) used
in contextual linear bandit simulations. Each matrix corresponds to one simulation and contains
normalized random coefficients.

Usage

get_betas(simulations, d, k)
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Arguments
simulations Integer. Number of simulations.
d Integer. Number of features (context dimensions).
k Integer. Number of arms.

Value

A list of length simulations + 1 (first element being discarded in the underlying simulation pack-
age), each containing a d x k matrix of normalized reward parameters.

LinUCBDisjointPolicyEpsilon
LinUCB Disjoint Policy with Epsilon-Greedy Exploration

Description

LinUCB Disjoint Policy with Epsilon-Greedy Exploration
LinUCB Disjoint Policy with Epsilon-Greedy Exploration

Details

Implements the disjoint LinUCB algorithm with upper confidence bounds and epsilon-greedy ex-
ploration.

Methods

- ‘initialize(alpha = 1.0, epsilon = 0.1)‘: Create a new LinUCBDisjointPolicyEpsilon object. -
‘set_parameters(context_params)‘: Initialize arm-level parameters. - ‘get_action(t, context)‘: Se-
lects an arm using epsilon-greedy UCB. - ‘set_reward(t, context, action, reward)‘: Updates internal
statistics based on observed reward.

Super class

cramR: :NA

Public fields

alpha Numeric, exploration parameter controlling the width of the confidence bound.
epsilon Numeric, probability of selecting a random action (exploration).

class_name Internal class name.
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Methods

Public methods:
e LinUCBDisjointPolicyEpsilon$new()
e LinUCBDisjointPolicyEpsilon$set_parameters()
e LinUCBDisjointPolicyEpsilon$get_action()
e LinUCBDisjointPolicyEpsilon$set_reward()
e LinUCBDisjointPolicyEpsilon$clone()

Method new(): Initializes the policy with UCB parameter alpha and exploration rate epsilon.

Usage:
LinUCBDisjointPolicyEpsilon$new(alpha = 1, epsilon = 0.1)

Arguments:
alpha Numeric. Controls width of the UCB bonus.
epsilon Numeric between O and 1. Probability of random action selection.

Method set_parameters(): Set arm-specific parameter structures.

Usage:

LinUCBDisjointPolicyEpsilon$set_parameters(context_params)

Arguments:

context_params A list with context information, typically including the number of unique
features.

Method get_action(): Selects an arm using epsilon-greedy Upper Confidence Bound (UCB).

Usage:

LinUCBDisjointPolicyEpsilon$get_action(t, context)
Arguments:

t Integer time step.

context A list with contextual features and number of arms.

Returns: A list containing the selected action.

Method set_reward(): Updates internal statistics using the observed reward for the selected
arm.

Usage:

LinUCBDisjointPolicyEpsilon$set_reward(t, context, action, reward)

Arguments:

t Integer time step.

context Contextual features for all arms at time t.

action A list containing the chosen arm.

reward A list containing the observed reward for the selected arm.

Returns: Updated internal parameters.

Method clone(): The objects of this class are cloneable with this method.
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Usage:

ml_learning

LinUCBDisjointPolicyEpsilon$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

ml_learning

Cram ML: Generalized ML Learning

Description

This function performs batch-wise learning for machine learning models.

Usage

ml_learning(
data,

formula = NULL,

batch,

parallelize_batch = FALSE,

loss_name =

NULL,

caret_params = NULL,
custom_fit = NULL,
custom_predict = NULL,
custom_loss = NULL,

n_cores = detectCores() - 1,
classify = FALSE

Arguments

data

formula

batch

A matrix or data frame of features. Must include the target variable.

Formula specifying the relationship between the target and predictors for super-
vised learning.

Either an integer specifying the number of batches (randomly sampled) or a
vector of length equal to the sample size indicating batch assignment for each
observation.

parallelize_batch

loss_name

caret_params

custom_fit

custom_predict

Logical. Whether to parallelize batch processing. Defaults to ‘FALSE".
The name of the loss function to be used (e.g., "se"*, ‘"logloss"*).

A list of parameters to pass to the ‘caret::train()‘ function. - Required: ‘method*
(e.g., 6llg1m” ‘, 6llrf|| 6).

A custom function for training user-defined models. Defaults to ‘NULL".

A custom function for making predictions from user-defined models. Defaults
to ‘NULL".
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custom_loss Optional custom function for computing the loss of a trained model on the data.
Should return a vector containing per-instance losses.
n_cores Number of CPU cores to use for parallel processing (‘parallelize_batch = TRUE®).
Defaults to ‘detectCores() - 1°.
classify Indicate if this is a classification problem. Defaults to FALSE
Value

A list containing:

final_ml_model The final trained ML model.

losses A matrix of losses where each column represents a batch’s trained model. The
first column contains zeros (baseline model).

batch_indices The indices of observations in each batch.

model_predict Cram Policy: Predict with the Specified Model

Description
This function performs inference using a trained model, providing flexibility for different types of
models such as Causal Forest, Ridge Regression, and Feedforward Neural Networks (FNNs).
Usage

model_predict(model, X, D, model_type, learner_type, model_params)

Arguments
model A trained model object returned by the ‘fit_model‘ function.
X A matrix or data frame of covariates for which predictions are required.
D A vector of binary treatment indicators (1 for treated, O for untreated). Optional,
depending on the model type.
model_type The model type for policy learning. Options include "causal_forest”, "s_learner”,

and "m_learner”. Default is "causal_forest”.

learner_type The learner type for the chosen model. Options include "ridge"” for Ridge
Regression and "fnn" for Feedforward Neural Network. Default is "ridge”.

model_params A list of additional parameters to pass to the model, which can be any parameter
defined in the model reference package. Defaults to NULL.

