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calculate_distances Compute Distance or Similarity Matrices

Description

Computes a distance or similarity matrix between rows of a data frame or matrix, supporting a wide
variety of distance metrics.

Usage
calculate_distances(
X,
method = "gower”,
output_format = "dist”,
squared = FALSE,
p = NULL,
similarity_transform = "linear”,
)
Arguments
X A matrix or data.frame. Each row represents an observation.
method A string specifying the distance/similarity method. Supported:

n on non

e Binary: "jaccard"”, "dice"”, "sokal_michener”, "russell_rao", "sokal_sneath”,
"kulczynski”,"hamming".

» Categorical: "matching_coefficient”.
e Continuous: "euclidean”, "euclidean_standardized”, "manhattan”,

n on n on n n non n on

"minkowski"”, "canberra”, "maximum”, "cosine"”, "correlation”, "mahalanobis”.
e Mixed: "gower".

output_format Outputformat: "dist” (distance object), "matrix” (numeric matrix), or "similarity”
(only for binary/categorical/mixed methods).

squared Logical; if TRUE, returns squared distances (not applied to similarities).
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p Numeric; the power parameter for the Minkowski distance (required if method
= "minkowski").

similarity_transform
Character string; if output_format = "similarity”, this specifies the formula
to convert distances to similarity scores. Supported:
* "linear” (default): s;; =1 — 4;;
 "sqrt”: s =1- 0%

Additional arguments passed to underlying functions.

Details

When output_format = "similarity”, the function transforms computed distances into similarity
scores using one of the supported transformations.

The similarity transformation options are:

"linear” Direct inversion of distance: s;; = 1 — J;;.

2

"sqrt"” Squared distance inversion: s;; = 1 —5”-,

which may better preserve Euclidean properties.

Value
Depending on output_format, returns:

* dist object (if output_format = "dist")

e numeric matrix (if output_format = "matrix” or "output_format = similarity")

See Also

dist for basic distance measures, dist.binary for binary distances, dist for advanced metrics
like cosine or correlation

Examples

# Load example dataset
data("Data_HC_contamination”, package = "dbrobust")
df <- Data_HC_contamination

# --- Quick Example ---
numeric_data <- df[1:10, 1:4] # subset for speed
d_euclid <- calculate_distances(

numeric_data,

method = "euclidean”,

output_format = "matrix”

)

# Load example dataset
data("Data_HC_contamination”, package = "dbrobust")
df <- Data_HC_contamination[1:20,]

# Example 1: Euclidean distance (numeric variables only)
numeric_data <- df[, 1:4]
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d_euclid <- calculate_distances(
numeric_data,
method = "euclidean”,
output_format = "matrix”

)

# Example 2: Manhattan distance
d_manhattan <- calculate_distances(
numeric_data,
method = "manhattan”,
output_format = "matrix”

)

# Example 3: Categorical distance using Matching Coefficient
categorical_data <- df[, 5:7]
d_match <- calculate_distances(

categorical_data,

method = "matching_coefficient”,

output_format = "matrix”

)

# Example 4: Mixed data distance using Gower (automatic type detection, asymmetric binary)
d_gower_asym <- calculate_distances(

df,

method = "gower”,
output_format = "dist”,
binary_asym = TRUE

)

# Example 5: Minkowski distance with p = 3
d_minkowski <- calculate_distances(
numeric_data,

method = "minkowski”,
p =3,
output_format = "matrix”

)

# Example 6: Jaccard distance for binary variables
binary_data <- df[, 8:9]
d_jaccard <- calculate_distances(

binary_data,

method = "jaccard”,

output_format = "matrix”

)

# Example 7: Mahalanobis distance
d_mahal <- calculate_distances(
numeric_data,
method = "mahalanobis”,
output_format = "matrix”

)

# Example 8: Manual selection of variables for Gower distance
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continuous_vars <- 1:4

binary_vars <- 8:9

categorical_vars <- 5:7

d_gower_manual <- calculate_distances(
df,
method = "gower”,
output_format = "dist”,
continuous_cols = continuous_vars,
binary_cols = binary_vars,
categorical_cols = categorical_vars

Data_HC_contamination High-correlation dataset with contamination

Description

Synthetic dataset generated from a multivariate normal distribution with strong correlation structure
(p = 0.8). It contains 550 observations and 10 variables of mixed type (continuous, categorical,
binary, and weights). The last 50 rows correspond to contaminated observations created by adding
perturbations equal to three times the standard deviation of each quantitative variable to a subset of
original units. This results in a controlled 10% contamination level. These data follow the design
in (Boj and Grané 2024).