Value

A vector of binary policy assignments, depending on the model_type and learner_type.
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model_predict_ml Cram ML: Predict with the Specified Model

Description

This function performs inference using a trained model

Usage

model_predict_ml(
model,
data,
formula,
caret_params,
cram_policy_handle = FALSE

)
Arguments
model A trained model object returned by the ‘fit_model_ml*‘ function.
data The dataset
formula The formula

caret_params The parameters of the caret model
cram_policy_handle

Internal use. Post-process predictions differently for cram policy use. Defaults
to FALSE.

Value

Predictions of the model on the data

set_model Cram Policy: Set Model

Description

This function maps the model type and learner type to the corresponding model function.

Usage

set_model(model_type, learner_type, model_params)
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Arguments

n on

model_type The model type for policy learning. Options include "causal_forest”, "s_learner”,
and "m_learner”. Defaultis "causal_forest”. Note: you can also set model_type
to NULL and specify custom_fit and custom_predict to use your custom model.

learner_type The learner type for the chosen model. Options include "ridge” for Ridge Re-
gression, "fnn" for Feedforward Neural Network and "caret"” for Caret. De-
faultis "ridge”. if model_type is ’causal_forest’, choose NULL, if model_type
is ’s_learner’ or 'm_learner’, choose between 'ridge’, *fnn’ and ’caret’.

model_params A list of additional parameters to pass to the model, which can be any param-
eter defined in the model reference package. Defaults to NULL. For FNNs, the
following elements are defined in the model params list:
input_layer A list defining the input layer. Must include:
units Number of units in the input layer.
activation Activation function for the input layer.
input_shape Input shape for the layer.
layers A list of lists, where each sublist specifies a hidden layer with:
units Number of units in the layer.
activation Activation function for the layer.
output_layer A list defining the output layer. Must include:
units Number of units in the output layer.
activation Activation function for the output layer (e.g., "linear” or
"sigmoid").
compile_args A list of arguments for compiling the model. Must include:
optimizer Optimizer for training (e.g., "adam” or "sgd").
loss Loss function (e.g., "mse” or "binary_crossentropy”).
metrics Optional list of metrics for evaluation (e.g., c("accuracy")).

For other learners (e.g., "ridge” or "causal_forest"), model_params can in-
clude relevant hyperparameters.

Value

The instantiated model object or the corresponding model function.

test_baseline_policy Validate or Set the Baseline Policy

Description
This function validates a provided baseline policy or sets a default baseline policy of zeros for all
individuals.

Usage

test_baseline_policy(baseline_policy, n)
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Arguments

baseline_policy
A list representing the baseline policy for each individual. If NULL, a default
baseline policy of zeros is created.

n An integer specifying the number of individuals in the population.

Value

A validated or default baseline policy as a list of numeric values.

test_batch Validate or Generate Batch Assignments

Description

This function validates a provided batch assignment or generates random batch assignments for
individuals.

Usage

test_batch(batch, n)

Arguments
batch Either an integer specifying the number of batches or a vector/list of batch as-
signments for all individuals.
n An integer specifying the number of individuals in the population.
Value

A list containing:

batches A list where each element contains the indices of individuals assigned to a specific batch.

nb_batch The total number of batches.



validate_params 37

validate_params Cram Policy: Validate User-Provided Parameters for a Model

Description

This function validates user-provided parameters against the formal arguments of a specified model
function. It ensures that all user-specified parameters are recognized by the model and raises an
error for invalid parameters.

Usage

validate_params(model_function, model_type, learner_type, user_params)

Arguments

model_function The model function for which parameters are being validated (e.g., grf: : causal_forest).

n n

model_type The model type for policy learning. Options include "causal_forest”, "s_learner”,
and "m_learner"”. Defaultis "causal_forest". Note: you can also set model_type
to NULL and specify custom_fit and custom_predict to use your custom model.

learner_type  The learner type for the chosen model. Options include "ridge” for Ridge Re-
gression, "fnn" for Feedforward Neural Network and "caret"” for Caret. De-
faultis "ridge". if model_type is ’causal_forest’, choose NULL, if model_type
is ’s_learner’ or *'m_learner’, choose between 'ridge’, *fnn’ and ’caret’.

user_params A named list of parameters provided by the user.

Value

A named list of validated parameters that are safe to pass to the model function.

validate_params_fnn Cram Policy: Validate Parameters for Feedforward Neural Networks
(FNNs)

Description

This function validates user-provided parameters for a Feedforward Neural Network (FNN) model.
It ensures the correct structure for input_layer, layers, output_layer, compile_args and fit_params.

Usage

validate_params_fnn(model_type, learner_type, model_params, X)
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Arguments

model_type

learner_type

model_params
X

Value

validate_params_fnn

n on

The model type for policy learning. Options include "causal_forest”, "s_learner”,
and "m_learner”. Defaultis "causal_forest”. Note: you can also set model_type
to NULL and specify custom_fit and custom_predict to use your custom model.

The learner type for the chosen model. Options include "ridge"” for Ridge Re-
gression, "fnn" for Feedforward Neural Network and "caret"” for Caret. De-
faultis "ridge". if model_type is ’causal_forest’, choose NULL, if model_type
is ’s_learner’ or 'm_learner’, choose between 'ridge’, *fnn’ and ’caret’.

A named list of parameters provided by the user for configuring the FNN model.

A matrix or data frame of covariates for which the parameters are validated.

A named list of validated parameters merged with defaults for any missing values.
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