Usage

Data_HC_contamination

Format

A data frame with 550 rows and 10 variables:

V1 Continuous variable 1

V2 Continuous variable 2

V3 Continuous variable 3

V4 Continuous variable 4

V5 Categorical variable 1 (3 categories, approx. balanced)
V6 Categorical variable 2 (3 categories, approx. balanced)
V7 Categorical variable 3 (4 categories, uniform distribution)
V8 Binary variable 1 (40% zeros, 60% ones)

V9 Binary variable 2 (60% zeros, 40% ones)

w_loop Observation weights derived from the joint distribution of V5 and V8, following a propor-
tional frequency-based scheme.
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Details

* Continuous variables were drawn directly from the multivariate normal sample.

* Binary and categorical variables were obtained by discretizing normal margins using percentile-
based thresholds.

» Contaminated observations (rows 501-550) were generated by perturbing original cases with
fluctuations of 3 SD.

» The weighting scheme prioritizes frequent category combinations.

References

Boj E, Grané A (2024). “The robustification of distance-based linear models: Some proposals.”
Socio-Economic Planning Sciences, 95, 101992.

Data_HC_no_contamination
High-correlation dataset without contamination

Description

Synthetic dataset generated from a multivariate normal distribution with strong correlation structure
(p = 0.8). It contains 500 observations and 10 variables of mixed type (continuous, categorical,
binary, and weights). No contaminated cases were added in this version, so the dataset represents a
clean scenario with 0% contamination. These data follow the design in (Boj and Grané 2024).

Usage

Data_HC_no_contamination

Format
A data frame with 500 rows and 10 variables:

V1 Continuous variable 1

V2 Continuous variable 2

V3 Continuous variable 3

V4 Continuous variable 4

VS Categorical variable 1 (3 categories, approx. balanced)
V6 Categorical variable 2 (3 categories, approx. balanced)
V7 Categorical variable 3 (4 categories, uniform distribution)
V8 Binary variable 1 (40% zeros, 60% ones)

V9 Binary variable 2 (60% zeros, 40% ones)

w_loop Observation weights derived from the joint distribution of V5 and V8, following a propor-
tional frequency-based scheme.
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Details

 Continuous variables were drawn directly from the multivariate normal sample.

* Binary and categorical variables were obtained by discretizing normal margins using percentile-

based thresholds.

¢ Unlike other datasets in this collection, no artificial contamination was introduced here.

* The weighting scheme prioritizes frequent category combinations.

References

Boj E, Grané A (2024). “The robustification of distance-based linear models: Some proposals.”
Socio-Economic Planning Sciences, 95, 101992.

Data_MC_contamination Moderate-correlation dataset with contamination

Description

Synthetic dataset generated from a multivariate normal distribution with moderate correlation struc-
ture (p = 0.6). It contains 525 observations and 10 variables of mixed type (continuous, categorical,
binary, and weights). The last 25 rows correspond to contaminated observations created by adding
perturbations equal to three times the standard deviation of each quantitative variable to a subset of
original units. This results in a controlled 5% contamination level. These data follow the design in
(Boj and Grané 2024).

Usage

Data_MC_contamination

Format

A data frame with 525 rows and 10 variables:

V1
V2
V3
V4
Vs
Vé
V7
V8
V9

Continuous variable 1

Continuous variable 2

Continuous variable 3

Continuous variable 4

Categorical variable 1 (3 categories, approx. balanced)
Categorical variable 2 (3 categories, approx. balanced)
Categorical variable 3 (4 categories, uniform distribution)
Binary variable 1 (40% zeros, 60% ones)

Binary variable 2 (60% zeros, 40% ones)

w_loop Observation weights derived from the joint distribution of V5 and V8, following a propor-

tional frequency-based scheme.
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Details

 Continuous variables were drawn directly from the multivariate normal sample.

* Binary and categorical variables were obtained by discretizing normal margins using percentile-
based thresholds.

» Contaminated observations (rows 501-525) were generated by perturbing original cases with
fluctuations of 3 SD.

* The weighting scheme prioritizes frequent category combinations.

References

Boj E, Grané A (2024). “The robustification of distance-based linear models: Some proposals.”
Socio-Economic Planning Sciences, 95, 101992.

Data_MC_no_contamination
Moderate-correlation dataset without contamination

Description

Synthetic dataset generated from a multivariate normal distribution with moderate correlation struc-
ture (p = 0.6). It contains 500 observations and 10 variables of mixed type (continuous, categorical,
binary, and weights). No contaminated cases were added in this version, so the dataset represents a
clean scenario with 0% contamination. These data follow the design in (Boj and Grané 2024).

Usage

Data_MC_no_contamination

Format
A data frame with 500 rows and 10 variables:

V1 Continuous variable 1

V2 Continuous variable 2

V3 Continuous variable 3

V4 Continuous variable 4

VS Categorical variable 1 (3 categories, approx. balanced)
V6 Categorical variable 2 (3 categories, approx. balanced)
V7 Categorical variable 3 (4 categories, uniform distribution)
V8 Binary variable 1 (40% zeros, 60% ones)

V9 Binary variable 2 (60% zeros, 40% ones)

w_loop Observation weights derived from the joint distribution of V5 and V8, following a propor-
tional frequency-based scheme.
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Details

* Continuous variables were drawn directly from the multivariate normal sample.

* Binary and categorical variables were obtained by discretizing normal margins using percentile-
based thresholds.

Unlike other datasets in this collection, no artificial contamination was introduced here.

* The weighting scheme prioritizes frequent category combinations.

References

Boj E, Grané A (2024). “The robustification of distance-based linear models: Some proposals.”
Socio-Economic Planning Sciences, 95, 101992.

make_euclidean Force a Pairwise Squared Distance Matrix to Euclidean Form

Description

Given a pairwise squared distance matrix D (where D[i, j] = d(i, 7)?), this function ensures that D
corresponds to a valid Euclidean squared distance matrix. The correction is based on the weighted
Gram matrix G, = —%JwDJ;Jr , where J,, = I, — 1w’ is the centering matrix defined by the
weight vector w.

Usage

make_euclidean(D, w, tol = 1e-10)

Arguments
D Numeric square matrix (n x n) of pairwise squared distances. Must be symmetric
with zeros on the diagonal.
w Numeric vector of weights (Iength n). Internally normalized to sum to 1.
tol Numeric tolerance for detecting negative eigenvalues (default: 1e-10).
Details

If the smallest eigenvalue A;, of G, is below the negative tolerance -tol, the function corrects D
by adding a constant shift to guarantee positive semi-definiteness of the Gram matrix, following the
approach of (Lingoes 1971) and (Mardia 1978):

Dyew = D + 2117 — 2¢1,,,

where ¢ = |Apin|-
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Value
A list with components:

D_euc Corrected pairwise squared Euclidean distance matrix (n x n).
eigvals_before Eigenvalues of the weighted Gram matrix before correction.
eigvals_after Eigenvalues of the weighted Gram matrix after correction.
transformed Logical, TRUE if correction was applied, FALSE otherwise.

References

Lingoes JC (1971). “Some boundary conditions for a monotone analysis of symmetric matrices.”
Psychometrika, 36(2), 195-203. Mardia KV (1978). “Some properties of clasical multi-dimesional
scaling.” Communications in Statistics-Theory and Methods, 7(13), 1233-1241.

See Also

dist, eigen, cmdscale

Examples

# Load example dataset
data("Data_HC_contamination”)

# Reduce dataset to first 50 rows
Data_small <- Data_HC_contamination[1:50, ]

# Select only continuous variables
cont_vars <- names(Data_small)[1:4]
Data_cont <- Data_small[, cont_vars]

# Compute squared Euclidean distance matrix
dist_mat <- as.matrix(dist(Data_cont))"2

# Introduce a small non-Euclidean distortion
dist_mat[1, 2] <- dist_mat[1, 2] * 0.5
dist_mat[2, 1] <- dist_mat[1, 2]

# Uniform weights
weights <- rep(1, nrow(Data_cont))

# Apply Euclidean correction
res <- make_euclidean(dist_mat, weights)

# Check results (minimum eigenvalues before/after)
res$transformed

min(res$eigvals_before)

min(res$eigvals_after)

# First 5x5 block of corrected matrix
round(res$D_euc[1:5, 1:5], 4)
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robust_distances Compute Robust Squared Distances for Mixed Data

Description

Computes a weighted, robust squared distance matrix for datasets containing continuous, binary,
and categorical variables. Continuous variables are handled via a robust Mahalanobis distance, and
binary and categorical variables are transformed via similarity coefficients. The output is suitable
for Euclidean correction with make_euclidean.

Usage

robust_distances(
data = NULL,
cont_vars = NULL,
bin_vars = NULL,
cat_vars = NULL,

w = NULL,
p = NULL,
method = c("ggower"”, "relms"),
robust_cov = NULL,
alpha = 0.1,
return_dist = FALSE
)
Arguments
data Data frame or numeric matrix containing the observations.
cont_vars Character vector of column names for continuous variables.
bin_vars Character vector of column names for binary variables.
cat_vars Character vector of column names for categorical variables.
w Numeric vector of observation weights. If NULL, uniform weights are used.
p Integer vector of length 3: c(#cont, #binary, #categorical). Overrides
variable type selection if provided.
method Character string: either "ggower" or "relms” for distance computation.
robust_cov Optional. Precomputed robust covariance matrix for continuous variables. If
NULL, it will be estimated internally using the specified trimming proportion
alpha.
alpha Numeric trimming proportion for robust covariance of continuous variables.
return_dist Logical. If TRUE, returns an object of class dist; otherwise, returns a squared
distance matrix.
Value

A numeric matrix of squared robust distances (n x n) or a dist object if return_dist = TRUE.
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Examples

# Example: Robust Squared Distances for Mixed Data
# Load example data and subset
data(”"Data_HC_contamination”, package = "dbrobust")

Data_small <- Data_HC_contamination[1:50, 1]

# Define variable types

cont_vars <- c("v1", "v2", "v3", "V4") # continuous
cat_vars <- c("V5", "V6", "V7") # categorical
bin_vars <- c("v8", "V9") # binary

# Use column w_loop as weights
w <- Data_small$w_loop

# Method 1: Gower distances
dist_sq_ggower <- robust_distances(

data = Data_small,
cont_vars = cont_vars,

bin_vars = bin_vars,
cat_vars = cat_vars,
W= w,

alpha = 0.10,

method = "ggower"”

# Apply Euclidean correction if needed
res_ggower <- make_euclidean(dist_sq_ggower, w)

# Show first 5x5 block of original and corrected distances
cat("GGower original squared distances (5x5 block):\n")
print(round(dist_sq_ggower[1:5, 1:5], 4))

cat("\nGGower corrected squared distances (5x5 block):\n")
print(round(res_ggower$D_euc[1:5, 1:5]1, 4))

dist_sq_relms <- robust_distances(
data = Data_small,
cont_vars = cont_vars,

bin_vars = bin_vars,
cat_vars = cat_vars,
W= w,

alpha = 0.10,

method = "relms”

# Apply Euclidean correction if needed
res_relms <- make_euclidean(dist_sq_relms, w)



visualize_distances 13

# Show first 5x5 block of original and corrected distances
cat("RelMS original squared distances (5x5 block):\n")
print(round(dist_sq_relms[1:5, 1:5], 4))

cat("\nRelMS corrected squared distances (5x5 block):\n")
print(round(res_relms$D_euc[1:5, 1:5]1, 4))

visualize_distances Visualize Distance Matrices via MDS, Heatmap, or Network Graph

Description

This function provides a unified interface to visualize distance matrices using classical or weighted
Multidimensional Scaling (MDS), heatmaps, or network graphs. Group annotations can be provided
for coloring.

Usage
visualize_distances(
dist_mat,
method = c("mds_classic”, "mds_weighted”, "heatmap”, "qgraph"),
k =3,
weights = NULL,
group = NULL,
main_title = NULL,
tol = l1e-10,
)
Arguments
dist_mat A square distance matrix (numeric matrix) or a dist object.
method Character string specifying the visualization method. Options are:
e "mds_classic"”: Classical MDS (cmdscale).
* "mds_weighted": Weighted MDS (wcmdscale, requires weights).
* "heatmap": Heatmap with optional clustering and group annotations.
» "ggraph"”: Network graph representation of similarity.
k Integer. Number of dimensions to retain for MDS (default 3). Must be >=1 and
<=min(4, n_obs-1).
weights Optional numeric vector of weights for weighted MDS. Must match the number
of observations.
group Optional factor or vector indicating group membership for coloring plots.
main_title Optional character string specifying the main title of the plot.
tol Numeric tolerance for checking approximate symmetry (default 1e-10).

Additional arguments passed to internal plotting functions (plot_heatmap or
plot_qggraph).
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Details
visualize_distances is a wrapper around three internal plotting functions:

* plot_mds: Creates a pairwise scatterplot matrix of MDS coordinates with density plots on the
diagonal.

* plot_heatmap: Plots a heatmap of the distance matrix with hierarchical clustering and op-
tional group annotations.

* plot_ggraph: Plots a network graph where nodes represent observations and edges represent
similarity.

The function validates that dist_mat is square, symmetric, and has zero diagonal elements. If a dis-
tance matrix has a trimmed_idx attribute and group is not provided, a factor indicating "Trimmed"
vs "Outlier" is created automatically.

Value

The plotting object is returned and automatically printed:

* MDS plots return a ggmatrix from GGally.
* Heatmaps return a pheatmap object.

» Network graphs are plotted directly (returns NULL).

See Also
cmdscale for classical MDS. wemdscale for weighted MDS. pheatmap for heatmaps. qgraph for
network graphs. ggpairs for MDS scatterplot matrices.

Examples

# Load iris dataset
data(iris)

# Compute Euclidean distances on numeric columns
dist_iris <- dist(iris[, 1:41)

# Create a grouping factor based on Species
group_species <- iris$Species

visualize_distances(
dist_mat = dist_iris,

method = "mds_classic”,

k =2,

group = group_species,

main_title = "Classical MDS - Iris Dataset - Euclidean Distance”
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# Weighted MDS (uniform weights)

weights <- rep(1, nrow(iris))
visualize_distances(
dist_mat = dist_iris,
method = "mds_weighted”,
k =2,
weights = weights,
group = group_species,
main_title = "Weighted MDS - Iris Dataset - Euclidean Distance”

visualize_distances(
dist_mat = dist_iris,
method = "heatmap”,
group = group_species,

main_title = "Iris Heatmap by Species - Euclidean Distance”,
max_n = 30,

palette = "Y1GnBu",

clustering_method = "complete”,

annotation_legend = TRUE,
stratified_sampling = TRUE,

seed = 123
)
# ______________________________________
# Network Graph (limit nodes to 30)
# ______________________________________

visualize_distances(
dist_mat = dist_iris,
method = "qgraph”,
group = group_species,
max_nodes = 30,
label_size = 2,
edge_threshold = 0.1,

layout = "spring”,
seed = 123,
main_title = "Iris Network Graph by Species - Euclidean Distance”

15
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